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ABSTRACT
On the basis of a two-point similarity analysis, the

power-law variations for the different length-scales (e.g. the
Taylor microscale, and the Kolmogorov scale) and the ve-
locity scales (e.g. the rms, the Kolmogorov velocity) in the
far-wake of a circular cylinder are derived. In particular,
an exact relation for estimating the mean turbulent energy
dissipation rate ε̄ on the wake axis is obtained. All these
relations are supported reasonably well by hot-wire data in
the far-wake at a Reynolds number based on the free stream
velocity and the cylinder diameter of 2000.

INTRODUCTION
The hypothesis of self-preservation (hereafter denoted

SP), which assumes that the flow is governed by a single set
of length and velocity scales, has been extensively used to
describe the spatial evolution of one-point statistics in the
far field of the plane wake. Townsend (1956) was first to
carry out a SP analysis in the nominally two-dimensional
turbulent wake based on the mean motion equation

U
∂U
∂x

+
∂u1u2

∂y
= ν

∂ 2U
∂y2 (1)

where U is the mean velocity in the streamwise direction;
ui(i = 1,2,3) is the velocity fluctuations in x, y, and z
directions, respectively. While, in theory, SP solutions are
independent of the initial conditions, there is a significant

amount of evidence which suggests that the state of SP
that is reached in the far-wake does depend on the initial
conditions (IC), (e.g. Wygnanski et al., 1986; George,
1989; Zhou & Antonia, 1995; Antonia & Mi, 1998;
Zhou et al., 1998). The effects of the ICs on SP has been
recently reviewed in detail by George (2012) in the more
general context of free shear flows. Given this, we only
focus on the far-wake of a circular cylinder in this paper.
This flow has received a significant amount of attention
(e.g. Browne & Antonia, 1986; Antonia & Browne,
1986; Browne et al., 1987; Antonia et al., 1987,
1988; Bisset et al., 1990a,b; Aronson & Löfdahl, 1993;
Zhou et al., 2006; Brown & Roshko, 2012).

Exact SP is achieved in a turbulent flow when all statis-
tics scale on one velocity scale and one length scale. This
is also reflected in the constancy of Rλ (= u′λ/ν; λ is the
Taylor microscale, u′ is the rms streamwise velocity) as the
flow evolves in the streamwise direction since the constancy
of Rλ ensures that the ratios between the different length-
scales (e.g. the Taylor microscale, and the Kolmogorov
scale) and the velocity scales (e.g. the rms, the Kolmogorov
velocity) are constant (Burattini et al., 2005; Thiesset et al.,
2014). In this case, all the velocity and length scales can be
used interchangeably because they all behave similarly. In
this paper, we extend the SP analysis of Townsend (1956) to
two-point statistics which may provide a deeper insight into
the flow details since the evolution of the turbulent structure
at a given scale can be assessed. This paper is structured
as follows. Details associated with the measurements are
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Figure 1. Schematic arrangement and coordinate axis.

described in the next section. Thereafter, we will focus on
the SP analysis of the scale-by-scale energy budget equation
in the far-wake. Then, experimental support for the results
from SP analysis is presented and discussed.

Experimental details
Experiments have been carried out in a non-return

blower-type wind tunnel with a square crossection (350 ×
350 mm) of 2.4m in length. The inclination of the bot-
tom wall of the working section was adjusted in order to
maintain a zero streamwise pressure gradient. The wake is
generated by a cylinder (d = 3 mm), which was installed
horizontally in the mid-plane and spaning the full width of
the working section (Fig. 1). It is located 10 cm down-
stream of the exit plane of the contraction. This resulted in
a blockage of about 0.9% and an aspect ratio of 175. The
free-steam velocity U∞ is 10.6 m/s and the corresponding
Reynolds number Rd , based on d and U∞, is 2000. The mea-
surement locations varied from the near-wake (x/d = 20) to
the far-wake (x/d = 600).

The Wollaston (Pt-10%Rh) hot wire (diameter dw=2.5
µm) is etched to an active length of about lw=0.5 mm. The
length to diameter ratio of the wire is typically 200. The
hot wire is operated with constant-temperature anemome-
ters at an overheat ratio of 1.5. The output signals from
the anemometers were passed through buck and gain cir-
cuits and low-pass filtered (the cut-off frequency fc, which
was in the range 6300-12500 Hz depending on the trans-
verse position of the probe, was set close to the Kolmogorov
frequency fη = U

2πη , where η is the Kolmogorov length
scale). The signal is then digitized into a personal com-
puter using a 12 bit analog-to-digital (A/D) converter at a
sampling frequency in the range 12600 to 25000 Hz. The
record duration, which varied between 100 s and 140 s, is
long enough for second- and third-order moments to con-
verge on the basis of criteria proposed by Anselmet et al.
(1984) and Camussi & Guj (1995).

SP analysis of the scale-by-scale energy bud-
get equation

According to Danaila et al. (2001), the scale-by-scale
energy budget equation on the axis of a plane far-wake can

be given by

− 1
r2

∫ r
0 s2[U ∂ ∆u2

i
∂ x ]ds+ 2

r2

∫ r
0 s2[− ∂ u2∆u2

i
∂ y ]ds

−∆u1∆u2
i +2ν ∂

∂ r ∆u2
i =

4
3 εr

(2)

where s is a dummy variable, identifiable with the separa-
tion along x. In this paper, u1, u2, and u3 will be used inter-
changeably with u, v, w; similarly for x1, x2, x3 and x, y, z.
The first and second terms on the left hand side of Eq. (2)
are the large scale forcing terms which arise from the tur-
bulent transport of (∆ui)

2 by the mean velocity U and the
lateral velocity fluctuation u2. The third term is the gener-
alised third-order structure function, while the fourth term
represents the viscous effect. The term on the right side of
Eq. (2) is proportional to the full mean energy dissipation
rate and balances the sum of the other terms. Applying the
limit at sufficiently large r to (2), yields the one-point ki-
netic energy budget, viz.

1
2

U
∂q2

∂x
+

∂
∂y

(
1
2

u2q2)+ ε̄ = 0. (3)

We first examine the conditions under which Eq. (2)
satisfies similarity by assuming functional forms for the
terms in this equation. Under SP hypothesis, we assume

∆u2
i = u2

x f (ξ ,ζ ),
−u2∆u2

i = u3
xe(ξ ,ζ ),

−∆u1∆u2
i = u3

xg(ξ ,ζ ),
(4)

where ξ = r/l, ζ = y/δ ; l and δ are the characteristic length
scales in x and y directions, respectively; ux is a character-
istic velocity scale. The dimensionless functions f (ξ ,ζ ),
e(ξ ,ζ ) and g(ξ ,ζ ) may depend on the ICs and are not con-
sidered here. The separation between functions of x, ξ , and
ζ allows the determination of solutions to Eq. (2), for which
a relative balance among all of the terms is maintained as
the flow progresses downstream. After substituting Eq. (4)
into Eq. (2), we obtain

−U
r2

du2
x

dx l3Γ1 +
Uu2

x
r2

dl
dx l2Γ2 +

2u3
x

δ r2 lΓ3

+u3
xg(ξ ,ζ )+2νu2

x
1
l

d f (ξ ,ζ )
dξ = 4

3 εr
(5)

where

Γ1 =
∫ r/l

0
s2

l2 f (ξ ,ζ )d( s
l )

Γ2 =
∫ r/l

0
s3

l3
d f (ξ ,ζ )

dξ d( s
l )

Γ3 =
∫ r/l

0
s2

l2
de(ξ ,ζ )

dζ d( s
l )

(6)

Note that the following relations

∂ ξ
∂ x =−rl−2 dl

dx
∂ ζ
∂ y = 1

l
(7)

have been used in deriving Eq. (5). After multiplication by
(l/νu2

x), Eq. (5) becomes

−
[

Ul2

νu2
x

du2
x

dx

]
Γ1
ξ 2 +

[
Ul
ν

dl
dx

]
Γ2
ξ 2 +[ 2uxl2

νδ ]Γ3
ξ 2

+
[

uxl
ν

]
g(ξ ,ζ )+ [2] d f (ξ ,ζ )

dξ =
[

4
3

ε l2

νu2
x

]
ξ

(8)
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Since along the centreline of the wake U = U∞ −Ud , Eq.
(8) can be further recast as

−
[

U∞l2

νu2
x

du2
x

dx

]
Γ1
ξ 2 +

[
U∞l

ν
dl
dx

]
Γ2
ξ 2

+
[

Ud l2

νu2
x

du2
x

dx

]
Γ1
ξ 2 −

[
Ud l
ν

dl
dx

]
Γ2
ξ 2

+
[

2uxl2

νδ

]
Γ3
ξ 2 +

[
uxl
ν

]
g(ξ ,ζ )

+[2] d f (ξ ,ζ )
dξ =

[
4
3

ε̄ l2

νu2
x

]
ξ

(9)

For equilibrium similarity, all the terms within square
brackets must evolve in the streamwise direction in exactly
the same way. Since the last term on the left hand side of
Eq. (8) is constant, all the other terms must also be constant,
viz.

U∞l2

νu2
x

du2
x

dx
=C1, (10)

U∞l
ν

dl
dx

=C2, (11)

Ud l2

νu2
x

du2
x

dx
=C3, (12)

Ud l
ν

dl
dx

=C4, (13)

uxl2

νδ
=C5, (14)

uxl
ν

=C6, (15)

ε̄l2

νu2
x
=C7. (16)

Eq. (15) indicates that in the far-wake of a cylinder, the
Reynolds numbers, based on the characteristic length and
velocity scales (ux and l), must remain constant if SP is
achieved but not necessarily infinite.

The ratios of Eq. (12) to Eq. (10) and Eq. (13) to Eq.
(11) lead to

C3

C1
=

C4

C2
=

Ud

U∞
. (17)

i.e. Ud/U∞ must be constant for exact SP. Since Ud de-
creases as x/d increases, one expects that beyond a certain
value of x/d, Ud/U∞ ≃ 0 so that SP may be satisfied ap-
proximately i.e. C3 and C4 are negligible compared to C1
and C2.

Then, from Eq. (11), the characteristic length scale
should behave as

l
d
= c1(

x
d
− x0

d
)1/2 (18)

where x0 is the effective flow origin, c1 is the power-law
prefactors for l.

Eq. (10) and Eq. (16) suggests that ux and ε̄ should
behave as

ux

U∞
= c2(

x
d
− x0

d
)1/2 (19)

εd
U3

∞
= cε (

x
d
− x0

d
)−2 (20)

Note that Eq. (18), Eq. (19) and Eq. (20) have been nor-
malized by d and U∞. Combining (14) and (15) shows that
the characteristic length scale δ in y direction should behave
like l, viz.

δ
l
= const (21)

which explicitly predicts that the half-width of the far-wake
L0 should behave like (x−x0)

1/2.
More importantly, an exact equation to estimate ε̄ can

be derived from the present SP analysis. To this end, we fo-
cus on the transport equation for the mean turbulent kinetic
energy (q2 = u2

i ) along the axis of the far-wake, i.e. Eq. (3).
Several attempts have been made to measure the var-

ious terms of Eq. (3) in a circular cylinder. For exam-
ple, Browne et al. (1987), Aronson & Löfdahl (1993), and
Lefeuvre et al. (2014) showed that, on the centreline of a
circular cylinder, the advection (the first term in Eq. (3))
and diffusion (the second term in Eq. (3)) terms contribute
significantly to the budget (the ratio of the diffusion term to
advection term is about 1). Thus, to quantify the power-law
prefactors c1, c2, and cε and their interrelationships in Eq.
(18) and Eq. (19), we assume

∂vq2

∂y
≈U

∂q2

∂x
(22)

Eq. (3) then can be rewritten as

U
∂q2

∂x
+ ε̄ ≈ 0. (23)

The turbulent kinetic energy along the axis of the far-
wake is approximated by

q2 = u2
1 +2u2

2 = u2
1(1+2R) (24)

where R = u2
2/u2

1, and accounts for large-scale anisotropy.
After substituting Eq. (20) and Eq. (24) in Eq. (23),

we obtain

u2

U2
∞
=

cε
(1+2R)

(
x−x0

d
)−1 = A2

u(
x−x0

d
)−1 (25)

where Au is a power-law prefactor for u′.
Note that the condition that Ud/U∞ is negligible (see

Eq. (17)) is used in deriving Eq. (25).
We recall that a reliable estimation of the energy dis-

sipation rate is a challenging task for the experimentalist.
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Eq. (25) provides a simple means for estimating ε̄ along the
wake axis once u2 and R are known, viz.

εd
U3

∞
= cε (

x
d
− x0

d
)−2 = A2

u(1+2R)(
x
d
− x0

d
)−2 (26)

It should be noted that there is an anisotropy in the
far wake of a circular cylinder, even on the flow centre-
line where the mean shear is zero (e.g. Browne et al.,
1987; Antonia & Browne, 1986). The departure from local
isotropy is quantified directly by

Rε =
ε̄iso

ε̄
(27)

Thus, the isotropic energy dissipation rate ε iso is given by

ε isod
U3

∞
= A2

uRε(1+2R)(
x
d
− x0

d
)−2 (28)

It follows that the Kolmogorov scales should behave as

uK

U∞
=

[
A2

uRε (1+2R)
Rd

]1/4

(
x
d
− x0

d
)−1/2 (29)

η
d
=

[
R3

dRε A2
u(1+2R)

]−1/4
(

x
d
− x0

d
)1/2 (30)

and therefore

u∗2 =
u2

u2
K
= [

A2
uRd

(1+2R)Rε
]1/2 (31)

is constant, independently of x.
Since u∗2 = Rλ/

√
15, it follows that

ARλ =
Rλ

Rd
1/2 = [

15A2
u

(1+2R)Rε
]1/2 (32)

The definition of the Taylor microscale leads to

λ 2

d2 =
15νu2

ε isod2 =
15

Rd(1+2R)Rε
(

x
d
− x0

d
). (33)

And the ratio λ/η

λ ∗ =
λ
η

=

[
152RdA2

u
(1+2R)Rε

]1/4

(34)

The present equilibrium similarity analysis leads to an
exact expression for u2, ε and all subsequent quantities. In
particular, the relationships between the prefactors Au, ARλ ,
and cε are provided. All the results derived from the equilib-
rium similarity in the far-wake are tested in the next section.
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Figure 2. Normalized rms longitudinal velocity at Rd =

2000. ⋄, x/d = 20; ❏, 40; ▽, 60; △, 80; ⊳, 100; ⊲, 170; ∗,
211; •, 277; ●, 344; ■, 401; ◆, 468; ▼, 534; ▲, 601. Solid
curve corresponds to the cylinder far-wake at x/d = 420
(Browne et al., 1987).

Results
The root mean square of the streamwise fluctuations

u+rms, normalised with Ud and L0 are shown in Fig. 2.
Antonia & Mi (1998) reported that the magnitude of u+rms
decreases as x/d increases over the range x/d = 10 ∼ 70.
The same can be observed in Fig. 2. More importantly, the
magnitude of u+rms keeps decreasing as x/d increases, even-
tually reaching a constant beyond x/d ≈ 200. This suggests
SP is satisfied closely for x/d > 200, at least in the context
of Reynolds stresses.

From the SP analysis, we show that the Reynolds num-
bers, based on any characteristic set of length and veloc-
ity scales, must remain constant in the far-wake if SP is
satisfied. The local Reynolds number R0 = UdL0/ν , de-
fined on the basis of the scaling parameters: L0 and Ud ,
and the Taylor microscale Reynolds number Rλ are shown
in Fig. 3. As expected, both the R0 and Rλ become con-
stant for x/d > 200 implying that SP is satisfied closely.
Although not shown here, we have checked that the length-
scales (namely, the integral scale, L0, the Taylor microscale,
and the Kolmogorov scale) grow as x1/2 and the velocity
scales (namely, Ud , the u′, the Kolmogorov velocity scale )
decay as x−1/2 for x/d > 200, in agreement with the conse-
quences of the SP analysis i.e. Eqs. (18) and (19).

Eq. (26) provides a simple means for estimating ε̄
along the wake axis once u2 and R are known. Before
checking the accuracy of the present estimates for ε̄ with
Eq. (26), we first used a spectral chart method to esti-
mate ε̄ (Djenidi & Antonia, 2012). This method is based on
the validity of the first similarity hypothesis of Kolmogorov
(1941) (or K41) which implies that spectra of velocity fluc-
tuations scale on ν and ε̄ at large Reynolds numbers. How-
ever, Antonia et al. (2014) pointed out that the collapse of
the turbulent dissipative range on Kolmogorov scales does
not require either of the two major assumptions in K41, viz.
Rλ should be very large and local isotropy must be valid.
Antonia et al. (2014) showed that a similarity solution of
the small-scale motions based on uK and η remains plausi-
ble provided the large scale inhomogeneity in the K-H equa-
tion is small with respect to the term containing ε and ν .
Kolmogorov normalization breaks down only when Rλ falls
below a value of about 20 (Djenidi et al., 2014). The ro-
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Figure 3. Downstream evolution for Rλ (©) and R0 (❏).
Dashed lines indicate the mean values for each plotted
quantity over the range x/d = 200 ∼ 600.

bustness of the collapse of the normalised one-dimensional
spectra φ∗

u (k
∗
1) at sufficiently large k∗1 underpins the esti-

mates of ε̄ in the far-wake where Rλ ≃ 43 (see Fig. 3).
Fig. 4 shows the distributions of φ∗

u (k
∗
1) for several posi-

tions over the range 200 < x/d < 600. The red curves are
normalised by ε̄iso and ν , while the blue curves are nor-
malised by ε̄spec (based on the spectral chart method) and
ν . Also for reference, the velocity spectrum on the centre-
line of a fully developed channel flow is shown (Abe et al.,
2009). There is a very good agreement between the blue
curves and the channel flow spectrum. On the other hand,
the spectra normalised by ε̄iso and ν are shifted up, suggest-
ing that ε̄iso differs from the actual ε̄ (≃ ε̄spec). In this case,
the relation Rε = ε̄iso/ε̄spec is 0.78.

We recall that Browne et al. (1987);
Antonia & Browne (1986) measured all components
of ε at Rd=1170. They showed Rε =2/3, which is smaller
than the present value of 0.78 at Rd = 2000. Arguably,
Rε will become 1 at sufficiently large Reynolds number.
We believe this difference is due to the Reynolds number
effects since we also used the spectral chart method to
estimate Rε at Rd=1000 (not shown). The resulting value
is Rε =0.66, which is exactly the same as the measured
value by Browne et al. (1987); Antonia & Browne (1986)
at Rd=1170.

Now, we estimate ε̄ with Eq. (26). At Rd = 2000,
Hao et al. (2008) showed that both u2

1/u2
2 and u2

1/u2
3 are

about 1.4 on the centreline of the far-wake. Namely R =
0.71 at Rd = 2000. Estimates of ε̄ from Eq. (26) are shown
in Fig. 5 with Au = 0.318, x0 = 25d, and R = 0.71 (Au
and x0 are estimated from the present data). Also shown are
the isotropic energy dissipation rate ε̄iso. Estimated Rε from
this figure is 0.75 (the square symbols for ε̄iso/0.75 collapses
reasonably well with the ε̄), which is in good agreement
with the estimate from the spectral chart method above, val-
idating that Eq. (26) has estimated ε̄ correctly.

In addition, the predicted value for ARλ from Eq. (32)
is 0.92 which is also in agreement with the experimental
value of 0.96 at Rd = 2000. Since, as noted in the Intro-
duction, there is abundant evidence to indicate that the SP
depends on the ICs, the ratio ARλ , Au, and cε should also
depend on the ICs. Indeed, as pointed out by Antonia et al.
(2002), although the ratio ARλ (or Rλ/R1/2

d ) is approxi-
mately independent of Rλ at x/d = 70 in wakes generated
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Figure 4. Spectra of the turbulent energy u2 over the range
x/d = 200 ∼ 600. The red curves are normalised by ε̄iso and
ν , while the blue curves are normalised by ε̄spec (based on
the spectral chart method) and ν . The black curve corre-
sponds to the spectrum on the centreline of a fully devel-
oped channel flow (Abe et al., 2009).
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Figure 5. Downstream evolution of ε̄ (red line, calculated
from Eq. (26) with Au = 0.318, x0 = 25d, and R = 0.71);
experimental data, ε̄iso (©); and ε̄iso/0.75 ( ❏).

by five different bluff bodies, i.e. a solid circular cylinder,
a circular cylinder constructed from a screen of 54% solid-
ity, a solid square cylinder, a solid plate placed normal to
the flow, and screen strip, over a range of Reynolds num-
bers, its magnitude varies significantly between these dif-
ferent wakes at same Rd .

Conclusions
Traditional arguments indicate that the mean velocity

defect and Reynolds stress profiles in the far-wake should
exhibit an approximate SP behaviour although the influ-
ence of the ICs cannot ruled out, as indicated by George
(2012). Many analyses of single-point statistical moments
(i.e. Eq. (1)) have been reported for the far-wake in previous
investigations. In this paper, we extend the SP analysis to
two-point statistics, i.e. an SP analysis of the scale-by-scale
energy budget equation. There are three major conclusions
which arise from this work. (i) The power-law variations for
the different length-scales (namely, the integral scale, L0,
the Taylor microscale, and the Kolmogorov length scale)
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and the velocity scales (namely, Ud , u′, the Kolmogorov ve-
locity scale) are derived. (ii) From the SP analysis, we show
that the Reynolds number: R0 and Rλ , based on the char-
acteristic length and velocity scales, remain constant in the
far-wake where SP is achieved approximately. (iii) an exact
relation for estimating the evolution of the mean turbulent
energy dissipation rate ε̄ alone the axis is obtained. All the
above results are supported reasonably well by the hot-wire
data in the far-wake of a circular cylinder.
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