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ABSTRACT
This study focuses on permeable coatings as a form

of passive flow control. A simplified model is proposed to
analyse the qualitative effect of the coating’s thickness and
permeability on drag reduction. For small permeability, the
reduction is linear with the length scale of the streamwise
permeability. For larger permeability, a degradation mech-
anism is investigated that depends critically on the geomet-
ric mean of the streamwise and wall-normal permeabilities.
For a streamwise-to-wall-normal permeability ratio of or-
der 10-100 the maximum drag reduction is predicted to be
15-25%.

INTRODUCTION
Various surface geometry manipulations have been

studied as forms of passive flow control to reduce viscous
drag in turbulent flows, and a few of them have been shown
to achieve this goal. For instance, surface riblets (Walsh
& Lindemann, 1984) and superhydrophobic surfaces (Roth-
stein, 2009) are techniques that have demonstrated to reduce
friction.

In this work, we study the use of anisotropically-
porous media to reduce turbulent skin friction. Hahn et al.
(2002) showed that, in channel flows, friction can be re-
duced by means of substrates permeable only in the stream-
wise direction. These surfaces can create an apparent slip on
the overlying turbulent flow. Since the permeability is an-
isotropic, the effective slip depends on the orientation with
respect to the flow. This is analogous to the drag-reducing
effect of riblets, which hinder the spanwise motions while
favouring the streamwise ones, creating an apparent slip for
the overlying flow.

The studies of Luchini et al. (1991) and Jiménez (1994)
establish a relationship between the slip and the skin fric-
tion, and also predict that the slip length is proportional
to the length scale of surface manipulations. However the
linear-with-size behaviour begins to deteriorate beyond a
certain size, as observed by García-Mayoral & Jiménez
(2011b) for riblets. They showed that the physical mech-
anism producing this degradation was the appearance of
spanwise rollers produced by a Kelvin-Helmholtz instabil-
ity. These instabilities have also been found over several
different surfaces, such as plant canopies (Finnigan, 2000;
Py et al., 2006), and porous surfaces (Jiménez et al., 2001;
Breugem et al., 2006). In the case of permeable substrates,
Jiménez et al. (2001) found that this instability can be

Figure 1. Schematic representation of an anisotropic per-
meable layer for drag reduction.

triggered by wall-normal permeability alone.
The present work assesses the potential capacity of per-

meable media to produce drag reduction in turbulent flows.
We consider an anisotropically-permeable layer, as depic-
ted in figure 1. It is characterised by its thickness, h and its
streamwise, spanwise and wall-normal permeabilities, Kx,
Kz and Ky, which are assumed to be along the principal dir-
ections of the permeability tensor K . To maximise the effect
of Hahn et al. (2002) and to minimise the drag-increasing
one of Jiménez et al. (2001), we consider in principle coat-
ings with high Kx and low Ky.

DRAG REDUCTION BY A POROUS INTER-
FACE

While for conventional smooth walls the velocity is
zero at the wall, surface manipulations may produce a non-
zero velocity at a notional wall plane. These slip velocit-
ies have been shown to reduce skin friction in certain cases
(Luchini et al., 1991; Jiménez, 1994). Here we investigate
the possibility of producing such slip by using porous coat-
ings.

Slip and skin friction
The slip produced by surface manipulations results in

a shift of the logarithmic layer, which is related to the vari-
ation in skin friction (Jiménez, 1994). The velocity profile
in the logarithmic layer is

U+ =
1
κ

logy++B, (1)

where B is the near-wall intercept. The superscript ‘+’ in-
dicates viscous-unit scaling. In the classical theory of wall
turbulence, surface manipulations only modify the intercept
of this logarithmic velocity profile, while both the Kármán
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constant, κ ≈ 0.4, and the wake function are unaffected
(Nikuradse, 1933; Clauser, 1956). Hence, a permeable sub-
strate is expected to affect the logarithmic profile by only
producing changes in B, at least for small permeability. As
shown by García-Mayoral & Jiménez (2011a), for a con-
stant velocity and small changes of B and the friction coef-
ficient, c f , expression (1) leads to

DR =
∆c f

c f0

≈ −∆B
(2c f0)

−1/2 +(2k)−1
, (2)

where the ‘0’ subscript indicates the reference value for a
smooth-wall. If ∆B is positive, the logarithmic profile is
shifted upwards and friction is reduced, and vice versa.

The work carried out by Jiménez (1994) established
the relation between ∆B and the slip velocities. In the limit
of vanishingly small surface manipulations, the shift of the
logarithmic profile is proportional to the difference between
the longitudinal and transverse slip velocities

∆B = µ0`
+
s = µ0(`

+
x − `+z ), (3)

where µ0 ≈ 0.66− 0.785 is a universal constant (García-
Mayoral & Jiménez, 2011a; Bechert et al., 1997). Intuit-
ively, if the cross-flow is more impeded than the streamwise
one, the streamwise vortices are pushed away from the wall.
This reduces the turbulent momentum exchange with high
velocity layers farther away from the wall, and skin friction
is eventually reduced.

For typical values of c f0 in flows at Reτ ≈ 1000−
10000, the drag reduction is then

DR≈ ∆c f

c f0

≈ −µ0

(2c f0)
−1/2 +(2k)−1

`+s ≈ 0.05`+s . (4)

Note that expression (4) is valid only for low values of `+s .
For high values, equation (3) would cease to hold as other
mechanisms set in.

Slip-length by porous media
In order to estimate `+x and `+z , the flow within the por-

ous layer in response to the outer shear needs to be solved.
Since in the viscous sublayer viscous effects are dominant,
the mean velocity profile is linear. Therefore, the outer flow
can be represented as a time-dependant, but otherwise uni-
form shear. Within the permeable substrate, we consider
the streamwise momentum equation in a porous medium
(Darcy, 1856; Brinkman, 1947),

ν̂
∂ 2u
∂y2 −

ν
Kx

u− ∂ p
∂x

= 0, (5)

where ν is the viscosity of the flow within the substrate,
and ν̂ its apparent large-scale viscosity (Brinkman, 1947;
Taylor, 1971; Ochoa-Tapia & Whitaker, 1995). Following
Neale & Nader (1974), we assume that ν̂ ≈ ν . As we are
considering the flow driven by the overlying shear alone,
the pressure terms in (5) can be neglected, resulting in a
streamwise slip

`+x ≈
√

K+
x tanh

(
h+√
K+

x

)
. (6)

An analogous expression can similarly be derived for the
spanwise slip,

`+z ≈
√

K+
z tanh

(
h+√
K+

z

)
. (7)

In the limit h+ � 1, `+s = `+x − `+z ≈ 0. Since we are
interested in obtaining values of `+s as large as possible,
we focus on the opposite limit. For the same reason, we
are also interested in K+

x > K+
z . Under these conditions,

`+s ≈
√

K+
x −

√
K+

z , and expression (4) becomes

DR≈ 0.05
(√

K+
x −

√
K+

z

)
. (8)

LIMIT FOR DRAG REDUCTION
The previous result supports the study carried out by

Hahn et al. (2002), in which skin friction is reduced as
streamwise permeability increases, thereby increasing `+s .
Note that equation (2) does not present any kind of lim-
itation, so it would predict that drag would keep decreas-
ing as `+s increases. However, Itoh et al. (2006) found that
seal fur, which can be seen as a permeable material with
x-preferential permeability, attains a maximum drag reduc-
tion at a certain `+s , beyond which the drag reduction de-
grades in a fashion closely resembling that of riblets. In
the case of riblets, beyond a certain size Kelvin-Helmholtz-
like spanwise rollers develop over the surface, degrading the
drag reduction effect (García-Mayoral & Jiménez, 2011b).
Similar spanwise rollers have been observed over a vari-
ety of obstructed surfaces (Finnigan, 2000; Py et al., 2006;
Ghisalberti, 2009), including flows over permeable walls
(Jiménez et al., 2001; Breugem et al., 2006), and have in
general been found to be produced by a Kelvin-Helmholtz
instability. It is therefore plausible to expect a similar mech-
anism taking place over anisotropic porous layers for cer-
tain values of their characteristic parameters. Jiménez et al.
(2001) reported the appearance of spanwise rollers over sur-
faces permeable only in the wall-normal direction. This
suggests that the wall-normal permeability may be key in
the development of Kelvin-Helmholtz rollers, which would
explain why they do not appear in Hahn et al. (2002). It
also suggests that two competing mechanisms determine the
change in drag, one beneficial and driven by the streamwise
permeability, and one deleterious and driven by the wall-
normal permeability.

Model from Linear Instability
The appearance of Kelvin-Helmholtz rollers over com-

plex surfaces has previously been predicted successfully by
linear inviscid stability analysis (Jiménez et al., 2001; Py
et al., 2006; García-Mayoral & Jiménez, 2011b). Outside
the porous layer, using the linearised perturbation equation
for an inviscid flow, and searching for solutions of the form
f = f̂ exp[i(αxx+αzz−ωt)], Rayleigh’s equation can be
easily obtained (Schmid & Henningson, 2001)

(U− c)(∂yy− k2)v̂−U ′v̂ = 0, (9)

where U is the base flow, v the wall-normal perturbation ve-
locity, αx and αz the wavelengths in streamwise and span-
wise directions, k2 = α2

x +α2
z , ω the complex frequency, c
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Figure 2. Growth rate σI = Im(σ) of the unstable modes given by (12). (a) Isotropic case with Φxy = 1 and h/H = 1 Curves
are shown for values of (

√
KxKy/H2)(UH/ν) = 10[−2(0.4)6]. (b) Anisotropic case obtained using all possible combinations of

h/H = 10[−1,0,1] and Φxy = 10[−3(1)3]. Curves are shown for values of K̃ = 10[−2(1)6].

the complex phase velocity defined as ω = αxc, and where
the prime superscript (′) indicates derivatives with respect
to y.

Coupling with the porous layer
The difference between the present analysis and a

smooth-wall case lies in the presence of the permeable coat-
ing, which imposes an impedance boundary condition on
the outer flow (Jiménez et al., 2001; Scalo et al., 2014).
To derive that boundary condition, we now focus on the
response of the flow within the porous medium to outer
pressure fluctuations. Let us consider the porous coating
at the bottom wall, which extends from −h to 0. The flow
within the porous layer can be solved analytically to provide
a boundary condition for the outer flow at y= 0. We also as-
sume h�√Kx, since only deep-enough coatings produce
a positive `+s . As the overlying flow slips freely over the
surface, there is no shear at the interface, and the Brinkman
term is negligible. The flow within the permeable layer can
then be simply described using Darcy’s equation (Darcy,
1856); that is, equation (5) neglecting the first term. Defin-
ing Φxy as the anisotropy ratio Φxy =

√
Kx/Ky, the resulting

impedance condition is

v̂0 =−α̃

[√
KxKy

ν
tanh(α̃ Φxy h)

]
p̂0, (10)

where α̃2 = α2
x +α2

z Kz/Kx, and the subscript ‘0’ stands for
magnitudes at the interface.

Squire’s transformation (Squire, 1933) reduces the
problem to an equivalent one with αz = 0 and modified per-
meabilities. Oblique modes have lower permeabilities than
their equivalent two-dimensional modes. As we will see
below, this effect is stabilising. Consequently, we will only
consider the case αz = 0, as it is the most unstable. This sup-
ports the idea that spanwise Kelvin-Helmholtz rollers are
the most prevalent structures.

Results for a piecewise-linear profile
Before turning our attention to a more quantitative ana-

lysis, it is useful to study a piecewise-linear base flow

U(y) =
{

U∞ y/H for y < H,
U∞ for y≥ H,

(11)

where the basic mechanisms are more easily understood.
The advantages of this profile are that U ′′ = 0, and U ′ is
constant, except where both U ′ and U ′′ present a jump dis-
continuity, at y = H. In combination with (9) and (10), this
leads to a second order equation for the complex phase ve-
locity c,

−2K σ2 +
[
−2i+K

(
1+2α ′− e−2α ′

)]
σ

+(K − i)
(

1−2α ′− e−2α ′
)
= 0,

(12)

where α ′ = αH, σ = α ′c/U and

K =

√
KxKy

H2

(
U∞H

ν

)
tanh

(
α ′

h
H

Φxy

)
. (13)

Results of (12) as a function of K are shown in figure 2(a).
The limit K � 1 provides a physical interpretation of

the nature of the instability. In this limit, the boundary con-
dition (10) is equivalent to p(0) = 0, which can be reduced
to ∂yv̂(0) = 0. This gives the same solutions as extending
the base profile antisymmetrically about y = 0, and enfor-
cing symmetry on the perturbation flow. These solutions are
the well-known Kelvin-Helmholtz unstable sinuous waves
of a free shear layer, which are the only instabilities of the
extended profile (Drazin & Reid, 1981). In the opposite
limit, K � 1, the neutral solution of a smooth impermeable
channel is asymptotically approached. The intermediate
values of K connect the Kelvin-Helmholtz solution with the
stable one of the impermeable case.

Expression (13) depends not only on the porous coat-
ing properties but also on the spectral wavenumber, which is
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not a physical property of the permeable layer. In an attempt
to model this dependency in a simpler way we propose the
following empirically fitted parameter

K̃ =

√
KxKy

H2

(
U∞H

ν

)
tanh

(
h
H

Φxy

)
. (14)

Figure 2(b) portraits results as a function of K̃ for several
combinations Kx, Ky and h. For the same values of K̃ , solu-
tions for different coatings collapse, except perhaps for low
values of K̃ , for which the instability is not fully developed.
Other than for those low values, the empirical parameter K̃
encompasses the combined influence of the different coat-
ing properties.

It is worth pointing out that, while the amplification is
determined by K̃ , the lengthscale of the solution does not
scale with the characteristic length of the porous material,√

Kx or
√

Ky. As in García-Mayoral & Jiménez (2011b),
the lengthscale of the problem is determined by the height
y = H of the singularity in U ′′, that is, by the shape of the
base flow.

Results for turbulent profiles
Although the analysis on the piecewise-linear velocity

profile provides qualitative information on the nature of the
instability, quantitative results for real applications require
more realistic profiles. For that, we use the approximate tur-
bulent mean profiles of Cess (1958). The stability problem
(9), with the boundary condition (10), has now to be solved
numerically.

For turbulent flows, the energy-producing term, U ′′,
has a fairly sharp maximum between y+ = 5 and 20, peak-
ing near y+c = 8, which plays the same role as the singularity
at y = H for the piecewise-linear profile. The peak scales in
wall-units, and is responsible for the inner scaling of the in-
stability, independently of Reτ , as portrayed in figure 3 for
the isotropic case. The solution is qualitatively similar to
the one for the piece-wise linear profile, evolving from the
neutral, smooth-wall solution to increasingly unstable solu-
tions as the permeability increases, and eventually reaching
a limit solution for high permeabilities.

The solution of the eigenvalue problem provides the
characteristic wavelength of the instability, as well as the
corresponding eigenmode. The perturbation velocity field
of these unstable modes forms rollers turning alternatively
clockwise and counter-clockwise. They have heights of
y+ ≈ 15, and penetrate the porous material, below y+ = 0,
as illustrated in figure 4. As discussed above, this type of in-
stability arises over many non-conventional surfaces in the
form of spanwise rollers.

As in the case of the piecewise-linear mean velocity
profile, we aim to describe the solution using a single char-
acterising parameter. By analogy, we propose

K̃+ =
√

K+
x K+

y tanh
(

h+

y+c
Φxy

)
. (15)

Figure 5(a) illustrates how scaling with this parameter col-
lapses all the solutions, as with the piecewise-linear pro-
file. For high values of K̃+ the agreement is quite good,
while for low values we can observe some scatter in the
solution, depending on the value of Φxyh+. If the problem
is linearly unstable, the most amplified mode will outstand
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Figure 3. Growth rate σ+ =α+Im(c+) of the most ampli-
fied mode as a function of the longitudinal wavelength λ+

x .
Isotropic case, K+ = 10[−0.66(0.66)2.66], h+ = 100. ,
Reτ = 180; , Reτ = 550; , Reτ = 1000.

0 20 40
0

15

x
+

 y
+

  

Figure 4. Streamfunction contours of the mode with
highest growth rate at Reτ = 550 for fully developed in-
stability, K̃+ = 104. Solid and dashed lines correspond to
clockwise and counter-clockwise rotation, respectively.

over the others, and appear in the flow overlapped with
the background turbulence, as in Jiménez et al. (2001) and
García-Mayoral & Jiménez (2011b). The relevant inform-
ation for predicting the appearance of Kelvin-Helmholtz
rollers is found in the maxima in figure 5(a). This inform-
ation is condensed in figure 5(b), which shows that the ef-
fect of the modulation with Φxyh+ is small, and only ap-
pears for low values of K̃+. García-Mayoral & Jiménez
(2011b) found a similar relationship between σ+ and the
characteristic length of riblets. In their case, the degradation
of drag reduction empirically observed coincided with the
sharp transition between the quasi-neutral and the fully de-
veloped regimes calculated. This suggested that the model
from linear stability could be used to predict the onset of the
degradation. In the present case, the sharp transition occurs
at K̃+ ≈ 5− 10. Beyond K̃+ = 5, the scatter for low val-
ues of K̃+ discussed above no longer exists. Therefore, the
scatter with Φxyh+ should have little effect when predicting
the onset of the drag degradation. For that reason, the term
tanh(Φxyh+/y+c ) in expression (15) has little influence on
the onset, and can therefore be approximated as its quickly
reached limit tanh(Φxyh+/y+c ) ≈ 1. The criterion for the
onset is then

K̃+
MDR ≈

√
K+

x K+
y ≈ 5−10. (16)

The threshold value K̃+
MDR sets a limit for the max-
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Figure 5. (a) Growth rate σ+ = α+Im(c+) of the most amplified mode as a function of the longitudinal wavelength λx.
K̃+ = 10[0.36, 0.82, 1.28, 2.20] at Reτ = 550. , Φx = 10−3, h+ = 10; , Φx = 103, h+ = 10; M, Φx = 1, h+ = 1; ◦,
Φx = 1, h+ = 100; � , Φx = 1, h+ = 10. (b) Maximum growth rate σ+ as a function of the permeability K̃+ at Reτ = 550.

Φx = 10−3, h+ = 1; Φx = 103, h+ = 100; Φx = 1, h+ = 10.
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Figure 6. Maximum drag reduction achievable as a func-
tion of the anisotropy of the permeable layer, Φ2

xy. The
shaded region is bounded by the curves obtained assuming
K̃+

MDR = 5 and K̃+
MDR = 10.

imum achievable drag reduction. However, it is worth not-
ing that the linear expression for drag reduction (8) was
obtained for vanishingly small permeability. Although for
riblets the analogous linear behaviour extends until the on-
set of the Kelvin-Helmholtz mechanism, this may not be
the case for the present porous coatings, as other degrad-
ing phenomena could appear before reaching K̃+

MDR. This
threshold should therefore be considered with caution, and
merely as an upper bound. The present model would need
to be validated against experimental or numerical results.
For flows over permeable substrates of diverse depth and
permeability, it is difficult to find in the literature details
on the near-wall structure, but there is at least one case for
which Kelvin-Helmholtz rollers are reported at K̃+ ≈ 80
(Breugem et al., 2006). Although inconclusively, this result
would support the validity of our model.

CONCLUSIONS: MAXIMUM DRAG REDUC-
TION BY PERMEABLE COATINGS

In the present work, we have proposed a simple model
to estimate the drag reduction capabilities of permeable
coatings. For small permeabilities, the reduction is propor-
tional to the difference between the streamwise and span-

wise permeabilities, DR ∝
√

K+
x −

√
K+

z , provided that
the coating is sufficiently deep, h+ �

√
K+

x . However, a
Kelvin-Helmholtz instability may arise caused by the pres-
ence of the coating. A similar mechanism is responsible
for the degradation of performance in riblets of sufficiently
large size. The instability generates spanwise rollers near
the wall, and consequently degrades the drag reduction.
These rollers scale in viscous wall-units and have a height
of y+ ≈ 15. Using a simple model, this phenomenon can be

characterised by a single parameter K̃+ ≈
√

K+
x K+

y .
Combining the predictions of linear drag reduction for

small permeability with the onset of the degradation mech-
anism for larger permeabilities, and assuming that the lin-
ear performance persists up to that point, we can estimate
the maximum drag reduction that a given permeable layer
can achieve. Let us consider a permeable material with a
preferential permeability, K+

x > K+
y = K+

z . The resulting
anisotropy ratio, Φxy =

√
Kx/Ky =

√
Kx/Kz, can be used

in equations (8) and (16) to obtain an expression for the
maximum expected drag reduction,

DRmax = 0.05
(

1− 1
Φxy

)√
ΦxyK̃+

MDR. (17)

Figure 6 portrays DRmax as a function of Φ2
xy, and shows the

strong effect of anisotropy on performance. Assuming that
the linear behaviour of DR with the permeability ceases at
K̃+

MDR = 5–10, coatings with anisotropy of order Φxy ≈ 3–
10, could yield maximum drag reductions of order 15%-
25%. This promising result would need to be verified by
further studies on this technology.
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