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ABSTRACT
An investigation of the flow dynamics over a su-

perhydrophobic surface (SHS) carrying streamwise micro
grooves is performed in a fully developed turbulent channel
flow under a constant pressure gradient (CPG). The SHS is
modeled as a flat boundary with alternating no-slip and slip
conditions. A series of direct numerical simulations (DNS)
is carried out systematically varying the spanwise period-
icity of the streamwise grooves. It is observed that the al-
ternating no-slip and free-slip boundary conditions cause a
spanwise inhomogeneity of the Reynolds shear stress near
the SHS, and consequently generate Prandtl’s second kind
of secondary flow characterized by coherent streamwise
vortices. The arrangement and rotational direction of these
motions are shown to be strongly affected by the dimen-
sion of the introduced SHS. Therefore, the detailed turbu-
lent statistics are obtained and the effect of the secondary
flow on the resultant flow rate increase is discussed. For the
clarification of the secondary flow nature, the vortical struc-
tures are investigated by means of streamline-based topol-
ogy analysis and complementary application of the vorticity
transport equation.

INTRODUCTION
The reduction of skin friction drag in turbulent flows is

an important issue linked to the efficient use of available en-
ergy resources. Superhydrophobic surfaces are shown to be
an interesting approach to this issue in water flows. These
surfaces are able to enforce local free-slip-like conditions at
the wall due to the coating with a certain roughness pattern,
which entraps air in the surface cavities. Since the shear
stress at a liquid-gas interface is much lower than the stress
at a fully wetted liquid-solid interface, the overall skin fric-
tion drag is significantly reduced.

The effects of SHS in the laminar flow regime have
been analytically analyzed by Philip (1972), while in-
vestigations in the turbulent regime have been conducted
only in the last decade by means of experiments (Daniello
et al., 2009) and numerical simulations (Min & Kim, 2004;

Martell et al., 2009). The recent work by Türk et al. (2014)
states a possible flow rate increase up to 50% under constant
pressure gradient conditions in a fully developed turbulent
channel flow with SHS in comparison to plain channel flow
and proposes a model for SHS simulations based on an eddy
viscosity approach. This work also shows the appearance of
secondary motions over SHS due to the spanwise inhomo-
geneity of the boundary conditions at the wall.

The results of Türk et al. (2014) show an opposite
rotational direction of the induced vortical motions when
the spanwise extent of the surface grooves, L, as depicted
in Figure 1 is increased from 140 to 280. This change
of the rotational direction is found to affect the resultant
drag reduction effect. In their study, the authors hypoth-
esize that this change occurs due to the absence of direct
interaction between the small-scale secondary motions at
the no-slip/free-slip interface for larger L. Instead, large-
scale tertiary motions are introduced by a pair of secondary
vortices. In order to further investigate this hypothesis we
focus on the analysis of the SHS-induced secondary mo-
tions in dependence of the no-slip/free-slip area size for
140 < L < 280, where the switch of the secondary motion
rotation occurs. It should be noted that the present study as-
sumes the existence of a stable and flat liquid-gas interface.
This model assumption is probably limited to small values
of L (Seo et al., 2013; Türk et al., 2014). Nevertheless, sim-
ilar phenomenon for secondary motion is also observed in
the work of Goldstein & Tuan (1998) where a cross-plane
secondary motion appears in turbulent flow over streamwise
oriented riblets if a certain riblet spacing is exceeded.

PROCEDURE
A series of DNS has been carried out in a fully tur-

bulent channel flow driven by a CPG. For an incompress-
ible Newtonian fluid, the flow satisfies the continuity and
Navier-Stokes equations:

∂u∗i
∂x∗i

= 0, (1)
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Figure 1. Schematic of the numerical domain with no-slip
/ free-slip boundary conditions at the walls.

Du∗i
Dt∗

=− 1
ρ∗

∂ p∗

∂x∗i
+ν∗

∂ 2u∗i
∂x∗j ∂x∗j

, (2)

where p∗ is the static pressure and ν∗ is the kinematic vis-
cosity. The asterisk denotes a dimensional quantity, while
otherwise quantities are non-dimensionalized by the friction
velocity, u∗τ =

√
τ∗w/ρ∗, such that u = u∗/u∗τ , xi = x∗i u∗τ/ν∗

and t = t∗u∗2τ /ν∗ (viscous units). Note that u∗τ remains
unchanged across the investigated parameter range, since
the pressure gradient is kept constant during the simulation.
The same applies for the friction Reynolds number given by
Reτ = u∗τ δ ∗/ν∗ = 180 where δ ∗ is the half channel height.

The Navier-Stokes equations are numerically inte-
grated by a finite difference method on a staggered grid
with a fractional step method for pressure decoupling. For
temporal advancement, the convection and viscous terms
are discretized using the 2nd order Adams-Bashforth and
Crank-Nicholson methods, respectively. The schematic of
the numerical domain is depicted in Figure 1. Periodic
boundary conditions are applied in streamwise (x) and span-
wise (z) directions, while the wall-normal (y) extension of
the domain is bounded by alternating no-slip / free-slip
boundary conditions at the upper (y = 2δ ) and lower wall
(y = 0). An impermeability condition is applied for the
wall-normal velocity component on the entire area of both
channel walls. The wave-length, L, represents the size of the
alternating structure with a solid fraction Φ = d/L = 0.5.
The secondary motion is observed in the cross sectional
plane perpendicular to the main flow direction. For the
variation of L the number of grid nodes in spanwise di-
rection is adjusted, while the spanwise resolution, ∆z and,
is kept constant. Consequently, the spanwise extension of
computational domain varies with L and the wall area is
always covered by four wave-lengths (Table 1). Since the
change of the secondary flow rotation occurs in the range
140 < L < 280, following wave-lengths are selected for
simulations: L = 108, 126, 144, 148, 153, 158, 162, 171,
180, 202, 225 and 252. Additionally, the data-sets from
Türk et al. (2014) for L = 35.2,70.8,141.4 and L = 282.8
with ∆z = 2.209 are used in the present investigation.

Table 1. Numerical properties of the performed DNS.

Nx×Ny×Nz x× y× z ∆x ∆ymin ∆z

128×129×128−512 1413×360×280−1152 11 0.1 2.25

The statistical data-set is obtained for an integration
time of approximately 200 eddy turn-overs. Considering

the periodic nature of the streamwise grooves, we introduce
the phase averaging operator as

ϕ̄ (θ ,y) =
1
N

N

∑
n=1

∫

t

∫

x
ϕ
(

x,y,L
(

θ
2π

+n
)
, t
)

dxdt, (3)

where ϕ is an arbitrary variable as a function of space and
time, whilst θ is a phase with respect to the periodic struc-
ture and N is a number of periods in the computational do-
main. Hence, any flow quantity can be decomposed into the
phase averaged and the random components:

ϕ(x,y,z, t) = ϕ̄(θ ,y)+ϕ ′(x,y,z, t). (4)

In this paper, the secondary flow is regarded as the phase
averaged flow field. Additionally, using an assumption
of symmetrical velocity distribution with respect to the
middle-line of the no-slip or the free-slip region as well as
to the channel half-height, we perform corresponding spa-
tial averaging in order to obtain smoother statistical data.

Flow field analysis based on topology considerations
as comprehensively discussed e.g. by Foss (2004) is ap-
plied to the resultant vector fields in order to understand
the arrangement of the appearing secondary motions. One
such example of secondary flow is illustrated in Figure 2(a)
for L = 162 and Φ = 0.5. Line integral convolution (LIC,
Cabral & Leedom (1993)) is used for the identification of
the singular points in the vector field such as nodes (N),
saddles (S) and half-saddles (S’). Finally, a topological map
is derived from the position of the singular points and LIC
(Figure 2(b)).

Considering velocity invariant methods, an analysis of
the secondary flow dynamics based on the vorticity pro-
duction terms is performed. Utilizing the definition for the
streamwise vorticity

ω̄x =
∂ w̄
∂y
− ∂ v̄

∂ z
, (5)

combined with the Navier-Stokes equations (2) for the wall-
normal (i = 2) and spanwise (i = 3) velocity component we
obtain the following transport equation for the phase aver-
aged streamwise vorticity:

v̄
∂ω̄x

∂y
+ w̄

∂ω̄x

∂ z
= −∂ 2v′w′

∂y2 − ∂ 2w′w′

∂y∂ z
+

∂ 2v′v′

∂y∂ z
+

∂ 2v′w′

∂ z2
︸ ︷︷ ︸

streamwise vorticity production, Pω̄x

+
1

Reτ

(
∂ 2ω̄x

∂y2 +
∂ 2ω̄x

∂ z2

)
. (6)

The terms on the left-hand-side represent the convec-
tion of ω̄x due to the secondary flow. The first four terms
on the right-hand-side are production terms of ω̄x, while the
last term represents the viscous diffusion of ω̄x. Note that
the production terms have non-zero values only when the
no-slip and free-slip surfaces are resolved. Therefore, the
effective slip models which are homogeneous in the span-
wise direction (Min & Kim, 2004; Fukagata et al., 2006)
are not able to predict the formation of the secondary flow.
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(a) vector plot with streamwise mean velocity
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Figure 2. Secondary motions over SHS in y-z-plane for L = 162 and Φ = 0.5.

TOPOLOGICAL REARRANGEMENT
Figure 3 illustrates the change of the flow topology

for increasing L by introducing color coding for the same
vortical structures at different wave-lengths. The SHS with
wave-lengths up to L= 140 show similar flow topology with
two counter-rotating large-scale secondary vortices causing
an upward motion above the no-slip area and a downward
motion above the free-slip area. Starting from L = 144 the
flow topology significantly changes, for L = 149 a forma-
tion of two additional vortices above the middle of the no-
slip area and two arising vortices above the no-slip / free-
slip edge can be clearly identified. Further increase of the
wave-length to L = 162 demonstrates an even more com-
plex topology map with an additional vortex-pair above the
free-slip region. An expansion of the previously observed
near-wall vortical structures above the no-slip region oc-
curs, while the edge vortices grow and move towards the
wall. The large-scale motions are pushed farther to the outer
flow region. For L = 171 we see that the newly appeared
vortex-pair is absorbed by the growing vortices above the
no-slip region, while the vortex-pair which was dominant
for smaller L is shrinking. Starting from L = 180 the size
of the edge vortices is successively reduced and the vor-
tices above the no-slip area dominate the cross section of
the flow field. For L = 202 only two vortex-pairs can be ob-
served - the small edge vortices which completely disappear
for L > 252 and the major vortex-pair occupying the entire
domain half-height. Comparing the topology map of the
flow over SHS at L = 141 and L = 202 one can clearly see
that the rotational direction of the dominating vortex-pair
is reversed. For larger L, flow is pushed towards the wall
above the no-slip region, while an upward motion occurs
above the free-slip area. Hence, the switch of the rotation
is a consequence of a complete reorganization of secondary
motions caused by the increase of the wave-length.

It has to be emphasized that the strength of the ob-
served motions varies depending on L. Figure 4(a) shows
the maximum magnitude of the secondary motion normal-
ized by the corresponding bulk mean velocity, Ub. For the
cases up to L = 108 the magnitude of the secondary motion
increases to 1% of the bulk mean velocity followed by a
decrease of the magnitude between 126 and 180 where the
rearrangement of vortical structures occurs. For the larger L

with opposite rotational direction of the dominant structures
the secondary motion strength increases again and reaches
1−2% of Ub for 200 < L < 288.

The influence of the secondary motion on the increase
of bulk mean velocity is shown in Figure 4(b). The plot
compares the present DNS results with a model prediction
without secondary flow and with consideration of secondary
motion, where v̄ and w̄ extracted from the DNS data is used
for the evaluation of convective terms. The model utilizes
a uniform y-dependent turbulent viscosity profile evaluated
from the empirical relation by Reynolds & Hussain (1972)
with adjustment of van Driest constant (Türk et al., 2014).
The model without secondary motion over-predicts the in-
crease of Ub by 4−22%, while the overshoot increases for
larger L. The model with secondary motion improves the
prediction of Ub especially for larger L and cases where
secondary motion intensity is significant (e.g. L = 108,
Fig. 4(a)). When the secondary motion is taken into ac-
count the model over-prediction does not exceed 10% and
remains < 5% for L < 126 and L > 225. The strongest de-
viation from the DNS data is observed for 126 < L < 225
where the rearrangement of the secondary structures occurs.

In order to clarify the influence of the solid fraction
on the secondary motion formation a parametric study with
variation of Φ at constant L = 162 is performed. Figure 5 il-
lustrates the change of the secondary motion topology when
the solid fraction is slightly reduced or increased. It is evi-
dent that a slight reduction of the solid fraction at L = 162
(Φ = 0.43 with d = 70) corresponding to an increase of
the free-slip spacing leads to a simplification of the mo-
tion topology with two smaller-scale edge vortices and the
larger-scale vortex-pair above. This configuration strongly
resembles the topology present for Φ= 0.5 and wave-length
L ≥ 171 (Figure 3). An increase of the solid fraction at
L = 162 (Φ = 0.57 with d = 92) also meaning a reduc-
tion of the free-slip spacing shows the opposite effect: the
large-scale edge vortex-pair dominates the topology while
the vortex-pair above the no-slip region is reduced in size.
This topology is similar to the cases with Φ= 0.5 at L< 162
(e.g. Figure 3, L = 149). The observation suggests that the
secondary flow topology is rather determined by the dimen-
sion of the free-slip area while the influence of the no-slip
spacing is minor.
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Figure 3. Topology map of the considered flow: spatial evolution of the singularities and vortical structures over SHS for
increasing L with Φ = 0.5. Color code marks the identical vortical structures.
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Figure 5. Topology map of the considered flow: spatial evolution of the singularities and vortical structures over SHS for
changing Φ at L = 162. Color code marks the identical vortical structures.
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VORTICITY ANALYSIS
Figure 6 shows the distribution of ω̄x in the vicinity of

the wall for the wave-lengths L = 108,162 and 225. Dis-
tribution of ω̄x agrees well with the location of the vorti-
cal structures presented previously in the topological map
(Figure 3). Figure 7 presents the distribution of the total
vorticity production, Pω̄x , from Equation (6) with the span-
wise coordinate normalized by L (Fig. 7(a)) and the vis-
cous units (Fig. 7(b)), whereas the wall-normal coordinate
is normalized with viscous unit in both figures. In the lat-
ter plot we demonstrate only the left half of the periodic
SHS (z/L = 0−1/2 in Fig. 7(a)) with horizontally aligned
free-slip / no-slip edge for all L in order to enable easier
comparison. The highest magnitude of the vorticity produc-
tion can be observed around the no-slip / free-slip edges,
confirming the fact that the secondary motions are inher-
ently triggered by the alteration of the wall boundary con-
dition, which translates into inhomogeneity of the Reynolds
stress. Interestingly, the distribution of Sω,x remains qual-
itatively and quantitatively very similar for all investigated
L in spite of the obvious differences in distributions of vor-
ticity and topology of the secondary flow. The wall-normal
extent of the vorticity production spots is slightly dependent
on L, reaching y ≈ 6− 8. Considering spanwise extent, a
triangle-shaped distribution can be observed above the free-
slip region, which seems to scale with L as suggested from
Figure 7(a). The part of the distribution above the no-slip
region rapidly vanishes within z≈ 7−10 from the free-slip
/ no-slip edge due to the presence of no-slip condition at
the wall. Presumably, the wall-normal extent of the vortic-
ity production distribution and its spanwise extent over the
no-slip region decays within approximately 6− 10 viscous
units from the free-slip / no-slip edge, while the spanwise
extent of the distribution above free-slip area scales with
the size of the free-slip region or L.

Figure 8 reveals a complex composition of the govern-
ing terms in the vorticity production from Equation (6) for
L = 162. The main contribution to the total vorticity pro-
duction arises from the first two terms of Sω,x, − ∂ 2v′w′

∂y2 and

− ∂ 2w′w′
∂y∂ z . These terms originate from the momentum equa-

tion for the spanwise velocity component. The contribu-
tion from the fourth term, ∂ 2v′w′

∂ z2 , is rather minor, while the

third term, ∂ 2v′v′
∂y∂ z , shows significantly smaller values than

the governing terms and is therefore neglected. Latter terms
originate from the momentum equation for the wall-normal
velocity component. The fact that the vorticity production
mainly emerges from the equation for the spanwise veloc-
ity component is reasonable due to the definition of the im-
posed boundary conditions: the introduction of SHS implies
only changes of the boundary condition for the streamwise
and spanwise component, while the impermeability in the
wall-normal direction still holds at no-slip and free-slip re-
gions.

SUMMARY AND OUTLOOK
A detailed investigation of the statistical data of tur-

bulent channel flow DNS with streamwise oriented SHS
for 35 < L < 288 reveals a series of significant changes
in the structure of the occurring secondary motions lead-
ing to topological transition in this wave-length region. It
is shown that secondary flow can account for up to 15%
of Ub,0 for larger L and its consideration in modelling ap-
proach significantly improves prediction of Ub. The singu-
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and Φ = 0.5.
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lar point analysis shows that the only counter-rotating vor-
tex pair appearing for L < 140 is displaced by a complex
entity of other structures for 144 < L < 202 and then com-
pletely replaced by a different vortex pair with opposite ro-
tational direction for L ≥ 202. The analysis of the stream-
wise vorticity transport equation shows that the secondary
flow is driven by the vorticity production distribution con-
centrated at the edge between free-slip and no-slip region,
which originates from the switch of boundary conditions
at the wall translated into the inhomogeneity of Reynolds
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Figure 7. Vorticity production, Pω̄x , for L = 108,162,225 and Φ = 0.5.

shear stress. This causes a formation of a vortex-pair lo-
cated above the free-slip / no-slip edge with L-independent
rotation direction inducing local motion towards the solid
region. The vortex-pair interacts with the surrounding flow
triggering a formation of additional tertiary structures in the
outer parts of the flow. The organization of the structures
depends on the wave-length as well as on the solid fraction
of the introduced superhydrophobic surface. The spanwise
and wall-normal vorticity production distribution extents re-
main very similar in viscous units around the free-slip / no-
slip edges for different L, while the spanwise extent over the
free-slip region scales with L. Comparison of the particular
production terms unveils the fact that the vorticity produc-
tion is dominated by two terms originating from the span-
wise component of momentum equation. This is reasonable
considering that the spanwise velocity component is signif-
icantly affected by the switch of the boundary conditions
from free-slip to no-slip. The present knowledge provides
useful information for modelling the secondary flow, and
thus the resultant flow rate increase over SHS.
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