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ABSTRACT
We report a geometric study of evolving Lagrangian

structures in a compressible transitional boundary layer at
Ma = 0.7. The Lagrangian structures are extracted from
the Lagrangian scalar field by a moving window filter. The
multi-scale and multi-directional geometric analysis is ap-
plied to quantify and characterize the geometry of spatially
evolving Lagrangian structures in the transition, including
the averaged inclination and sweep angles at different scales
ranging from one fifth of the boundary layer thicknessδ to
several viscous length scalesδν . Here, the inclination angle
is on the plane of the streamwise and wall-normal direc-
tions , and the sweep angle is on the plane of the stream-
wise and spanwise directions. The results show that, before
the transition, averaged inclination and sweep angles are al-
most unaltered for different scales. As the transition occurs,
averaged inclination angles increase and sweep angles de-
crease rapidly with increasing time for the structures with
intermediate and small scales. In the late stage of transition,
the averaged inclination angle of small-scale structures with
the length scale∼ O(10)δν is 40◦−50◦, and the averaged
sweep angle is approximately 30◦.

INTRODUCTION
The flows near the wall have attracted extensive stud-

ies since Prandtl developed the boundary layer theory over
100 years ago. The spatially evolving, flat-plate transitional
boundary layer flow, as a simple and typical wall flow, is
widely studied with various applications ranging from en-
gineering to meteorology.

Since the appearance of hairpin-shaped structures and

hairpin packets is found in the transition of a number of
boundary-layer flows (e.g., Wu & Moin (2009)), it is of
importance to understand the underlying mechanism for
the formation and evolution of the vortical structures, up-
on which predecessors have not reach a consensus (Maru-
sic, 2009) and thus it is one of the principal future chal-
lenges (Wallace, 2013). The tracking of Lagrangian scalars,
one of the Lagrangian-based approaches, may be helpful to
elucidate the evolution of the hairpin-like structures. This
method have been applied in isotropic turbulence (Yang et
al., 2010), Taylor-Green and Kida-Pelz flows (Yang and
Pullin, 2010), the K-type transition in channel flow (Zhao
et al., 2015), and fully developed channel flows (Yang and
Pullin, 2011). Note the flows in the previous Lagrangian
studies mentioned are incompressible, and here we will ex-
tend this method to a compressible transitional wall flow.

In addition, the geometry of vortical structures in
boundary layers is of interests for structure-based models
of near-wall turbulence, but their accepted geometry is stil-
l far from an agreement. With the tracking of Lagrangian
scalar field, Yang & Pullin (2011) developed a multi-scale
geometric analysis based on the mirror-extended curvelet
transform (Candes, 2006). They present the temporal evo-
lution of Lagrangian structures with quantitative multi-scale
and multi-directional statistical geometry.

In the present study, we provide a Lagrangian perspec-
tive on a spatially evolving flat-plate boundary layer flow at
Ma = 0.7. A moving window filter is proposed to extract
the Lagrangian structures at different locations in the tran-
sition. Furthermore, the multi-scale and multi-directional
geometric analysis is applied to characterize the evolution-
ary geometry of Lagrangian structures within the moving
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window at different times and scales.

SIMULATION DETAILS
Direct Numerical Simulation

The direct numerical simulation (DNS) of a spatially e-
volving flat-plate boundary layer transition is performed by
solving the three-dimensional compressible Navier-Stokes
(N-S) equations with the OpenCFD code (Li et al., 2010).
The N-S equations are integrated in time by using the third-
order TVD type Runge-Kutta method. The convection
terms are approximated by a seventh-order accuracy up-
wind finite difference scheme, and the viscous terms are
approximated by an eighth-order accuracy central finite d-
ifference scheme. The flow parameters as well as mesh pa-
rameters are listed in Table 1, where the superscript ’+’ de-
notes a dimensionless quantity scaled by the viscous near-
wall length scaleδν = 0.0005. Uniform meshes are used in
the streamwise and spanwise directions, while exponential-
ly stretched mesh is applied in the wall-normal direction to
resolve the small-scale structures near the wall.

Table 1. DNS parameters

Ma Re∞ Tw

0.7 50000 1.098

Nx×Ny×Nz Lx×Ly×Lz ∆x+×∆y+w ×∆z+

1000×100×320 10.00×0.65×1.57 19.98×0.97×9.80
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Figure 1. A schematic diagram of the computational do-
main and the characteristic angles of structures. Possible
structures are sketched by dashed lines.

Figure 1 shows a diagram of the computational do-
main, whereU is the mean velocity in the streamwise di-
rection (x). The domain is bounded by inflow and outflow
boundaries in the streamwise direction (x), a wall boundary
and a (upper) non-reflecting boundary in the wall-normal
direction (y), and two periodic boundaries in the spanwise
direction (z). The details of these boundary conditions are
listed as follows.

Inflow boundary. A laminar compressible boundary-
layer similarity solution (White, 2006) with disturbances
is imposed. Here, the disturbances are a two-dimensional
Tollmien-Schlichting (T-S) wave and a couple of conjugate
three-dimensional T-S waves to trigger the transition (Ma-
lik, 1990).

Outflow boundary.The non-reflecting boundary con-
dition is imposed on all variables.

Wall boundary. The non-slip boundary condition is
imposed together with the isothermal wall condition at the
wall.

Figures 2 and 3 show the friction coefficient and the
Reynolds number based on the friction velocity over the
wall along the streamwise direction, perspectively. In the
regionx = 4.5−8 between laminar and turbulent regimes,
there is a surge of the friction coefficient and the Reynolds
number. This is hypothesized to be related to the appear-
ance of three-dimensional vortices and the breakdown of
large-scale coherent structures in the transition process. In
addition, figure 4 shows the normalized mean Van Driest
velocity profile atx= 9.9 with theoretical fittings.

Lagrangian Scalar Field
In the compressible flow, the three-dimensional La-

grangian scalar fieldφ(xxx, t) is governed by the passive s-
calar convection equation

∂ (ρφ)
∂ t

+∇ · (ρuuuφ) = 0. (1)

After substituting the continuity equation into equation (1),
we can obtain

∂φ
∂ t

+uuu ·∇φ = 0, (2)

which is the same as the one in incompressible flows (Yang
et al., 2010; Yang and Pullin, 2011). Similarly, the trajecto-
ries of fluid particles can be calculated by solving the kine-
matic equation

∂XXX(xxx0, t0|t)
∂ t

=VVV(xxx0, t0|t) = uuu(XXX(xxx0, t0|t), t), (3)

whereXXX(xxx0, t0|t) is the location at timet of a fluid particle
which was located atxxx0 at the initial timet0. In equation (3),
VVV(xxx0, t0|t) is the Lagrangian velocity of the fluid particle,
anduuu(XXX(xxx0, t0|t), t) is its local Eulerian velocity.

The backward-particle-tracking method (see Yang et
al., 2010), which is stable and conserved, is used to cal-
culate the Lagrangian scalar field as follows.
(1) The full Eulerian velocity field on theNx×Ny×Nz grid
in a time interval fromt0 to t(> t0) is solved and stored.
(2) At a particular timet, particles are placed at the uniform
grid points ofNp

x ×Np
y ×Np

z , and the initial Lagrangian field
is given byφ0 = y. Here, the resolution of the Lagrangian
field can be higher than that of the Eulerian velocity field in
order to capture fine-scale Lagrangian structures.
(3) Particles are released and their trajectories are calculat-
ed backward in time until they arrive atx = 1.0. A three-
dimensional, fourth-order Lagrangian interpolation scheme
is used to obtain fluid velocity at the location of each
particles, and an explicit, second-order Adams-Bashforth
scheme is applied to carry out the time evolution.
(4) After the backward tracking, we can obtain initial loca-
tions of particlesxxx0, which can be used to find the solution
of φ(xxx, t) by a simple mapping

φ(xxx, t) = φ(XXX(xxx0, t0|t), t)←→ φ0. (4)
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Figure 2. Skin-friction coefficient.
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Figure 3. Friction Reynolds number.
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Figure 4. Mean Van Driest velocity pro-
file normalized by the wall shear velocity
atx= 9.9.

DIAGNOSTIC METHODOLOGIES
Multi-scale and Multi-directional Decomposi-
tion

A multi-scale and multi-directional filter based on the
curvelet transform (Candes, 2006) is applied to a series
of two-dimensional planes to quantify geometries of flow
structures at multiple scales. Let the Fourier transform of
an arbitrary two-dimensional scalar fieldϕ ∈ L2(R2) be de-
fined by

ϕ̂(kkk) =
1

2π

∫

R
ϕ(xxx)e−ikkk·xxxdxxx. (5)

Then a filteredϕ(xxx) at scalej and along the directionl can
be extracted from̂ϕ(kkk) in the Fourier space by the frequen-
cy window function

U j (r,θ ) = 2−3 j/4W(2− j r)V(tl (θ )) (6)

with r =
√

k2
1+k2

2 and θ = arctan(k2/k1). HereW(r) is

the radial window function, andV(t) is the angular win-
dow function. Numerical details can be referred to Yang &
Pullin (2011).

The frequency windows cover the whole Fourier do-
main at characteristic length scalesL j = 2− j , j ∈ N0
and the equispaced sequence of rotation anglesθ j,l =

π l2−⌈ j/2⌉/2,0 6 l 6 4 ·2⌈ j/2⌉ −1. Part of the normalized
characteristic length scales of structures after filteringis
given in Table 2.

Table 2. Characteristic length scales

Length Scale 3 Scale 4 Scale 5 Scale 6

L j/δ 0.192 0.096 0.048 0.024

L j/δν 250 125 62.5 31.25

The multi-scale decomposition of the original scalar
field ϕ(xxx) can be obtained by applying the radial window
functionW(r) on ϕ̂(kkk) as

ϕ j (xxx) =
∫

ϕ̂(kkk)W(2− j r)eikkk·xxxdkkk (7)

for each scalej .
For scalej , the orientation information ofϕ(xxx) can be

represented by the averaged deviation angles away from the
horizontal axis in the physical space

〈∆θ 〉+j =
∑l ′max

l ′=0Φ j (∆θ )∆θ

∑l ′max
l ′=0 Φ j(∆θ )

(8)

and

〈∆θ 〉−j =
∑0

l ′=l ′min
Φ j(∆θ )∆θ

∑0
l ′=l ′min

Φ j(∆θ )
(9)

with l ′min = −2⌈ j/2⌉ and l ′max= 2⌈ j/2⌉. Here, Φ j (∆θ ) =∫
ϕ̂(kkk)U j (r,θ)dkkk∫

U j (r,θ)dkkk is the normalized angular spectrum, and

∆θ = π l ′2−⌈ j/2⌉/2,−2⌈ j/2⌉ 6 l ′ 6 2⌈ j/2⌉ is the discrete de-
viation angle away from the horizontal axis.

When a scalar field has non-periodic boundaries, such
asϕ on thex−y plane in the compressible boundary layer,
the fast Fourier transform (FFT) may result in artificial os-
cillation near boundaries. In practice, we copy and flip the
two-dimensional scalar field by the one-dimensional mirror
extension in the wall-normal direction as

{ϕ1, . . . ,ϕN}→ {ϕ1, . . . ,ϕN,ϕN−1, . . . ,ϕ2} (10)

before the FFT, while the streamwise direction with non-
periodic boundary conditions will be resolved in the next
section.

Moving Window Filter
A moving window filter is applied to extract the evolv-

ing Lagrangian structure at different locations. Here, the
filter is defined by an exponential function as

f (x, t) = exp

[
−n

(
x−xc(t)

lw(t)

)n]
, (11)

wherexc is the central position of the window, andlw is the
window length.

The filter with growing filter width travels along the
streamwise direction at a certain speed in the compressible
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Figure 5. Evolution of Lagrangian structures on thex− y plane (z= 0.785) in a compressible transitional boundary layer
(Ma= 0.7).

transitional boundary layer. Since it can follow and capture
the flow evolution, the Lagrangian field in the moving frame
becomes statistically time-dependent (Pope, 2000). The s-
caled timet∗ = (t − t0)/T is normalized by the periodT
of the T-S waves imposed at the inlet boundary. It is noted
thatxc(t∗) andlw(t∗) can be fitted by quadratic polynomials
from the DNS results.

With givenxc(t∗) andlw(t∗), the extracted Lagrangian
scalar fieldφ f (xxx) at timet∗ can be obtained as

φ f (xxx) = φ(xxx) f +φ0(xxx)(1− f ). (12)

Thus the extracted Lagrangian field is within the moving
window with the smooth transition from the evolving scalar
to the initial scalar at boundaries, so that the boundary con-
dition in the streamwise direction in the frame can be con-
sidered as periodic for the FFT.

LAGRANGIAN STRUCTURES
Geometry of Lagrangian Structures on the
Streamwise and Wall-normal Plane

By applying the moving window filter on the La-
grangian fieldφ(xxx, t) in the compressible boundary layer,
a filtered Lagrangian fieldφ f (xxx, t∗) can be extracted at a se-
quence of non-dimensional timest∗. Typical snapshots on
thex−y plane at differentt∗ are shown in figure 5.

The temporal evolution of the Lagrangian structures
on thex− y plane in the transitional compressible bound-
ary layer is shown in figure 6. We can see that the initial
large-scale, bulge-shaped structure in figure 6(a) is lifted
and stretched to form a hairpin-shaped structure in the n-
ear wall region, as shown in figure 6(b). Under the mean
flow shear stress, the hairpin-shaped structure in figure 6(c)
is stretched and its head lifts away from the wall owing to
its self-induction governed by the Biot-Sarvart law, which
leads to the shear stress around the head keeps increasing.
When the shear stress exceeds a threshold value, the large-
scale hairpin-shaped structure breaks down at the neck re-
gion into a packet of small-scale structures in figure 6(d).

As shown in figure 1, we define the inclination an-
gle α between an inclined structure projected on thex− y
plane and thex-direction. In terms of the variables in the
multi-scale and multi-directional decomposition, we have
φ f (x,y,z= zp)↔ ϕ, α+↔〈∆θ 〉+ andα−↔〈∆θ 〉−. Evo-
lution of the Lagrangian field at each scale can be obtained
using the scale decomposition ofφ f (xxx, t∗) on thex−y plane
by equation (7). For example, the evolution of the small-
scale structure withj = 6 is shown in figure 7, where the
characteristic length scale for each scale indexj is quanti-
fied in Table 2. Then, the orientation statistics ofφ f (xxx, t∗)

on thex−y plane at different scales can be obtained by the
averaged deviation angles defined by equations (8) and (9).

We define the averaged inclination angle〈α〉 =
(〈α+〉+ 〈α−〉)/2. Figure 8 shows the temporal evolution
of 〈α〉 for Lagrangian structures at intermediate and small
scales. As shown in figure 7(a), the small-scale structures
with small〈α〉 appear at early times. Then, the small-scale
structures are lifted in figures 7(b)-7(d). In figure 8, we can
find that 〈α〉 grows slowly with time, and the difference
for different scales is smaller than 5◦ beforet∗ = 1. After
t∗ = 1, 〈α〉 begins to increase significantly with increasing
time, which corresponds to the occurrence of the transition.
The increasing trend of the large-scale structures with the
length scale 0.2δ is slower than those of small-scale struc-
tures with the length scale∼O(10)δν . Moreover, the aver-
aged inclination angles grow from 15◦ to 50◦ nearly in the
same rate for Lagrangian structures at scales smaller than
60δν . When the flow reaches the fully-developed turbulen-
t region aroundt∗ = 2, the averaged inclination angle of
small-scale structures with the length scale∼ O(10)δν is
40◦−50◦.

Geometry of Lagrangian Structures on the
Streamwise and Spanwise Plane

The temporal evolution of the Lagrangian field on the
x−z plane aty+ = 120 in the compressible boundary layer
is shown in figure 9. We can see that the initial large-scale
triangle-shaped structure in figure 9(a) is stretched into a
packet of small-scaleΛ-shaped structures in figure 9(d).

As shown in figure 1, the sweep angleβ is between
the structure and the streamwise direction on thex− z
plane. In terms of the variables in the multi-scale and multi-
directional decomposition, we haveφ f (x,y = yp,z)↔ ϕ,
β+↔ 〈∆θ 〉+, andβ−↔ 〈∆θ 〉−.

Evolution of the typical small-scale Lagrangian struc-
tures at scalej = 6 is shown in figures 10. We define
the averaged sweep angle〈β 〉 = (〈β+〉+ 〈β−〉)/2. The
temporal evolution of〈β 〉 for Lagrangian structures at d-
ifferent scales is shown in figure 11. As shown in figure
10(a), the small-scale structures with large〈β 〉 appear at
early times. Then, the small-scale structures are stretched
along the streamwise in figures 10(b)-10(d). In figure 11,
we can find that〈β 〉 ≈ 90◦ at early times, which illustrates
the Lagrangian field is essentially two-component in three-
dimensional physical space. Beforet∗ = 1, 〈β 〉 decreases
slowly with time for the structures at all the scales. Similar
to the averaged inclination angle in figure 8,〈β 〉 decreases
rapidly with increasing time aftert∗ = 1, which correspond-
s to the beginning of the transition. It is noted that the de-
crease of〈β 〉 for the large-scale structures with the length
scale 0.2δ is much smaller than those with the small length
scale∼O(10)δν . The decreasing trend of〈β 〉 gradually s-
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Figure 6. Evolution of Lagrangian structures on thex−y
plane (06 y6 0.6,z= 0.785) in a compressible transitional
boundary layer (Ma = 0.7). (a) t∗ = 0.75, (b) t∗ = 1, (c)
t∗ = 1.25, (d)t∗ = 1.5.

lows down aftert∗ ≥ 1.5. Whent∗ = 2, the sweep angle of
the small-scale structures is approximately 30◦.

CONCLUSIONS
The Lagrangian scalar field developed in incompress-

ible flows is extended to a compressible transitional bound-
ary layer flow. Based on the Lagrangian field, a moving
window filter is developed to extract the spatially evolving
Lagrangian structures at a time sequence. The multi-scale
and multi-directional geometric analysis is then applied to
characterize the evolutionary geometry of Lagrangian struc-
tures in the transition, including the averaged inclination
and sweep angles at different scales. Before the transition,
averaged inclination and sweep angles are almost unaltered
for different scales. As the transition occurs, the averaged
inclination angle increases and the averaged sweep angle
decreases rapidly with increasing time for the structures
with the length scale smaller than 0.1δ . In addition, the in-
creasing or decreasing trend are very similar for Lagrangian
structures at scales smaller than 60δν . In the late stage
of transition, the averaged inclination angle of small-scale
structures with the length scale∼ O(10)δν is 40◦ − 50◦,
and the averaged sweep angle is approximately 30◦. The
effects of the Mach number on the evolution and geometry
of Lagrangian structures will be investigated in the future.

(a)

(b)

(c)

(d)

Figure 7. Evolution of Lagrangian structures at scale 6 on
the x− y plane (06 y 6 0.6,z= 0.785) in a compressible
transitional boundary layer (Ma = 0.7). (a) t∗ = 0.75, (b)
t∗ = 1, (c) t∗ = 1.25, (d)t∗ = 1.5.
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Figure 8. Evolution of the averaged inclination angle (de-
grees) in a compressible transitional boundary layer (Ma=

0.7).
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