
Mini-manual on

How to use coherent structures tracking

data and codes

Version 0.2

Adrián Lozano Durán

May 21, 2014



Introduction

This document describes very briefly the codes needed to track in time coher-
ent structures and the format of the data generated. The codes are located
at /wamba15/adrian/trabajo/codes/strucs/graphs/. This manual also in-
cludes the main input for each code (i.e., the most important files the codes need
to read) although there are more input parameters that have to be provided and
are not described here. The starting point to use the codes is the compressed
list of pixels of the objects or the velocity and discriminant fields in physical
space. The steps are:

1. Compute coherent structures.

2. Compute coherent structures’ properties.

3. Compute connections between structures.

4. Compute graphs and branches.

5. Compute statistics for mergers and splits.

All the input and output files are written in binary and big endian.

Compute coherent structures

• Codes : in the folder clustering/. For uvsters uvstering.f90 and for
vortex clusters clustering.f90 using the list of compressed structures
and uvstering_oldstyle.f90 and clustering_oldstyle.f90 using the
physical velocity or discriminant files. they do the labeling process and
compute the structures for each flow field.

• Input : For uvstering.f90 and clustering.f90 the compressed list of
pixels. For uvstering_oldstyle.f90 and clustering_oldstyle.f90

the streamwise and wall-normal velocity fields in physical space for uvsters
or discriminant of the velocity gradient tensor for vortex clusters.

• Output : file with the list of pixels of the structures. There is one file for
every flow field. All the data is written with integers 16 bits using Fortran
direct access. We denote N_m as the number of pixels of the object m,
i_{n,m},k_{n,m},j_{n,m} are the n-th streamwise, spanwise and wall-
normal pixel coordinates for the object m. The variables nx and nz are the
maximum number of points in streamwise and spanwise directions of the
flow field. The file is written as follows:

nx nz 0

N_1 0 0 ! object 1

i_{1,1} k_{1,1} j_{1,1}

i_{2,1} k_{2,1} j_{2,1}

...

i_{N_1,1} k_{N_1,1} j_{N_1,1}

N_2 0 0 ! object 2

i_{1,2} k_{1,2} j_{1,2}

1



i_{2,2} k_{2,2} j_{2,2}

...

i_{N_2,2} k_{N_2,2} j_{N_2,2}

...

...

N_m 0 0 ! object m

i_{1,m} k_{1,m} j_{1,m}

i_{2,m} k_{2,m} j_{2,m}

...

i_{N_m,m} k_{N_m,m} j_{N_m,m}

...

Warning: N_m is incorrect for those cases in which the number of pixels of the
object cannot be represented with an integer 16 bits.

Compute coherent structures’ properties

• Code: in the folder list/. lister.f90 for objects created with the phys-
ical fields and lister_compressed.f90 for the ones computed with the
compressed list.

• Input : the list of pixels from the previous code.

• Output : file with the properties of each object. There is one file for every
flow field. For a given object,

– jmin: minimum wall-normal position of the object.

– jmax: maximum wall-normal position.

– im: streamwise position of the center of its circumscribed box.

– km: spanwise position of the center of its circumscribed box.

– lx: streamwise length.

– lz: spanwise length.

– u: mean streamwise velocity fluctuations.

– v: mean wall-normal velocity fluctuations.

– uv: mean Reynolds stress.

– w: mean spanwise velocity fluctuations.

– u2: mean squared streamwise velocity fluctuations.

– v2: mean squared wall-normal velocity fluctuations.

– uv2: mean squared Reynolds stress.

– w2: mean squared spanwise velocity fluctuations.

– V: volume of the object.

– Vb: volume of the circumscribed box.

– nc: number of pixels.

– nrec: pointer to the position of the beginning of the object in the
list of pixels.

2



The variables jmin, jmax, im, km, lx and lz are given in pixels and the
rest in outer units. All of them are reals 32 bits except for nc and nrec

which are integers 64 bits. The file is written in Fortran direct access
(record length = 21). N is the total number of objects. The structure of
the file is as follows:

jmin1 jmax1 im1 km1 lx1 lz1 u1 v1 uv1 w1 u21 v21 uv21 w21 V1 Vb1 D1 nc1 nrec1

jmin2 jmax2 im2 km2 lx2 lz2 u2 v2 uv2 w2 u22 v22 uv22 w22 V2 Vb2 D2 nc2 nrec2

...

jminN jmaxN imN kmN lxN lzN uN vN uvN wN u2N v2N uv2N w2N VN VbN DN ncN nrecN

The number at the end of the variable represents the number of the object.

Compute connections between structures

• Code: folder interclus/version5/. Compile with make interclus. Com-
putes the geometrical intersection of objects at time tn with those at time
tn+1, i.e., forward connections. The backwards connections can be easily
deduced.

• Input : ASCII list with the paths to the files containing the list of pixels
of the objects at a given time ti and in chronological order.

• Output : One file containing the connections of the objects at time tn with
those at time tn+1 with n = 1, .., Nt − 1 where Nt is the total number
of files in the temporal series. All numbers are reals 32 bits written in
Fortran stream access. Every object can be uniquely identified by the time
it belongs to, t, and the number of object at that time, ib. Nomenclature:
for a given time m, ib_i is the object’s number with i=1,...,nib and nib

the total number of objects at time m. n_i is its total number of forward
connections, ia_{i,j} with j=1,...,n_i are the numbers of the objects
at time m+1 that are connected with ib_i and w_{i,j} the intersected
volume in outer units. nd is the total number of objects with no forwards
connections. nf is the number of the last object at a given time which has
forward connections. In general nf 6= nib The file is written as follows:

!---------time 1----------!

ib_1 n_1 ! object 1

ia_{1,1} ... ia_{1,n_1}

w_{1,1} ... w_{1,n_1}

ib_2 n_2 ! object 2

ia_{2,1} ... ia_{2,n_2}

w_{2,1} ... w_{2,n_2}

...

ib_nf n_nf ! last object

ia_{nf,1} ... ia_{nf,n_nf}

w_{nf,1} ... w_{nf,n_nf}

nd 0

nib 0

!---------time 2----------!

3



...

...

!--------last time---------!

ib_1 n_1

ia_{1,1} ... ia_{1,n_1}

w_{1,1} ... w_{1,n_1}

ib_2 n_2

ia_{2,1} ... ia_{2,n_2}

w_{2,1} ... w_{2,n_2}

...

nd 0

nib 0

-100 -100

The last two numbers indicate the end of the file.

Compute graphs and branches

• Code: in the folder evolutions/version2/, file evolutions_version2.f90.
It computes branches and graphs.

• Input : file with the forwards connections of the structures produced by
the previous code and the lists of the properties of the objects at each
time.

• Output : There are three output files with extension *.branches, *.graphs,
*.links.

– The file *.branches contains information about the branches. The
number of a branch is given by the order in which it appears in the
file. The data is written in Fortran stream access as follows:

! header

ne

lifetimes(1:ne)

valid(1:ne)

! branch 1

t lx ly lz x y z vol stat i u v ! time 1

t lx ly lz x y z vol stat i u v ! time 2

...

t lx ly lz x y z vol stat i u v ! last time

...

! branch i

t lx ly lz x y z vol stat i u v ! time 1

t lx ly lz x y z vol stat i u v ! time 2

...

t lx ly lz x y z vol stat i u v ! last time

...

! last branch

t lx ly lz x y z vol stat i u v ! time 1

t lx ly lz x y z vol stat i u v ! time 2

4



...

t lx ly lz x y z vol stat i u v ! last time

ne is the total number of branches. lifetimes is a vector with ne

elements which contains integers 32 bits with the number of times of
each branch. valid is a logical vector with 8 bits per element and
ne elements, one per branch. Its value is false for invalid branches,
for instance, when they are very small or spurious. For the branches
all the variables are real 32 bits. Every variable within the branch
should have a subindex {i,j} that it was omitted for clarity where
i is the number of the branch and j the temporal position within
it. The branches are formed by only one object at each time and
the data above show the information stored at a given time for each
object of the branch. The variables are:

∗ t: integer representing the number of the file that identifies the
temporal position the object.

∗ lx: streamwise length of the object.

∗ ly: wall-normal length of the object.

∗ lz: spanwise length of the object.

∗ x: streamwise position of the center of its circumscribed box.

∗ y: wall-normal position of the center of its circumscribed box.

∗ z: spanwise position of the center of its circumscribed box.

∗ vol: volume of the object.

∗ status: its value is 0 when there is no merging or splitting hap-
pening, i.e., there is one backward and one forward connection.
In the first point of the branch its value is -1 when there are no
backward connections and in the last point is 1 if there are not
forwards connections. Primary branches are those whose edges
are -1 and 1 respectively.

∗ i: number of the object.

∗ u: mean streamwise velocity fluctuations.

∗ v: mean wall-normal velocity fluctuations.

All the variables are in outer units. The variable ”t” can be converted
to physical time using the time stored in the flow fields or in the
compressed lists. The variables (t,i) can be understood as the ID of
the objects since they identify it unambiguously.

– The file *.graphs contains the branches that form each graph. Ev-
ery graph is formed by ni branches with numbers ibranch_1 to
ibranch_ni (the order in which they appear in the file *.branches).
There are in total ng graphs. The variables are integers 32 bits and
are written in Fortran stream access. The file is organized as follows:

! header

ng

n_branches(1:ng)

! graph 1

ibranch_1 ibranch_2 ... ibranch_n1

...

5



! graph i

ibranch_1 ibranch_2 ... ibranch_ni

...

! graph ng

ibranch_1 ibranch_2 ... ibranch_nng

where n_branches is a vector of integers 32 bits with ng elements
that contains the number of branches per graph.

– The file *.links contains how the branches are connected. The file is
written with sequential unformatted Fortran as follows:

! number of branches

X

ne

X

! links for branch 1

X ibranch_1 ibranch_2 ... X ! backward links

X ibranch_1 ibranch_2 ... X ! forward links

...

! links for branch ne

X ibranch_1 ibranch_2 ... X ! backward links

X ibranch_1 ibranch_2 ... X ! forward links

X denotes que integers written by fortran when using sequential access
and ibranch_i the id of the branches connected to a given branch
backwards and forwards.

Compute statistics for mergers and splits

• Code: in the folder stats/mergesplits/, file mergesplitstats.f90. It
computes statistics for mergers and splits.

• Input : Files *.branches and *.links generated by the previous code.

• Output : File with extension *.ms which is divided in three parts. The first
two parts have information about the three objects involved in a merger or
split. They will be denoted with the subindices s (for the small fragment),
m (for the medium fragment) and l (for the large one) (see paper for more
details). The first part has information about the splits and the second
one about the mergers. The last part has information related to mergers
and splits from the point of view of the branch. The number of splits is
nsplits, the number of mergers nmergers and the number of branches
ne. The output is written using Fortran sequential access as follows:

!------------------part I-------------------!

ns typeB(1:nsplits) ns ! integer 32 bits

ns Dt(1:nsplits) ns ! real 32 bits

ns vol_b(1:nsplits) ns ! real 32 bits

ns vol_m(1:nsplits) ns ! real 32 bits

ns vol_s(1:nsplits) ns ! real 32 bits

ns typeQ(1:nsplits) ns ! real 32 bits

6



ns coord_b(1:2,1:nsplits) ns ! integer 32 bits

ns coord_m(1:2,1:nsplits) ns ! integer 32 bits

ns coord_s(1:2,1:nsplits) ns ! integer 32 bits

ns y_b(1:nsplits) ns ! real 32 bits

ns y_m(1:nsplits) ns ! real 32 bits

ns y_s(1:nsplits) ns ! real 32 bits

ns l_b(1:nsplits) ns ! real 32 bits

ns l_m(1:nsplits) ns ! real 32 bits

ns l_s(1:nsplits) ns ! real 32 bits

ns Dx(1:nsplits) ns ! real 32 bits

ns Dz(1:nsplits) ns ! real 32 bits

ns Dy(1:nsplits) ns ! real 32 bits

ns ymin_b(1:nsplits) ns ! real 32 bits

ns ymin_m(1:nsplits) ns ! real 32 bits

ns ymin_s(1:nsplits) ns ! real 32 bits

ns ymax_b(1:nsplits) ns ! real 32 bits

ns ymax_m(1:nsplits) ns ! real 32 bits

ns ymax_s(1:nsplits) ns ! real 32 bits

4ns_l T_l(1:ns_l) 4ns_l ! real 32 bits

4ns_v T_v(1:ns_v) 4ns_v ! real 32 bits

4ns_l l_l(1:ns_l) 4ns_l ! real 32 bits

4ns_v l_v(1:ns_v) 4ns_v ! real 32 bits

!------------------part II------------------!

nm typeB(1:nmergers) nm ! integer 32 bits

nm Dt(1:nmergers) nm ! real 32 bits

nm vol_b(1:nmergers) nm ! real 32 bits

nm vol_m(1:nmergers) nm ! real 32 bits

nm vol_s(1:nmergers) nm ! real 32 bits

nm typeQ(1:nmergers) nm ! real 32 bits

nm coord_b(1:2,1:nmergers) nm ! integer 32 bits

nm coord_m(1:2,1:nmergers) nm ! integer 32 bits

nm coord_s(1:2,1:nmergers) nm ! integer 32 bits

nm y_b(1:nmergers) nm ! real 32 bits

nm y_m(1:nmergers) nm ! real 32 bits

nm y_s(1:nmergers) nm ! real 32 bits

nm l_b(1:nmergers) nm ! real 32 bits

nm l_m(1:nmergers) nm ! real 32 bits

nm l_s(1:nmergers) nm ! real 32 bits

nm Dx(1:nmergers) nm ! real 32 bits

nm Dz(1:nmergers) nm ! real 32 bits

nm Dy(1:nmergers) nm ! real 32 bits

nm ymin_b(1:nmergers) nm ! real 32 bits

nm ymin_m(1:nmergers) nm ! real 32 bits

nm ymin_s(1:nmergers) nm ! real 32 bits

nm ymax_b(1:nmergers) nm ! real 32 bits

nm ymax_m(1:nmergers) nm ! real 32 bits

nm ymax_s(1:nmergers) nm ! real 32 bits

4nm_l T_l(1:nm_l) 4nm_l ! real 32 bits

4nm_v T_v(1:nm_v) 4nm_v ! real 32 bits

7



4nm_l l_l(1:nm_l) 4nm_l ! real 32 bits

4nm_v l_v(1:nm_v) 4nm_v ! real 32 bits

!------------------part III-----------------!

nb typeB nb ! integer 32 bits

nb DT nb ! real 32 bits

nb vol_s nb ! real 32 bits

nb IT nb ! real 32 bits

nb vol_m nb ! real 32 bits

nb lx nb ! real 32 bits

nb ly nb ! real 32 bits

nb lz nb ! real 32 bits

nb vol nb ! real 32 bits

nb lxmax nb ! real 32 bits

nb lymax nb ! real 32 bits

nb lzmax nb ! real 32 bits

nb volmax nb ! real 32 bits

nb num_mer nb ! integer 32 bits

nb num_spl nb ! integer 32 bits

nb yc nb ! real 32 bits

nb typeY nb ! integer 32 bits

where ns, nm and nb are integers 32 bits with values 4*nsplits, 4*nmergers
and 4*ne respectively and are the consequence of the Fortran sequential
access. Next we summarize the meaning of each variable for both part I
and II:

– typeB: type of branch the merger or the split belongs to. Its value is
1 for primary branches and 0 otherwise.

– Dt: times elapsed from the beginning of the branch to the times of
the merging or splitting.

– vol_b: volume of objects b.

– vol_m: volume of objects m.

– vol_s: volume of objects s.

– typeQ: type of Q-branch. Its value is 1 for Q1, 2 for Q2, 3 for Q3
and 4 for Q4.

– coord_b: ID of the object b, (t, i), where t is the number of its flow
field and i the objects’ number in within it.

– coord_m: same as before for m objects.

– coord_s: same as before for s objects.

– y_b: wall-normal position of the center of gravity of the circumscribed
box for objects b.

– y_m: same as before for m objects.

– y_s: same as before for s objects.

– l_b: length of the diagonal of the circumscribed box for objects b.

– l_m: same as before for m objects.

8



– l_s: same as before for s objects.

– Dx: relative distance in streamwise direction between the center of
the boxes of objects m and s.

– Dz: relative distance in spanwise direction.

– Dy: relative distance in wall-normal direction.

– ymin_b: minimum wall-normal height of objects b.

– ymin_m: same as before for m objects.

– ymin_s: same as before for s objects.

– ymax_b: maximum wall-normal height of objects b.

– ymax_m: same as before for m objects.

– ymax_s: same as before for s objects.

– T_l: time elapsed between inertial mergers or splits.

– T_v: time elapsed between viscous mergers or splits.

– l_l: size of the objects in an inertial merge or split (see paper for
definition).

– l_v: size of the objects in a viscous merge or split.

For part III:

– typeB: type of the branch. Its value is 1 for primary branches, -1 for
not valid branches and 0 otherwise.

– DT: not used.

– vol_s: total volume lost in the branch by the splits.

– IT: not used.

– vol_m: total volume gain in the branch by the mergers.

– lx: average streamwise length of the branch.

– ly: average wall-normal length of the branch.

– lz: average spanwise length of the branch.

– vol: average volume of the branch.

– lxmax: maximum streamwise length of the branch.

– lymax: maximum wall-normal length of the branch.

– lzmax: maximum spanwise length of the branch.

– volmax: maximum volume of the branch.

– num_mer: number of mergers in the branch.

– num_spl: number of splits in the branch.

– yc: average center of gravity of the branch.

– typeY: type of branch with respect to the wall. Its value is 3 for tall
attached, 2 for detached and 1 for buffer layer.

9


