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The sources of error associated with the use of particle-tracking techniques in the 
measurement of velocity and vorticity fields in moderately three-dimensional 
turbulent flows are analysed. The two dominant sources of error are the visualisation 
error, resulting from the limited resolution of the optical data acquisition system, 
and the sampling error, due to limited particle concentration. Their relative 
importance is discussed. 

The performance of the interpolation methods used to translate the measurements 
from the positions of the particles to an arbitrary point is discussed, and a non- 
parametric algorithm is given to estimate the errors that arise, using only the 
available data. The smoothing of the results to produce flow maps of a given 
statistical significance is also discussed. Finally, the method is validated using 
simultaneous laser-Doppler velocity measurements. 

The system is applied to measurements of the near wake of a circular cylinder. 
Velocity and vorticity maps are provided which throw light on the process by which 
the large eddies form and relax to their final equilibrium configurations. 

1. Introduction 
Particle tracking is one of the simplest and most powerful methods of quantitative 

flow visualization, and one of the few capable of providing instantaneous maps of 
magnitudes, such as velocity or vorticity, over extended areas. The technique has 
been used for a long time, especially in liquids (Prandtl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Tietjens 1934; Werle 1973; 
Clayton & Massey 1967; Merzkichz 1974; Emrich 1981), and a modern review can be 
found in Sommerscales (1980). However, the study of the problems associated with 
the extraction of quantitative information from the experimental output (usually a 
photographic image) is recent. This is probably due to the lack, before the 
availability of digital computers, of practical methods for handling the large amount 
of information provided by the method. 

In its modern form, particle tracking involves seeding the flow with particles, 
which are assumed to follow the fluid, and measuring their movement over a known 
period of time, either by tracking the particles among different instantaneous 
pictures, or by measuring the length of their traces on images obtained with a finite 
exposure. The resulting velocities are associated to some intermediate position 
between the two end points of the trace, and interpolated to a regular grid or to a 
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series of contour lines. This part of the data processing usually involves digitization 
of the pictures, either manually (Imaichi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Ohmi 1983; Utami & Ueno 1984,1987), or 
automatically (Dimotakis, Debussy BE Koochesfahani 1981 ; Jian & Schmitt 1982), 
and processing in a computer. 

All these steps introduce errors in the final estimation of the velocities. Some of the 
authors cited above have paid considerable attention to the errors introduced by the 
visualization technique, but few of them have considered the errors committed 
during the interpolation process, or the influence of the particle concentration on the 
maximum resolving power. Also, a validation of the method by correlation with 
simultaneous measurements by other established means is generally missing. 

The experiment described in this paper was undertaken in order to estimate the 
errors introduced by the particle-tracking method, both in the measuring of two- 
dimensional velocity and in the estimation of derived quantities such as vorticity. 
Since this latter step includes a numerical differentiation, it tends to amplify 
previous errors, and a good error analysis is mandatory. 

Our interest was in moderately three-dimensional turbulent flows, and we used the 
near wake of a circular cylinder as a representative example. It was soon apparent 
that, in our particular case, an important source of error was the limited sampling 
resolution provided by the particle concentration, and this aspect is extensively 
studied below. A problem was that classical sampling theory dealt mostly with 
regular sampling schemes, and that there were few results available for the random 
sampling distributions which are characteristic of particle tracking. It was, therefore, 
necessary to develop some theoretical understanding of the reconstruction techniques 
that could be used in this case. 

This was done by numerical experimentation on simulated sinusoidal velocity 
fields. We tested several interpolation schemes, choosing finally a modified weighted 
convolution window. The results presented here apply to that technique. We present 
both empirical rules for the estimation of the errors of interpolation for a given 
particle density and for a given power spectrum of the velocity fluctuations, and 
a non-parametric approximate error estimator for those cases in which those 
parameters are not known. 

Finally, we present some simultaneous laser-Doppler and particle- tracking 
velocity measurements, that demonstrate both the reliability of the method, within 
the estimated error bounds, and the approximate correctness of those bounds. 

2. Experimental procedure 
A smooth brass cylinder, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 cm in diameter, was placed horizontally, normal to the 

main flow direction, in a Plexiglas recirculating water tunnel whose test section was 
8 cm high and 4 cm wide (figure 1). The tunnel was run at 18 cm/s, giving a Reynolds 
number, based in the cylinder diameter, a little below 2000, and the wake was 
studied between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 and 23 diameters downstream from the cylinder. In this range the 
wake is turbulent, with significant three-dimensionality extending to the largest 
scales (Gerrard 1966; Papailiou & Lykoudis 1974). 

The free-stream turbulence level was not measured, but was probably high, over 
1 %. This was due to the need to remove several blocks of foam, originally used as 
flow steadiers, to allow for the circulation of the particles. Since the purpose of the 
experiment was the calibration of the method of measurement, rather than the study 
of the flow, no effort was made to install alternative turbulence-reduction devices 
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FIQURE 1. Experimental &-up for the generation of particle-tracing pictures. The rotating disk 
acts aa a programmable shutter to produce light pulses, and traces, of any desired shape. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

and, as a consequence, the measurements presented here can only be considered 
indicative for the study of the wake itself. 

The particles were fabricated by us from Pliolite (a Styrene-Butadiene resin), and 
were roughly spherical, with diameters ranging from 70 to 170 pm, and a density of 
1.1 g/cms, which is close enough to that of water to avoid significant buoyancy 
effects (see below). 

A narrow sheet of light was placed perpendicular to the cylinder and parallel to the 
flow direction. Taking a photograph with a long exposure resulted in a collection of 
streaks that could be considered as projections of the instantaneous velocity vectors 
onto the plane of the light sheet (figure 2). The camera used was a standard SLR 
Olimpus OM-1 with a motorized winder, allowing a maximum rate of 2.5 frames 
pers. Tests performed on the stability of the shutter aperture times were not 
satisfactory, and it was decided to control the exposure by switching the illumination, 
with the camera shutter kept open, to bracket the lighting pulse. In our illumination 
system, a 100 W halogen lamp and a suitable optical system concentrate the light to 
a point, where a rotating wheel, acting like a light chopper, does the switching. Any 
desired shape of the light pulse can be achieved by masking appropriately the outer 
part of the wheel. The emerging cone of light was then converted into a slowly 
convergent sheet, which was finally masked on the top wall of the tunnel to a 
rectangular shape, 20 cm long and 2 mm wide. 

The ability to shape the light pulse allowed us to solve a problem that is frequently 
encountered in particle tracking experiments zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; if the flow is three-dimensional, it is 
not easy to distinguish between traces that are limited by the finite light pulse, and 
those that simply cross the light sheet and correspond to an incomplete time interval. 
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FIQURE 2. Particle-tracing photograph of a section of the wake. Flow is from left to right and spans 
approximately from 1 1  to 22 diameters downstream of the cylinder. Note the dot at each end of 
each trace that serves to ensure its integrity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We shaped our lighting pulse so that each complete trace was formed by an initial 
dot, a long period and a final dot. Whenever the complete pattern was seen in the 
picture, the central part of the streak could be safely used for measurements. 
Incomplete traces were rejected. Typical time intervals were zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 ms for the central 
part of the pulse and 153 ms for each wheel rotation. 

Synchronization was achieved electronically. An optical switch, placed on the 
rotating wheel, was closed at every turn. A counter, preset to any desired number of 
turns, allowed for skipping some of the rotations of the wheel, and its zero fired the 
camera. The distance on the wheel between the triggering mark and the transparent 
section was used to account for the delay (100 ms) between the firing pulse and the 
shutter opening. 

Digitization of the traces was done manually on a digitizing tablet, using high- 
contrast, 18 x 24 cm, prints of the visualization pictures. The coordinates of the two 
end points of every valid streak were fed into the computer and the resulting velocity 
was associated to the midpoint of the trace. Traces lacking any of the two ‘safety’ 
dots were not used in the measurements. Since there was clearly no flow reversal in 
this part of the wake, there was never any doubt in assigning a direction of motion 
to the particles. If that had been the case, the ambiguity could have been easily 
removed by adding one more marking dot to one of the end points of the illumination 
pulse. The number of traces present in a single picture ranged from 1000 to 1500. 
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3. Visualization errors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We deal in this section with those errors that are intrinsic to the visualization 

procedure, and that result in an incorrect velocity being associated to a given particle 
trace. The interpolation error, that comes from the attempt to translate the 
velocities, known at the traces, to other points in the flow, is discussed in the next 
section. Both sources of error are largely independent, and may be treated 
separately. 

3.1. Picture digitimtion 
The precision with which the length of the particle traces can be measured is 
limited by the resolution of the photographic film and by the accuracy of the 
digitization. In our case, the film was Tri-X which, when pushed to high sensitivity, 
has an approximate resolving power of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 lines/mm, or 15 pm. When the 35 mm 
negative is enlarged to a 18 x 24 cm print, this corresponds to a maximum resolution 
of 0.1 mm, which was also the resolution of our digitizing tablet. 

We ran tests on the repeatability of manual digitization by comparing successive 
digitizations of a single, sharp, point by the same operator, and found an r.m.8. 
deviation of 0.2 mm, which is probably not limited by the accuracy of the tablet, but 
intrinsic to the hand positioning of the cursor. If it is assumed that this is the 
accuracy with which each end point is known, and that the errors on both ends are 
uncorrelated, and since only the projection of the error on the direction of the trace 
is important, the expected r.m.s. error of the estimation of the length of the trace 
is again 0.2 mm, measured on the print, which corresponds to 0.1 mm on the flow. 
Since the average trace length, at the flow, is 2 mm, this results in a relative error 
Of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5%.  

Note that automatic digitization could have decreased this error by a factor of 
two, by eliminating the manual-positioning uncertainty. Automatic recognition of 
the traces is not easy but, as mentioned in $1, i t  has been demonstrated in several 
cases. In our particular application, digitization turned out to be the dominant 
source of error, but it was decided that manual processing was adequate. If desired, 
the error due to manual positioning could also have been cut in half by using prints 
twice as large. 

3.2. Exposure interval 
The length of the light pulse can be controlled by the switching system with good 
accuracy and, in any case, it can be monitored for each individual picture by 
recording it with a photodiode. However, it is impossible to switch the illumination 
on and off instantaneously, and this introduces an uncertainty in the effective 
duration of the illumination pulse for a particular trace. 

Consider a pulse that lasts a time t ,  from the moment it begins to rise to the 
moment it stops decaying, but whose intensity is maximum for a shorter period, t,. 
Depending on the sensitivity of the recording device, or on the development of the 
negative and the print, the traces that appear on the final image will correspond to 
an unknown time interval in between those two extremes. Moreover, since different 
particles produce traces of different intensities, depending on their size and on their 
position across the light sheet, each one of them may correspond to a different time 
interval. Even if, in principle, the relation between trace intensity and exposure time 
can be calibrated, this is difficult in practice, and the uncertainty should be 
considered as a random error, whose relative magnitude is t , / t ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1, peak to peak, or 
about one third as much when expressed as an r.m.s. with respect to the central 
value. In our case, the resulting r.m.8. error was 1.5%. 
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It has been suggested by one referee that this error could be improved by using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 

reference points the centre of the two side dots at  the ends of the track. This is 
unfortunately unreliable, since there is no guarantee that those dots are not 
truncated by the laser sheet. However, as also suggested by the same referee, it is 
possible to use the central points of the gaps between the tracks and the guard dots. 
Assuming the positioning errors of both ends of each gap to be independent, this will 
decrease the error by approximately 4 2 .  

3.3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATracking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAerrors 

This is the error introduced because the particles do not follow strictly the motion of 
the fluid, and its magnitude was extensively studied by Hjelmfelt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Mockros (1966). 
For small particles, the process is linear, and if the fluid velocity in the vicinity of the 
particle is expressed as a superposition of harmonics, u = J A(w) eiot dw, the motion 
of the particle is described by a transfer function, F(o), as up = J F ( w )  A(@) eiot do. It 
turns out that, in the case where the particles have a density close to that of the fluid 
(Hinze 1959), the transfer function can be expressed as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F ( o )  = P(o)  ei#(o) = [I -TF~(S) ]  elrF@), (1) 

where T = p,/p, 1 is the normalized density difference between the particle and the 
fluid, S = ( v /w) ( l ) /D  is the Stokes number, v is the kinematic viscosity, and D is the 
diameter of the particle. and F2 are universal functions that tend to zero for large 
values of S, but which remain otherwise bounded, with a maximum of about 0.6. For 
each particle diameter, there is a limiting frequency, defined by S x 1, below which 
the particle effectively tracks the fluid but, if the density difference is small, the 
tracking errors remain small even above that frequency. 

In our experiment, r = 0.1, and the worse possible tracking error would never 
exceed 6 %. In fact it is much less. Within the inertial cascade, the power spectrum of 
the velocity fluctuations, as seen by a particle that travels with the fluid, decays as 
w-' (Landau & Lifshitz 1959). For the purpose of computing the error we can assume 
that 

IA(o)I2 = const. x o-2 

for w > wo, and zero otherwise, where wo corresponds roughly to the lowest turnover 
frequency of the large eddies, and can be estimated as the velocity defect of the wake 
divided by its half-width. By using the form of the transfer function in (l), applying 
Parsevel's theorem and expanding all the terms to lowest order in r ,  it is easy to show 
that the expected tracking error of the velocity is 

where So is the Stokes number associated with wo. In our particular case, wo x 10 Hz, 
D x 100 pm, So m 3, and expected r.m.8. tracking error is only 0.6%. 

In summary, since digitization and exposure errors are presumably independent, 
and add as squares, the total visualization error is, in our case, just over 5%,  and is 
mainly due to the limited resolution of the recording film, and of the digitization 
method. 
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4. Sampling error 

The average length of the traces left by the particles in our experiment is 2 mm, 
and the mean distance between particles is S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (l/dV)i = 2.2 mm, where N is the 
average number of particles per unit surface. Both numbers are related, since the 
distance between particles should be somewhat larger that the trace length to avoid 
an excessive overlap among the traces, which would complicate the interpretation. 
A consequence of the Nyquist sampling criterion is that any feature of the flow with 
a wavelength shorter than approximately 4.5 mm, twice the distance between 
particles, cannot be recovered from the data. 

The limiting factor is again the resolution of the recording equipment. Assume that 
we can record positions in the flow with a precision 7, and that we use traces with an 
average length 4 ; the relative visualization error would be q/d. Assume now that the 
outer scale of our flow is L, and that the wavelength h = 4 is in the range of the 
inertial cascade of the turbulence, where the power spectrum of the velocity 
fluctuations behaves as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA" ; the average distance between particles should be at least 
S = 1.54, to avoid interference, and the shortest detectable wavelength would be at 
most 34. The resulting relative error in the velocity will be proportional to the 
integrated amplitude of the fluctuations that are filtered out by the undersampling, 

Note, however, that the visualization error is a fraction of the length of the traces, 
which is proportional to the mean flow velocity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, while the sampling error is a 
fraction of the amplitude of the velocity fluctuations, u', which is usually a small 
fraction of 0 in most turbulent flows. 

Both errors become comparable when d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( ~ O / U ' ) ~ / ( " + ~ )  (iL)(*-l)/("+l), at which 
moment the common value of the error becomes B/U' x (37,"/Lu')("-1)~("+1). The 
exponent n has a value of Q for three-dimensional turbulence and between 3 and 4 for 
the large two-dimensional scales. In  our experiment, 7 x 0.1 mm, L x 30 mm, 
u' /0 x 0.1, and most of the scales that we are able to see are two-dimensional. Under 
those conditions, the optimum trace length would be 3 4  mm, and the corresponding 
error, 20-30 '3'0 of the turbulent intensity. Longer traces decrease the visualization 
error, at the expense of the sampling error, while shorter ones have the opposite 
effect. Since it will be seen next that the sampling error is larger than the ideal value 
used above, we have used traces that are somewhat shorter than the 'optimum', and 
the total error is in the upper part of the range given above. 

(3d")'"-"/? 

4.1. Interpolation 
The previous discussion assumes that there exists an interpolation method capable 
of recovering from the traces all the information that is theoretically possible. There 
is an extensive literature on optimum interpolation strategies for uniformly spaced 
samples, but much less is known for the case in which the samples are randomly 
distributed and, as a consequence, we were forced to make our own rough survey 
of different interpolation methods adaptable to our case, and of their error 
characteristics. For that, we defined a set of synthetic velocity fields and ran different 
interpolators on them, monitoring the errors. 

For linear interpolators, it is enough to use simple sinusoidal test fields, which can 
then be combined into more complex flows. Moreover, on purely dimensional 
grounds and for a given interpolator, the only important parameters are the 
amplitude of the original signal, which acts as a multiplicative factor on the error, 
and the ratio h/S between the wavelength of the (sinusoidal) flow field and the 
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average distance between particles. With this idea in mind, we ran a series of 
numerical Monte Carlo experiments on synthetic velocity fields of the form 

u(x)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2 sin (T) sin (F) , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) 

which have unit r.m.8. power. For each of them we averaged over many randomly 
chosen distributions of a fixed number of particles, using different estimators to 
interpolate the information to a grid of uniformly distributed nodes. The results were 
judged in terms of the r.m.s. error between the interpolated and the real values at the 
nodes. The methods tested included polynomial interpolation, krigging (Matheron 
1972 ; Agterberg 1974), polynomial least squares, and convolutions. In general, the 
best results were obtained using certain polynomial interpolations (Jim6nez 1985 ; 
Jim6nez & Agui 1987) and krigging, but the advantage was small with respect to 
some of the simpler methods, and it was decided, on grounds of computational 
simplicity, to use a simple convolution with an adaptive Gaussian window 

c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaiui 

(4) 
I u(z) = -, x ai 

I 

where uI are the known values measured at the locations of the particles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi, and 

Note that the weighting coefficients in (4) are adjusted so that their sum is always 
equal to one, independent of the particle positions, as opposed to the common 
practice, in the case of uniformly distributed samples, of choosing coefficients that 
are just functions of the distance to each individual sample, and which add up to one 
only in some average sense. This simple modification improves the performance of 
the estimator substantially, and has the additional effect of making the error 
proportional to u’, instead of to 0. Since u’ is usually a small fraction of the free- 
stream velocity, this latter effect contributes, more than anything else, the decrease 
in the absolute error level. 

The errors resulting from using (4)-(5) are shown in figure 3. Again on dimensional 
grounds, a given interpolating window is characterized by the ratio H / 6 ,  and the 
r.m.s. error is plotted in terms of h/6. The Nyquist criterion for uniform sampling 
would predict an error of the same order as the amplitude of the original signal for 
A / &  < 2, and zero otherwise. In fact, the decay for long wavelengths is more gradual, 
owing in part to the random sampling and in part to the imperfections of the 
interpolation method, and the errors remain appreciable for fairly long wavelengths. 
In any case, figure 3 can be used as a design criterion for choosing an optimum 
window width H, which turns out to be of order 1.246. 

However, the results in figure 3 do not give a direct idea of the scales that 
contribute the most to the interpolation error for a given flow field. When the 
interpolation is applied to a field with a given power spectrum P(h),  the square of the 
curve in figure 3, €“A), can be considered as an approximate transfer function for 
the total square error. The error is then proportional to 

[e2(h)P(h) d w  = s” ( h P(h)dA h2 
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FIQURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARoot-mean-square interpolation error over a sinusoidal test velocity field, aa function 
of the flow wavelength and of the width of the interpolating window. The r.m.8. amplitude of the 
test field is unity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-, HI8  = 0.53; ----, 1.24; * * * * * . , 1.77; -.-.-, 3.64. 

FIGURE 4. Squared magnitude of the interpolation error, weighted with two possible forms of the 
power spectrum of the original field. The result can be interpreted aa a measure of the errors due 
to a given wavelength in a field with that type of spectrum. HI8 = 1.24; -, P x A s ;  ---- , A!. 

The expression inside this integral depends on the form of the spectrum. Even if flow 
spectra vary widely, a rough guide can be derived from the self-similar turbulent 
regimes inside the inertial subrange, where everything can be expreeaed in terms of 
A / 8 .  Figure 4 shows the result for two cases, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP % ha and P % hi, which are taken to 
be representative of two- and three-dimensional turbulence. The results show that 
the large scales contribute relatively little to the error while, for two-dimensiond 
turbulence, the dominant error comes from the eddies in the limit of available 
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resolution and, for the three-dimensional case, it is due to the very small scales below 
the average distance between particles. 

The total error that can be expected from the final measured velocities is formed 
by the interpolation error, discussed in this section, and the visualization error 
discussed in the previous one. The visualization error is essentially uncorrelated 
among different particles and also to the interpolated values and, therefore, adds 
quadratically to the interpolation error, 

2 
%tots1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 2 2 -- 

uf2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%erp + %is 2. (7) 

5. Bootstrapping 
The analysis in the last section allows us to estimate the interpolation error on a 

velocity field in terms of the power spectrum of the velocity fluctuations and of the 
particle concentration. However, the power spectrum is usually not known a priori, 
and what is needed is a way of estimating the error from a single picture of an 
unknown flow, whose velocity field can only be estimated from the processing of the 
picture itself. A procedure that provides an approximate way of doing this is 
bootstrapping (Efron 1979a, b ,  1982; Diaconis & Efron 1983). 

Ideally, assuming that the error included in the estimation of a given flow is only 
a function of particle concentration, a way of measuring it would be to repeat the 
seeding and tracking experiment many times, on exactly the same flow field, with 
different particle distributions having a constant average concentration. If, in 
addition, the real velocity field was known, the error for each experiment could be 
measured and averaged over the different distributions. In practice, of course, it is 
impossible to produce exactly the same flow field more than once, expecially for 
turbulent flows, and the true velocity field is unknown. 

The idea of bootstrapping is to substitute this ideal procedure by an artificial 
approximation. The method, as applied to our case, would be: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(a) Consider a base sample Yo formed by all the particles in the picture. We shall 
assume that the velocity is known exactly at the position of these particles. 

(b) Construct a synthetic sample, with the same number of particles as the original, 
by randomly drawing particles, with repetition, from the original one. The new 
sample will be formed by particles chosen from the original one, with the same 
associated velocities, some of which would be present several times, while others 
would not be present at all. 

(c) Interpolate from the new sample the velocity at the position of all the particles 
in Yo. Since the true velocities are known at those positions, the interpolation errors 
can be measured. 

(d) Repeat steps (b) and (c) several times, and statistically analyse the results. 
Bootstrapping relies on the idea that the particles in the synthetic sample are 

drawn from some large population formed by replicating many times the particles in 
Yo, and on the hypothesis that the statistics done over this large population are a 
good approximation to those taken over the unknown original population of all the 
possible particle positions, from which Yo is just a particular sample of limited size. 
Once this assumption is accepted, the bootstrapping algorithm is just a realization 
of the ‘ideal’ error estimation procedure outlined at  the beginning of this section. 
While there seems to be no rigorous proof that the underlying assumption is satisfied 
for a general estimator in a general case, Efron and his collaborators, in the references 
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FIQURE 5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABootstrap estimates of the interpolation error on a sinusoidal test field, compared to 
actual error. Solid line is actual interpolation error, H / 6  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1.24; vertical error bars are bound by 
Class-1 and Class-2 estimates. Central value of error bars is Class-3. 

cited above, give plausible arguments that this is true in most cases, and describe 
many situations in which the method is known to work. 

For any particular c w ,  however, it is desirable to have a experimental verification 
that bootstrapping works. Moreover, the procedure that we have described here is 
inherently biased by the use of the particles themselves as the sites to estimate the 
error. 

Consider the estimation of the error at a given particle. Some of bootstrap samples 
will contain the particle in question (one or more times), while others will not. Denote 
the error statistics taken over the former class of samples as Class-1, those taken over 
the latter, as Class-2, and those done without regard as to whether the particle in 
question is included or not in the sample, Class-3. It is clear that Class-1 would tend 
to underestimate the interpolation error, that Class-2 would tend to overestimate it, 
and that Class-3 would be in between the other two estimates. 

The actual interpolation error on a sinusoidal velocity field, using (4) and (5) with 
the ‘optimum’ window width H/B  = 1.24, is shown in figure 5, together with its 
bootstrap estimate, including the three possible classes of statistics. The experiment 
was done using Monte Carlo simulation over a field of 20000 randomly distributed 
particles. The error at each particle was bootstrapped 20 times, and the whole 
procedure repeated five times. These numbers are high compared with usual practice, 
and the estimates tend to stabilize with fewer tests. The values in figure 5 are global 
errors, summed over all particles. The limits of the vertical error bars are the Class-1 
and Class-2 statistics, and the central point is Class-3. 

It is clear that the Class-1 bootstrap underestimates the actual error, Class-2 
overestimates it slightly, but consistently, and Clam-3 is a generally good estimate, 
but underestimates the effect of the high frequencies by up to 30%. It has been 
proposed that a fixed linear combination of Class- 1 and Class-2 might be an optimum 
estimator of error (Efron 1983), but we were unable to fmd a constant combination, 
independent of wavelength, that would give a better fit than either Class-2, on the 
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‘pessimistic’ side, or Class-3 on the ‘optimistic’ one. In any case, these two estimates 
bracket a rough approximation that can be used in practical situations for the 
estimation of the error arising during interpolation. 

A harder quantity to estimate is the error arising at a given point. Bootstrapping 
can also be used for this purpose, by estimating the error at the particle positions and 
interpolating it later to the point in question, using, for example, (4) and (5). We 
found that it is generally difficult to get an accurate sign for the error, but that it is 
possible to get a useful estimate of its magnitude. To do that, we interpolated the 
bootstrap Class-3 estimated r.m.8. error, obtained in the previous numerical 
experiment at the position of the particles, to a uniform grid, and we compared it to 
the actual errors measured at the nodes in the grid. The correlation coefficient 
between the absolute values of the estimated error, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeboot, and of the real one, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8,  

defined as 

was found to be fairly independent of wavelength, and about 0.750.8. This is a 
relatively low value, but still useful as a rough estimate. This point-to-point error 
estimate can then be used to produce smoothed velocity fields with a given 
confidence level. 

5.1. Smoothing 
Assume that we have a velocity field interpolated to a uniform grid, and an 
estimation of the magnitude of expected error a t  each node of the grid. Assuming 
that the error distribution is Gaussian, we can define at each node a range, the 
estimated value plus/minus a multiple of the estimated r.m.s. error, such that the 
actual value can be expected to be in that range with a given degree of confidence. 
The set of all the error ranges associated to the nodes of the two-dimensional grid 
defines a wavy ‘layer’, inside which the real field should be contained. A reasonable 
hypothesis is that, in the absence of other information, the flow is as smooth as 
possible, and the problem of generating a filtered velocity field consistent with the 
desired degree of confidence can be interpreted as that of finding the smoothest field 
that lies inside the error ‘layer’. 

The problem of finding the smoothest function in the absence of constraints can be 
put in the form of minimizing the integral of the square of the gradient of the 
function, and is well known to be satisfied by the solution of Laplace’s equation, 
Vzf= 0. This solution, in turn, has the property that the value at each point is the 
average of the values at  any circumference around it, and a numerical approximation 
to it can be found by successive relaxations (Garabedian 1964), in each of which the 
value at  one point of the grid is substituted by the average of the values in its four 
immediate neighbours, 

ft, ‘f(ft-l,,+f*+l*, +fi.,-l +ft . ,+J (9) 

Under the presence of constraints, such as that the solution should be contained 
inside the range defined by the error band corresponding to that node of the grid, 

f m ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Valt, -put* < ftj < Fmij = valtj + Put, , (10) 

the relaxation algorithm (9) can be generalized to a constrained version, 

fi, + max If%,, min (Fmt,, W t - 1 . 3  +ft+1,, +fw-1 +ft,r+1))l* (11) 
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The result of iterating this formula at every node of the grid was found 
experimentally to converge quickly to the desired solution. 

The experimental results presented in the next sections have been smoothed in this 
way using bands of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcr (/3 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl), corresponding to a confidence level of 68 %. 

6. Vorticity 
Once we have developed a method for estimating the velocity at an arbitrary 

position in the flow, the vorticity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw = aw/ax-au/ay, can be estimated from the 
velocity gradients that contribute to it. This is done numerically. Using a relative 
displacement h, the velocity is estimated on a cross pattern around the desired point, 
and the vorticity is estimated as 

(12) 
V(X+ h, y) - ~ ( x - h ,  y) -u(x, y+ h) +u(z, y-h) 

2h 4x9 y) = 

Unfortunately, since the real value of the vorticity is not known anywhere 
beforehand, we cannot use here the same error analysis scheme as for the velocity, 
and the error estimates for (12) will necessarily be less accurate than before. 

Actually it can be shown that, for sinusoidal signals, and if the interpolation 
parameters H and h are chosen appropriately, the relative error of the estimated 
vorticity with respect of the r.m.8. amplitude of the vorticity signal is of the same 
order of magnitude as the relative error of the corresponding velocity signal. Real 
velocity fields are, however, not sinusoidal, and contain contributions from many 
different wavelengths. Even if the relative error from each wavelength is known, the 
computation of the total error implies the use of the power spectrum, which is 
unknown. Moreover, since the short wavelengths are the ones contributing more to 
the final error, and since they are also the ones estimated worst by the velocity 
interpolation, and the ones amplified most by the numerical differentiation, it is 
difficult to estimate the error of the vorticity field from the error of the velocity. 

However, we can use a simple bootstrapping technique to get an approximate 
value of the expected error. For each point, we generate many replicas of the particle 
distribution around it, aa described in $5, and, for each of those replicas, we obtain 
a different value of the vorticity. The distribution of these values resembles the real 
underlying statistical distribution of the vorticity estimates at that point, as a 
function of the possible particle distributions, and of which the value resulting from 
the particles actually present on the flow is just a single realization. The variance of 
that distribution is a good non-parametric estimate of the error included in the 
estimation of w.  

Having obtained in this way an estimate of the error associated to the vorticity 
estimation at each point, we can, as described in $5.1, derive ‘safe’ vorticity fields 
by smoothing the vorticity values within a f: 1cr interval. This step is equivalent to 
minimizing the ‘energy’ present in the vorticity field, i.e. 

within the probability constraints. Underlying this minimization of (13) is the null 
hypothesis of laminar flow, in the absence of any better information. Vorticity fields 
derived in this way are ‘safe’ in the sense that the features (eddies) present in the 
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estimation have a high probability of actually existing, although they might possibly 
be more intense in the real flow. 

It remains to consider the effect of the unresolved scales in the data, whether they 
derive from numerical error, from instrumental noise or from actual flow features, 
and the influence of the two parameters involved in the estimation of the vorticity : 
H / 6 ,  the interpolating window size, and h/S, the differentiation displacement. It is 
a consequence of the analysis in $4 that interpolating the velocity with a window of 
a characteristic width H / 6  results in a velocity field with a maximum resolvable 
spatial wavelength of the order of 2H/6.  Therefore, the gradient-estimation algorithm 
finds a field that is already low-pass filtered by the interpolation step. The value of 
h/b  used for the gradient estimation defines a further low-pass filter acting on an 
already band-limited signal. 

Figure 6 presents r.m.8. values of estimated vorticity, before and after smoothing, 
and of its bootstrap predicted variance, for the data in figure 2, and for two values 
of HI6  and a range of h/6.  It shows that the high-frequency rejection produced by 
using the wider interpolation window results in a lower value of the uncertainty in the 
vorticity estimation and in a rather flat response of the r.m.8. value of the 
unsmoothed signal to variations of the h/6 parameter. On the other hand, for the 
narrower window, the r.m.8. of the unsmoothed interpolated signal is larger, levelling 
off a t  much smaller values of h/S, and showing that some high spatial frequencies 
have passed through the velocity interpolation process and are being picked by the 
gradient estimator. The trend for the estimated error variances is the same, and 
the net result is that, when both cases are smoothed to the same confidence level, the 
values obtained for the relaxed values are very similar and their dependence on the 
displacement parameter h/S is weak, especially if h/6 is taken equal to or smaller 
than unity. 
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The situation, however, is not completely satisfactory, in that there is no 

guarantee that the resulting vorticity values are ‘true’, but only that they are 
‘conservative’, in the sense that they are no larger than they should be. This is 
probably the best that can be done. The procedure sketched here retains as much 
information as possible from the scales of the flow that can actually be observed, and 
may be in error because of flow features that are below the observation limit. But 
those features are, by definition, unobservable. The situation was different in the case 
of the velocity field, in which we had an a posteriori method of checking our results, 
and could give a true estimate of the error included. 

The vorticity maps presented in the next section have been derived using the wider 
interpolation window of the two used in figure 6, and h/S equal to unity. 

7. Experimental results 
The results of processing the traces in figure 2 are shown in figure 7, which includes 

both components of velocity and vorticity. As is usually the case with vortex wakes, 
the longitudinal velocity is not very informative, but both the transversal velocity 
and the vorticity show clearly the alternating structure of the vortex street. 

The area represented in the figure covers approximately 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 11 diameters (cm) on 
the flow, beginning 11 diameters downstream from the cylinder. All values were 
interpolated to a 20 x 30 grid and smoothed to within & zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcr. The grid interval 
corresponds roughly to half the minimum observable wavelength and, therefore, the 
smallest details in figure 6 correspond approximately to the highest available 
resolution. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 shows the vorticity maps resulting from three consecutive frames of the 
wake. The concentrations of alternating vorticity can be seen clearly, as well as their 
convective movement downstream. The time interval between frames is 0.61 s, and 
we estimated the convection velocity to be around 12 cm/s, measured with respect 
to the cylinder, which corresponds to a translation of the eddies by about one 
half of the frame length for each frame interval. Since the free-stream velocity is 
18 cm/s, this convection velocity is somewhat low, but in the range given by other 
investigators (Cantwell & Coles 1983; Schaefer & Eskinazi 1959). The width of the 
area shown in the figure corresponds to the full width of the test channel, and the 
vorticity of the boundary layers is visible in the map, especially on the upper 
wall. 

An interesting feature of this and the previous figure is the relative abundance of 
vortices containing two vorticity maxima, and the presence of small, randomly 
distributed, vorticity concentrations. Split vortices have been observed before in the 
near wake, at similar Reynolds numbers, both in numerical simulations (Davis & 
Moore 1982), and in visualizations of flows behind accelerating bluff bodies 
(Freymouth, Bank & Palmer 1985). The process of vortex tearing and reorganization 
seems to be an integral part of the way in which the wake attains its equilibrium 
state. 

The uncertainties associated with the data in figures 7 and 8, before smoothing 
are large. The r.m.8. values of the velocity fluctuation in all frames are similar, 
u’/8 x v’ /8 x 0.1, which is consistent with previously published values when they 
are averaged across the wake. The amount of data in our case was not enough to 
obtain a reliable turbulent intensity profile. The corresponding r.m.8. values of the 
expected interpolation errors in velocity are 0.030 for u, and 0.028 for v. These 
values are Class-3 bootstrap estimates, and they should be added quadratically to 
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FIQURE 7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) Longitudinal velocity, (b )  transversal velocity, and (c) dimensionless vorticity, 
oD/Urn derived from the data in figure 2. Urn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 18 cm/s. All results are smoothed to plus-minus 
one standard deviation. Distance between isolines is 0.8 cm/s in velocity and 0.1 in vorticity, and 
isolines are symmetric about zero. Dashed lines correspond to negative values. 
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FIQURE 8. Vorticity map for three consecutive frames of the cylinder wake. Isolines and parameters 
as in figure 7 (c). Limits of map are 5 and 23 cylinder diameters, left to right. Convection velocity 
is about 7 diameters/frame, so that the first two vortices of the first frame correspond to the last 
two of the last one. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the approximately zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.050 error expected from the visualization method. The 
resulting 0.060 expected total error is a small percentage of the average velocity of 
the particles, but is equal to 60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% of the velocity fluctuations. However, the maps in 
the figures have been smoothed to within one standard deviation, and the probability 
that the features shown actually exist is relatively high (65-70 %). 

A final result is presented in figure 9, which shows the peak vorticity values for the 
eddies that form the wake. This measurement is difficult to do by any other means, 
and we have only been able to find published results in two other cases, corresponding 
to wakes at fairly different flow conditions and at non-overlapping downstream 
ranges. All values are drawn together in our figure. The values from Imaichi & Ohmi 
(1983) are particle-tracing results, but refer to the extremely near wake at fairly low 
Reynolds number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(cz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA200), while those from Cantwell & Coles (1983) are flying- 
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FIQURE 9. Peak magnitude of vorticity in eddies in the wake aa a function of downstream distance. 
0,  Imaichi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Ohmi (1983), Re = U ,  D / v  = 200; V, Cantwell & Colea (1983), Re = 14OOOO; Open 
symbols, present work (k lo), Re = 2000. 

hot-wire, phase-averaged, measurements on a wake at high Reynolds numbers 
( x  140000). Our flow has a Reynolds number in between the two extremes and 
extends Cantwell 8z Coles results downstream. 

Even so, the results seem to form a coherent picture, in which the eddies appear 
near the cylinder as compact cores, and relax to a more extended equilibrium 
configuration about 10 cylinder diameters downstream. Defining the eddy turnover 
time as A/v', where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv' is the r.m.s. transversal velocity fluctuation, and A is a 
characteristic wake wavelength, this corresponds to just one or two eddy turnovers. 
This suggests that the relaxation process is inviscid, which agrees with the fact that 
measurements from flows with widely different Reynolds numbers seem to agree 
approximately. 

8. Simultaneous laser measurements 
To validate the results of the particle- tracking technique, we have conducted 

simultaneous measurements of the velocity at one point in the interior of the wake 
using both particle tracing and laser-Doppler anemometry. 

The laser-Doppler equipment was a 15 mW He-Ne laser and a single-channel TSI 
Counter Model 1980 connected to a PDP-11/04 computer. The experimental 
arrangement is shown in figure 10. The decoupling between the camera and the 
photomultiplier tube of the LDA was achieved by placing appropriate optical filters 
in front of the two systems. Since the amount of light reaching the camera was cut 
substantially by the filter, it was assumed that only the largest particles would show 
in the pictures, and that the effective illumination interval was the one corresponding 
to the maximum intensity of the pulse, which was monitored with a photodiode. 

The hardest problem was the synchronization of the measurements from the 
camera and from the anemometer. Large particles have a tendency to produce 
spurious readings in the LDA and their signals were filtered at the counter. As a 
consequence, the data rate was rather low, and several of the pictures used in partiole 
tracking had no corresponding LDA data. Every time a picture was taken, a bit was 
raised in the laser data being acquired at the time and, in addition, each laser data 
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FIGURE 11. Simultaneous laser-Doppler anemometry and particle-tracking velocity measurement. 
Flow parameters are approximately the same as in the rest of the paper. 

point contained its acquisition time to help in synchronizing with the camera. These 
times, however, contained occasional errors, due to the overflow of a counter in the 
system, and some of the identifications between pictures and data were ambiguous. 
Moreover, the experiment itself was messy and we were only able to accumulate 
eight pairs of data for which both the particle-tracking and laser data were 
reasonably secure. 

Each particle-tracking velocity measurement derived from 4-5 different particles. 
It was interpolated to the focal volume of the laser using a narrow interpolating 
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window, and its r.m.s. error was estimated by bootstrapping. Since the area of the 
flow studied in this case was much smaller than before, it was possible to use larger 
optical magnifications, and the visualization error was considered negligible. On their 
part, each record of useful LDA data contained 3 4  measurements. Their average 
was taken as a representative value, and their standard deviation, as a measure of 
error. 

Figure 11 is a cross-plot of laser against particle-tracking data. The error bars, in 
both cases, are plus-minus one standard deviation. While eight data sets are too few 
for any serious statistical analysis, both sets seem to correspond reasonably well 
within their respective errors. 

9. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConclusions 
We have reviewed several of the sources of error associated with particle-tracing 

techniques as applied to the measurement of velocity and vorticity fields in 
moderate-Reynolds-number turbulent flows in liquids. The analysis is based both on 
theoretical estimates and on a specific experiment on the wake of a cylinder. 

The results show that the errors associated with visualization and tracking of the 
particles themselves can be kept within reasonable limits if the trace length is kept 
in the order of a mm, corresponding to integration times of a few ms for reasonable 
flow velocities in water, but that this error is given as a fraction of the mean flow 
velocity, and becomes a substantial fraction of the turbulent velocity signal unless 
the frame of reference chosen for the picture is such that the magnitude of the 
velocity fluctuations are comparable to the characteristic mean velocity of the 
particles. 

The errors of interpolation, on the other hand, are always a large fraction of the 
velocity fluctuations, both because of aliasing due to the limited sampling density 
and because of the lack of ‘ideal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’ interpolating methods for randomly distributed 
samples. As discussed in $4, the minimum observable wavelength scales with the 
resolution with which a particle position can be measured. In our experiment, this 
resolution is about 0.1 mm, and the minimum observable wavelength stands at  
about 6 mm, which is comparable to some of the important turbulent scales in the 
flow. As a consequence, the sampling errors are large, 20-30%. This is likely to be 
so in most turbulent flows, unless a way can be found to use particle traces that are 
much shorter with respect to the flow scales. The development of better optics, which 
are able to provide a more accurate determination of tracer position, should allow the 
application of the technique to turbulent flows with better accuracy. 

In addition, we have shown that bootstrapping is a practical method for the 
estimation of the interpolation errors associated to a given visualization picture, that 
it can be used in the absence of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori information about the flow being measured, 
and that it provides error information that allows for the production of ‘safe’ maps 
which contain only those features that are known to exist with a given probability. 

We have also presented simultaneous measurements of velocity using particle 
tracing and laser-Doppler anemometry that validate the previous results. 

Finally, we have applied the method to obtain some measurements on the wake. 
While the purpose of the experiment was the characterization of the method of 
measurement, rather than of the flow itself, and, as consequence, the quality of the 
flow apparatus was low, some of those results are still interesting. The presence of 
bimodal vorticity distributions in the eddies of the near wake throws some light on 
the mechanisms of formation of the large structures, while the measurements of peak 
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vorticity, which are among the first published, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare at least indicative of the rate that 
the eddies reach their equilibrium structure. They are also roughly consistent with 
the other known measurements of peak vorticities in wakes. 

As a final conclusion, we have shown that particle tracing is a practical tool for the 
measurement of velocities and vorticities in moderately three-dimensional turbulent 
flows, but that extreme care should be paid to the effects of interpolation and to the 
aliasing effect derived from the limited sampling density. 
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to this work by a fellowship from the Spanish Ministry of Education within the 
program of Formation of Research Personnel. Computer time for the numerical 
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