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Abstract. We study the use of polynomial interpolation to approximate a function specified by samples taken at random 
moments satisfying a Poisson distribution with uniform mean sampling rate. Two different selection schemes are considered 
to determine which samples should be used in the construction of the polynomials, and detailed error estimates are derived 
for each case. The results are compared with the classical interpolation methods of convolution with a smoothing window. 
It is concluded that only low order polynomials are useful for interpolation in the presence of noise, but that they are 
comparable or superior to nonadaptive convolution in most eases, as well as eomputationally more efficient. Some simulation 
experiments are presented to support the theoretical estimates. 

Zusammenfassung. Wir untersuchen die Anwendung der Polynominterpolation zur Anniiherung einer Funktion, die definiert 
ist durch einzelne Abtastwerte an zuf'fillig ausgew~ihlten Steilen, wobei die Abtastintervalle poissonverteilt sind und einen 
konstanten Mittelwert aufweisen. Betrachtet werden zwei verschiedene Auswahlschemen zur Entscheidung dariiber, welche 
Abtastwerte bei der Konstruktion der Polynome verwendet werden; hierbei werden fiir jeden betrachteten Fall die Sch~itzfehler 
eingehend analysiert. Die Erbegnisse werden verglichen mit der klassischen Interpolationsmethode der Faltung mit Hilfe 
eines Gl~ittungsfilters. Es zeigt sich, dab fiir die Interpolation verrauschter Signale nur Polynome niedrigen Grades niitzlich 
sind; diese jedoch ergeben in den meisten F~illen bessere Resultate als die Faltungsmethode und sind dariiber hinaus weniger 
rechenaufwendig. Einige Ergebnisse von Simulationsexperimenten werden beschrieben; sie unterstiitzen die theoretisch 
erhaltenen Resultate. 

R~sum~. Nous ~tudions l'utilisation de l'interpolation polynomiale pour approcher une fonction sp~cifi~e par des ~chantillons 
prrlev~s h des instants al~atoires, satisfaisant une distribution de Poisson avec une cadance d'~chantillonnage moyenne 
uniforme. Deux mrthodes diffrrentes de s~lection ont 6t~ consid~r~es pour d~terminer quels ~chantillons doivent utilisrs 
dans la construction des polynrmes, et des estimations d'erreurs detaillres sont drrivres pour chaque cas. Les r~sultats sont 
comparrs avec les m~thodes d'interpolation classiques de convolution avec une fen~tre d'adoucissement. On conclue que 
seuls les polynrmes d'ordre faible sont utiles pour l'interpolation en presence de bruit, mais qu'ils sont comparables ou 
sup~rieurs h la convolution non adaptative dans la plupart des cas tout en ~tant plus efficace du point de vue de charge de 
calcul. Certains experiences de simulation sont prrsent~es pour renforcer les estimations throriques. 
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1. Introduction 
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The basic result in the theory of signal recon- 
struction from discrete samples is that a function 
whose Fourier transform is limited to frequencies 
smaller than v can be reconstructed exactly from 

samples taken at a uniform rate higher than the 
Nyquist limit 2v [17]. This theorem can be inter- 
preted as stating that the number of degrees of 
freedom in a bandlimited function defined in an 
interval 0 ~< x ~< L is approximately 2Lv, and it has 
long been recognised that those degrees of  freedom 
can be satisfied in many different ways, including 
mixed values of  the function and its derivatives 
[6, 10, 17], and a variety of nonuniform sampling 
schemes [2, 13, 14, 15, 17, 18, 19]. In this paper we 
are interested in the reconstruction of a signal from 
samples obtained at random times satisfying a 
Poisson distribution with an average sampling 
rate ,X. 

Nonuniform sampling schemes appear in 
several applications, including missing-data 
recovery [3, 12, 13, 19], signal coding [14, 15], and 
the correction of jitter error [13, 18]. Completely 
random coding seems to have been mainly of theo- 
retical interest, although Poisson sampling occurs 
naturally in some experimental applications [3], 
in particular when a measurement has been done 
in conjunction with particular events which are 
outside the control of the experimenter. Think, for 
example, of trying to monitor a particular point 
on Earth from a large swarm of satellites which 
pass above Earth at effectively random times, or 
think of trying to gauge the standard of living in 
a foreign city from occasional visits of friends who 
live there. We came across it, in a two-dimensional 
context, while working on the determination of 
flow velocities from tracking particles dispersed in 
turbulent flows [5, 8, 11]. 

Quite a lot is known about Poisson sampling. It 
was shown in [3, 12] that Poisson samples of any 
infinite signal, not necessarily bandlimited, are 
enough for the alias-free determination of its 
power spectrum. A practical method for computing 
the spectrum is given in [7]. The conditions for 
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reconstruction of a signal are generally more 
demanding than those for spectral determination, 
but it was shown in [2] that a bandlimited infinite 
signal can exactly be reconstructed from its Poisson 
samples iff the average sampling rate is at least the 
Nyquist rate. 

Practical reconstruction algorithms are less well 
developed. For uniform sampling rates, the exact 
reconstruction is obtained by convolution of the 
discrete samples with a smoothing window of  a 
particular form [4, 17]. For some nonuniform 
sampling schemes, the exact reconstruction kernel 
is also known [19], but the expressions grow 
increasingly complicated with the amount of non- 
uniformity, and the numerical conditioning of the 
reconstruction is also known to deteriorate rapidly. 
For almost uniform sampling, it is possible to get 
a good approximate reconstruction using the same 
convolution kernel as for the uniform case, con- 
trolling the resulting 'jitter' error [13] with 
appropriate techniques [14, 15]. None of these 
methods works very well for Poisson sampling, 
which is highly nonuniform. 

The result quoted above, namely that an 
infinitely large set of Poisson samples is enough 
to completely reconstruct the spectrum of a signal, 
independently of bandwidth or mean sampling 
rate, has interesting consequences in reconstruc- 
tion. Intuitively, it is due to the fact that, for any 
arbitrarily small threshold, there is a finite proba- 
bility of  finding two samples which are closer 
together than that threshold. Unfortunately, the 
same is true for the probability of finding consecu- 
tive samples which are farther apart than any given 
distance. That means that some stretches of the 
signals are highly oversampled with respect to the 
mean sampling rate, while others are badly under- 
sampled, and that it is impossible to treat the 
sampled signal as bandlimited. As a consequence, 
a lot of the standard interpolation theory is not 
applicable. 

A particularly bothersome problem is the effect 
of  high frequency noise. In dealing with uniformly 
sampled signals, it is permissible to assume that 
the underlying continuous process contains no 
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frequencies above the Nyquist limit. In essence, 
they have been filtered out by the sampling process. 
In the case of Poisson sampling, this is not so. 
Some intervals of the signal, those which are over- 
sampled by the Poisson process, will contain high 
frequencies which, according to the Nyquist 
criterion, cannot be adequately reconstructed in a 
global sense, but which have an effect in any prac- 
tical filter, and have to be dealt with. Moreover, 
this effect is not just global, but occurs microscopi- 
cally at individual points. Consider the problem 
of interpolating at a point which has two closely 
spaced samples to one side, and just one, very 
distant sample, to the other. It will be seen below 
that the effect of these spurious frequencies is to 
induce very large errors in some interpolators, 
which should be avoided. On the other hand, even 
if these high frequencies cannot be reconstructed 
globally, they can be reconstructed locally, at those 
intervals which happen to be densely sampled, and 
it would be wrong to throw them away everywhere 
by using an interpolation filter matched only to 
the mean sampling rate. In particular, it should be 
possible to interpolate the signal at a rate above the 

Nyquist limit in such a way that the fast variations 
are retained locally wherever possible, without 
introducing spurious results in the poorly sampled 
intervals. It even makes sense to try to interpolate 
the signal to a continuous waveform. What is 
needed is a filtering method which adapts itself to 
the local structure of  the samples, while minimising 
the unwanted effects of  the mixed sampling rate. 

Here, we explore the use of direct polynomial 
interpolation. It was shown in [10] that the exact 
convolution windows are the limit of the Lagrange 
interpolating polynomials when the order of  inter- 
polation tends to infinity. Only for some particular 
sample distributions does this limit tend to a func- 
tion that can be expressed in closed form and, in 
any case, it can be shown that exact reconstruction 
implies windows that are infinite in extent. Since 
this is not practical, windows are usually approxi- 
mated by finite versions that induce an error 
even in the cases in which the exact kernel is 
known. 
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In the case of random sampling, this suggests 

the use of  relatively low order interpolation poly- 
nomials based on the samples closest to the point 
being approximated. These polynomials are com- 
putationally efficient and have the advantage of  
using information from the known positions of the 
sample points, without incorporating unnecessary 
data from samples which are far away and which 
would be neglected in any case by the approxima- 
tion of the window to a finite interval. 

In the next three sections we consider the prob- 
lem of how to choose the samples in which to base 
an interpolating polynomial of a given order so as 
to minimise the error, and we study the errors 
induced as a function of the frequency of  the 
original signal. We consider two different choice 
criteria and give both theoretical and numerical 
simulation results for the approximation errors. 
We consider next which are the implications of 
these results for the interpolation of noisy signals 
and, finally, compare the errors obtained with 
those resulting from the convolution with smooth- 
ing windows, as well as the computational com- 
plexity of  both procedures. 

2. Polynomial approximations for smooth functions 

The theory of  polynomial interpolation of a 
function from discrete samples is well developed. 
Assume, without loss of generality, that we are 
interested in approximating the function at x = 0, 
and that we are given values f at n + 1 points x~, 
i = 0 , 1 , . . . , n .  The unique interpolating poly- 
nomial of order at most n is defined by the 
Lagrange formula [9] 

z(x)=E (X-Xo) . . :  (x -x ,_ , ) (x -x ,+, ) .  - - ( x - x o )  f, 
• ( x , - x o ) . . .  ( x , -x ,_ , ) (x , -x ,+ , ) . . .  ( x , - x , )  ' 

(1) 
and, if the (n + 1)st derivative of the original func- 
tion exists, the pointwise error at x = 0 can be 
shown to be 

z(0) -f(0) 

= (-1)"+lXoXl "-" x n f t " + l ) ( ~ ) / ( n  + 1)!, (2) 
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where ~" is a point in the interval defined by x = 0 
and by all the sample points xi. If  the function is 
smooth enough, we can approximate the derivative 
in equation (2) by its value at zero, and the error 
becomes simply proportional to the product of the 
abscissae at the sampling points, 

Q = XoXl  " " • x , .  (3) 

To minimise this product, and the interpolation 
error, the simplest choice is to use for the interpola- 
tion the n + 1 points closest to x = 0. For reasons 
that will become clear later, we shall refer to this 
choice as 'unbalanced'.  

Assume that we label those points ill order of 
increasing distance from x = 0. The closest point 
Xo has an equal probability of lying to either side 
of the origin. The second point x~ has again a 
uniform probability of lying anywhere outside the 
segment (-Xo, Xo) and, in particular, also has an 
equal probability of being positive or negative. The 
same is true for any of the n + 1 sampling points 
and, as a consequence, for the product Q. The 
average error is then zero and the estimation based 
in this set of  points is unbiased. The expected 
absolute value of the error depends on the higher 
moments of  distribution of  Q, which can be com- 
puted exactly and which are given in Appendix A. 
As expected from the consideration that h is the 
only dimensional quantity with which to scale x, 
the qth moment is proportional to h -q("+l) and, 
from equation (2), the root mean square error of  
the approximation of f by an nth-order polynomial 
is proportional to f("+~)(0)/X"+~. When the func- 
tion being approximated is smooth or, in other 
words, when the frequencies being considered are 
much lower than the average sampling frequency 
A, this error is small and decreases exponentially 
with increasing order of  the interpolating poly- 
nomial. 

3. The high frequency limit 

The estimates in the previous section do not hold 
when the frequencies involved are comparable or 
Signal Processing 
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larger than the sampling frequency, in which case 
the substitution of ~ by zero in equation (2) is not 
justified and the analysis becomes more compli- 
cated. As argued in Section 1, even if those frequen- 
cies are above the m e a n  Nyquist limit, they are 
present in the original set of samples, and their 
effect has to be taken into account. 

The interesting case here is the limit in which 
the signal frequency is much higher than the mean 
sampling rate. Consider, to fix ideas, that the func- 
tion being interpolated is a sine wave of  unit 

amplitude, 

f ( x )  = s i n ( 2 r r h x /  a ) ,  (4) 

where the parameter a is the average number of 
sampling points per period, and the high frequency 
limit is a ~ 0. Since all the interpolators considered 
here are linear, the behaviour of any signal can be 
estimated from the superposition of components 
of the form (4). 

The simplest case to analyse is the zeroth order 
interpolation, in which the function is approxi- 
mated by its value at the closest sampling point. 
In the high frequency limit, this value is essentially 
uncorrelated to the value at the point of interpola- 
tion, and the variance of the error is of  the same 
order of  magnitude as the amplitude of the band 
of variation of  the function. In the particular case 
of equation (4), 

o -2 = ( ( f ( x )  - f ( x o ) )  2) 

= ( f Z ( x ) ) + ( f 2 ( X o ) )  = 1. (5) 

The next simplest case is the linear approximation 
(n = 1). The error is then 

x l f o  - x o f ,  
z(0) - f ( 0 )  , (6) 

xl - Xo 

where we have assumed, again without loss of  
generality, not only that x = 0 but that f ( 0 ) =  0 at 
the point of  interpolation. 

The expected magnitude of  the error depends 
on whether Xo and Xl have the same or opposite 
signs. Both cases are equally probable. In the 
second case, it is easy to see that the interpolated 
value is bounded byfo  and f l  (see Fig. l(a)) ,  and 
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Fig. 1. Errors in linear interpolation are bounded by the range of  the signal when the samples bracket the origin (a), but may 
become much larger otherwise (b). 

the error is again of  the same order of  magnitude 
as the band of  variation of  the function. In the first 
case, the errors can be larger, in essence because 
we are using an extrapolation rather than an inter- 
polation formula. 

It follows that the probability distributions 
obtained in Appendix A that the variance of the 

linear interpolation error can be written as the 
integral 

fo ° fo cr~ = 2A 2 dx, e -2xxl dxo [z(O) - f ( O ) ]  2 

fo o = 2A 2 dxl e -2~xl 

x dxo f l - x l  (7) 
x I -- X o j  

I f  we assume that, in the high frequency limit, f~ 
and fo are uncorrelated, this integral is divergent, 
due to the behaviour  of  the inner bracket as xl --> Xo. 
The divergence is avoided in practice, at least for 
signals with finite bandwidth, because samples are 
not really uncorrelated when their separation tends 
to zero. 

Assume now that f can be written as a smooth 
function in terms of a ' fast '  variable 

= 27rAx/a. 

In the limit a -> 0, the integral (7) is dominated by 
the neighbourhood of  the 'near  singularity' at xl = 

Xo, and can be approximated by 

io o 0"2-- 4~A 3 dxl x 2 e -2xxl 
O/ 

foo d [ f ( ~ l ) - f ( ~ l - ~ ) ] 2  

×Jo ~ 

I o  x' [ f (~ : l )  - - f ( ~ l  -- ~.)]2 2";ra d~ ~.2 , (8) 

where the inner integral is now O(1) since f is 
smooth in the new variables. For the particular 
case of  equation (4), a representative value for that 
integral is, at xl = 0, 

fo '° de ~/¢2 = ~r. (9) sin 2 

A more rigorous estimate, taking into account all 
the possible values of  xl ,  gives the same result. 
This estimate only reflects the contribution to oh 
from those situations in which both samples are 
located to the same side of  the interpolation point 
and separated by a distance comparable or smaller 
than the signal wavelength (Fig. l(b)).  This contri- 
bution turns out to be O ( 1 / a )  >> 1, and dominates 
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the total error, giving the final result 

o', = a x / 2 ~ ,  (10) 

which is valid for equation (4) in the high 
frequency limit. Note that the particular form of 
the signal determines the coefficient in equation 
(10), but that the dependence with frequency is 
universal. 

In the same way in which the errors of the linear 
interpolation are dominated by compact point 
pairs, it is easy to convince oneself that the 
dominant errors for nth-order approximations are 
caused by compact groups of n + l  sampling 
points, clustered far away from the interpolation 
point. An analysis similar to the previous one 
would give in those cases 

o',,~ot -n/2, (11) 

which is again a high frequency estimate. A calcu- 
lation of the coefficients for these estimates is, in 
principle, straightforward but laborious. Its prac- 
tical utility is dubious since the general message 
is that the errors from high-order interpolations 
are large in the high frequency limit and, therefore, 
that high-order polynomials should be avoided 
when high frequencies are present, as in the cases 
in which the signal bandwidth is large with respect 
to the mean sampling rate, or when the signal is 
contaminated by high frequency noise. 

To check all these estimates we have performed 
a set of simulation experiments, interpolating 
equation (4) from samples taken at 1000 points, 
distributed randomly in the interval (0, 1). For each 
set of samples, the function was interpolated at 
100 different points and the whole simulation was 
repeated between 100 and 1000 times for each 
value of n and a. The mean and standard deviation 
of the interpolation error were computed in each 
case and compared to their theoretical values. It 
was found that the estimation was indeed 
unbiased, not only 'globally' when the average was 
computed over many interpolation points, but 
'locally' when a single point was interpolated many 
times from different samples. The results for the 
r.m.s, error are presented in Fig. 2. In that figure, 
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Fig. 2. Roo t  m e a n  square  a p p r o x i m a t i o n  error  in p o l y n o m i a l  
' u n b a l a n c e d '  i n t e rpo la t ions  of  equa t ion  (4). Sol id  l ines  a r e  

es t imates  der ived  f rom equa t ions  (5) and  (10), and  f rom (A.6) 
in  the  a p p e n d i x ;  da shed  l ines  are f rom equa t ion  (11). Symbols  
a r e  expe r imen t a l  resul ts  f rom s imula t ion .  © : n = 0; x : n = 1; 

+ : n = 2; 'A : n = 3; V : n = 4. Er ro r  bars  in some poin ts  are  r.m.s. 
scat ter  o f  s imu la t i on  results.  

the points are experimental values while the 
different solid lines are the theoretical estimates 
from Appendix A and from equations (5) and (10). 
The dashed lines represent the slopes given by 
equation (11). The agreement is generally good, 
not only in the limit of smooth functions, in which 

the theory is well developed, but also in the high 
frequency range where the arguments are more 
qualitative. 

A word should be said here about the nature of 
the large errors introduced by the high-order poly- 
nomials. It follows from both the simulation 
experiments and the theoretical estimates that most 
of the variance is due to a very small percentage 
of cases in which the errors are huge. Both in the 
high and in the low frequency limits, it can be 
shown that the probability of finding an error out- 
side a few standard deviations is small and 
decreases with increasing order of interpolation. 
On the other hand, for high-order polynomials, 
the few outliers are liable to have values several 
orders of magnitude larger than the amplitude of 
the original signal. This is consistent with the well- 
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known property of high-order interpolating poly- 

nomials oscillating wildly and unpredictably, 
which is aggravated here by the appearance of 
close clusters and the possibility of extrapolation. 
Some theoretical and experimental probability 
functions are given in Appendix A, for the case of  
smooth functions. The general result is that the 
probability density function for the magnitude Q, 
proportional to the error of an nth-order poly- 
nomial, behaves as exp{-2AQl/~"+l~}. For large n, 
this function decreases very fast for small errors 
but has a long 'tail' in which large errors remain 
relatively probable. 

While it might be possible, in practical cases, to 
try to detect these spurious values by some sort of  
a posteriori filtering procedure, this process is com- 
plicated by the sheer size of  the errors. Thus, a 
relatively small contamination of a signal by high 
frequency noise, or even numerical error, can pro- 
duce spikes in the interpolated signal which are of 
order unity and difficult to distinguish from real 
features in the data. It would appear, therefore, 

that only zeroth- or first-order interpolation are 
useful in the presence of  noise. 

On the other hand, the good approximating 
properties of  higher-order polynomials for smooth 
functions make their use attractive, as long as their 
high frequency behaviour can be improved. A bet- 
ter choice of  the sampling points used in the inter- 
polation, which essentially seeks to control the 
possibility of  extrapolation, is presented in the next 
section. 

4. Balanced interpolation 

We have seen that the worst problems in the 
interpolation of high frequency signals are due to 
those situations in which all the samples used to 
compute a polynomial are clustered to one side of  
the point being approximated, in such a way that 
the polynomial is used as an extrapolator. An 
obvious remedy is to avoid this situation as much 
as possible by choosing the samples in an appropri- 
ate way. Consider the following 'balanced' pro- 
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cedure. We have to choose n + 1 samples to con- 

struct an nth-order interpolating polynomial and 
again assume that we are trying to approximate 
the function at x = 0. For the first point, Xo, we 
choose the one closest to the origin, whether it is 
positive or negative. For the second one we choose 
the next closest point, but with a sign opposite to 
that ofxo. The third one is again the closest remain- 
ing point, independent of  sign. The fourth is forced 
to have a sign different from the third, and so on. 
It is clear that this procedure generates a set of 
points which is as close to the origin as possible 
but which is guaranteed to bracket it. 

The effect of this new procedure on smooth 
functions is negligible and the errors are only 
slightly larger than in the previous case. The worst 
effect is that the estimation is not always unbiased. 
For an odd number of points, the product Q still 
has the same probability of  being positive as nega- 
tive and the expected bias is zero but, for an even 
number, the product always has the same sign, and 
the sign of the error follows that of the correspond- 
ing derivative. As an example, the error due to a 
balanced linear interpolation always has a sign 
opposite to the local second derivative, and has 
the effect of  lowering the maxima and raising the 
minima, leading to an underestimation of  the range 
of variation of  the signal. Theoretical estimates for 
the bias and standard deviation in the case of 
smooth functions are given in Appendix A, and 
Fig. 3 shows r.m.s, values for the bias, both theo- 
retical and experimental, and the results of the 
simulation. In the worst case, which is the linear 
interpolation, the bias is half as large as the stan- 
dard deviation. 

In the high frequency limit, the interpolated 
values are essentially uncorrelated to the function. 
In this case, the average value of the interpolation 
is always equal to the local mean value of the 
function (zero in the case of equation (4)), and 
the bias is equal to the difference between the value 
of  the signal at the particular point being con- 
sidered and the local mean. This is true both for 
'balanced' and 'unbalanced' interpolation 
schemes. 
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Fig. 3. Root mean square bias for 'balanced' polynomial inter- 
polation of equation (4). Theoretical lines are from equation 
(A.11). Symbols are as in Fig. 2. Experimental values for even 

orders and a > 10 are consistent with zero. 

The effect of  the new interpolation strategy on 

the standard deviation for high frequency signals 
is stronger. A priori, we would expect that there 
will never be extrapolation with one or two points, 
and that the standard deviation will be at most of  
order unity. For 2nd- and 3rd-order polynomials 
(3 or 4 points) there is the possibility of  close pairs 
in either side of  the origin, but of  no triplets. In 
this case we would expect deviations similar to 

equation (10). In general, an nth-order polynomial  

will be based on n + 1 points, with a largest possible 
compact  group of L½n] + 1 to one side of  the origin. 
Using arguments similar to the ones in the previous 
section, we would expect the standard deviation 
to behave as 

o ' ,  ~ a - ( l n / 2 D / 2 ,  (12) 

which is asymptotically substantially smaller than 
equation (11). 

Fig. 4 gives simulation results for the standard 
deviations of  balanced interpolations for different 
orders, computed with parameters identical to 
those of  Fig. 2. The results confirm the estimates 
and the fact that the errors produced in this method 
by the high frequency components are generally 
smaller than the ones found in the 'balanced '  
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Fig. 4. Root mean square error for 'balanced' polynomial inter- 
polation of equation (4). Theoretical lines are from equations 

(12), (A.12), and (A.14). Symbols are as in Fig. 2. 

approximation.  Note that the largest error of  
fourth-order polynomials in the left part of  Fig. 4 

is almost three orders of  magnitude below the 

corresponding value in Fig. 2. 

5. The effect of noise 

We have seen that all polynomial  interpolations 

fail in the high frequency limit. High-order poly- 
nomials do so catastrophically, resulting in errors 
which are orders of  magnitude above the original 

signals, while low-order ones, especially those 
based on balanced point sets, just fail to predict 
anything. This latter error is not particularly harm- 
ful and is just a consequence of the sampling 
theorem; its magnitude is of  the same order as that 
of  the high frequency components.  The former 
kind, on the other hand, can have important nega- 
tive effects in the presence of  even small amounts 

of  noise. 
In uniform sampling schemes, there is no noise 

component  with a frequency higher than the 
Nyquist limit associated to the (constant) sampling 
rate. Any high frequency noise originally present 
in the signal is folded by the sampling process into 
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frequencies lower than that limit. In the random 

case, however, the high frequency components 
present in the signal may still appear in the sampled 
version through the locally denser sampling rates 
at some intervals. Therefore, if an interpolation 
scheme amplifies these frequencies by a large fac- 
tor, the interpolated values become swamped by 
the resulting error even for moderately small con- 
tamination by noise. 

It is clear from the derivation that led to equation 
(10) that, if  a given signal is Fourier analysed, the 
errors due to the different frequency components 
should add approximately as independent random 
variables, at least in the high frequency range in 
which the different components can be considered 
uncorrelated to each other. Therefore, in this limit, 
the squares of  the response curves in Figs. 2 and 
4 can be considered approximately as transfer 
functions for the power spectrum of the original 
signal. Since, for the high-order polynomials, these 
transfer functions are clearly nonintegrable in the 
high frequency limit, any amount of high frequency 
contamination can induce large errors even for 
comparatively smooth signals. 

Consider the case of white noise, bandlimited 
to frequencies below ~,. Using equation (11) as the 
transfer function, the error induced by contamina- 
tion from noise with an r.m.s, amplitude e would 
be 

1 0  4 , 

(13) 

which is valid for the unbalanced polynomials, or 

tr 2 ~  e2v t"/2l, (14) 

which is based on equation (12) and applies to the 
balanced ones. Some simulation results are given 
in Fig. 5, which presents r.m.s, interpolation errors 
for a smooth sine wave (t~ =30),  both in the 
absence of  noise, and with the addition of  uni- 
formly distributed white noise with a peak-to-peak 
amplitude of  1% of  that of the base signal. For 
the noise-free data, the interpolation error 
decreases exponentially with the order of interpo- 
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n 

Fig. 5. Root mean square interpolation error for a smooth sine 
wave (a = 30) vs. the order of interpolation. Circles are the 
results in the absence of noise. Triangles are the results when 
1% white noise is added. Open symbols stand for balanced 
interpolation, closed for unbalanced interpolation. The straight 

line is the result of equation (A.6). 

lation, as expected from the results in Appendix 
A. In the noisy case, however, and even with this 
relatively small amount of  noise, the only poly- 
nomial behaving better than the simple nearest 
neighbour interpolation is the linear balanced one. 
In agreement with equations (13) and (14), the 
slope of the errors for unbalanced polynomials is 
roughly twice that for the balanced ones. 

The previous discussion only gives a general 
estimate for the behaviour of  the error with n. The 
prediction of  its absolute magnitude requires an 
analysis similar to the one given in the previous 
section for the high frequency signals. For unbal- 
anced interpolation and n = 1, this is equivalent to 
the evaluation of  the integral (7) for white noise. 
As for continuous functions, some sort of high 
frequency cut-off is needed to get a finite result. 
For analog signals, this is provided by the 
frequency response of the instrument while, for 
computer processed data, it is bounded, in any 
case, by the finite resolution of the time discretisa- 
tion. In general, we have to evaluate the integral 
for Ix1 - Xol > 1/u, where v is the highest frequency 
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in the noise. To leading order, if u >> A, 

2 2A2 dxl x~ e -2~x~ 0 " 1 ~  

fx, x dE ((A _f0)2)/~2 
1/v 

~ e2v/2A, (15) 

which applies to unbalanced linear interpolation. 
In the simulations in Fig. 5, the finite precision of 
the computer  fixes v -  10 s, which would result in 
o '1 -  0.6, in fair agreement with the experimental 
result. 

6. Convolution windows 

From the discussion in the previous sections, it 
is clear that low-order balanced polynomials are 
an attractive possibility for the interpolation of 
randomly sampled functions. As we saw in Section 

1, the classical alternative is the use of  convolution 
windows, in which the value at x is approximated 

by 

E w(x,-x)f, 
z(x) = (16) 

Z w(x,-x)" 

This scheme is easy to implement and robust, since 
the high frequency components  are essentially 

averaged out by the smoothing window and, as a 
consequence, the errors introduced by noise are 
generally small. Its behaviour depends on the 
shape and width of the window. Wide windows 
have good noise rejection properties, but they tend 
to filter out some of the interesting frequencies of  
the signal. Narrow ones, on the other hand, tend 
to select just those samples which are nearest to 
the point of  interpolation and, in that respect, they 
are similar to the interpolation methods. In fact, 
as the width of the window approaches I/A, the 
only point used by equation (16) is the nearest 
one, and the result approaches that of  the n = 0 

polynomials. 
A full analysis of  the statistics of  the errors of  

expression (16) is difficult because of the nonlinear 
dependence in w(xi) and, tocheck  its performance 
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with respect to the polynomials approximations, 
we run a few numerical experiments in which (16) 
was tested against the nearest neighbour and linear 
balanced interpolators. The conditions of  the 
experiments were identical t.o the one in the pre- 
vious sections, and the results are given in Fig. 6. 
In each case, we tested the several window shapes 

and varying widths. 
Wide windows just averaged the signal and gave 

zero as the interpolated value. The resulting r.m.s. 
error was equal to the r.m.s, amplitude of the signal, 
and corresponds in Fig. 6 to the horizontal boun- 

dary of the shaded area. The best approximations 
were obtained with relatively narrow windows, 
which are presented in this figure by the curved 
boundaries of  the shaded area. The region between 
these two limits could be reached by intermediate 
choices of  the convolution window. 

Note that, for smooth functions, estimator (16) 
approaches the performance of the nearest neigh- 
bour approximation,  which is given in the figure 

by the dotted and dashed line. At the high 
frequency limit, the narrow windows, which are 
good for smooth functions, have slightly worse 
noise rejection properties than the wide ones, but 
only by approximately 10%. The cross-over point 
between the two regimes (best narrow and wide 

I 

1 . . . .  

0.1 

0 . 0 1  I o.1 | lb loo 
o¢ 

Fig. 6. Root mean square error of convolution windows on 
equation (4). The shaded area is the error attainable with the 
convolution estimator (16). The solid line is linear balanced 
polynomial interpolation; the dotted and dashed line is 

nearest neighbour interpolation. 
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windows) happens to be very near to the Nyquist 
limit, a = 2. 

The solid line in Fig. 6 represents the error from 
the linear balanced interpolation. Note that it out- 
performs all the other estimates in all ranges, 
except at the high frequency limit, in which its 
behaviour is similar to all the other estimates. In 
fact, in practical applications, it seems to be the 
most convenient estimator. 

It might be possible to design an optimum con- 
volution window with better approximation 
properties than the polynomial interpolators. The 
errors given in Fig. 6, however, seem to be fairly 
independent of  the detailed shape of the window 
used in the convolution. The most obvious 
improvement, which was not applied in the experi- 
ments for that figure, would be to use windows 
whose shape and width adapt to the local sampling 
frequency. All the windows used in Fig. 6 were 
constant, independent of  position, and could be 
considered as being too wide for the sampling rate 
at some locations and too narrow for others. The 
interpolation, on the other hand, is intrinsically 
adaptive to the local distribution of sampling 
points, which probably accounts for its better over- 
all performance. 

It is interesting to consider here the computa- 
tional complexity associated to both convolution 
and interpolation. Convolution windows are 
theoretically of infinite extent but, in practice, are 
limited to some range around their centre. This 
limit depends on the window but, in any case, it 
should be wide enough to make sure that at least 
one point is always included inside it. For Poisson 
sampling, a good rule is that the window should 
span at least 10 to 15 average sampling intervals. 
The problem of  identifying which samples fall 
inside the window is roughly equivalent to that of 
finding the closest points to be used of interpola- 
tion, and will not be considered here. The con- 
volution itself needs O ( N )  multiplications and 
additions, where N is the number of samples inside 
the window, plus N evaluations of the weighting 
function. For most windows, the last step is the 
most expensive part of  the computation. 
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On the other hand, interpolation by an nth-order 
polynomial needs only O(n 2) operations, which is 
a very small number in the preferred cases of  n = 0 
or n = 1. No window evaluation is needed in this 

case. 

7. Conclusions 

Summarising the discussion up to now, we have 
shown that low-order 'balanced' interpolation 
polynomials provide a very convenient method for 
the approximate reconstruction of signals from 
their Poisson samples. The choice of the order of  
interpolation depends on the amount of noise 
expected. Randomly sampled signals cannot be 
considered a priori as bandlimited, and the 
behaviour of  any interpolation method with regard 
to signal frequencies above the Nyquist limit has 
to be considered explicitly. 

Constant (n = 0) or linear (n = 1) polynomials 
are fairly insensitive to those frequencies and can 
be used in all cases. They are computationally 
efficient and their approximation properties match, 
and in many cases outperform, those of  classical 
(nonadaptive) convolution windows, especially in 
the linear case. The errors introduced are tolerable 
for frequencies three or four times lower than the 
Nyquist limit corresponding to the average samp- 
ling rate. 

Quadratic or cubic balanced polynomials have 
moderate noise rejection properties and give sub- 
stantially better approximations at low frequen- 
cies. They should probably be used on signals 
known to be very clean or very densely sampled. 
Higher-order polynomials are useless in most cases 
due to their extreme sensitivity to noise. 

Finally, a word should be said about the two- 
dimensional problem which was the original moti- 
vation for this work. The two-dimensional analog 
for a segment bracketing the interpolation point is 
a triangle containing it, and the equivalent of bal- 
anced linear interpolation is the approximation of  
the function by a set of  planar triangular tiles. This 
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idea has been used for a long time in the production 
of two-dimensional graphics and in finite element 
analysis, and has been extended to higher-order 
methods using two-dimensional splines based on 
the triangular regions. There are also efficient ways 
of producing optimal triangular tesselations of the 

plane, using arbitrary point sets. Two published 
algorithms that generate both triangulations and 
interpolated values can be found in [1, 16]. A 
review of some of the problems associated with 
this approach in the particular field of experi- 
mental fluid mechanics can be found in [11]. 

Appendix A. Approximation of smooth functions 

The problem is to estimate the statistical properties of the errors committed in approximating, at x = 0, 
a smooth function by an nth-order Lagrange polynomial based on n + 1 points extracted from a Poisson 
population with an average distance 1/A between consecutive points. Following the arguments in the 
body of this paper, this is equivalent to estimating the statistics of the product 

Q,, = XoXl • • • xn (A.1) 

of  the abscissae of the n + 1 points used to compute the polynomial. We shall examine separately the 
methods of  point selection which are referred to as 'balanced' and 'unbalanced' in the body of this paper. 

A.1 .  U n b a l a n c e d  a p p r o x i m a t i o n  

In this method, the ith point is just the ith closest point to the origin. As discussed in this paper, each 
point has an equal probability of having either sign. Therefore, we shall treat the abscissae in equation 
(A.1) as positive numbers, remembering in any case that they represent the absolute values of signed 
quantities. The probability density that Xo lies between E and E + dE is the probability that no point lies 
in the interval (-E, E) multiplied by the probability that one point lies in (E, E+dE), 

pl(E) = 2A e -2ae. (A.2) 

Note that a factor of two has been added to account for the possibility of  both signs. In the same way, 

the probability density function for xi, conditional to xi-1, is 

~'0 when E < X,_l, 
Pi(EI  Xi - l )  (A.3) 

2A e -2x(~-x~-t) otherwise. 

The compound probability that a given point set lies in the volume dEo dE1 • • • dE, is then 

(2A) n+l e-E~n dEo dE~" • " dEn, 

as long as Eo ~< E~ <~" " "<~ En, and zero otherwise. The qth moment of the absolute value of  the product Qn 
can be expressed as the integral 

fo o fo io U,,q -= (Q~) = (2A) "+~ E~ e-2Xen dE, Eqn-1 den-1 " "" Eg dEo, (A.4) 

which can be evaluated from right to left with the result 

U,~q = ( n q  + n + q ) ! / [ n  l (q  + 1)"(2A)~"+l)q]. (A.5) 

In particular, the variance of the error is given by 

tr 2 = (3n + 2) ! f~n+l ) (o )2 / [n  t (n  + 1)t23~ (2A)2~"+~)]. (A.6) 
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We have not found an easy way of computing the exact probability density function for the (absolute 
value) of the product Q, but an estimate of  its behaviour for large error amplitudes can be deduced from 
the asymptotic properties of  its high-order moments. Using Stirling's formula to approximate equation 
(A.5) for q >> 1 we get, after some manipulation, 

(n+l )~(2A)  -~+')q 
U.q n! [F(nq+q+l) -½n(n+l ) I ' (nq+q)+. . . ] .  (A.7) 

This value can be related to the probability density function p , (Q)  for the absolute value of Q, using 
directly the definition of  the moments, 

I: u.q = Qqp.(Q) dQ. (A.8) 

When q >> 1, the dominant part in the integrand is the range Q >> ~ ,  and we can estimate its behaviour 
by equating (A.7) to (A.8) and using the definition of the Gamma function. The result is 

(2A)"(n+I)"-IQ -"/(~+') [1 4A Q-1/(n+I)-t-" " "]" (A.9) P"(Q) n t e_2XQ,/(,+,) n(n + 1) 

This approximation is only valid for large values of Q, but it can be used to estimate the probability of 
committing an error above a certain threshold. If we express the threshold as a multiple of the standard 
deviation, we get the results in Fig. A.1. This figure shows that, for high-degree polynomials, most of  the 
mass of the histogram is concentrated below one standard deviation, but that very large errors become 
more and more probable. Table A.1 is the inverse of  Fig. A.1, and shows the multiple of cr, that has to 
be included to be sure that the probability of  error is smaller than a certain fraction. This table confirms 

I I I I 

e~ 

10-1 

10-2 

10 - 3  i I I 
0 1 2 3 4 

error /6-  n 

Fig. A.1. Probability that actual interpolation error is larger than a given fraction of its root mean square value. Unbalanced 
interpolation. Lines are derived from equation (A.9), and symbols from the simulation experiments. © and :n = 0; x and 

- - - - : n = l ; + a n d - - - - - : n = 2 .  
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Table A.1 

Multiple of  the root mean  square error that has to be included to be sure that 
the probability of  error is smaller than a certain fraction; empty entries are the 
range in which the theoretical estimate is not  reliable 

Error probability Order of  interpolation 

0 1 2 3 

10  - 1  1.62 1,11 - 
10 -2 3.25 4,13 3.45 - 
10 -3 4.88 8,83 10.82 9.107 
10 -4 6.51 15,20 23.81 28.08 
10 -5 8.14 23.25 43.99 63.69 

the results in the figure; for relatively large error probabilities ( -0 .1 )  the high-order polynomials are 
better, but as soon as the error conditions are made more restrictive, they loose their advantage to the 

coarser but more robust low-order interpolations. It should be remembered,  however, that these results 
are normalised with the standard deviation, tr,, and that, for very smooth functions, the value of  cr, 
decreases strongly with n, so that the absolute behaviour of  the high-order polynomials is always better 
in that limit. 

A.2. Balanced approximation 

It is convenient, in this case, to treat the points to the right of  x = 0 differently from those to the left. 
Call the abscissa of  the ith point to the right a~, and to the left -b~. It is clear, from the same arguments 
used in the previous section, that the probabili ty density function for a~ is the same as the one in (A.3), 
but with 2A substituted by ;t to take into account that only one sign is now possible. Moreover, when the 

number  of  points in the product  Q is even, half  of  the points are positive and half  are negative, and their 
contributions to the qth moment  are equal (except for the sign), resulting in a formula equivalent to (A.5): 

U2n+lq=(__l)(n+l)q[ n "  .l~q ~ ) q / ( n q + n + q ) !  1 2  . ( A . 1 0 )  

In particular, the bias is 

B2n-~ = ( -1)n(2n - 1) !f<2n)(O)/[n !(n - 1)!22n-lA2~], (A.11) 

and the root mean square error is 

OrEn_ 1 = (an - 1)!]f~2~)(0)l/[(2n)!(n - 1)!32~-lA2n]. (A.12) 

The ratio of  these two numbers for the first few values of  n is given in Table A.2. It is clear that, for 
low-order polynomials with an even number  of  points, the magnitude of  the bias can be of  the same order 
as the expected standard deviation, but that it decreases faster with increasing order. 

The case with an odd number  of  points is slightly more complicated, since we need to take into account 
the two different possibilities that the next point is chosen positive or negative. The probabili ty distribution 
of the (2i + 1)st point depends on whether a~ is larger or smaller than bi but, since both cases are equally 
probable,  we can assume any one of them, say a~ ~> bi, and multiply the final moments  by a factor of  two. 
With this assumption, it is easy to see that the probability density function for the absolute value of  x2i+l, 
Signal Processing 
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Table A.2 

Dimensionless bias due to balanced polynomial 
interpolations of different odd orders 

n 2 n  - 1 [Bias/or[2,_ t 

1 1 0.500 
2 3 0.255 
3 5 0.100 
4 7 0.045 
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conditional to ai and bi, is 

I 0 when ~ < b~, 

p E i + l ( ~ l a i ,  b i )=  A e -x(~-b,) w h e n ~ < ~ a , ,  (A.13) 
~2A e -A(2~-a'-b')  otherwise. 

The qth moment can then be evaluated to the rather complicated expression 

(nq+ n)! nq+n (nq+ n+ q+j)! 
U2~.q-n!2(q+l)2nEnq+n+qA~2n+l) q Y~ 2Jj! (A.14) 

j=0 

The standard deviation derived from this formula is reflected in the theoretical estimates used in Fig. 4. 
From reasons of  symmetry, the interpolation based on an odd number of points should be unbiased, 
which is confirmed by the simulation experiments. 

An argument similar to the one used for the unbalanced interpolation can be used to estimate the 
behaviour of  the error probability for large error magnitudes. The final formulas are more complicated 
in this case, but the general conclusions are the same; the probability of finding errors larger than Q falls 
like exp{-2AQ l/~n+l)} for an nth-order interpolating polynomial. Therefore, also in this case, the low-order 
polynomials are much more robust than the high-order ones. 
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