
J .  Fluid M d .  (1987), V O ~ .  178, p ~ .  177-194 

Pri'nted in Gred Britain 
177 

On the linear stability of the inviscid KArmAn 
vortex street 

By JAVIER JIMENEZT 
Applied Mathematics, California Institute of Technology, Pasadena, CA 91 125, USA 

(Received 3 March 1986) 

The classical point-vortex model for a Kirmhn vortex street is linearly stable only 
for an isolated case. This property has been shown numerically to hold for other, more 
complicated, models of the same flow. It is shown here that it is a consequence of 
the Hamiltonian structure of the model, related to the codimension of the set of 
matrices with a particular Jordan block structure in the space of Hamiltonian 
matrices, and that it can be expected to hold generically for any two-dimensional 
inviscid array of vortices that has back-to-fore symmetry, and that is 'close enough' 
to the point-vortex model. 

1. Introduction 
The regular arrangement of vortices sometimes found in the wake of bluff bodies 

was first modelled by von KLrmBn (Lamb 1945) by a double infinite street of point 
vortices, moving with respect to the fluid at infinity at some constant velocity, and 
whose properties are characterized by a single parameter, r] = h/L, which is the ratio 
between the separation of the two rows and the wavelength of the periodic vortex 
array. The stability of this arrangement to perturbations in the positions of the 
vortices was studied by von Kkman by expanding those perturbations in terms of 
normal modes, parameterized by a wavenumber K .  The stability of a given mode 
depends both on K and 7, and a given street is stable when all the modes, K ,  are stable 
for the given fixed value of r ] .  It turns out that vortex streets are generally unstable, 
containing an unstable range of wavenumbers for all values of r ]  except for one, 
rc = 0.28055.. . , for which all wavenumbers are neutrally stable. It was shown later 
that, even in this case, the street exhibits a nonlinear instability (Domm 1956) due 
in essence to the fact that any small perturbation modifies r] enough to move the street 
into the unstable regime. Since natural wakes show regular vortex streets that persist 
for long times (see, for example, the beautiful pictures in Van Dyke 1982), it has 
usually been felt that a more complete model should produce a non-zero stability range 
of 7 that would guarantee linear stability for streets contained inside that range. 

In fact, for Reynolds numbers greater than approximately 100, natural vortex 
streets undergo a process of slow disintegration and rearrangement (Taneda 1959), 
which is consistent with linear instability and which suggests that the stabilization 
mechanism might be viscous. Three-dimensionality appears at about the same time 
(Gerrard 1966), and two-dimensional models might not be applicable, but recent 
observations of two-dimensional wakes in thin films, as well as numerical evidence 
(Couder, Basdevant & Thome 1984), show a similar behaviour, although the 
transition Reynolds number appears to be higher (200), and the subsequent insta- 
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bility mechanism is somewhat different. On the other hand, vortex streets form behind 
obstacles up to fairly large Reynolds numbers with experimental values of the spacing 
ratio q which are close enough to the critical, 0.28.. . (see table I in Saffman & 
Schatzman 1982b) to suggest some sort of relation with the fact that this is also the 
least unstable regime. This continues to be so even in cases for which the downstream 
evolution of the street is unstable. 

It is therefore important to understand which is the stabilization mechanism 
responsible for the permanence of streets at low Reynolds numbers, and possibly for 
their formation at  higher ones. Moreover, the existence of an isolated point of stability 
for the point-vortex model corresponds to a double root of some algebraic equation, 
which can be expected to disappear for neighbouring models, even if they are only 
small perturbations from the original one. The result would be either a non-zero 
stability range or no stability at all. This suggests that any perturbation to the 
point-vortex model should either be stabilizing or destabilizing near the critical 
spacing, and that it should be possible to obtain inviscid strongly stable vortex streets 
by perturbing the Karmhn model. 

A fist attempt was done by Rosenhead (1929), who studied an infinite point-vortex 
model in a channel of finite width. Interestingly enough, for wide channels, the nature 
of the stability is unchanged, with an isolated, marginally stable value of q that 
depends on the relative width of the channel. Recently, considerable attention has 
been given to arrays of regions of uniform vorticity and non-zero area, instead of point 
vortices (Christiansen & Zabusky 1973; Kida 1982; Saffman & Schatzman 1982~) .  
After several unsuccessful attempts, it was shown by Meiron, Saffman & Schatzman 
(1984) that the stability behaviour is again the same; at least for moderate values 
of the area of the individual vortices, there is a single value of 7 for which the street 
is stable. 

This persistent behaviour raises the questions of whether it is intrinsic to a wide 
class of inviscid flow models or whether it is specific to the models so far investigated, 
and, in the latter caae, which features should be included in new models to produce 
the stability region that seems to be required by the experimental evidence. 

We shall show below that the persistence of isolated points of stability is a generic 
feature of two-parameter families of conservative Hamiltonian systems which satisfy 
certain symmetries. 

More precisely, consider a family of inviscid models for the K k m h  street, having 
back-to-fore symmetry and depending continuously on any number of parameters, 
besides q and K, and which contains the classical point-vortex model as a special cwe. 
Any model in such a family will have a set of stability (collective) modes corresponding 
to the modes of the point-vortex model and which will evolve into them as the model 
approaches continuously the point-vortex case. In  some finite neighbourhood of the 
point-vortex model, the stability exponents for the collective modes will depend 
continuously on ( q , ~ ) ,  and we shall show that, for each particular value of all the 
extra parameters (e.g. vortex area or channel width) there is just an isolated value 
of q for which the collective mode is stable. Of course, a model that is more complex 
than the point-vortex one may have other stability modes besides the collective one, 
such as internal oscillations of the finite-area vortices, and the arguments in this paper 
do not apply to them at all. They may be unstable, in which case the street will be 
unstable even for the critical value of q,  but, even if they are always stable, the street 
as a whole will be unstable because of the collective instability. In any case, the 
present result precludes the existence of a non-zero range of stability around qc. 

The arguments in this paper are local, in a sense to be made clear later, and may 
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fail for models which are very different from the point-vortex case. Thus, they do 
not necessarily apply to vortex cores of large area, or to vortex streets in narrow 
channels, whose stability still has to be decided numerically. The computations in 
Meiron et al. (1984) were taken to fairly large values of the vortex area without any 
apparent broadening of the critical stability point, but the vortex street in a channel 
does develop a non-zero stability range when h becomes a substantial fraction 
( ~ 0 . 2 1 )  of the width of the channel. 

In  the following sections, the problem will be put first in mathematical terms, and 
related to  known results for Hamiltonian systems. Then, the results will be applied 
to the vortex street and, finally, the appearance of a finite range of stability in the 
case of narrow channels will be treated and shown to be in accordance with the general 
theory. The results presented here make it unlikely that inviscid effects play an 
important part in stabilizing the vortex street. The effects found in natural flows are 
probably intrinsically dissipative. 

2. General formulation 
In  problems dealing with linear stability of mechanical systems, the equations of 

motion can usually be written in terms of some perturbation vector 2, and an 
evolution matrix A, as 

(1) _ -  ’‘ - AL. 
at 

For the moment, think of L as having a finite number of components. As long as the 
eigenvalues of A remain simple, the temporal behaviour of L is given by a sum of terms 
proportional to cut, where r~ is an eigenvalue of A. The sign of the real part of CT 

determines the stability of the particular term involved, and the stability of the 
system is given by the properties of the spectrum ofA. We shall be specially interested 
in the case in which (1) derives from a Hamiltonian system. Then, the number of 
degrees of freedom is even, 2N, and Darboux’s theorem (Arnol’d 1978) guarantees 
that there exist a canonical set of variables, z = @, q),  such that, at least locally, the 
equations of motion can be written in the form 

az i3H _ -  -I- 
at az, 

where H is the Hamiltonian function, I is the canonical sympletic operator 

and U is the N x N unit matrix. 
If we refer now to an equilibrium point of (2) such that aH/az = 0, and let the 

system perform small motions around it, the linear evolution equations for the 
perturbation quantities, 2 = (1, d ) ,  would have the form 

a‘ 
- = ISL, 
at 

where S = aaH/az2, is the symmetric Hessian of the Hamiltonian function. Matrices 
of the form IS, in which S is real and symmetric, are usually called Hamiltonian, 
and some of their properties are summarized in Appendix 6 of Arnol’d (1978). 

Their first useful property is that, if Q is an eigenvalue of IS, so is -c and, since 
the matrix is real, so are their complex conjugates 3 and -3. Therefore, generic 
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complex eigenvalues come in quartets, which coalesce into pairs in the particular 
c w s  in which u is either real or pure imaginary. Moreover, the multiplicity and the 
Jordan block structure of all the members of a quartet is the same. We shall be 
interested here in the codimension, in the space of matrices of a given form, of the 
sets of matrices with a given Jordan block structure. 

The codimension of a manifold in a general space is the number of dimensions left 
to fill the space. Sets of codimension 1 are equivalent to surfaces in 3-space, and they 
divide the space into disjoint regions. Sets of codimensions 2 and 3 correspond to 
isolated lines and points, and higher codimensions define, in higher-dimensional 
space, sets which are even sparser. The advantage of using codimensions is that, while 
the dimension of a manifold may depend on the dimension of the space in which it 
is imbedded, the codimension tends to be independent of that, and to be a function 
only of the properties defining the manifold. Also, if we consider an m-parameter 
family of points defined in a given space, it  will generically intersect a manifold of 
codimension c a t  a set of dimension rn-c .  In particular, those families for which 
m < c, will not intersect the manifold at  all. These are generic properties, to be 
understood in the same sense that a line will always intersect a surface in 3-space 
at a point, while two lines will never intersect. 

The structure of the family of Hamiltonian matrices with respect to their Jordan 
block structure is given by a theorem due to Galin (1975) (see Arnol’d 1978, Appendix 
6). The generic (codimension 0) state for a Hamiltonian matrix is to have all its 
eigenvalues different. Note that, in each pair of real eigenvalues or in each complex 
quartet, there is always one eigenvalue with positive real part, which makes the 
evolution equation (4) unstable. The only case in which the system is stable is when 
all the eigenvalues belong to pure imaginary pairs. In a continuous, one-parameter 
family of Hamiltonians, the transition from stability to instability usually occurs 
when two imaginary pairs collide and fly off the imaginary axis to form a complex 
quartet. At  the point of collision, the Hamiltonian perturbation matrix has a pair 
of double pure imaginary eigenvalues. The only other fundamentally different mech- 
anism for stability exchange occurs when several eigenvalues vanish simultaneously, 
as is the case for the vortex street in the limit of very long wavenumbers. 

The generic Jordan structure for a Hamiltonian matrix with a double pair of 
eigenvalues is to have a pair of non-trivial2 x 2 blocks. The set of matrices with this 
structure had codimension 1 in the space of all Hamiltonian matrices and, therefore, 
represents a set of surfaces that divide the space into regions, each of which may have 
different stability. The matrices which fall in the intersections of these surfaces also 
have a pair of double eigenvalues, but these eigenvalues each generate a pair of 1 x 1 
Jordan blocks. The dimension of the largest non-trivial Jordan block associated to 
an eigenvalue is called its index. From Galin’s theorem, the set of matrices having 
a pair of double eigenvalues of index 1 has codimension 3 in the space of Hamiltonian 
matrices and, as a consequence of the analytic behaviour of the eigenvalues in the 
neighbourhood of such matrices, it generally lies in the vertex of cones formed by 
the surfaces which contain the double eigenvalues of index 2 (figure l a ) ,  although 
other behaviours are possible (MacKay 1986). 

It will be shown below that, when we only consider matrices satisfying certain 
symmetry conditions, the set of index-1 double eigenvalues has codimension 2. In 
this case it would generally lie in the edges formed at the intersections of the index-2 
surfaces and the geometry would be equivalent to the one in figure 1 (b). 

The significance of these properties for the stability of the KBrman vortex street 
is this. The perturbation modes of a given vortex street correspond to a continuous 
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FIQURE 1. Structure of the set of matrices with double eigenvalues in the neighbourhood of the 
subset that has double eigenvalues with index 1.  (a) General Hamiltonian matrices. ( b )  Case in which 
the subset has codimension 2. 

FIQURE 2. All the one-parameter families in a two-parameter family of matrices will generically 
intersect the unstable region in the space of general Hamiltonian matrices. 

one-parameter ( K )  family of evolution matrices. This family forms a line in the space 
of matrices, and can be expected to intersect the codimension-1 set of matrices with 
generic double eigenvalues, and to have some modes that fall in the stable, and some 
in the unstable, region of the space of matrices (figure 2). If  we now consider a 
one-parameter (7) family of vortex streets, each of them corresponding to a 
one-parameter ( K )  family of perturbation modes, we get a two-parameter ( 7 , ~ )  
manifold of stability matrices. In the case of general Hamiltonian matrices (figure 
2) this surface will not generally intersect the vertex of the cone, and all the 
one-parameter lines that represent individual streets can be expected to lie part inside 
and part outside the stable region. Any such street contains some unstable modes 
and is, therefore, unstable. 

This is the reason why it looks a priori that the possibility of finding a vortex street 
which is barely stable (crossing through the vertex), in a one-parameter family of 
streets, is structurally unstable and should break down one way or another under 
small perturbations. If, however, it can be shown that the evolution of the modes 
in a vortex street has enough symmetries that the index-1 manifold has codimension 
2, it is clear that any two-parameter family would generically intersect the edge of 
index-1 matrices, and that any such family would generally include a one-parameter 
line crossing the edge and barely avoiding the unstable region (figure 3). In this case, 
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Unstable 
RQURE 3. Any two-parameter family of matrices will generically contain one isolated line that 
avoids the unstable region in a space of matrices in which the index-1 subset has codimension 2. 

therefore, any one-parameter family of vortex streets can be expected to contain at  
least one barely stable case which would correspond to an isolated member of the 
family. 

3. The vortex street 
A two-dimensional set of point vortices, each with a circulation y,, has long been 

known to be a Hamiltonian system (Batchelor 1967). The Hamiltonian function is 
given by 

and a canonical set of variables is (p, q )  = {z,, yj  y,}. Since any two-dimensional 
vorticity distribution can be thought of as a superposition of an infinite number of 
point vortices, it  is at least plausible that a similar Hamiltonian structure exists for 
more complicated distributions. Indeed, J. Gibbons (1985, private communication) 
has given a Hamiltonian formulation for sets of smooth patches of uniform vorticity. 
His Hamiltonian is a straight generalization of (5 ) ,  and the structure is written in 
terms of the normal displacements of the boundary of the patches. He also gives 
canonical variables for the particular case of almost circular vortices. Note, however, 
that even if canonical variables are not explicitly known, their existence is guaranteed 
by Darboux’s theorem, and that this existence is enough for the arguments in this 
paper. 

More complicated, non-uniform, patches can be built by superposition of concentric 
bands with different vorticities, and the Hamiltonian of these patches would just be 
the sum of the Hamiltonians of the different uniform bands. In  the limit of an infinite 
number of bands, it should be possible to construct Hamiltonians for arbitrary 
continuous vorticity distributions, but the details of that limit have to be done with 
care, and that case is not considered here. In fact Amol’d (1969) has shown that the 
Euler equations, for incompressible, inviscid flow with an arbitrary vorticity 
distribution have a Hamiltonian formulation as long as permissible motions are 
restricted to volume-preserving deformations that introduce no new vorticity . A 
review can be found in Marsden & Weinstein (1983), which also treats the special case 
of uniform vortex patches. The discussions in this paper should apply to the general 
case, but the limiting process is complicated owing to the possibility of the appearance 
of a continuous spectrum for the stability equations. 

Even for a single vortex patch the number of degrees of freedom is infinite, and 
the application of the discussion in the previous section has to be done carefully. In 

H = +EX y, Ync 1% [(.,-zd2 + (Y,-YYk)21, ( 5 )  
l k  
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general, those results should hold as long as the infinite-dimensional system can be 
considered as the limit of a sequence of finite-dimensional ones, and as long as we 
are interested in the properties of a particular eigenvalue which can be defined as the 
proper limit of a given sequence of eigenvalues of the finite-dimensional problems, 
and which remain discrete during the limiting process. When the eigenvalues form 
a continuous range, the concept of a Jordan block itself has to be redefined. 

The characteristic frequencies for a circular uniform vortex patch were studied first 
by Kelvin (see Lamb 1945, §158), and shown to be discrete and well separated. 
Gibbon’s canonical variables are given in terms of the Fourier expansion for the shape 
of the contour, and the limit from a finite number of degrees of freedom is well defined, 
at least for almost circular patches, and as long as we are interested in the behaviour 
of a particular finite-order harmonic. By continuity, its eigenvalues are also separ- 
ated. The same is true for any equilibrium arrangement of a finite number of vortex 
patches, again as long as they stay far enough from each other to remain nearly 
circular, but, for the infinite periodic arrangement in the K l m a n  street, the isolated 
eigenvalues broaden into continuous segments, for which the previous discussion does 
not hold, and some transformation has to be introduced to make the spectrum once 
more discrete. 

The modal expansion used by K k m h  reduces the system again to one with dis- 
crete eigenvalues, but a t  the price of introducing a new continuous parameter K, 
which essentially indexes the continuous eigenvalue segments. Consider a periodic 
arrangement of identical vortex systems, each of them defined by canonical pertur- 
bation coordinates 2,, n = - a, . . . ,a. The equations of motion have the form 

where the matrices S,, = PH/az,az, are real and symmetric in the sense that 
Sk, = Smn, and where the prime stands for matrix transposition. Moreover, since the 
system is invariant under translation by one period, S,, is only a function of n - wt 
and, under those conditions, it is easy to see that the eigenvectors of (6) have the 
form L, = f eiKfl, and satisfy 

The stability of (7) is again controlled by the spectrum of T. 
The symmetry of the S,, implies that T is Hermitian, which is not enough to make 

IT Hamiltonian. However, when the system is symmetric in the n+-n direction, 
as in the case of the vortex street, it is possible to write T as a pure imaginary matrix, 
and thus recover some of the properties of Hamiltonian systems. 

Consider Gibbon’s Hamiltonian formulation in more detail. The form given here 
is a slightly generalized one in which the vorticity of the patches is explicitly included, 
which is necessary in studying systems, like the vortex street, in which different 
patches have different vorticities. Assume that we have a set of patches, for each of 
which the vorticity w is constant. Denote as Sa the domain, formed by several 
subdomains, occupied by the vortices in the plane r = {x, y}, and let its contour be 
parameterized by an arbitrary parameter as r(8) (which would contain one circuit per 
vortex patch). The Hamiltonian is then given by 

H = Jn Jn w(rJ  w(r,) log lr, - r,l dar, dar,. (8) 
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The dynamical variable is the oriented area displacement of the contour, defined by 

and the equations of motions are 

a aH 
at 38 i3A 

-- a&) - (d-l(g)--(+ 

The canonical variables are those in which the operator o-l(s)a/ae takes the form 
(3). They can be constructed in two steps: consider first a set of variables {p(s ) ,  q ( e ) }  
that reduces a/& to canonical form ; a canonical set for the complete operator is then 

Consider now the behaviour of these variables and of the matrices in (7) under the 
symmetry n-t-n.  The variables p and q are just oriented areas, and they change 
sign on reflection. So does the vorticity w(a), and eiKn goes into its complex conjugate 
e-irn. The Hamiltonian itself remains unchanged. Therefore (p, Q )  +- ( -p ,  Q ) ,  and the 
matrices S,, which have the form 

( P ,  Q) = { P ( s ) ,  4 s )  q(e ) ) *  

As a consequence, the matrix T transforms as 

where the bar denotes complex conjugation. Since (7) should be left invariant by the 
reflection, both sides of (12) are equal, and the structure of T is 

where all the R’s are real, and R,, and R,, are symmetric. Taking now as variables 
(P, ie) ,  (7) becomes 

where R is real but, unfortunately, not symmetric, which would be necessary for a 
Hamiltonian structure. The problem is that, even for spatially symmetric systems, 
the forward and backwards directions along the vortex street are not exactly 
equivalent, owing to the sense of rotation imposed by the vorticity. As a consequence, 
the Hemiltonian structure of the original system becomes distributed between the 
K and the --K stability modes, neither of which stays exactly Hamiltonian. 

Even so, some Hamiltonian properties hold for each of the two new systems. 
Consider the equations of motion of the modal variables associated with --K. From 
(7),  the matrix associated to this mode is just the complex conjugate of T.  Also, 
because (7) can be written in the purely imaginary form (la), its eigenvalues come 
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in pairs (a, 3), while those associated with - K contain the missing part of the quartet, 
( - u, 3). Consider now the composite system 

Since the matrix is block-diagonal, its eigenspace is the direct sum of the eigenspaces 
of the two blocks, and its eigenvalues are just the eigenvalues of the two blocks with 
their respective multiplicities and Jordan block structure. Moreover the composite 
system now has the eigenvalue quartets characteristic of Hamiltonian matrices and, 
in fact, it  is easy to see by direct substitution that, when (15) is written in terms of 
the variables 2 = { p ' ( ~ ) , p ' (  - K ) ,  i e (  - K ) ,  ie(K)}, it takes the form 

0 4 2 2  

a 2  0 
- = i l f z ,  F = 
at 

Since F is real and symmetric, the matrix I f  is Hamiltonian, which was to be 
expected since (16) contains the full behaviour of the original Hamiltonian system. 

Consider now the collapse of a complex eigenvalue quartet of the block-diagonal 
matrix in (15) into a double Jair of pure imaginary eigenvalues. First, there is a 
one-to-one correspondence between matrices of the form (15) and either T or 7 and, 
in fact, any one of these three matrices defies the other two completely. Therefore, 
the three matrix spaces are isomorphic. Then, all the eigenvalues of the composite 
system belong either to the K or the - K  modes and, from the discussion above on 
the eigenvalue pairs associated with each mode, the collapse happens in such a way 
that the double pure imaginary eigenvalue cr corresponds to one mode, while the 
double eigenvalue - u corresponds to the other. As a consequence, the sub-manifold 
of matrices with a double pure imaginary eigenvalue pair (of a given index) in the 
space of composite matrices (15) is identical with the sub-manifold of matrices with 
a double pure imaginary eigenvalue in the space of either T or 7, and the codimensions 
of each of the three (isomorphic) manifolds in their corresponding spaces are the same. 
It turns out that the particular Hamiltonian form in (16) has enough symmetries that 
the codimension of double index-1 real eigenvalue pairs of I f  is equal to 2 (see the 
Appendix) and, therefore, the same property holds for pure imaginary eigenvalue 
pairs of (7). Note that these conclusions would not apply, for example, to double real 
eigenvalues of (7) since, in that case, it  is possible to have a double eigenvalue of (15) 
in which one member of the pair belongs to T,  and the other to 7, and the 
corresponding manifolds are not necessarily isomorphic. Fortunately, those pairs are 
not important for stability. 

The eigenvalues associated with the collective mode of (7) are isolated for the 
point-vortex model of the KBrmBn street, and remain so for small perturbations 
around it. Therefore, the conclusions in the previous discussion apply, and the 
property that any one-parameter (e.g. 7) family of vortex streets contains en isolated 
member with marginal instability, surrounded by unstable members, can be expected 
to remain true under small perturbations to the model. This holds for perturbed point 
models, such as the flow in a channel, for small uniform vortex patches, and even 
for non-uniform vortices, at least for those built from a f i i t e  number of concentric 
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uniform bands. It is probably also true for more general non-uniform vortices, but 
this is subject to clarification of the limit process mentioned earlier. This conclusion 
agrees with the numerical evidence. 

4. Transversality 
That two manifolds have the right codimensions does not guarantee that they 

actually cross, in the same way that two lines do not necessarily intersect in the plane. 
The useful result is that, if two manifolds do cross and have the right dimensionality, 
they will continue crossing after a small perturbation of the problem. Even this is 
not always true, as in the case of two tangent curves that separate after a small 
deformation. 

The key concept is that of transversality (Shirer t Wells 1983). Two linear 
subspaces are called transversal in a given space if, between them, they contain 
enough vectors to span the full space. Two manifolds cross transversely at a point 
if their tangent spaces at that point are transversal and, in that case, it is true that 
the intersection, and transversality itself, are stable to small perturbations. It is easy 
to see that the codimension condition given above, that the sum of the dimension- 
alities of both manifolds is at least equal to the dimensionality of the full space, is 
necessary for transversality . This condition is not sufficient, and counterexamples are 
all those manifolds that touch tangentially, and whose intersections are not 
necessarily stable to small perturbations. The intuitive notion of transversality 
implies that the two manifolds cross at an angle. 

Since transversal intersections are structurally stable, it  is enough to prove 
transversality for the intersection of two manifolds in some particular reference case 
to ensure that they will continue crossing each other after being perturbed slightly 
about that reference position. 

The two-parameter family of modes for the point model of the vortex street cuts 
transversely the family of matrices with double eigenvalues of index 1. This is the 
reason why its stability properties are maintained for all models which can be 
considered as small perturbations around it. In  fact, the intersection of the two 
manifolds in the case of the point-vortex model is strongly transversal (actually, 
orthogonal) and situated far from any border in both manifolds, and, to loose it, either 
the angle or the point of intersection would have to be modified by an amount which 
is O(1). If the parameters of any modified model are scaled in such a way that all 
functional derivatives are also O( I ) ,  the intersection, and the stability properties, will 
be maintained in a region of that same order of magnitude. 

Transversality is easy to prove for the point-vortex model. In  that case, the two 
( f K )  modes are identical, and each of them breaks into two symmetry modes, whose 
stability properties are equivalent. In  each case, the evolution matrix is 2 x 2, and 
has the form 

where the two equal diagonal elements are a consequence of the Hamiltonian nature 
of the original system. Clearly, those matrices form a three-dimensional space, in 
which matrices with double eigenvalues of index 2 lie on the two planes a = 0 and 
c = 0, while those with a double eigenvalue of index 1 lie on the intersection of these 
two planes on the b-axis. A tangent vector to this last manifold is 
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Choosing one of the two equivalent symmetry modes, the family of matrices that 
represent the vortex street is (Lamb 1945) 

I a = C + A ,  c = C-A,  

I x~ sinh q(n - K )  

cosh xr] 
n2 sinh ~q 

+- coshaxq ' 
b =  

I x2 

cosh2 xq ' 
A = + K ( ~ x  - K) - (19) 

The other symmetry mode simply changes the sign of b. At each point, the tangent 
space to this family is spanned by aM/aK and aM/aq. At the point of intersection 
of (19) with the index-1 subspace, K = x ,  coshaxq = 2, and 

It is clear that matrices (18) and (20) span the full space of matrices of the form (17) 
and, therefore, that the intersection of the two manifolds is transversal. 

It has been pointed out by R. S. MacKay in a paper in preparation that, because 
the eigenvalues of the K-mode are identical with those of -K in the point-vortex 
model, all the eigenvalues of (15) are double in that case, and they collapse to a pair 
of quadruple eigenvalues at the critical point. The results in the previous section 
would not apply to that case. This is only superficially so. Under small perturbations, 
the two eigenvalue quartets, {a, - Q, 3, -3}, which are identical in the point-vortex 
case, will change into two new quartets, no longer necessarily identical. The 
arguments in the Appendix show that the collapse of each of these quartets into 
double pairs is a codimension-2 event, and the results of the previous section show 
that each one of the resulting double eigenvalues belongs to either K or - K .  Both 
arguments are independent of whether the quartets are simple or double, as long as 
there is no degeneracy between them, which is shown by the fact that (15) is block 
diagonal. As a consequence, any two-parameter family of matrices of the form (15), 
will contain two isolated stable members, each one corresponding to the collapse of 
one of the two eigenvalue quartets. It is not immediate that those two members 
correspond to the same street (same value of q ) ,  but that is consequence of the 
symmetry between the K and -K (or, equivalently, 2 ~ - K )  modes. It follows from 
(15) that, if the mode (7, K) has a double eigenvalue ia with a given Jordan structure, 
the mode (7,2x - K )  has an eigenvalue - i a  with an equivalent structure. Therefore, 
the stability map for the two-parameter family takes the form in figure 4, and there 
is still a single value of 7 for which the street is stable. 

We consider now the vortex street in a channel, which eventually develops a 
non-zero stability interval, and seems to contradict these conclusions. Actually, the 
Rosenhead (1929) stability analysis is wrong in that he uses cosm expansions for 
his perturbation modes instead of eirn. This is equivalent to forcing b = 0 in (17), and 
results in standing, instead of travelling, perturbation waves. Aside from that, the 
stability characteristics do not change, and the system is a useful one in which to 
study the effects of loss of transversality. 

7 FLM 178 
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I K = l l  

FIQURE 4. Stability diagram for a generic one-parameter family of vortex streets satisfying the 
conditions in the text. For the particular c&8e of the point-vortex model, the two cro’o88es collapse 
into a single one at K = x ,  and the stability diamond in the centre of the diagram disappears. 

The general structure of the matrix is the same as in the Kdrmdn model, with 
different expressions for a and c, 

cos v + sech np 
(1 + cos v sech np)a 

(1 - cos v sech n’p)a + 1 + sech n’p ’ 

cos v + sech np 

1 - cos nK 
1 -sechnp 

+ 

1 cos v - sech n’p 1 - cos n’K 

m 
a = - sec2 v / 2  - 2 X sech np 

n-i 

n-1 
m 

[( 1 + cos v sech np)a + 1 -sech np 
c = -2 X sechnp(1-cosnK) 

n-1 
Q) 

n-1 

cos v - sech n’p + 2 sech n’p( 1 - cos n’K) [( 1 - cos v sech n’p)2 + 1 + sech n’p 

n’= n-1 a, 

and b = 0. In this family there are two geometric parameters p = nL/W and 
v = nh/ W .  The meaning of h, L and K is the same as before, and W is the width of 
the channel. The matrices now form a two-dimensional space (a,c), in which the 
double eigenvalue, index-1, manifold is just the origin of coordinates. 
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FIGURE 5. The two-parameter families of matrices representing the point-vortex street in a channel 
that is wider (a), equal (b) ,  or narrower (c) than the critical width necessary for the appearance 
of a stable region. Individual lines are complete streets with v constant and a full range of K.  The 
range of v’s represented in each case can be read from figure 6. 

7-2 
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0 tn K 

V 

diagram for the point-vortex street in a channel. 
families plotted in figure 5. 

FIGURE 6. Stability Dashed lines represent the 

The expressions in (21) are complicated and, to study transversality, we would need 
to compute the derivatives with respect to the various parameters. Without doing 
that explicitly, it is easy to see that both a and c are periodic in K with period 47t, 
and it can be shown that K = 0 and K = 2x  are turning points of their graphs with 
respect to K .  What really happens is that these graphs are not infinite lines, but finite 
segments, and that K = 0 and 2x correspond to the end points of those segments. 

Consider now a two-parameter family of modes (say v, K ) .  The individual vortex 
streets would be represented by segments in the (a,c)-plane, and all the segments 
corresponding to different v’s would fill a region. In this plane the two coordinate 
axes are stability boundaries, with the first and third quadrants containing unstable 
modes, and the second and fourth, stable ones. Normally, each segment, representing 
an individual vortex street, would cross into several quadrants and contain both 
stable and unstable modes. One of the segments in the region would cut the origin 
and correspond to an isolated, marginally stable, member of the family. For wide 
channels, the street is close to the KirmSn model and the intersection with the origin 
is transversal, since it was shown to be transversal for the KarmBn case. This means 
that the origin is in the interior of the region (see figure 5a).  

As the channel grows narrower, and y increases, the region drifts and, eventually, 
the intersection with the origin moves to its border. At this point the intersection 
is no longer transversal and can be expected to disappear for nearby perturbed 
systems. In fact, for slightly higher values of y ,  the region stays tangent to the 
horizontal axis, but does not cross i t  in the neighbourhood of the origin. When this 
happens, there are some segments which never cross into an unstable quadrant, and 
the vortex street is stable for a finite range of the parameter v. The three parts of 
figure 5 show the regions of the (a, c)-plane corresponding to the ( v ,  K )  family for three 
different values of y ,  which are respectively below, above, and at the critical point 
at which the region leaves the origin. The corresponding stability diagram is shown 
in figure 6. 
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5. Discussion and conclusions 
We have shown that the apparently accidental stability properties of some simple 

models of the Ktirmtin vortex street and, in particular, the presence of isolated, 
marginally stable, members in one-parameter families of streets, are a consequence 
of the structure imposed on the space of evolution matrices by the Hamiltonian 
nature of the equations that govern the flow, and by its symmetries. 

This conclusion applies to periodic infinite vortex arrays which have back-to-fore 
symmetry, and which are close to the point-vortex model for the Klmt in  street. As 
such, the stability properties discussed in this paper should apply to a wider set of 
problems than those discussed here directly and, in particular, they should hold for 
models of the vortex street that are more general than those tried until now. 

Actually, what we have shown is that any family of vortex streets which is close 
to the point vortex model, and satisfies the proper conditions, has a set of eigenvalues 
that is close to the eigenvalues of that model, and that this set contains an isolated 
linearly stable member. In  general, any member of such a family might have other 
eigenvalues that have nothing to do with those of the point-vortex model, and the 
discussion in this paper says nothing about their properties. In  fact, it is perfectly 
possible that some of those eigenvalues are unstable, making even the vortex street 
corresponding to the stable member of the original eigenvalue set globally unstable, 
but the results derived here show that global stability is limited at most to an isolated, 
marginally stable, member by the behaviour of the original eigenvalues. Actually, 
in the only case that has been studied numerically in detail, the finite-area model in 
Meiron et a2. (1984), the extra modes introduced by the oscillations of the core shapes 
remain stable. 

Some comment is needed on the meaning of closeness in the above statements and, 
in general, on the limits of validity of the present results. As discussed in the previous 
paragraph, stability can be lost (but not gained) from the introduction of new modes 
of instability by a given model. Obviously, dissipation or loss of back-to-fore 
symmetry will invalidate the conclusions, but in different ways. Dissipation is 
completely outside the present discussion, but loss of symmetry will throw us back 
into the general codimension-3 case (figure 2). The marginally stable street will then 
still be isolated, but we shall need two parameters to find it, instead of one, and the 
general situation will be more unstable than before. 

The question of continuous vorticity distributions is more delicate. As mentioned 
previously, a Hamiltonian formulation is known for those cases, and the question is 
whether the collective eigenvalues remain discrete as the model is deformed from 
point vortices to a continuous vorticity distribution. This is probably so as long as 
the area of the resulting cores is small with respect to the distance between vortices. 
The vorticity distribution should mainly influence the eigenvalues rtssociated with 
the internal oscillations of the cores, which might indeed stop being discrete. But the 
ratio between these eigenvalues and those of the collective modes is O(LZ/a), were 
a mertsures the area of the cores, and, as long as this factor remains large, it  is unlikely 
that both ranges interact strongly enough to spread the discrete collective 
eigenvalues. In  any case, the effect of continuous vorticity distributions should be 
considered open at the moment. 

The most likely cause of failure is loss of transversality, which has been discussed 
in $4, but which should only be expected to occur for models which differ from the 
point-vortex case by O(1). After transversality is lost the properties of the system 
depend on the details of the tangency. 

The question remains of what is the relation of the present results to natural vortex 
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streets. As was mentioned in the Introduction, natural streets do show a degree of 
instability for sufficiently high Reynolds numbers, even for strictly two-dimensional 
flows. Saffman & Schatzman (19823) have reviewed the matter, and conclude that 
experimental and theoretical results are at least moderately consistent. Kida (1982) 
also cites experimental evidence of instability with a wavelength that agrees with his 
theoretically most unstable value. In all these cases the flow was probably three- 
dimensional (Gerrard 1966), but the present stage of knowledge on strictly two- 
dimensional wakes is not enough to allow a useful comparison with theory. 

A different question is the formation of periodicity in real wakes. Actually, the 
doubly infinite Kirman-street models, and all the theory discussed in this paper, are 
not applicable to the formation of the vortex street behind a body, since that is clearly 
not a doubly infinite system, has no back-to-fore symmetry, and is not even in 
equilibrium, if one takes into consideration the body itself. However, numerical 
results by Aref & Siggia (198l), and Kazuhiro & Oshima (1985), suggest that doubly 
infinite vortex streets, initially at  equilibrium, will rearrange themselves into new 
stable systems with longer wavelength after an appropriate perturbation, but only 
if the new system is closer to the critical spacing than the old one. Also, as mentioned 
earlier, the experimental values for the spacing ratio at which natural streets form 
seem to be close to the critical one. 

Little is known about the nonlinear evolution of unstable vortex streets, but the 
numerical experiments cited above suggest that they eventually disintegrate into 
random pairs and triplets and eject closely bound couples of vortices of opposite 
vorticity which travel a t  great speeds away from their original positions. This decay 
mode has actually been observed experimentally in strictly two-dimensional wakes 
at high Reynolds numbers (Couder et al. 1984), but not at lower ones. All this suggests 
that the stability of real wakes is indeed a dissipative effect, and that viscosity 
somehow manages to create a region of stable equilibria near the marginally stable 
configurations of the inviscid models, which would disintegrate otherwise. These 
states, although they would obviously decay in the long term owing to dissipation, 
could actually be attracting in a shorter timescale, and provide the justification for 
the regular wakes found in natural flows. 

While this paper was being circulated as a preprint it came to my attention that 
similar results had recently been obtained by R. S. MacKay. The revised version of 
the paper owes much to the resulting discussions with him. 

This work was accomplished during several visits by the author to the California 
Institute of Technology, supported in part by a grant from the Department of 
Energy, Office of Basic Energy Science (DE-AT03-76ER72012). I would like to thank 
Professor P. G. Saffman for introducing me to the problem and for many illuminating 
discussions. 

Appendix 
The following is a calculation of the codimension of the manifold of matrices with 

index-1 double real eigenvalues in the space of matrices of form (16). It also gives 
the behaviour of eigenvalues in the neighbourhood of that manifold. The properties 
of Hamiltonian matrices that are used here can be found either in Arnol’d (1978) or 
in Mal’tsev (1963). 

It is easy to see from the form of (16) that the right eigenvectors of IF have either 
the form {a, O,O, b} or (0, a, b, 0}, and it can be checked by direct calculation that, 
if {a, 0, 0, b} is an eigenvector for the eigenvalue CT, (0, -a, b, 0) is an eigenvector for 
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- 6. Any Hamiltonian matrix can be transformed into block-diagonal form in terms 
of its projections over real orthogonal invariant subspaces associated with its 
eigenvalue quartets (or pairs). Consider a full complex quartet that is collapsing into 
a double real pair. The corresponding diagonal block can be expressed as Y l f X ,  
where the columns of X are any basis for the msochted right-invariant subspace, and 
those of Y are base vectors for the corresponding left invariant subspace, and such 
that Y X  = U. 

It is also a general property of Hamiltonian matrices that, if z is a right eigenvector 
for the eigenvalue u, lz is a left eigenvector for -r. Therefore, if X is formed by 
a quartet of columns 

where A and B are (N x 2), Y is formed by the quartet 

Y = I X [  -D O "1.1 0 

D = (A'B+B'A)-'J 

The general form of the diagonal block is then 

-"i 
Since both D and E are real and symmetric, and since the choice of the columns of 
A and B is undetermined up to a linear combination, it is always possible to make 
one of them diagond. Therefore, each of the two diagonal sub-blocks in F, is a real 
2 x 2 matrix which is the product of a diagonal and a symmetric one, and has the 
form 

These matrices form a four-dimensional space in which the only members with a 
double eigenvalue of index 1 are multiples of the 2 x 2 identity matrix, which are 
generated by the two conditions 

El* = 0, D, Ell = D, E,,. (A 5 )  

Since this set is generated by two restrictions, it  has codimension 2. 

neighbourhood of the index-1 set. In  general, they are given by 
It is interesting to compute the behaviour of the eigenvalues of (A4)  in the 

= t P l  Ell + Q EBB) *tW1 Ell --D, + 40, G I 4  (A 6) 

D,E,,-D,E,, = +2El,(-DlD,)t. (A 7) 

and the set of matrices with double eigenvalues is located at 

If D, D, < 0 this set is formed by two codimension-1 real components which intersect 
at (A 5 )  and which separate its neighbourhood into four sectors with alternating 
stability characteristics. This is the situation in figure 3 and in the vortex street. If 
D, D, > 0, (A 7) is only satisfied at (A 5 ) ,  and there is no exchange of stability when 
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the eigenvalue quartet collapses. It is easy to see that the sign of D, D, is maintained 
under small perturbations if the eigenvalues are bounded away from zero, aa is the 
caae in the vortex street, and that, as a consequence, the local structure of the 
stability map is also maintained under small perturbations. This is a particular c m  
of a general theorem that links the loss of stability of a Hamiltonian system to the 
signatures of the eigenvalues that coalesce on the collapse of a quartet. A review of 
these and other related results can be found in (MacKay 1986). 
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