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The classical point-vortex model for a Ka'rma'n vortex street is linearly stable only 
for a single, isolated, marginally stable, case. This property has been shown 
numerically to hold for streets formed by symmetric rows of uniform vortices of 
equal area. That result is extended here to the case in which the areas of the vortices 
in the two rows are not necessarily equal. The method used is an analytic 
perturbation valid when the vortex areas are small, and applied using an automatic 
symbolic manipulator. 

1. Introduction 
The regular arrangement of vortices sometimes found in the wake of bluff bodies 

was first modelled by von KBrman (Lamb 1945) as a double infinite street of point 
vortices, moving with respect to the fluid at  infinity a t  some constant velocity, and 
whose properties are characterized by a single parameter, H ,  which is the ratio 
between the separation of the two rows and the wavelength of the periodic vortex 
array. The stability of this arrangement to perturbations in the positions of the 
vortices was studied by von Karma'n by expanding those perturbations in terms of 
normal modes, parameterized by a wavenumber K .  The stability of a given mode 
depends both on K and H ,  and a given street is stable when all the modes, K ,  are stable 
for the given fixed value of H .  It turns out that vortex streets are generally unstable, 
containing an unstable range of wavenumbers for all values of H except for one, 
H ,  = 0.28055 ..., for which all wavenumbers are neutrally stable. It was shown later 
that, even in this case, the street exhibits a nonlinear instability (Domm 1956), due 
in essence to the fact that  any small perturbation 'modifies' H enough to move the 
street into the unstable regime. 

Since natural wakes show regular vortex streets that persist for long times, it has 
generally been felt that a more complete model should produce a finite stability range 
of H that would guarantee linear stability for streets contained inside that range. A 
natural attempt is to consider models formed by arrays of regions of uniform 
vorticity and finite area, instead of by point vortices (Kida 1982; Saffman & 
Schatzman 1982). After several unsuccessful attempts, it  was shown by Meiron, 
Saffman & Schatzman (1984, hereinafter referred to as MSS) that the stability 
behaviour of those models is again the same ; at  least for moderate values of the area 
of the individual vortices, there is a single value of H for which the street is stable. 
In  fact, J imhez  (1987) showed that this behaviour is a consequence of the 
Hamiltonian structure of the system and that i t  should hold for any inviscid model 
of the street that retains the back to  fore (as opposed to the top to bottom) symmetry 
of the basic flow, and that, therefore, the persistence of a natural vortex street is most 
probably due to viscous effects, or to the differences between the spatial development 
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of natural wakes and the temporal evolution model implicity in a periodic vortex 
street. 

Still, the finite area case is interesting in that it provides a natural model for real 
flows, and a starting point for dissipative models of the wake. Most of the evidence 
for its behaviour is presently numerical (Saffman & Schatzman 1982; MSS). Kida 
(1982) attempted an algebraic perturbation expansion for small areas, but his 
expansion contained algebraic mistakes, and some of his conclusions were in error. 
Perturbation expansions have the advantage that they provide analytic information 
on the local behaviour of the system, but they tend to be difficult to implement 
because of the computational complexity involved. Automatic symbolic manipu- 
lation programs have changed that, and it is now possible to develop fairly 
complex perturbation schemes with an error probability comparable to that of 
numerical analysis. We present here a perturbation treatment for the finite area 
model, in the case in which the areas are small. The results generally confirm those 
of the numerical work, and of the Hamiltonian analysis, and they are extended to the 
case in which the vortices of the two rows have different areas, but are uniform 
within each row. 

2. Isolated patches of vorticity 
We introduce in this section the perturbation method used to describe the motion 

of each of the uniform patches of vorticity which are assumed to form the vortex 
street. The method used is similar to the one used in MSS to develop their numerical 
scheme, and it will only be outlined here, but we will give algebraic expressions and 
define the notation for the quantities used later in the paper. While the manipulation 
necessary to derive the equations of motion to the accuracy used in this paper could 
probably have been done by hand, the probability of error was fairly high, and we 
preferred to use an automatic symbolic manipulator (Hearn 1983) to do the 
algebra. 

Consider an isolated patch of uniform vorticity, of which the total circulation is y, 
and area s = X&2. 

We will assume that the ‘radius’, E ,  is small with respect to the characteristic 
lengthscale of the velocity field that would exist in the absence of the patch under 
study. 

Define the complex variable z = z+iy,  and consider the complex velocity w = 
u-iv, where the bar stands for complex conjugation. Outside the vortex, the flow is 
irrotational, and the velocity, wo, is an analytic function of z. Inside it, it can be 
expressed as an irrotational part, plus a particular solution due to the vorticity, 
as 

where z ,  is the position of the vortex centre, w, = dz,/dt is its translation velocity, 
and the function f is analytic in z. At the perimeter of the vortex, the velocity is 
continuous, and 

i y (5 - Z, ) 
2m2 

f ( z ) - W o ( ~ ) + W ,  = (3) 
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The velocity outside the vortex, measured with respect to the vortex centre, can be 

The Taylor part of this series reflects the behaviour of the velocity a t  infinity, where 
the influence of the vortex patch has died out, and it is just the series expansion, in 
the vicinity of the vortex, of the externally imposed velocity, @,(z)--~,(z , ) .  The 
‘straining coefficients’, ck ,  can be simply expressed as 

where the derivatives are evaluated a t  the vortex centre. The constant term ws is 
the ‘drift’ velocity of the vortex with respect to the externally imposed velocity, 
am(zC). When the limit of (4) is taken as z+ CO, the Laurent part of the series disap- 
pears, the Taylor part can be expressed in terms of the w , ( z ) ,  and, in the left-hand 
side, w, + w,(z). The result is an expression for the velocity of the vortex centre, 

$- Y - -cc,+ws =w,(z,)+w,. dt 2x 

The analytic part of the velocity (2) inside the vortex can also be expressed as a 
Taylor series, 

(7) 
iY f ( z )  = - c f k ( z - z c ) k >  
27c k-0 

which is valid inside a disk which extends to the innermost singularity off, which is 
outside the vortex. As a consequence, this expansion is valid in some part of, but not 
necessarily in all, the contour of the vortex. The same is true of (4) which is valid 
outside a similar disk, extending in this case to the outermost singularity ofw,,, which 
is inside the vortex. If these two series had a common domain of validity, they could 
be substituted in (3), and used to determine the coefficients of the velocity expansions 
in terms of the vortex shape. However, because the vortex is not circular, and there 
is no guarantee that the outermost singularity of wo is farther from the vortex centre 
than the innermost singularity of f ( z ) ,  i t  is not true in general that  such a domain 
exists. 

Consider now a conformal mapping which transforms the outside of the vortex 
patch into the outside of the unit circle, 

~ - ~ , = g ( q , t ) = ~ q  

When this expansion is substituted in the two series for the velocities, the resulting 
expansion in q for (4) will converge outside a disk which extends to, and presumably 
goes slightly inside, .the unit circumference, which now represents the vortex contour. 
Similarly, the expansion for (7)  holds in an annulus defined on the inside by the 
domain of validity of (S), and, on the outside, by the closest singularity off(z), which 
will presumably be slightly outside the unit circle. As a consequence, there will exist 
a common annulus in which both expansions are valid, and which contains the unit 
circumference. Moreover, on that circumference, = l/r,  and 
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These expressions can be substituted now in (3), giving a series in powers of 7 which 
must be satisfied term by term, and which provides enough equations to determine 
the coefficients d, and fk in terms of b, and ws. 

Note that the existence of a common annulus of definition for both expansions in 
7 is necessary to  ensure that the procedure is valid. This existence is controlled by 
the shape of the vortex contour, and, in particular, by the outermost singularity of 
the map q(7,t). That map is intended to work outside the vortex and does not 
necessarily work on its interior. Actually, in general, it does not even map the interior 
of the vortex into the interior of the unit circle. The distance from the outermost 
singularity to  the unit circumference is controlled mainly by the local radius of 
curvature of the vortex contour. For example, it can be shown that, when the 
contour develops a corner, the singularity lies on the circumference itself. Under 
those circumstances, the annulus of common validity vanishes, and the success of the 
method is not guaranteed. 

Except for those cases, the procedure is, in principle, not restricted to small 
perturbations of a circular vortex and should give a convergent series representation 
of the velocity induced by a vortex in terms of its shape. I n  practice, the algebraic 
complexity of the equations for the coeficients of the truncated series of a given 
length grows very rapidly and it is only practical to  consider the expansions as 
asymptotic in c. The powers of e in front of the coefficients of the expansions (7 and 
8) reflect this approach and correspond to the maximum order of magnitude for each 
term, a t  equilibrium, when the straining coefficients, ck ,  are O(1). 

There is some freedom in the choice of the map in (8). I n  particular, it is always 
possible to make b, real, and to adjust one additional coefficient by fixing the 
arbitrary position of the vortex centre (zc) .  We will choose to make the dipole 
component of the far-field velocity equal to zero. 

a, = 0, (10) 

which is equivalent to defining the origin of coordinates at the centroid (centre of 
gravity) of the vortex patch, and is the same definition used in MSS. One extra 
condition is given by the area of the patch, which can be expressed as 

X = ~ t . ~ = ~ t . ~ [ b i -  C ( I c - l ) ~ ~ ~ b ~ 6 , ] ,  
k=2 

and allows us to express 6, in terms of the rest of the coefficients in the 
expansion. 

The evolution equations for b are found by imposing that the contour of the 
vortex, or the unit circle in 9 ,  is mapped on itself by the flow, which is equivalent 
to  

or 

The result should be seen as a series in 7, and solved term by term. It provides values 
for db,/dt and for ms. Here we give the leading terms of the expansions which will be 
needed for the subsequent analysis, 
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Wt, = -b,c3+U(c6) Ye4 
27c 

Also, to this order, b, = 0. I n  principle, the drift velocity includes contributions from 
the third-order harmonic, b,, which are of the same order of magnitude as those in 
(14) but, with the choice of coordinates used here, those contributions cancel 
identically, and i t  is possible to write the motion of the vortex centroids in terms just 
of z and b,. The evolution equations for the coefficients are 

2ne2 db 27ce2 db 
- i b , + ~ , + 0 ( ~ 4 ) ,  ___ = 2ib,+c3+O(e4). 

Y dt Y dt 

3. The non-symmetric vortex street 
Consider a vortex street formed by two rows of vortices, such that the centre of the 

mth vortex in the lower row is a t  the complex point zmB = rn, while that of the nthe 
vortex of the top row is at zn, = n+$+iH.  From now on we will associate the 
subscripts p and a with the lower and upper rows of vortices respectively. The 
circulations associated to the vortices in each row are equal but opposite in sign, and 
we will take them to be y, =27c, yB = - 2 7 ~ .  All the vortices in a given row are 
equivalent and have non-zero areas, S, = xez and S, = ~ e j ,  which we will assume to 
be different but of the same order of magnitude. We will use later the notation 

E;= (1+&)2, e j =  (1-Q)s2,  (16) 

where Q is U(1), and Q = 0 corresponds to the symmetric street. 
At equilibrium, both rows move a t  a constant common velocity. The velocity 

induced a t  the centre of a vortex in row a is the sum of the contributions from all the 
other vortices in both rows 

which can be expressed as 
W, = - T , ( H ) + E ~ ~ , ~ T ~ ( H ) .  

A similar expression applies to the velocity induced a t  the centres of the vortices in 
the lower row. 

wp = - T , ( H )  + ~ % b , ~ z , ( H ) .  (19) 

We have used in these expressions the functions 

00 

T ~ ( H )  = ik C (n- t -a ) -” ,  
n--cc 

which appear in the summation of the contributions from a row. We will need 

( 2 1 )  
7c2 7c3 tanh(nH) 

T ,  = --R tanh(nH), 7, = - 7, = 
cosh2 (7cH)’ cosh’ (7cH) ’ 

The straining coefficients are computed similarly as 

c,, = czB = i [ ~ C ~ + T , ( H ) ] ~  cgu = -c,~ = T 3 ( H ) ,  ( 2 2 )  
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and, as a consequence of the equations of motion for b (15), the equilibrium shape of 
the vortex cores is, 

b,, = b,, z 6 ,  = $7~' + 7 , ( H ) ,  b,, = - b,, = 37,(H). (23) 
To find the translation velocity of the vortex centres, we have to add to the velocities 
(18), (19) the self-induced correction (14) which, att equilibrium, is 

wSa = €2 6 ,  T ~ ( H ) ,  w,, = e; b, 7 , ( H ) .  

Finally, the common translation velocity is 

(34) 

dz, ds  -=A=- 
dt dt 7 1 ( H ) + ( € ~ + € ~ ) 7 3 ( H ) [ $ ~ 2 + 7 2 ( H ) ] .  (25 )  

Note that there is no a priori guarantee that the velocities for both rows should come 
out to be equal. In  fact, this is only true because the self-induced velocity correction 
for one row exactly compensates the extra induction due to  the non-zero area of the 
other one. Should this compensation not have been exact, the equilibrium condition 
for the vortex street would have had to include different magnitudes for the vortex 
circulations, y, + - y,, to compensate for the difference in vortex areas. That any 
equilibrium configuration of the vortex street should satisfy y, = - y, was proved in 
MSS on purely kinematic grounds. The derivation in this section is an independent 
confirmation of that fact, a t  least to the accuracy of the expansion. 

4. Stability equations 
To study the stability of the equilibrium configuration, we let the centres of the 

vortices be perturbed from their equilibrium position by small amounts, which 
implies corresponding perturbations in the vortex shapes. It is convenient to express 
the perturbations in terms of periodic modes, with wavenumber K ,  defined as 

(26) 

(27) 

It will also be convenient to use perturbation vectors which are defined in terms of 
'symmetry ' combinations of these variables, 

(28) 

I > .  1 zm, = + 4 + + sz; eiK(m+$ + az- ,-iK(m++) 

) >  b,, ma = b, + i ,iK(m+a) - i &b- e-idm+f 
2a 

Zmp = + azpf eir(m-a) + szj e-iK(m-P) 

- b2 + i &+ eiK(m-+) - i #-  ,-iK(m-+) 
b2, mp - 2, 2, 

z = { 62; + 8zz, 8z; + &a", az; - 8 Z j ,  8.z; - Szpf}, 

6 = {Sbi, + 6b$, 86, + &;,, &hia - Sb;,,Sb;a - 6b&}. 

The evolution equations for these vectors are just a straightforward linear 
perturbation of the equations of motion (13)-(15), taking into account the 
contributions from all the vortices in the street. 

It is clear, from the structure of (13)-(15), that the perturbation equations will 
have the general form 

A, + e4 A, E, e4 

The stability of the resulting motion depends on the behaviour of the eigenvalues of 
(29), which are, in general, slightly perturbed versions of those corresponding to the 
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point-vortex model ( E  = 0). Because of the presence of the i factor in the left-hand 
side, the eigenvalues with positive and negative imaginary parts correspond to stable 
and unstable solutions respectively. Neutrally stable solutions correspond to real 
eigenvalues. The only relevant change of stability with respect to that model may 
occur near the critical point a t  which the point-vortex model is barely stable. It is 
easy to see that this point is characterized by a real double eigenvalue having a 
complete set of eigenvectors, and such that the associated Jordan form of the matrix 
is diagonal (Jimenez 1987). The question is whether, under the perturbation (29), it 
is still possible to find a double non-degenerate eigenvalue in the neighbourhood of 
the critical point of original matrix, and i t  is this region that we will explore here. 

If the unperturbed problem is non-degenerate, it is shown in Lancaster (1969) that 
the eigenvalues of (29) can be expanded as 

u- 
f7 = ---1+u,+ ( T 1 € 2 + ( T 2 € 4 +  ... , 

€2 

while the corresponding eigenvectors can be written as columns of a matrix 

such that 

Bo + B, €2 + . . . 1 ’ z, + z, €,+. .. 

A, +€*A, E, e4 

If u is a simple eigenvalue, or a double but defective one, the matrix in (31) will have 
just one column, while for double non-degenerate eigenvalues, it will be possible to 
find matrices with two independent columns satisfying (32), and spanning the 
complete eigenspace of u. 

Expanding (32) in powers of e, we get, to leading order, 

There are two families of eigenvalues associated to this problem. One of them 
contains eigenvalues which are O(l/e2), have u-, $. 0 and 2, = 0, and are associated 
to the standard eigenvalue problem for the matrix 0-,. They correspond to fast 
oscillations of the boundary of the vortex cores, and they remain stable to  the 
accuracy of this expansion. 

The other family contains eigenvalues of 0(1), CT-~ = 0, corresponding to the 
perturbations of the matrix A,, which is the matrix for the point-vortex model. For 
these eigenvalues we need the next few members of the perturbation hierarchy, 

(34a) 

(34b) 

(34c) 

The top equation in this hierarchy is just the eigenvalue problem for the point-vortex 
model. As long as uo is not defective it is easy to see (by transforming the problem 
to the frame of reference formed by the eigenvectors) that u1 = 0, Z ,  = 0. 

(A,, - c0 1) 2, = 0, 

(A0 - ~0 1) 2 1  = ~ i z o ,  

(A, - v,/) Z,  = c1 2, - (A, - g2 /) 2, - E, B,. 

B, can then be computed from (33), which now becomes 

D-, Bo + c-, 2, = 0 ,  (35) 
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as B, = 
problem, 

(36) 

This problem can usually be solved only for single particular column vectors Z,, in 
the original eigenspace of go. The particular case in which the problem can be solved 
for a two-column matrix, spanning the full original eigenspace, corresponds to the 
case in which the perturbed matrix also has a double non-degenerate eigenvalue. 

C-, 2, and substituted into (34c), giving the generalized eigenvalue 

- (Ao- go / )  Z, = (A, -€,DI; C-, -cT,/) Z, 3 (M-v,/) 2,. 

5. Stability of the collective mode 
In the case of the vortex street, we are interested in that range of the parameters 

(K ,H) ,  around the critical point ( K ~ , H ~ ) ,  in which the variation of the original matrix 
compensates the O(e4) effects of non-zero area. Since the derivatives of A with respect 
of those two parameters do not vanish a t  the critical point, the region of interest can 
be expected to have a size which is also 0 ( e 4 ) .  Away from this region the eigenvalues 
of the perturbed problem are just slightly modified versions of those of the point 
vortex model, and the stability behaviour does not change substantially. 

The computation of the perturbation matrices needed in (32 )  and (36) is difficult 
to do by hand, but can be readily adapted to automatic symbolic manipulation. As 
before, we have used REDUCE (Hearn 1983) to obtain the necessary expressions. 

From (36) is is clear that  we only need to compute the leading term of the evolution 
equation for b", and the first two terms of the equation for 5. Moreover, if we are only 
interested in studying the behaviour of the eigenvalues near the critical point, we 
just need to study the local behaviour of the matrices in that neighbourhood. In  
particular, all the matrices, except A,, can be evaluated a t  the critical point, and 
A, can be expanded in powers of K - K ,  and H - H , ,  keeping only the linear terms 
which are absorbed into A,. The result is 

where 

M =  x6 

- 1  0 0 0  
Ao=:.2[ 0 - 1 0 0  ; 0 1 0]> 

0 0 1  

P+a, R tQ -&Q 
-R -P+a, &Q -+Q 

tQ -&& -P-a, R 
i$Q -iQ - R  P-a, (37) 

The complete expressions for these matrix, a t  arbitrary values of K and H ,  are given 
in the Appendix. The matrix A, has two double non-defective eigenvalues. The first 
observation is that interchanging, in (36), the components Zl, Z2 with Z4, Z3, is 
equivalent to switching the signs of c0, g,, and K - x. A consequence is that i t  is pos- 
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! ! \ 
, K = L  

FIGURE 1. Stability diagram for the perturbed vortex street, showing the splitting of the stability 
‘crossing’. Each of the two symmetric crosses corresponds to a different double eigenvalue. 

sible to study only the perturbation of one of the double eigenvalues (e.g. - & c z ) ,  
and reverse all the signs for the other one. 

For that eigenvalue, the matrix Ao-u0/ vanishes identically except for the 
bottom 2 x 2 diagonal block, and any vector with its two last components equal to 
zero is an eigenvector of the unperturbed system. Under those conditions, (36) 
reduces to a standard eigenvalue problem for the top 2 x 2 diagonal block in M, 

where v is arbitrary. The condition that (39) has two independent eigenvectors is that 
R = 0 and a, + P = a2 - P,  which corresponds to values, 

At this new critical point the eigenvalue perturbation uzc = $( 1 + Q2) is still real, and 
the corresponding solution is neutrally stable. In its neighbourhood, it follows from 
(39) that the perturbed eigenvalues are 

2x4 
(T = ~~;++7~(2/2-xH,)  

The situation is the same as for the point-vortex model. The neighbourhood of the 
critical point is divided into four sectors, alternately stable and unstable. Moreover 
the line H = HL, which corresponds to all the modes of a vortex street with just the 
critical separation between rows, is the only line H = constant which lies completely 
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in the stability region. There are, in fact, two different 'crosses' situated at  the same 
value of H, but symmetrically with respect to K = IT. They separate the ( K ,  H)-plane 
into the stability regions shown in figure 1, but do not create any new segment of 
stability or instability for H. At the point vortex approximation, ( E  = 0), both crosses 
collapse into a single (double) one, but the qualitative stability behaviour does not 
change. 

It is interesting to look in detail into the mechanism by which the cross is 
preserved in the finite area model. The condition for (39) to have a double non- 
degenerate eigenvalue is that the matrix be a multiple of the identity. This generates 
three conditions for the elements of any arbitrary 2 x 2 matrix, which normally 
require the degrees of freedom of three parameters to be satisfied. Taking those 
parameters to be K ,  H and either Q or e, we would expect the cross to persist only for 
a one-dimensional family of combinations of the latter two. Only because of the 
particular symmetry of the matrix in (39), in which the two off-diagonal terms differ 
only in sign, is it possible to satisfy the cross with just two independent conditions, 
and with just two parameters (e.g. K and H), independently of the other two (Q, e ) .  
That is, or an equivalent symmetry, persists to all orders of approximation, when 
other harmonics are taken into account, is guaranteed by the general arguments in 
J imhez  (1987). 

6. Discussion 
We have presented an asymptotic perturbation model for the two-dimensional 

inviscid vortex street when the point vortices of the K6rman model are substituted 
by small uniform patches of vorticity. We have shown that, a t  least to the accuracy 
of the perturbation expansion, O(S2) ,  it  is possible to have equilibrium vortex streets 
in which the areas of the vortices in both rows are different. Moreover, even in this 
case, the stability properties of the street do not change qualitatively with respect to 
the point model. In particular, all vortex streets contains a finite range of unstable 
modes, except for a critical separation, which barely avoids instability. The stability 
diagram is characterized by two diagonal 'crosses ' which separate sectors of stable 
and unstable modes in the ( K ,  H)-plane. These crosses are located a t  a common value 
of H ,  symmetrically with respect to K = rc, a t  the points 

-- KA-IT IT2 (1  + Q 2 ) S x "  - 4.63089(1 +Q2)S2, - +  
27~ - 4( 4 2  - x H C )  

HA-H, = ----(l+Q2)LS2 rc 0.55536(1+Q2)X2. 

4 d 2  

Therefore, a vortex street whose rows are separated by Hh, is the only one that is 
barely stable. 

This result agrees with the numerical evidence in MSS for streets with rows of 
equal areas, and with the general arguments in Jimknez (1987). For Q = 0, the 
numerical values in (42) can be compared directly with those obtained in MSS. Their 
result for the coefficient of the wavenumber perturbation, K; ,  and for the aspect ratio, 
HA, are 4.63 and 0.557, in excellent agreement with (42). 

It is also interesting to compare our results with those of Kida (1982), who also 
uses an algebraic expansion of the equations of motion, for the symmetric vortex 
street, valid to O(S2). There are two points that need to  be considered. First, in Kida, 
the final results differ from ours in that the stability cross disappears and is 
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substituted by a finite interval of linear stability. This original version, however, 
contains algebraic errors which were corrected in MSS (p. 190) after a private 
communication from Kida. 

After receiving a preprint of the present paper, Kida, in a private communication, 
has pointed out that the corrections to his results published in MSS still contain 
errors, and that the formulae that should be used are, in the notation of Kida 

A ,  = A ,  = S( - 2EG + 2IJ) ,  

B, = -s(E2 +G2 + I 2  + J 2 - F H ) ,  

C, = C,, = -sFK, 

D, = s ( ~ E I - F L + ~ G J ) ,  

(1982),  

B, = s(E2 +G2 + I 2  + J 2  + F H ) ,  

D,  = - s (2EI+FL+2GJ) ,  

where s = P2/2,n2 = $e4, in our notation. 
Once the corrected values are used, the cross reappears, and the stability matrix 

coincides with ours, as given in the Appendix, for Q = 0. There is still a minor 
discrepancy between our results and those of Kida in that the signs for C,,C, are 
different in both cases. This sign only appears in the real part of the eigenvalues, and 
does not influence the position of the stability boundary. It is our belief that it is 
very difficult to carry out successfully an algebraic expansion of this magnitude 
without the help of a symbolic manipulation. Even with this help, errors are as 
difficult to avoid as in numerical programs, and it is important to introduce as many 
consistency checks as possible. In  fact, i t  was only after comparison with the 
numerical values in MSS that we were able to locate a (spelling) error in our algebraic 
program. Most probably, the remaining sign discrepancy derives from one such 
undetected error either in our expansions or in Kida’s. 

The second point to be considered is the validity of the expansions in Kida (1982). 
There are two open questions in this respect. First, Kida uses explicitly a ‘coarse 
grained’ approximation in which the second harmonic is substituted by its 
equilibrium value and its high-frequency internal oscillations are neglected. 
Secondly, he computes the eigenvalues of the perturbed problem by writing directly 
the characteristic determinant of the equivalent (32) .  This implies retaining terms 
which are O(S2),  even if the elements of the matrix are only valid to O(S2).  I n  both 
cases Kida claims that the neglected terms are not important, but offers no proof. 
Both approximations are justified here. The first one is equivalent to the use of (35) ,  
which is just an expression of the equilibrium of the second harmonic. The second one 
is made precise by the formal expansion in the (30)-(36).  

This work was initiated during a extended stay at the Department of Applied 
Mathematics of the California Institute of Technology. I want to thank that 
Institutiori for support and, especially, to thank P. G. Saffman for many fruitful 
discussions. 

Appendix 
We give here full expressions for the matrices A,, and M a t  an arbitrary point, not 

necessarily close to the critical one. We also give expressions for the various functions 
which appear in the matrix elements and which are defined in terms of infinite sums 
similar to the one in (20) .  Whenever the same symbol is defined here and in the body 
of the paper, both definitions are identical, and have just been recast in terms of 
different basic variables. Also, when symbols are defined using the notation, the 
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upper sign corresponds to the first of the two symbols separated by commas in the 
left-hand side of the equation. The matrix A, takes the form 
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