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A boundary-layer analysis is presented for the two-dimensional nonlinear convection 
of an infinite-Prandtl-number fluid in a rectangular enclosure, in the limit of large 
Rayleigh numbers. Particular emphaais is given to the analysis of the periodic 
boundary layers, and on the removal of the singularities that appear near the corners 
of the cell. It is argued that this later step is necessary to ensure the correctness of 
the boundary-layer assumptions. Numerical values are obtained for the heat transfer 
and stress characteristics of the flow. 

1. Introduction 
It is generally accepted by now that natural convection in the Earth’s mantle is 

the driving mechanism for plate tectonics. This has produced a renewed interest in 
the study of natural convection in enclosures, resulting in numerous studies of 
simplified models which may throw light on the underlying mechanism controlling 
the behaviour of the mantle. Perhaps the simplest of those models is a Boussinesq 
fluid confined between stress-free boundaries and heated from ,below. Even if the 
direct relation to mantle convection is doubtful, especially with the aasumption of 
the stress-free upper boundary, this model haa the virtue of simplicity and corres- 
ponds to a geometry which has been studied for a long time at different regimes 
(Rayleigh 1916; Chandrasekhar 1961 ; Brindley 1967). 

The range of parameters that is of interest for the mantle is that of an essentially 
infinite Prandtl number, Pr x loes, and a relatively high Rayleigh number, 
Ra x lo6 (Turcotte & Oxburgh 1967). Under those conditions, viscosity is dominant, 
and the preferred mode of convection is believed to be steady two-dimensional rolls 
(Strauss 1972; Jones, Moore & Weiss 1976), formed by a central isothermal core and 
thin thermal layers (Turcotte 1967). This will be the case considered here. 

Except for the original motivation of the mantle convection, we will treat the 
problem as one of intrinsic theoretical importance, and we will be interested mostly 
in developing methods of solution for it, in the limit of large Rayleigh numbers, and 
in clarifying the possible singularities that appear on the asymptotic regime. 

Numerical simulations of the flow have been published by Moore & Weiss (1973) 
and McKenzie, Roberts & Weiss (1974), using finite differences schemes, and by 
Veronis ( 1966), using spectral methods. More complicated models, including 
temperature-dependent viscosity and other real fluid effects can be found in (Torrance 
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& Turcotte 1971a, b; Olson & Yuen 1982), and a numerical scan of different 
convection regimes including different Prandtl numbers and unsteady effects is given 
by Arter (1985). 

While these studies are important displaying the ‘phenomenology’ of the problem, 
they do not provide much understanding of the physics behind the phenomena. Our 
belief is that simpler models have to be understood before dealing with the more 
complicated cases which are representative of real life. 

Moreover, classical finite difference, finite element and spectral methods become 
increasingly inaccurate and difficult to use for large Rayleigh number, owing to the 
need to resolve the thermal boundary layers. 

The first asymptotic treatment of the problem is due to Turcotte (1967) and 
Turcotte & Oxburgh (1967), who gave a good analysis of the overall flow structure 
but used a relatively crude approximation for the thermal boundary layers them- 
selves. Later Roberts (1979) and Olson & Corcos (1980) presented improved boundary- 
layer analysis, but we believe them to be incorrect (see $6). Moreover, none of these 
authors pay attention on the problem of resolving the singularities that appear in 
the limit of infinitely thin boundary layers. Even if these singularities do not have 
a large influence in the computation of integral quantities like the total heat flow, 
they are certainly locally important for properties such as the topography of the free 
surface or the maximum heat flux. Even more important, until it has been shown 
that these singularities can be removed by a local analysis and integrated into a 
uniformly valid solution for the complete problem, it is not guaranteed that the 
solution actually exists, and that the assumptions that lead to the boundary-layer 
approximations are justified. We will come back to this problem below. 

As a further demonstration that the analysis of even this comparatively simple 
model is still not satisfactory, we will see later that the present estimates for the total 
heat transfer coefficient for a complete cell vary among different authors by up to 
30 yo, without a clearly defined best value. 

Motivated by these considerations, we have developed a new boundary-layer 
analysis for the stress-free Rayleigh-BBnard convection in the limit mentioned above, 
paying special attention to the cyclic thermal boundary layers, and to the resolution 
of the singularities that appear, in the asymptotic limit, near the corners of the cell. 
In  the next section we state the problem and present the solution for the isothermal 
core. The boundary layers are treated next, and $5 contains the analysis of the 
corners. 

2. Statement of the problem 
Our model consists of a Boussinesq fluid with infinite Prandtl number moving 

under convective forces between two horizontal surfaces that are kept at different 
constant temperatures. Let Tb and T, be the temperatures of the lower and upper 
surfaces, and let Tb > T, (see figure 1). We are interested in flows with a two- 
dimensional structure of cells arranged periodically in the s-direction. The depth of 
each cell is hn, and its length Ahn. Under these assumptions the dimensionless 
equations that describe the motion of the fluid can be written, in terms of the stream 
function and the temperature, as (Olson & Corcos 1980) 
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FIWRE 1. Geometry of the flow. 

where the dimensionless variables are defined aa 

and !P and (X, Y) are respectively the physical stream function and coordinates. The 
Rayleigh number is de&ed aa 

d T b - T u )  ha 
V K  

Ra = 3 

where K is the thermal diffusivity, g is the acceleration of the gravity, v is the 
kinematic viscosity, and a is the coefficient of thermal expansion, all aasumed 
constant. The parameter a, which turns out to be of order one, is defined aa 

a = ($$ 
and Nu is the Nusselt number that we define aa 

(3) 

Here Q is taken to be the total heat flux through the upper surface of each cell. 
A priori, Q is unknown, and has to be found aa a part of the problem but, as we 
will see below, the use of this parameter introduces important simplifications in the 
resolution of the problem. 
U, is a characteristic velocity of the flow, defined as 

u, = K (y. 
h a  

When the Rayleigh number is large, the flow in each cell is formed by an isothermal 
core surrounded by a thin thermal boundary layer that carries all the heat, and whose 
thickness is of order Raf (Turcotte 1967). The boundary layer is heated by 
conduction at the bottom, rises by buoyancy forming vertical plumes, and releases 
its heat through the upper surface by conduction. After that, the cold layer sinks, 
because of the negative buoyancy, closing the cycle. 

The axes of the plumes separate the cells and are axes of symmetry of the problem. 
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They act as adiabatic vertical walls, from the thermal point of view, and as free 
surfaces from the dynamical point of view. Also, we will assume that the two 
horizontal surfaces are stress free. 

The boundary conditions that complete the problem are 

From the analysis of equations (l), (6) for large Ra, i t  can be shown that the solution 
in the core admits the following asymptotic expansion 

where e = (Ra/cr)i. To study the flow inside the plumes we introduce a transverse 
stretched coordinate x by introducing 2 = ex, and the asymptotic form of the solution 
becomes 

(8) 

The coupling between the core and the plumes can be obtained by integrating the 

1 G(2, Y) = €Go@, Y) +e2G1(2, Y) +0(e3), 

a(?, y) = a,($, y) + &2, y) + 0 ( e 2 ) .  

momentum equation across the plumes for constant y. 

where p(Ra) is chosen such that p(Ra)  + O  and ,u(Ra)/e+ 00 as Ra+ 00. I n  this limit, 
the leading term of the expansion for (9) becomes 

where y is the ratio between the heat carried by the ascending plume and Q. Since, 
in the first approximation, there is no heat transfer between the core and the plumes, 
y is independent of y. 

The uniform temperature in the core 8, can be determined by a contour integral 
around the cell (G. M. Corcos, private communication), 
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where 8, is the temperature at the cell boundaries. It follows from symmetry 
arguments that 8, = ?j and y = 4. 

At this point we can write the equation for the leading term of the isothermal 
motion of the core as 

with the boundary conditions 
V4$, = 0, (12) 

where the only parameter is A, the aspect ratio of the cell. 
We have integrated this equation numerically by using a pseudospectral method 

(Jimenez t Zufiria 1984). It can be shown, by a local analysis of the equation, that 
the vorticity becomes singular at the four corners of the cell, and it was necessary 
to isolate these singularities from the spectral expansion, in order to get a good 
convergence of the numerical method. The local behaviour of the stream function and 
of the vorticity near the corners is given by 

I r; $, = - (sin@-sin@), 
2 

w = -V2yF0 = r-i sin@, 

where r and 4 are polar coordinates centred at the corner. 
Plots of the streamlines for two different cells and of the vorticity distribution are 

given in figure 2. The vorticity is dominated by the singularities at the corners, all 
of which are equivalent in this approximation because of the symmetries of the 
problem. Note that the variables obtained here are dimensionless, and cannot be 
related to physical quantities until the scale factor is computed from the thermal 
behaviour of the boundary layers. In  return, the core flows discussed here are 
universal and can be computed in terms of the elongation A. 

3. Thermal boundary layers 
To describe the evolution of the thermal boundary layers we introduce a new system 

of coordinates (a,n), where a is a downstream coordinate in the layer and n is a 
transverse coordinate, normal everywhere to the wall and measured inward from the 
boundary (figure 3). Note that 8 runs around the cell and is really formed by patching 
together the four sides of the cell into a single continuous line. We will assume that, 
at the points of suture that correspond to the corners, the temperature in the 
boundary layer is continuous, except at the wall where the boundary conditions 
impose discontinuities. This is equivalent to the assumption that there exists a corner 
region, small with respect to the dimensions of the cell, in which the velocity 
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FI~URE 2. Streamlines and vorticity distribution for the isothermal core flow in rectangular cells. 
(a) Streamlines, A = 1.5, distance among streamlinea is A@ = -7.2 x 10-8. (a) Streamlines, 
A = 2.5.A@ = -6 x lo-*; note how flow separates into almost independent eddies. (c) Vorticity, 
A = 1.5, maximum dimensionless vorticity represented in plot is -3.32. 
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e = i  3 
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FIGURE 3. Coordinate system and general geometry for analysis of boundary layers. 

distribution is smooth and without recirculation, and where the temperature may be 
assumed to be passively convected along the streamlines. The validity of this 
assumption will be justified in $5, when we treat the corner flow in detail. 

For large Ra, and stream-free boundaries, the velocity within the boundary layer 
depends, in the first approximation, only on 5. Rescaling the transverse coordinate 
with (a/Ra)t, to have a thickness of order unity, the equation for the leading term 
of the temperature distribution t90(5, n) in the layer is 

At the boundary (n = 0) the temperature is known at the segments corresponding 
to the top and bottom surfaces, and the heat flux has to vanish at the segments 
corresponding to the two vertical plumes. As n-+co, on the other hand, the 
temperature distribution has to match to the isothermal core and so+& These 
conditions complete the problem. 

Equation (15) can be simplified by introducing the Crocos stretching 

I f = U(s)ds, 
0 

U(5) dn = tU(s )  n, 

which reduces (15) to the heat equation, 

The temperature distribution in the layer can now be written in terms of the 
temperature at the wall and of the temperature distribution in an upstream 

3 FLX 178 
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transverse section. If 8, is the temperature at  the wall and g ( 7 )  = ao(0,a) ,  the 
temperature anywhere in the boundary can be expressed as 

+'r 'IV('gp) exp-fdp. (18) 
x2 0 P2 P 

This expression can be simplified by using the fact that the problem is periodic, 
with each period corresponding to one loop, and by moving the initial section several 
periods upstream. If we add N loops to the previous equation, it becomes 

exp--dp, a2 (19) 
P 

where L is the length of a single loop of the boundary layer in stretched variables, 
r 

8, is a periodic function with period L. Taking now the limit N+m,  the first 
integral in (19) vanishes and the equation simplifies to 

which is a function only of the temperature at  the wall. 
From the boundary conditions we know 8, on sides 1 and 3 (top and bottom of 

the cell). To determine i t  on the other two sides, we derive the expression for the heat 
flux at the wall by differentiating (21), and equate it to zero along the plumes; 

This is an integral equation which should hold on sides 2 and 4, and whose solution 
allows us to compute 8, along those sides and, through (21), the temperature 
everywhere in the boundary layer. Notice that the equation is not homogeneous 
because 8, = 1 on the lower surface. 

In particular, the dimensionless heat flow carried by the plumes can be expressed 
in terms of 8, as rF 

where t; represents the section in which the flux is computed, and the equation has 
to be independent of 5. Since the only unknown in (23) is now (T, this equation can 
be used to compute (T and, therefore, to fix the physical scale of the whole problem. 

Note that the inner integral in (23), 

5 

5-t 
(@w(7)-@o)d7, 
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is a periodic function of q with zero mean value. This is LL necessary condition for the 
integral in (22) to be convergent, and constitutes, in fact, a new proof for equation 
(11) .  

In  summary, the solution procedure for the complete problem of the flow in the 
cell is the following. For a given aspect ratio A,  we compute the flow in the isothermal 
core, except for the scale factor cr. This allows us to compute the velocity near the 
walls and the stretched lengths of the four cell sides ( l , ,  l , ,  I ,  = I , ,  1, = 1 2 ) .  We then 
solve the integral equation (22) to compute the temperature distribution along the 
axes of the vertical plumes and use (23) to determine the scale factor cr, closing the 
problem. If desired, (21) can be used to compute the temperature distribution 
anywhere in the boundary layer. 

4. Numerical solution of the thermal problem 
The wall temperature 8, and the heat flux to the wall vary discontinuously when 

the thermal boundary layer approaches the corners of the cell. To solve numerically 
the integral equation (22), these discontinuities have to be taken explicitly into 
account. This is especially true in the evaluation of integral (23), which is needed to 
compute the scale factor cr. As mentioned above, this integral makes sense only if 
the average value of the inner integral is identically zero, and small numerical 
integration errors can lead to large errors in the final result. 

Downstream from the corners between the sides 2, 3 and 4, 1, the temperature is 
fixed by the boundary condition. Since the boundary-layer equation is parabolic, this 
means that the temperature itself is discontinuous. It follows from the heat equation 
(17) that, downstream from these discontinuities, a@,/aq cc E-i, which is equivalent 
to a@,/an cc 5-f. A t  the other two corners, the temperature is continuous, but the 
temperature changes as @, (equivalent to st )  as it leaves those corners. 

To minimize the numerical accuracy problems produced by these discontinuities, 
we isolate the leading term of the singular behaviour of the wall temperature 
distributions along the vertical plumes. Taking into account the symmetries of the 
problem, 

(24 ) 

@wp(.g) = 1 - A 7 h - q 7 ) ,  

@,,(El = A7i+e(74), 

7 = [ - - 1 1 ,  r4 = ~ - 1 , - 1 2 - 1 3 , ~  

where O ( 7 )  is continuous and O ( d )  as 7+0. If we substitute these expressions in (22) 
and integrate the singular parts, we get the heat flux on side 2, 

The last integral in this equation is not singular, but for numerical purposes, it is 
better to express it as a sum over all the L-period loops. With the change of 
coordinates E-q = k L - y  we get 

3-2 
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which, using (24) becomes 

where the function W is defined as 

- sin-’ 
1 

k-l [ z  - 1 + kL/l,]i 
W(2)  = 2 E { 

All the series in these equations converge very slowly, but the asymptotic 
behaviour of their ‘tails’ is easy to estimate, and can be used to accelerate the 
numerical summation. In  this way, we are able to compute the sums to 15 significant 
digits with only 40 terms. 

All the terms in equations (25)-(28) are now well behaved in the whole interval 
(0, I t ) .  The equation can be solved numerically by satisfying it at n+ 1 equidistant 
points in the interval, including the two end-points. The first n independent variables 
are the values of e(7) at 7t = iZ2/n, i = 1,2,  ..., n. The value of 8(0) is zero by 
construction, and its place as independent variable is taken by the coefficient A .  Note 
that, at 7 = 0 the third term in (25), vanishes without singularity, and the equation 
can be used at  that point without special precautions. 

Figure 4 shows the wall temperature, the heat flux to the wall, and the tangential 
velocity at the wall computed for a particular value of the elongation. The 
singularities of the heat flux, and the behaviour of the temperature and the velocity 
near the corners are all clearly visible. Table 1 gives the Nusselt number per unit 
length computed as a function of the cell elongation. The numerical accuracy cited 
in the caption to the table is mainly limited by the number of harmonics (in this case 
20) used in the spectral calculation of the core flow. Figure 5 shows the temperature 
distribution across the boundary layer a t  several points along the rising vertical 
plume and the top horizontal surface. It shows the approach to the self-similar 
temperature distributions at the end of both sides, and the formation of a hot 
‘asthenosphere’ underneath the top boundary. Because of the symmetry of the 
problem, the two other sides are symmetric to the ones shown. 

5. Cornerflow 
The boundary-layer solution that we have considered up to now is valid everywhere 

except near the corners of the cell, where both the vorticity and the heat flux become 
infinite. We develop in this section a local analysis for these regions, with a view to 
resolving the infinities, and constructing an uniformly valid solution. Besides the 
‘practical’ result of providing a number for the maximum velocity and heat flux, this 
has the effect of showing that a solution can be constructed, and serves as a check 
for the assumptions made on the structure of the flow and, in particular, for the 
separation into a core flow and a boundary layer. 

It will be shown below that the equation for the stream function in the corner region 
is elliptic and has inhomogeneous boundary conditions along the walls and at infinity. 
Under those conditions, it is not guaranteed that a solution exists, and the existence 
of a solution is itself a proof of the consistency of the boundary conditions. Since, 
in our problem, those conditions result from the solution of approximate equations 
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(4 U 
r I 

FIQURE 4. Thermal solution for boundary layers. All variables are dimensionless variables used in 
the paper. Notation for tangential coordinate corresponds to  figure 1 ; A = 1.4. (a) Temperature 
at the cell wall. (b) Heat flux. (c) Tangential velocity at the wall. 

A 
0.2 
0.4 
0.6 
0.8 
1 .o 
1.2 
1.4 
1.6 
1 .a 
2.0 

U 

12.11 
6.894 
4.919 
3.927 
3.384 
3.074 
2.892 
2.784 
2.721 
2.683 

N ~ ~ A R ~  

0.1797 
0.1906 
0.1992 
0.2017 
0.1908 
0.1865 
0.1734 
0.1596 
0.1463 
0.1341 

TABLE 1. Values for the velocity scale factor (a) and the Nusselt number per unit length, as a 
function of the cell aspect ratio. Estimated accuracy of the results is three significant figures. 

lacking some of the terms of the full equation, the existence of a solution is a 
consistency check on the approximation procedure. 

In  fact, the same analysis presented here for a cell with stress-free horizontal 
boundaries was applied by us to the case in which the velocity on the top and bottom 
surfaces is made zero. The whole procedure went through, but we were unable to get 
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x = o  
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FIGURE 5. Temperature profile across the boundary layers; A = 1.4. ( a )  Vertical rising plume. 
( b )  Top horizontal surface. Flow is from left to right in both cases. Note formation of a hot 
asthenosphere underneath the top boundary. 

a consistent solution for the corners. We considered that to bc an indication that the 
boundary-layer approximation is not appropriate in that case. 

We will concentrate here on the corner between sides 2 and 3 (figure 6). It is clear 
from the symmetry of the problem that the corner 4-1 is equivalent to this one, while 
the other two are different, but can be analysed in a similar way. 

The corner region is actually a part of the thermal boundary layer, where the 
buoyancy forces are important but, now, the velocity can no longer be considered 
approximately constant. As a consequence, the corner is defined as a region in which 
the buoyancy and viscous forces are in balance. This occurs at a linear scale of 
O(Ra-t), which is larger than the thickness of the thermal boundary layer, which is 
O(Ra-4). Consider the following stretching 

I r* = (Racr2/33)tr, 

+* = (Rau2/33)b+, 

0* = /3(0-0,), 

and 0, is the temperature a t  the plume axis when the plume reaches the corner, which 
is known from the boundary-layer solution computed above. 
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't / *  

FIQURE 6. Coordinate system and geometry of the corner. 

With this stretching, equations (1 ) become 

The first consequence of these equations is that, as Ra+ 00 the heat conduction 
can be neglected inside the corner. In  fact, it  is only important in an infinitely thin 
layer, O(Raf) ,  near the horizontal top surface, where the temperature has to fall to 
zero to mtisfy the boundary condition. Inside this layer the temperature variation 
is large but, since the layer is horizontal, buoyancy forces are negligible and the 
stress-free condition can be applied across it. Everywhere else the temperature is 
constant along the streamlines and depends only on the stream function, 
@* = @*(+*). This function is determined by matching upstream to the temperature 
distribution in the thermal boundary layer. 

In the limit of large Ra, by the time that the plume reaches the upper corner, its 
temperature distribution has already attained the self-similar value 

where the stars have been dropped to simplify the notation. Introducing this 
distribution in (31), we obtain a single equation for the stream function 

We know the values of the stream function and the vorticity both at the walls and 
at infinity. On the walls, $ = w = 0. As we move away from the corner, the inner 
solution that we are considering here has to match the behaviour of the outer solution 
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as it approaches the corner. Introducing polar coordinates, this behaviour is given 
by (14) everywhere except near the vertical wall. There, we find the vertical plume, 
within which the stream function and the velocity are still given in first approxi- 
mation by (14) but the vorticity is not. This is also clear from the fact that the 
vorticity distribution in (14) does not tend to zero as it approaches x = 0. 

While it would be possible to impose the boundary condition far enough from the 
corner that the vertical thermal layer could be modelled as a discontinuity at the 
vertical wall and that (14) could be used everywhere except strictly at  x = 0, i t  is 
more efficient to form a composite vorticity distribution that includes approximately 
the effects of the buoyancy forces inside the plume. Integrating the momentum 
equation across the plume in the same way as in (9), and using the temperature 
distribution (32) ,  we get a vorticity distribution in the plume 

where v is the vertical velocity a t  the plume, obtained from (14). This vorticity 
distribution vanishes at  the wall and matches (14) away from it. From both solutions 
we can construct a uniformly valid approximation that can be used as a boundary 
condition a t  large y, 

where 9 is given by (14) and decreases away from the wall. Note that as r increases, 
the thickness of the thermal layer decreases, as expected. 

Neither (33)  nor the boundary conditions contain any parameter, and the solution, 
once found, is universal. We have obtained it numerically using a naive first-order 
difference scheme in $ and w ,  and a variable mesh designed to deal with the infinite 
domain. Both the difference scheme and the mesh generation are described in the 
Appendix. The solution is presented in figure 7 ,  with the sign of the vorticity reversed 
for clarity. Note that the singularity of the vorticity in the outer flow is smoothed 
here to a finite peak. 

In the inner region very close to the corner, the velocity gradients become large, 
the viscous terms are dominant, and the flow becomes irrotational, 

The effect of the corner is to adapt this locally irrotational flow to the outer solution 
in the isothermal core. This is shown in figure 8, which shows the variation of the 
tangential velocity along both walls in the vicinity of the corner. The inner region 
shows the linear slope characteristic of (36) ,  while the outer part matches the square 
root behaviour of (14). 

The evolution along the top horizontal boundary is specially interesting. Near the 
corner, this wall supports a thermal layer which is thin even at  the scale of the corner 
region, and can be modelled by the boundary-layer equation (15). The boundary-layer 
coordinates are now s = z and n = - y, and from (36) ,  U(S)  = Ks. The Crocos 
stretched variables are then E = ?jKa2, and 7 = ?jKsn, and the heat flux in Crocos and 
physical variables is related by 
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0 4 8 

8 

FIQURE 7. Local solution for corner flow corresponding to corners 2-3 or 1 4  in figure 1.  (a)  
Streamlines. Incoming thermal plume rises on the left; free surface on top. Distance among 
streamlines, A+* = - 1.85. (b )  Vorticity. Note how the singularity in the outer core flow is smoothed 
to a finite peak. Maximum vorticity, w* = -0.296. 
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10 

u*, 0. 

1 

0.01 / 
0.1 1 10 100 

x*,  Y* 

FICHJRE 8. Tangential velocity at the walls of the corner solution as a function of the distance to 
corner. Note transition between inner and outer solutions. Last point to the right represents the 
edge of the numerical mesh in both cases. 0, u*(z*): A, u*(y*). 

In  the Crocos variables, the thermal layer sees just a discontinuous temperature 
jump from 0 = 1/& which is the value of (32) at the wall, to the boundary value 
0 = 0. The heat flux corresponding to this jump is 

Therefore, the heat flux is also made finite with a characteristic value given by (38). 
An approximate value for K ,  derived from the numerical solution is 0.4. 

6. Discussion and conclusions 
We have presented a boundary-layer analysis of a simple model of natural 

convection between stress-free surfaces in the limit of infinite Prandtl number and 
large Rayleigh number. An important result of the analysis is the Nusselt number 
per unit length (table l ) ,  which can be used to compare our results to  those of previous 
investigators. This is done in figure 9 which shows that previous results disagree 
substantially with each other and with the values derived in this paper. It is our belief 
that  the model has never been treated with the required precision. 

Moore & Weiss (1973) use a finite-difference scheme on a uniform grid, with 
Pr = 100 and Ra = 15000-30000. Their densest grid contained 48 horizontal inter- 
vals, which are not sufficient to resolve a boundary layer of order Ra-: (the authors 
incorrectly use as their estimate for thc boundary-laycr thickness (Ra/Ra,)-:, where 
Ra, 657 is the critical value for stability). Vcronis' (1966) spectral calculation 
suffers from a similar lack of resolution, and that is also true of most of the other 
purely numerical calculations. As pointed in $ 1 ,  it  is very difficult to reach adequate 
resolution a t  large Rayleigh numbers without taking special precautions at the 
boundary layers. 

The asymptotic analysis of Turcotte (1967) is essentially correct, but he makes no 
attempt to include treatment of the thermal boundary layers, and his numerical 
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FIGURE 9. Nuaselt number per unit length as a function of cell aspect ratio. Solid line, this paper; 
0, Roberts 1979; 0, Olson & Corcos 1980; A, Veronis 1965; V, Strauss 1972; 0,  Moore & Weiea 
1973; 0, Turcotte & Oxburgh 1967. 

results can only be considered as rough approximations. Olson & Corcos (1980) state 
the equation for the boundary layer correctly but, in their solution, they assume that 
the vertical plume satisfies the self-similar profile derived from a point source, and 
thus neglect the effect of closed streamlines. This is only approximately true. 
Moreover, they do not take into account explicitly the effects of the singularities in 
the flow, and their numerical results have low accuracy. Roberts (1979) recognizes 
the effect of periodic conditions in the boundary layers, and tries to solve the 
equations by a spectral method modified to take into account the discontinuities in 
temperature. However, he uses auxiliary discontinuous functions which do not satisfy 
the equations across the discontinuities, and his numerical results are wrong. 

We believe that our analysis provides a correct complete solution for the flow. The 
local analysis of the corners gives both numerical values for maximum stress and heat 
flow, and shows that a consistent uniformly valid solution can be constructed. This 
is always important in elliptic problems, like this one, in which existence is not 
guaranteed and serves to check the validity of the asymptotic assumptions. As 
pointed out before, we have found cases in which this does not appear to be possible, 
probably pointing to a failure of the boundary-layer approximation. 

Finally, our analysis includes a semi-analytical study of a thermal boundary layer 
with closed streamlines. This is a problem that has not been extensively treated in 
the literature. 

One of us (J . A.Z.) was supported in part during his work by a fellowship from the 
Spanish Department of Education under the program of Formation of Research 
Personnel. The computing was carried out on the 370/158 computer of the IBM 
Madrid Scientific Centre. 
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Appendix. Numerical treatment of comer equation 
Equation (33) can be rewritten in terms of the vorticity as 

V 2 $ + W  = 0, 

The difference scheme that we have used to approximate the differential operators 
is the following, 

where h . = x - x .  = y - y  
2 f 2-1 2 2-1' 

A similar scheme has been used to discretize V2w. 
The mesh was chosen to be sparser in the outer part of the region, where the 

gradients are smaller, and was generated to keep the integration error approximately 
constant in that region. The worst truncation error is the one associated with the 
discretization of the Vz$ operator, and is given by 

Using (14) to estimate the behaviour on $ in the outer region, and taking into 
account that the integration error in $ is proportional to h27, we find that the 
condition for the error to be constant is equivalent to h2Ah cc xi. It is easy to see that 
this condition is approximately satisfied by h, cc k!. The actual law used was 

(A 4) h, = 0.1 ki, 

which corresponds to an actual integration error of just under 
The system (A 1) was discretized to form a system of nonlinear equations, which 

was then solved using the Newtonian method. Convergence proved to be fairly 
independent of the initial guess for the solution, and we used (14) as a starting point. 
The results given in figures 6 and 7 were obtained with a 17 x 17 mesh, generated 
by (A 4). Several other mesh laws were tested, but gave worse results. From numerical 
experiments with different mesh resolutions and different domain sizes, we estimate 
that our results are accurate to three significant digits in the inner part of the domain, 
and two significant digits near the outer boundaries. 
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