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Abstract  

The behaviour of wall-bounded turbulent flows is briefly reviewed, with emphasis on areas which 
remain open and which are distinct from the problem of turbulence in general. It is argued 
that the near-wall region is reasonably well understood, at least for smooth walls, but that 
its interactions with the outer flow are not, including the question of its asymptotic behaviour 
at large Reynolds numbers. The similarity properties of the logarithmic region are addressed 
next, in view of the recent controversy about its validity. It is concluded, from an analysis of 
experimental data for the fluctuation intensities, that the classical matching argument for the 
logarithmic law is probably correct. Finally, wall flows are identified as the seat of a second, 
spatial, energy cascade, different from the classical Kolmogorov one. It is conjectured that the 
large-scale intermittency of boundary layers might reflect a pattern-forming instability of this 
cascade, possibly related to certain anomalies observed in boundary layers over rough walls. 
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1 I n t r o d u c t i o n  

Over the past  decades a lot of work has been motivated by isotropic turbulent  flows. 
While  there is no doubt  that  they are impor tant ,  and that  they raise interesting scientific 
questions, the main purpose of this paper  is to call a t tent ion to the related phenomenon of 
wall-bounded turbulence, and to the unsolved physical problems that  it  presents, different 
in nature  from those of isotropic flows. It was actual ly in wall flows tha t  turbulence was 
first recognized, and many of the earliest results refer to them [5,3]. They have continued 
to be the subject  of intense technological at tention,  being closer than isotropic flows to 
problems of practical  interest, and a lot is known about  their behaviour, but  their purely 
physical aspects have sometimes received less a t tent ion than those of the 'cleaner '  isotropic 
case.  
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The first important characteristic of shear flows in general is the presence of a mean 
velocity gradient, which makes the flow anisotropic and provides a continuous source 
of kinetic energy. Shear flows do not need large scale forcing to maintain a statistically 
steady state. Wall flows are also intrinsically inhomogeneous. Consider an infinitely long 
circular pipe. The flow is homogeneous in the axial and azimuthal directions, but the 
distance to the wall imposes a variable integral scale for the largest eddies, ranging from a 
fraction of the radius near the axis of the pipe to zero at the wall in the infinite Reynolds 
number limit. The energy is transferred locally from those large eddies to the Kolmogorov 
viscous cutoff, in much the same way as in isotropic flows, but the scale ratio across the 
cascade decreases as the wall is approached. Eventually, at any finite Reynolds number, 
the Kolmogorov and integral scales become of the same order, and the wall is isolated 
from the fully turbulent region by a thin viscous layer. 

In equilibrium attached flows the local production of turbulent energy exceeds the local 
dissipation only in the viscous layer. In the core the opposite is true, and turbulence 
is maintained by energy that diffuses from the wall. Both regions are separated by a 
layer in which the production and dissipation of turbulent energy are approximately in 
equilibrium, and across which the flux of energy from the wall to the core is approximately 
constant. In the classical view, turbulence in this layer is self-similar, and the distance to 
the wall acts as a similarity scale, leading to a logarithmic velocity profile. 

The viscous layer corresponds roughly to the dissipative range of scales of isotropic 
turbulence, the core plays the role of the energy-containing eddies, and the logarithmic 
region that of the inertial range. The classical cascade across different eddy sizes is su- 
perimposed on this spatial energy transfer. Most of the rest of this paper is devoted to 
exploring the similarities and differences between those two energy cascades, and their 
interactions. 

An excellent elementary analysis of wall flows can be found in [28] while discussions of 
the experimental evidence are given in [23,7,29]. 

2 The  near-wall  and logar i thmic  regions 

Very near the wall, the classical approximation is that the only relevant velocity and 
length scales are based on the viscosity u, and on the friction velocity 

u~ = ( % l p )  '12, (1) 

where Tw is the friction stress at the wall, and p is the density of the fluid. This is essentially 
the Kolmogorov viscous scaling, and implies that all the near-wall observations should 
collapse in these 'wall' units. While this is true for some quantities, such as the longitudinal 
velocity fluctuations [17], there are significant residual Reynolds number effects in others, 
such as the wall-normal velocities. Figure 1 compiles data from boundary layers and 
plane channels spanning almost two orders of magnitude in Reynolds number. It is clear 
from it that there is considerable experimental uncertainty in the wall-normal velocity 
components, and that the question of whether they reach an asymptotic level at very 
high Reynolds numbers can still be considered open. 
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Fig. 1. R.m.s. longitudinal (top) and wall-normal (bottom) velocity fluctuations for various 
Reynolds numbers. Wall scaling. Lines are channels, characterized by R e r  = m.ti /~, ,  where 5 is 
the channel half-width. Symbols are boundary layers, characterized by R e o  = UooO/V, where 0 
is the momentum thickness. To a very rough approximation Re~.. .~ R e o / 2 .  - - - -  , Re.~ -- 180 
[11]; - - - - -  , R e ~  = 395 [15]; ........ , R c r  = 590 [16]; - - ,  ReT- = 708; - - - o - - ,  R e r  = 1017 [30]; 
- - A - - ,  Re~. ~ 60 [10, see text]; o ,  R e o  = 1410 [26]; O, R e o  = 4981; A,  R e o  : 13052 [25]. 

At issue is the influence in the near-wall region of the outer flow, where larger structures 
contain weaker velocity gradients but larger integrated energies. The main complication is 
that, while the wall-normal velocities are restricted by the presence of the wall, the same 
is not true for the tangential components, and large-scale tangential motions are possible 
even at the edge of the viscous layer. The interaction between the tangential large-scale 
'inactive' motions and the wall-normal 'active' ones is not well understood. 

Direct numerical simulations have revolutionized the study of turbulence at small to 
moderate Reynolds numbers. Not only do numerical experiments allow observations that 
cannot be easily done in the laboratory, but they permit ' thought '  experiments in which 
the equations of motion, or their boundary conditions, are modified in unphysical ways 
to clarify particular aspects of a given phenomenon. It could argued that, as soon as a 
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given turbulent flow becomes accessible to numerical simulations, it is likely to be fully 
understood within a few years. The limitation is, of course, that  only simple flows at 
relatively low Reynolds numbers can be directly simulated with present computers [18], 
and that  this situation is likely to last for some time. 

Such numerical experiments have provided a lot of detailed information on the be- 
haviour of the near-wall region, for which the local Reynolds numbers are low if the 
interaction with the outer outer flow is neglected. As we have noted above, this is a 
region of net turbulence production, and there is convincing evidence that  it contains 
a self-sustaining autonomous 'engine', which can be studied in isolation by artificially 
suppressing the outer flow [10]. Such an 'autonomous wall' has been included in tile com- 
pilation in figure 1 as the lowest Reynolds number case. In agreement with the trend of the 
other cases, it reproduces well the magnitude of the longitudinal fluctuations, but not that  
of the wall-normal ones, suggesting again that the former are not affected by the presence 
of an outer flow, while the latter are. It can also be shown that, if this regeneration cycle 
is interrupted in a turbulent channel, turbulence decays globally [9]. 

The mechanics of the minimal unit of this wall engine are reasonably well understood 
[8,24], to the point that  fairly realistic low-dimensional models have been proposed [6]. 
It involves the interaction of low-speed streaks, which can be described as an array of 
long alternating streamwise jets near the wall, with shorter and more numerous quasi- 
streamwise vortices located near their edges. The vortices create the streaks by deforming 
the mean velocity profile, while the streaks eventually become unstable and regenerate 
the vortices. An overview of the structures present in the near-wall region can be found 
in [22], and [20] contains a recent collection of articles on their regeneration mechanisms. 

The scaling arguments mentioned in the last paragraphs imply that, if the interaction 
with the outer flow can be neglected near the wall, any suitably invariant dimensionless 
group of variables should only be a function of y+ = yu, . /u.  As we move away from the wall 
viscosity should become less important, and the classical interpretation is that  any such 
function should asymptote to a constant value. A particular example is the dimensionless 
mean velocity gradient, which should behave near the wall as 

(vlu~)ouIoy = a(y+). (2) 

If we admit that  there is a region in which (2) is still valid, but where y+ >> 1 and 
G --+ ~-a, we obtain the classical logarithmic velocity profile 

U/u,.  = ~- l  logy+ + A, (3) 

in which g is a universal constant, and A depends on the particular boundary condition 
used at the wall. This equation has recently been shown experimentally to hold over three 
orders of magnitude in wall distance in very high Reynolds number pipes [31], but its 
theoretical foundation has been challenged. The new argument is that  similarity does 
not imply that G should tend to a constant at large y+, and that other behaviours are 
possible. In particular [2] suggests that  G ,-~ y~ as y ~ co, and derives an alternative 
velocity profile by fitting (~ to a particular set of experiments. Power laws are common 
as limiting behaviours, as in critical phenomena or in the anomalous scaling of structure 
functions in isotropic turbulence [27], but the deviations from the logarithmic law are here 
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Fig. 2. Shear Reynolds stress (u~v t) (top) and wall-normal velocity fluctuations (bottom), nor- 
malized with the longitudinal velocity fluctuations. Outer scaling and only points with y+ > 100. 
Symbols are as in figure 1, except for: o , Ree = 2 x 104; v , Ree = 4 x 104; [] , Ree = 6 x 104 [4]. 

small enough that they are difficult to distinguish experimentally, and it is unlikely that 
the basic similarity argument can be settled from mean velocity data. 

The arguments leading to (3) can be used on velocity fluctuations, and imply that ratios 
of different intensities, such as (u'v')/(u '2) and (v'2)/(u ':) should be universal functions 
of y+ near the wall. In the outer flow they would be functions only of y/5, where 5 is the 
boundary layer thickness. The overlap region would correspond to the limit y/5 -+ 0 of the 
outer flow, which should agree with the y+ -+ oc limit of the wall region, and the value of 
the different ratios should be universal constants. This is tested in figure 2 for boundary 
layers and channels over a wide range of Reynolds numbers. Only points where y+ > 100 
are included in the figure, which gives some support to a non-zero universal matching 
constant in both cases, as opposed to power-laws. This in turn supports the theoretical 
arguments behind (3), although it should be noted that the logarithmic behaviour of 
the velocity profile is observed experimentally for y /5  < 0.2 in boundary layers, and for 
y/5 < 0.6 in channels, and it is clear from the figure that the ratios are not constant, or 
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even universal, in those ranges. It can actually be shown that, if G(y/6) is plotted for the 
data in [31], it is independent of the Reynolds number but not of y/5, as with the data 
in figure 2. 

The conclusion is that the theoretical foundations of the logarithmic velocity law and, 
more interestingly, of detailed similarity, probably hold asymptotically at the wall itself, 
but that the impressive experimental confirmation of the former in [31] is only approxi- 
mate. The problem is complicated again by the question of inner-outer layer interaction, 
since there is no reason for the 'inactive' motions mentioned above to be governed by 
y as a similarity variable, and their influence has to be considered when discussing the 
relevance of similarity. 

3 The  inverse energy  cascade 

A final issue which underlies most of the previous ones is the cascade mechanism by 
which energy is transmitted away from the wall, through the logarithmic layer, and into 
the core flow. There are fewer available data for energy budgets than for one-point velocity 
statistics, especially because the energy dissipation and pressure fluctuations are difficult 
to measure. The only reliable balances are those obtained from numerical simulations, and 
only recently have simulations become available which include short logarithmic layers. 

If the velocities are separated into their ensemble averages and fluctuating parts, ui = 
' the equation for the fluctuation energy K = (u~2/2} can be written as [7,29,28] Ui + ui, 

(ol  + u ~ o j  - ~V2)K + 0jCj = -(u '~u' j>OjU~ - ~, (4) 

where a = ((Oju~) 2) is the viscous dissipation. The first term in the right-hand side can 
be interpreted as the local production of turbulent energy, and 

(~j , t ,2 = (us(p + ~ / 2 ) ) ,  (5) 

is a spatial energy flux. In parallel flows the only surviving flux is the cross-stream com- 
ponent, and figure 3 presents energy balances for three numerically simulated channels 
at increasingly high Reynolds numbers. It is clear that, at least in this Reynolds number 
range, the only net production of turbulent energy happens deep in the viscous layer, and 
that everywhere else dissipation dominates. This is best seen in the flux, which is positive 
(outwards) everywhere except very near the wall. In an intermediate region the flux is 
almost constant, especially at the highest Reynolds number, implying that production 
and dissipation are locally in equilibrium. This observed flux is a small fraction of the 
total local energy production, and instantaneous statistics show that it is the residue of a 
large-scale sloshing of energy towards and away from the wall, which is an order of magni- 
tude larger than the mean. It is known that production and dissipation are the dominant 
term in the logarithmic layer [28], but similarity only requires that one should be propor- 
tional to the other. The reason why they are so exactly balanced in that region, even in 
the presence of a substantial spatial flux, can only be understood by requiring similarity 

! $ 
for the energy flux. Momentum conservation implies that the shear stress T = --(UlU2) 
is constant near the wall. If the flow is self-similar, the ratio ¢2/T 3/2 should be constant, 
implying that energy flux itself should be constant and that production and dissipation 
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Fig. 3. (Top) excess local energy production, -(u~v~)OU/Oy - ~ ,  and (bottom) turbulent energy 
flux, ¢2- Wall scaling. Numerical channels - -  : Re~- = 180 [11]; . . . .  : Re~. -- 395 [15]; 
- - . - -  : Re~- = 590 [16]. 

should balance in detail .  Note tha t  this argument is subject  to the same remarks made 
regarding figure 2. 

In the central par t  of the channel dissipation exceeds production,  which vanishes at  the 
centre, and most of the turbulent  energy in the central 30% of the channel is provided by 
the flux from the wall. 

Because the energy-containing scales are small near the wall, while those at  the core 
are large, this is an example of an inverse cascade in which, since the constant shear stress 
implies a constant  momentum flux across the logari thmic layer, the transfer is as much 
of momentum as of energy. 

The conceptual picture is that  of a cascade organized by wall distance and by eddy size, 
where energy is transferred to smaller scales at  any given location, and to larger ones away 
from the wall. Since it is known that  the smallest scales of the flow are isotropic and carry 
no mean shear stress, it is only the larger ones tha t  can be responsible for the momentum 
cascade. The la t ter  therefore occurs in a finite range of longest wavenumbers at  any non- 
zero distance from the wall, but  tha t  range becomes infinite with the Reynolds number 
as the wall is approached. Because of the different fluxes which are being transferred, 
the spectral  slope of this cascade is different from the Kolmogorov one. In the small 
wavenumber limit,  k y  << 1, in which the structures are much larger than the distance 
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from the wall, any dependence on y should drop out, and the spectrum can only depend 
2 and on the wavenumber k. The only dimensionally consistent on the momentum flux u~ 

combination is 

E ( k )  ~ (6) 

The range in which this formula is valid can be estimated from considerations of time 
scales as k5 > O(1) and ky < O(1), where 5 is the boundary layer thickness. Scales 
much larger than those are impossible because they don' t  fit in the boundary layer, while 
smaller ones do not interact with the wall and break down into smaller eddies by the usual 
Kolmogorov cascade. A fuller discussion, together with supporting experimental evidence, 
can be found in [19,13]. The k -1 spectrum is especially prominent in the longitudinal 
velocity fluctuations, and in the cospectrum of the shear stress E12(k1) [21]. The k-1 
range grows longer as the wall is approached, in agreement with the previous discussion, 
and the transition to the Kolmogorov regime is near ky = 1 in boundary layers. The k 1 
range is less clear in the few available spectra for the spanwise velocity fluctuations, and 
it is almost fully absent from the wall-normal ones. This is presumably due to that, in the 
latter case, the integral scale is constrained by the presence of the wall and is never much 
larger than y, while the spanwise fluctuations carry no mean turbulent stress and do not 
therefore participate in the momentum cascade. Reference [19] includes an argument for 
the k -1 spectrum which is different from the one given here, but which is also equivalent 
to a momentum cascade. 

Note that  the previous discussion, and in particular the fact that  the k 1 cascade is 
restricted to wavenumbers such that ky < 0(1), imply that the momentum cascade is 
carried by eddies which are larger than the distance to the wall, and correspond to the 
'inactive' motions previously mentioned, in spite of the implications of their name. 

The two cascades are sketched in figure 4, with energy flowing locally from larger to 
smaller scales, and spatially towards larger scales farther away from the wall. Even if the 
second cascade is confined to the largest scales, the total number of degrees of freedom 
involved is potentially infinite. If we assume, for example, that  the scales carrying the 
stresses are of the order of the wall distance y, most of the anisotropic degrees of freedom 
are localized close to the wall, where y = O(u/u~-), and their number per unit volume is 

N,,s ~ Rc~. (7) 

This increases with the Reynolds number only slightly more slowly than the total number 
of turbulent degrees of freedom, N ~ Re 9/4. 

Note that  the two transfer diagrams in figure 4 are equivalent, and that  there is no 
implication that  small eddies created near the wall survive to diffuse to the core region 
and transfer their energy there. Note also that, if the spatial cascade is restricted to eddies 
larger than l / y ,  the implied geometry is the one in the bot tom part of figure 4, rather 
than one of freely 'floating' eddies across the boundary layer. This 'attached eddy' picture 
was first proposed by Townsend [29]. 

There are interesting questions regarding the presence or absence of intermittency in the 
Townsend cascade. The experimental evidence is that  the large-scale velocity fluctuations 
are intermittent, in the sense that  laminar regions alternate with turbulent ones [7, p. 586], 
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Fig. 4. Sketch of the two energy cascades in wall flows 

but there is little evidence for Reynolds number dependence of this phenomenon, which is 
undoubtedly closer to large-scale pattern formation than to the small-scale intermittency 
of the velocity gradients in the direct energy cascade. If that were true, the inverse cascade 
mechanism would be due to the collective interaction of many small-scale structures near 
the wall, which could be modulated by the effect of the large-scale core structures passing 
over them. This process is probably not universal, since large scales seldom are, and since 
it would also depend on the details of the turbulence generation processes near the wall. 

The autonomous wall cycle mentioned in the previous section applies to smooth walls, 
but many walls of practical interest are hydrodynamically rough. The near-wall mecha- 
nisms in this case are very different from the finely tuned regeneration cycle of smooth 
walls, at least at wall distances comparable to the roughness height, and fluctuation energy 
is injected into the flow directly from the roughness elements. 

The classical view is that the effect of roughness is restricted to the neighbourhood of the 
wall and affects only the additive constant in (3), but there is some contrary experimental 
evidence suggesting that the detailed dynamics of the fluctuations in the logarithmic and 
core regions are different for smooth and rough walls [12]. The claim is, for example, that 
the correlation lengths of the outer flow structures are much shorter in rough boundary 
layers than in smooth ones. It is difficult to account for such a result in the classical model 
of a one-directional cascade, but it looks more natural in the pattern formation context 
mentioned above. If near-wall structures were modulated by the outer flow, it is easy to 
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visualize how a large number of near-wall oscillators, representing the smooth wall regen- 
eration cycle, could organize themselves into patterns with length scales comparable to the 
boundary layer thickness, which is the observed scale for outer-wall intermittency. Rough 
layers, whose near-wall mechanism is probably more akin to a random forcing, would ei- 
ther not self-organize or organize differently. This argument also implies that the detailed 
organization of pipes and channels, whose outer flows are influenced by the presence of 
opposing walls, should be different from those of boundary layers. While those arguments 
are suggestive, the experimental results of [12] require independent confirmation. 

4 Conclus ions  

We have seen various open problems in the theory of wall-bounded turbulent flows. 
Foremost is that of inner-outer flow interaction, which implies the question of asymptotic 
Reynolds number independence. 

We have also discussed the presence of a spatial energy cascade from the wall towards 
the outer flow. This is distinct from the classical Kolmogorov cascade and coexists with 
it, but it is a reverse cascade from smaller to larger eddies. It has been shown to be 
essentially equivalent to Townsend's 'attached eddy' hypothesis [29]. We have argued that 
such inverse cascades can only be intermittent as a result of pattern-forming instabilities, 
mediated by long-range collective interactions through their largest members, and we have 
conjectured that such an instability could explain certain anomalies observed in boundary 
layers over rough walls. Note that this brings us back to the question of inner-outer flow 
interaction. 

We have finally reviewed the classical similarity assumptions for the logarithmic layer, 
in view of the recent suggestions in [2] that they might be invalid. We have found that 
the key hypothesis of the original derivation of the logarithmic law, that there is a non- 
zero limit at the wall for the outer flow dimensionless groups, agrees with experimental 
evidence from velocity fluctuations in high Reynolds number flows, making the existence 
of anomalous power laws unlikely. 
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