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The structure of a viscous two-dimensional vortex core in a imposed weak strain 
is analysed, in the same spirit as a similar analysis of strained columnar vortices 
(Moffatt, Kida & Ohkitani 1994). The analysis is recast in terms of a coordinate 
deformation, ensuring the uniform validity of the perturbation expansion up to the 
neighbourhood of a dividing streamline, beyond which it is not expected to work, and 
from where the exponentially weak vorticity is expected to be stripped to infinity. The 
orientation and ellipticity of the vorticity distribution of the cores is compared with the 
results of a numerical experiment in two-dimensional turbulence, and shown to agree. 
This is interpreted both as a confirmation of the theory and as an indication that the 
vortices of two-dimensional turbulence are sufficiently long-lived to be controlled by 
viscous diffusion, even at the relatively large Reynolds numbers of our simulation. 

1. Introduction 
The structure of equilibrium stretched vortices in a weak triaxial strain was analysed 

by Moffatt, Kida & Ohkitani (1994, hereafter referred to as MK094). It was found 
that, in the limit of high circulation Reynolds number, Rer = r/v, an equilibrium 
configuration exists which is controlled by viscosity. A similar conclusion was reached 
by Ting & Tung (1965) for two-dimensional viscous vortices in a potential driving 
flow, when the characteristic vorticity of the cores was much larger than the applied 
strain. We shall address in this paper the case of a two-dimensional vortex in a 
weak constant strain field, in the spirit of the asymptotic expansion in MK094, 
and we shall compare the predictions of the analysis to the vortices contained in 
a catalogue obtained from a numerical simulation of two-dimensional turbulence. 
Although in that case the vortices are immersed in the variable strain generated 
by the rest of the flow field, it will be seen that the timescale of the variation is 
long compared to the turnover times of the cores, and that the asymptotic theory is 
therefore applicable. 

It is clear that the two- and three-dimensional results are related, since Lundgren 
(1982) provided a general transformation that associates a strictly two-dimensional 
flow to any quasi-two-dimensional strained one, defined as independent of the direc- 
tion z except for an applied strain y parallel to the z-axis. 

Consider a solution of the three-dimensional Navier-Stokes equations, formed by 
the superposition of a two-component velocity U* = (u*, u*, 0) depending only on 
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(x', y', t*), and of a triaxial strain (ax*, py', yz').  The three principal strains satisfy 
a + p + y = 0, and y is assumed to be positive. The vorticity w*(x', y', t') is parallel 
to the z-axis. 

Lundgren's transformation states that there is a related two-dimensional flow in 
which the axial strain y is absent, defined by 

u = (yt)-"2(u', u' )  + s(yt)-'(x, -y), w = (yt)-'w', s = (a  - B)/2yt, (1.1) 

where the coordinates and time are transformed by 

x = ~ * ( y t ) - ' / ~ ,  y = y*(yt)- ' l2,  y t  = exp(yt*). (1.2) 

In essence, the two flows behave similarly, but the velocities and the vorticities of the 
strained flow are amplified, its distances contract, and its time, which is proportional 
to the eddy turnover period, runs faster. 

In the case of a Burgers' vortex, in which a = p = -y/2 and the three-dimensional 
solution is 

the transformed two-dimensional flow is the viscous spreading vortex 

For triaxially strained vortices, the correspondence with two-dimensional vortices in 
a plane strain is not complete, since it follows from (1.1) that the two-dimensional 
strain should decrease in inverse proportion to time. The reason becomes clear 
once the governing dimensionless parameters are considered. It is found in MK094 
that the relevant perturbation parameter for the strained vortex is, to lowest order, 
€1 = (v/T) (p - a) /y ,  which is proportional to ( p  - a) /o ( ; .  The triaxial strain (a, p, y )  
can be understood as the superposition of an axisymmetric stretching ( - y / 2 ,  -y/2, y), 
which can be eliminated using Lundgren's formula, and a plane equatorial component 
(a  - p, fi - 01, 0)/2. The perturbation parameter is the ratio of this equatorial strain 
to the characteristic vorticity of the vortex core. 

This is the same parameter identified by Ting & Tung (1965) for the two-dimensional 
diffusing vortex but, in that case, as the vortex diffuses and its core vorticity decays, 
the driving strain has to decrease continuously if similarity is to be maintained. 
Alternatively, if the vortex diffuses in a constant straining flow, it suffers an increasing 
deformation as it spreads and becomes weaker. 

Because the internal timescale of the vortex core is much faster than the viscous 
time, the spreading vortex can be treated as quasi-steady, and corresponds to the 
triaxial case to lowest order, but the difference appears at higher orders. It is found 
in MK094 that, for orders beyond O ( E ~ ) ,  the two factors y / o ( ;  and ( p  - a)/? enter 
independently in the solution, instead of as the single product el. 

The asymptotic analysis of the structure of a two-dimensional vortex in a weak 
strain is developed in the next two sections. The expansion within the vortex core 
follows closely that for the triaxial case in MK094, and will be discussed in the 
context of that paper. It is recast, however, in a slightly different form, to eliminate an 
apparent inconsistency in the ordering of the different perturbation terms in the far 
field of the vortex, and the reason for that inconsistency is discussed. The predictions 
of the model are then compared to the results of the turbulence simulation. 
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2. The asymptotic formulation 
Consider a two-dimensional vortex of circulation r , subject to a straining velocity 

s (x, -y). The velocity of the vortex and of the strain are comparable at a distance of 
order Rs = (r /s)’/~, while the vortex radius spreads, over characteristic times O(s-’), 
to be of order R, = (v/s)ll2. Its characteristic vorticity is then 0, = r/&2. We a e 
interested in the weakly perturbed limit in which 

If we normalize length with R, and time with s-l, the vorticity equation becomes 

V W = - W ,  2 

where the velocities are related to the stream function by u = a y / a y ,  u = -dy/i7x, 
and y - xy at infinity. The vortex has unit circulation and spreads only slowly, over 
t = O ( E - ~ / ~ ) ,  under the action of viscosity. For shorter times, its radius is small, and 
it looks like a point at the scale of R,. The streamlines of such a point vortex flow 
are plotted in figure 1, where the vortex rotates counterclockwise, and the straining 
velocity is outgoing along the x-axis. The ‘cat’s eye’ is aligned at 45” to the strain 
axes, and the streamlines are circular near the vortex and become more elliptical as 
they move away from it. Since the vortex radius is only O ( d 2 )  (see equation (2.1)), 
its vorticity is almost totally confined well inside the dividing streamline, and is only 
bled slowly along the outgoing direction of the forcing strain. The situation is exactly 
equivalent to that in MK094, where very long-lived vortices were found to exist in the 
case of a triaxial strain, even when one of the equatorial eigenvalues was extensional. 

Two-dimensional strained vortices have been studied often. The stability of elliptical 
uniform-vorticity patches was analysed by Moore & Saffman (1971), who concluded 
that the strain would tear the core if, in our notation, E > 0.15. The stability analysis 
was extended to unsteady strains by Dritschel (1990), resulting in a broader class of 
behaviour. The full initial value problem for elliptical patches was studied by Kida 
(1981), and generalized to the case of vortices constructed from an arbitrary number 
of nested elliptical patches by Legras & Dritschel (1991) and Dritschel & Legras 
(1991). The same authors studied numerically the interaction of an external shear 
with a non-uniform vortex, and concluded that the weak vorticity at the edge of the 
vortex is stripped away, to the level at which o / s  m 0.1 l), while the core itself remains 
coherent (Legras & Dritschel 1993). All these results support the idea that the vortex 
breaks down only when its vorticity becomes substantial in the neighbourhood of the 
dividing streamline in figure 1, and are consistent with the vortex being stable for 
E. << 1. 

In the units of (2.2) the core vorticity is O(l/e). If inner variables were defined in 
which both the vorticity and the vortex radius are O(1), equation (6) would remain 
unchanged. The corresponding timescale is the fast eddy-turnover time of the vortex 
core. We will be interested in solutions in which the structure of the vortex does not 
change on that timescale, although it may do so on the slower one of the external 
flow. We therefore choose inner variables, 

(a, 9 )  = c-”2(x, y ) ,  t ^=  t ,  $ = y ,  (2.3) 

(2.4) 

in which the equations of motion become 
^ 2  A [$,&I = EL&, v y = 4, 
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FIGURE 1. Streamlines of a point vortex in a pure strain whose principal axes 
are aligned to the coordinate axes. 

where [$,GI = a($, G)/a(2, j )  is the Jacobian, and L = a; - t2. The circulation 
of the vortex is still unity, but I+G - ERE at large distances. This equation is 
equivalent to equation (2.7) of MK094, with the time derivative of the right-hand 
side substituting for the stretching operator of the three-dimensional case, as in 
Lundgren's transformation. We have chosen to keep the straining motion inside the 
definition of $, whereas in MK094 it was made explicit in the right-hand side. This 
will make the structure of the perturbation somewhat clearer. 

We recall the analysis in MK094. It is immediately obvious from (2.4) that, to the 
lowest approximation in (F, 

t$o, 6 0 1  = 0, Qo = Qo(do1, (2.5) 

where we are assuming an expansion G = Go + E. dl + . . ., and a similar one for $. 
We will only consider cases in which this lowest-order motion is axisymmetric, GO(?), 
in polar coordinates (i, 0) centred on the vortex. 

The first-order perturbation is 

Averaging over 8, we arrive at the compatibility condition 

(2.7) 
A ado A 2 A  

at 
L w o = 7 - v o o = o ,  

whose solution corresponding to a point vortex at t = 0 is 

Substituting (2.7) into (2.6) we also get 

[$o, 411 + [$I, 6 0 1  = 0, (2.9) 

a linear homogeneous equation which is however forced by the boundary condition 
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for at infinity. It can be solved to give 

where the function f ,  as given in MK094, satisfies 

(2.10) 

(2.1 1) 

and the boundary conditions f = O ( l 2 )  for 5 + 0, and f = 0(cp2) for ( -+ co. A 
possible axisymmetric component vanishes because of the compatibility condition at 

The resulting streamlines are elliptical, with their major axes aligned at 45" to the 
strain, in line with the axis of the cat's-eye pattern in figure 1, and with an ellipticity 
which does not vanish at the origin. If we denote the major and minor semi-axes as 
a and b, the ellipticity is 

O(2).  

where Q is the (dimensional) maximum vorticity at the centre of the vortex. The 
quantity pQ/s is plotted in figure 2. It tends to 2.5259.. . at the origin, and increases 
for large radii, to merge into the inner streamlines of figure 1. 

3. The far field 
The procedure outlined in the previous section is the one followed in MK094, and 

results in an expression for the perturbed vorticity which behaves at large radii as 
6 - e~p(-)?~/4t)(l  + O(E?) + O(e2 P) + . . .), and which becomes inconsistent when 
r^ = O(E-'/~). Since this is a narrower range than the characteristic size of the cat's-eye, 
r  ̂ = O(€-'/*),  it raises some concern about the uniform validity of the perturbation 
scheme (MK094). In particular, the asymptotic series inside the parentheses has 
the same ordering of terms as exp(#), which could dominate the exponent at long 
distances, and compromise the exponential decay of the vorticity. What is needed 
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is an intermediate asymptotic procedure for the construction of an exponentially 
decaying vorticity in the full range of radii 1 << r^ << ep1l2, and which can be matched 
to the inner expansion given above. We discuss now how such a solution can be 
constructed. 

An alternative way of interpreting (2.5) and (2.9) is that 

[Go + €41, Go + €611 = O(e2),  (3.1) 

so that G = G($) to that order. The perturbed streamlines were compared to 
the isovorticity lines in MK094, and did not agree with each other. However, the 
streamlines considered there corresponded only to the rotational part associated with 
the vortex, and did not include the forcing contribution of the strain. In the present 
two-dimensional situation, once the forcing is included, it is easy to show that (3.1) is 
satisfied. 

In fact, equation (2.9) can be written, after 8-integration, as 

61 = GOT $l/$Or, (3-2) 

(3.3) 

so that the perturbed vorticity can be expressed as 

C = 6 0  + €631 = &(R) + O(c2) ,  R = r^+ ~ $ 1 / $ 0 t .  

The expansion has been transferred from G to the deformed independent variable 
R. At large radii the forcing strain dominates, and $1 - i2 sin 28, while $of - l/?, 
which is the contribution from the central vortex. Therefore R = i + O(e i3), and the 
expansion of R remains valid out to i = O ( E - ' / ~ ) ,  i.e. r = O( 1). 

This ad-hoc procedure becomes cumbersome at higher orders, but a more systematic 
one can be implemented in the far field, outside the vortex core. The assumption is 
that the core remains compact and that the vorticity decays exponentially for i >> 1, 
so that the flow becomes irrotational. There then exists a complex potential that 
can be expanded in a Laurent series around the origin, and whose coefficients can 
be determined by matching to the inner solution where r^ = O(1). In this outer 
region the Poisson equation in (2.4) is not needed, and the problem becomes a linear 
diffusion-advection equation for the exponentially weak vorticity. 

The form of the vorticity expansion in MK094, where the 2n8 Fourier component 
was found to be O(en),  suggests that the streamfunction at large distances should 
have the form 

1 
2.n 

$ = --1ogr^+~(?~/2 +A2F2)sin28 +f2(A4sin48 $B4cos48)rh4 +... (3.4) 

where 

can be computed from the inner expansion. 
Let us now introduce a deformed radial coordinate 

F = R + eRt(R,O,t) + .. . (3.6) 

and require that G be only a function of R and t, and that its asymptotic expansion 
be uniformly valid out to R = O(e-'I2). The streamfunction can be expressed as a 
function $(R, 8, t) ,  and the first equation in (2.4) becomes 
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where the partial derivatives assume that everything is expressed in terms of (R, O ) ,  
and where the operator L also has to be expressed in terms of the new variables. 
Because the Laplacian in L is a second-order operator, and because the change 
to new variables is given only implicitly by (3.6), this step involves some algebraic 
complication, but it is easily programmed in a symbolic manipulator. The results 
given below were obtained using Maple. We define the expansions 

and separate H, into axisymmetric and non-axisymmetric parts : 

As in the previous section, the 8' term of (3.7) separates into 
- 

Hn-l = 0 (3.10) 

and 

J, + Hiei d8 = funct.(R, t ) ,  (3.11) 

where the right-hand side of (3.11) is a free integration 'constant', and J ,  comes from 
the series expansion of $(r ,  8) in terms of the new variables. It takes the form 

(3.12) 

where the extra terms involve only Ri for i < n. That is also true of Hn-l, and (3.11) 
can therefore be used to determine R, as 

Rn = R(R9 6, t )  + Q n ( R  t ) ,  (3.13) 

with the arbitrary integration function Qn. The axisymmetric part (3.10) has the form 

R-IH,, = Lo& = r.h.s.(Qn, . ..), (3.14) 

where LO = d,-Vi,  and V i  is the Laplacian operator in the variables (R, 19) although, 
as it is always applied to the functions &(R, t), only its radial part is of interest. At 
this stage the function Qn can be chosen to control the growth of C j n  with n at large 
R. 

We will now indicate the structure of the first few orders of the expansion, and 
the results for the particular case of the streamfunction (3.4). The O( 1) equations are 
identical to those in the previous section. Our choice of & = R makes Jo identically 
zero, and the first axisymmetric equation is 

Jn = ($OR& + $ n )  &OR + . 

(3.15) 

There is no angular component at this order, and the non-axisymmetric equation at 
O ( E )  is 

A 1  mo = ~ e-R2/4t. 
4 K t  

R-'H~ = L ~ c ~ ~  = 0, 

(3.16) 
a 

Jie =  OR& + $ 1 )  = 0, Ri = -$I/$oR + Qi(R, t). 

For the streamfunction (3.4), 

R1 = n(R3 + 2A2/R) sin 28 + QI(R, t ) .  (3.17) 
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Lo61 = f(R1,60), (3.18) 

where the right-hand side is a linear and homogeneous functional of R1. Since the 
angular average of $1 vanishes, it follows from (3.16) that the average of R1 is 
the arbitrary additive function Q1, and that the right-hand side of the axisymmetric 
component of (3.16) is homogeneous in Q1. We can therefore choose Q1 = 61 = 0. 

The first order for which this is not possible is O(c2) .  The non-axisymmetric part 
of the equation needs no special treatment. For the particular case (3.4) the leading 
terms are 

In the axisymmetric equation, however, the right-hand side contains quadratic terms 
in R1 which have non-zero angular average, and the equation for 6 2  is no longer 
homogeneous. For our special case we obtain 

e-R2/4t 

Lo62 = (7z2R6 - 4R2Q2~ + O(R4)) (3.20) 

The solution of (3.18) would result in 6 2  N R6exp(-R2/4t), and would limit the 
convergence of the expansion to i = O ( E - * / ~ ) .  We can now use Q2 to cancel as many 
of the high powers of R in the right-hand side of the equation as needed, so that 
the leading term of the solution is at most proportional to R4exp(-R2/4t), and the 
expansion remains valid to the desired distance. In the present case it is enough to 
take 

Q 2  = 7n2R5/20. (3.21) 
Note that RJR N R2" at large distances, guaranteeing a uniform ordering of the 
terms of the coordinate deformation out to i = O ( C - ' / ~ ) .  The convergence of the 
series for 6 has already been discussed. 

It is also clear how our result can be matched to the inner expansion of MK094. 
We can invert our expression for i to give 

(3.22) R = i - e i 3 n  sin 20 + . . . , 
and expand the leading term of our series 

which is equivalent to the expansion in MK094 for i >> 1. 
The success of the coordinate deformation in controlling the non-uniformities of 

the expansion is not surprising. The perturbation scheme used here and in MK094 
is a variant of the averaging method which has been known in different forms at 
least since the work of Lagrange in the eighteenth century. It was first developed 
for Hamiltonian perturbations, and this application is reviewed by Arnold (1978). 
It was soon understood that the use of appropriate coordinates was important for 
the success of the scheme, which depends on the approximate correspondence of 
different types of averaging. It is of interest to note that the left-hand side of 
(2.4) has a Hamiltonian form, with either the streamfunction or the vorticity acting as 
Hamiltonians. Its right-hand side does not preserve that structure and the use of strict 
Hamiltonian techniques, although indicative, is not necessary. The use of coordinate 
deformations in more general applications is discussed by Van Dyke (1975). The u 
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posteriori scheme that led to (3.3) is identified there as due to Pritulo (1962), while 
the more general scheme used later is associated with Poincark. There is, in principle, 
no reason why the latter scheme could not be used to obtain a uniformly valid 
expansion at all distances within the cat’s-eye, but the nonlinearity associated with 
the coupling of the streamfunction to the vorticity makes the algebra unwieldy at 
the higher orders inside the vortex core. The approach used here is sufficient to 
display the physical character of the solution, while keeping algebraic complication 
to a minimum. A somewhat similar approach, applied to uniform vortex patches 
and using conformal deformations to regularize the expansion, was used by JimCtnez 
(1988). 

4. Numerical experiments 
The predictions in the previous sections are checked next against the structure 

of vortices in a numerical simulation of decaying two-dimensional turbulence in a 
periodic square domain at high Reynolds number. The code is a standard spectral 
Fourier approximation to the vorticity equation, fully de-aliased, with a third-order 
Runga-Kutta method for time advancement. It uses Newtonian viscosity, and the 
Reynolds number, based on the side of the domain L and on the initial root-mean- 
square fluctuation velocity u’, is 5.5 x lo4. 

The numerical resolution is 10242 Fourier modes before de-aliasing, corresponding 
to a maximum numerical wavenumber k,,, = 341. The initial conditions are chosen 
with a random phase, and with an energy spectrum decaying slowly (like k - 3 / 2 )  
for k < 200, and much faster (k7) for higher wavenumbers. After u’t /L = 0.2, 
the vorticity concentrates into compact vortices (McWilliams 1984) scattered over a 
much weaker background. The results used here are compiled at u’t/L = 1.65-1.85. 
By that time the total enstrophy has decayed by a factor of 400 from the initial 
condition, while the energy has only decayed by 40%, and there are approximately 
100 identifiable vortices in the computational box. 

The mean radius of the vortices is F = 0.015L, which agrees in order of magnitude 
with the radius of a viscous vortex spreading from an initial point, r, = 2 ( ~ t ) ’ / ~  = 
0.01L. It should be compared to the larger average separation between vortices, 
D = 0.1L. The mean Reynolds number of individual vortices is T / V  = 3500. 
The timescale for the evolution of the vortex distribution is D / d ,  shorter than the 
turnover time, L/u’, but still longer than the rotation time of individual vortices, 

sections applies, and the results of the analysis should hold. 
A catalogue of vortices is compiled at regular intervals from the computed flows 

fields. Candidates are identified as connected regions in which the topological dis- 
criminant (Weiss 1991) 

is more negative than a given threshold, which is chosen as a small multiple of the 
standard deviation of Q over the whole field ( Q t / Q  = 2.5). The influence of this 
threshold was checked, and found to be small, although a good choice is important in 
minimizing the work involved in the subsequent filtering of the results. Each vortex 
candidate is characterized by its circulation, its area, its centre of gravity, and the 
tensor of inertia of its vorticity distribution J J o ( x i  - %)(xi - Xi) dS. This tensor 
is used to compute the two principal moments of inertia and the orientation of the 
principal axes. 

o,’ = -2  r / r  = 5 x 10-3L/u’. Therefore the scale separation assumed in the previous 

Q = s2 - 0 2 / 4  (4.1) 
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(.&a2 + yW)’n 
FIGURE 3. Averaged distribution of vorticity for all the vortices of the numerical catalogue, with 

respect to their radial elliptical coordinate. Solid line is equation (4.2). 

Each vortex is assumed to have a Gaussian vorticity distribution in elliptical 
coordinates aligned with those axes, 

uM = SZ exp(-x’2/a2 - y’2/b2) ,  a 2 b. (4.2) 

The three parameters, a, b, Q, and the dimensionless ‘radius’ p of the original patch, 
are obtained by equating the measured values for the area, the circulation, and the 
principal moments to those of an elliptical vortex of the form (4.2), contained inside 
x ‘ ~ / u ~  + y12/b2 < p2. The result is a set of positions, areas S = nab, circulations 
r = SQ, and orientations of the major axes 6,. Candidates with no solution for the 
model parameters, and those originating from patches formed by less than four grid 
points, are eliminated at this stage. 

The assumption (4.2) for the vorticity distribution is tested next. Assuming an 
elliptical Gaussian vortex, it is easy to show that the contour for which Q = 0 should 
correspond to p = 1 and, in consequence, only vortices with 0.5 < p < 1.5 are 
kept in the database. The fit between the model (4.2) and the actual flow vorticity 
is also tested directly. The mean-square deviation €2, = (u - is computed 
over all the points of the original patch, and candidates for which E,/O > 0.2 are 
discarded. This procedure was found to work reasonably well in identifying vortices, 
while missing only a few percent of those which could be identified visually, usually 
very deformed ones involved in close interactions. The total enstrophy contained 
in our vortex catalogue is about 70% of the total, concentrated in 5% of the total 
area. A comparison of the Gaussian model with the mean and standard deviations 
of the measured vorticities is given in figure 3. Note that only points inside the 
original patch, for which Q < Qt = 0, are used in the computation of em, and that 
the Gaussian fit outside x12/u2 + y12/b2 = 1 is not guaranteed by the mean-square 
deviation test. The total sample includes about lo4 vortices over 160 different flow 
fields, corresponding to about 100 different vortex histories. Only 70% of them have 
ellipticities that are high enough (a /b  > 1.1) for the orientation of the major axes 
to be reliably defined, and those are the only ones used in our statistics. A roughly 
similar procedure for generating a vortex catalogue was presented by McWilliams 
(1990) but no data were given in that case for the enstrophy and area fractions which 
can be compared to the present ones. 
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FIGURE 4. Probability density functions for the offset angle between the major axes of the vortex 
with respect to the extensional axes of the ambient strain, and for the reduced ellipticity of the 
cores, defined as in figure 2. 

The next step is to determine an ‘ambient’ strain s at the position of each vortex. 
Several methods were tried, and the one selected was to use the strain generated at the 
centre of gravity of each vortex by all the other vortices in the database. The result 
changes only slightly if the other vortices are treated as points or as full Gaussian 
models, with the correlation coefficient between the results of both methods being 
over 0.95. in contrast, the simple method of subtracting the Gaussian model for 
the vortex in question and computing the strain generated by the rest of the flow 
proved to be inadequate. A typical value for the ratio s/Q is 0.05, and the small 
vorticity residuals left by the difference between the actual and the modelled vorticity 
distributions are enough to mask the ambient strain generated by the rest of the flow. 
For each vortex a strain magnitude and an orientation & of the extensional axis are 
generated in this manner. 

These data allow us to check the results obtained in $2 for the orientation and 
ellipticity of the vorticity distribution with respect to the driving strain. in particular, 
the axes of the vortices should be offset with respect to those of the strain by 45“ in 
the sense of rotation of the vortex, and their ellipticity, defined as in (2.12), should 
be close to 2.52slQ. Both conclusions are tested in figure 4. Although there is 
considerable statistical scatter, it is clear that the maxima of both histograms agree 
well with the theoretical analysis. 

The assumptions on the timescales of the flow can also be now checked directly. 
A measure of the rate of change of the imposed strain is 0 = Idsll/dtl/lsl, where sll 
is one of the components of the imposed strain tensor. From the vortex catalogue 
CT = 21.~1 on the average, so that the evolution time of the strain is of the same order 
as the straining time itself. They are both, however, longer than the rotation time, 
and c/s w 0.1. 

During the review process of this paper one of the referees remarked that the steady 
strain used in this paper is only a particular case of the general one in which the strain 
rotates and varies with time, and that a more realistic model for the deformations in 
two dimensions would include an additional solid-body rotation component of O(s). 
The results in the previous paragraph lend strength to that remark, and pose the 
question of the reason for the agreement in figure 4. 

i t  is however easy to see that the addition of an axisymmetric component to the 
perturbation streamfunction does not change the results of the analysis in @2-3. 
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FIGURE 5 .  Typical total strain (a )  and vorticity (b )  fields for the two-dimensional turbulent flow 
used in the text. 
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Because (2.6) and (2.9) are insensitive to components of $1 which are only functions 
of (, the equation satisfied by f([) is not changed, and the shape of the vorticity 
distribution is not modified to O(E) .  To this order the vortex follows the imposed 
strain even if the latter rotates on a timescale comparable to its own deformation 
time. In essence, while the effect of the strain is visible to first order because the 
lowest-order axisymmetric vortex generates no radial velocities which could compete 
with it, the effect of a comparable rotation appears only at O(e2)  because it competes 
directly with the much stronger azimuthal velocity of the vortex. 

We have dealt up to now with the ambient strain which would be present at the 
location of the vortex if the vortex were not present. One of the striking results in 
MK094 was the structure of the total strain (or equivalently dissipation) produced 
by the driving flow and by the vortex itself. In a circular core the total strain is 
zero at infinity and at the centre of the core, and is maximum in an annulus at the 
periphery of the vortex. When the axisymmetry is broken by the driving strain, the 
crown of maxima is deformed into two crescents aligned with the major axis of the 
vortex ellipse, while the central minimum splits into two minima aligned to the minor 
axis (see figure 7 of MK094). The same structure can be seen many times in the 
map of total strain for a typical turbulent field in figure 5(a). A comparison with the 
vorticity map in figure 5(b) confirms that the strain structures do indeed correspond 
to the elliptical vortices. 

5. Discussion 
In the first part of this paper we have given an asymptotic expansion for the 

structure of a two-dimensional viscous vortex in a weak plane strain. The results are 
similar to those of Ting & Tung (1965) and in MK094, but the expansion is extended 
up to distances r  ̂ = O ( E - ' / ~ ) ,  which is the scale of the cat's-eye streamline separating 
the elliptic points dominated by the effect of the vortex from the hyperbolic region 
dominated by the driving strain. In the limit studied here, Rer >> 1, the radius of 
the core itself is much smaller, and it behaves like a point vortex with respect to the 
external flow. The non-uniformity mentioned above refers to distances much greater 
than the core radius but smaller than the cat's-eye, and was present in the expansions 
in both of the papers cited, although it was only explicitly recognized in the second 
one. It is removed here by using a coordinate deformation in conjunction with the 
basic averaging technique of the previous studies. 

The results confirm that the vorticity is approximately Gaussian in distorted coor- 
dinates, which coincide roughly with the flow streamlines. It is therefore exponentially 
small in the neighbourhood of the dividing streamline, from where it is presumably 
slowly stripped to infinity (MK094). 

In the present context of steady, or self-similar, solutions, the validity of the 
expansion cannot be extended farther from the core, since it was shown in Appendix A 
of MK094 that no steady solution could be expected for the vorticity distribution in 
any part of the flow dominated by a strain with an extensional direction. It is only 
well inside the dividing streamline that the vortex shelters itself from the external 
influence, and that a self-similar solution is possible. 

The predictions of the asymptotic expansion on the shape and orientation of the 
vorticity distribution are tested against a vortex catalogue obtained from a numerical 
simulation of two-dimensional turbulence. They are shown to agree well with the 
numerical experiment, and the same is true of the spatial distribution of the total 
strain (or dissipation) field. 



222 J .  Jimtnez, H .  K. Moffatt and C. Vasco 

It is interesting that this is so even if the vortices in two-dimensional turbulence 
are subject to strains which are not steady. The basic requirement for the asymptotic 
expansion in this paper is that the timescale of the driving flow should be much 
longer than the turnover period of the core, which is equivalent to Rer >> 1. This 
was sharpened recently by Lingevitch & Bernoff (1995) who studied the initial-value 
problem of a viscous vortex subject to a sudden change in the external driving flow, 
and showed that the relaxation time is O(SZ-'Rey3), as conjectured in MK094, $2. In 
a two-dimensional turbulent field with vortices of circulations O ( r  ) and radii O(a), 
separated by distances O ( D ) ,  the evolution time for the strain is O ( D 2 / r ) ,  and the 
condition that it should be much longer than the relaxation time of the individual 
cores is that 

In our example this is marginally satisfied, since the left-hand side is approximately 
100, while the right-hand side is of order 15, but it is not clear whether the same 
would be true for simulations at higher Reynolds numbers or at different times in 
their evolution. 

D 2 Q / r  NN D 2 / a 2  >> (5.1) 
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