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A simplified self-sustaining cycle is proposed for the events in the near wall region of a turbulent 
boundary layer. An approximate quantitative analysis of the resulting model predicts the right 
dimensions for the sublayer streaks and for other flow structures. The model is checked further 
by applying it to a set of numerical simulations in which the longitudinal and transverse no-slip 
conditions are applied at different positions with respect to the wall, and to the analysis of flow 
over riblets. Substantial changes in the flow statistics are obtained, including drag reductions, 
and the resulting trends are also predicted correctly by the model. 

I. lNTRODUCTlON 

Turbulent flow near walls is of sufficient theoretical 
and practical importance that it has always been in the 
mainstream of turbulence research.’ It is still not com- 
pletely understood, but the last decade has seen important 
advances, due both to the introduction of new experimen- 
tal techniques and to the appearance of computers of suf- 
ficient power for realistic simulations of simple wall 
bounded tlow~.~ This improved understanding has led to 
the realization that these flows can be controlled and to the 
introduction of practical devices, which are able to im- 
prove the drag characteristics of boundary layers in some 
circumstances.3y415 This, in turn, has opened new opportu- 
nities for the theoretical study of the basic mechanisms of 
wall bounded turbulence and has renewed the interest iu its 
llnal elucidation. 

We restrict ourselves in this paper to the near wall 
region in flows subject to little or no pressure gradient. We 
define our region of interest as that lying between the wall 
and the inner end of the logarithmic profile. It is known 
that this is the seat of the largest rate of turbulent energy 
production and also a place where viscosity ,mteracts 
strongly with turbulence. We define our coordinate system 
as x, y, and z for the streamwise, normal and spanwise 
directions, and we use wall units based on the average 
spanwise vorticity at the wall Cl. The friction velocity is 
defined as usual as u,== (~a) 1’2, where Y is the kinematic 
viscosity and lengths are normalized as If -1uJv. Exper- 
imentally, the near wall region lies below y+ =: 50. 

This part of the flow is known to be dominated by 
quasistreamwise vortices, and by alternating streamwise 
streaks of high and low velocity.6’7 The kinematics of the 
vertical structures in this region have been reviewed re- 
cently in Ref. 8, and extensive statistical and structural 
information is available from numerical and experimental 
studies.g-‘3 Still, there is no general consensus on the de- 
tails of the flow dynamics. 

In Sec. II we describe briefly a plausible conceptual 
model based on our interpretation of the results of the 
theoretical and experimental advances of the last few years. 
While most of the ideas in that section can be found else- 
where, they represent only a fraction of the alternatives 
proposed by different investigators, and the way that they 

are put together here is personal and should not be taken as 
the consensus view in the field. The rest of the paper is 
devoted to exploring and validating the quantitative con- 
sequences of our interpretation. Some of them are dis- 
cussed in Sec. III, where it is shown that they can explain 
the relative and absolute size of the various structures in 
the undisturbed wall region. At the end of that section we 
will also be ready to make explicit the nature of the dy- 
namical assumptions underlying our model. In Sec. IV we 
present some numerical experiments designed to distin- 
guish between this and some partially competing interpre- 
tations. In Sec. V we relate our numerical experiments to 
the problem of drag reduction by the use of riblets, and we 
show again that the our model is qualitatively and quanti- 
tatively consistent with the observed facts. Finally, our 
conclusions are summarized in the ilnal section. 

II. THE CONCEPTUAL MODEL 

The main features of the flow in the near wall region 
can be seen in Fig. 1, which corresponds to a low Reynolds 
number boundary layer. The figure displays two sets of 
vortex lines. Those in the first set are drawn through points 
along the edge of the periodic computational box at y+ ~4, 
and run approximately spanwise. At this level, very close 
to the wall, the dominant vorticity is always w, and is 
equivalent to an approximately uniform longitudinal shear. 
Still, some structure is present, in the form of roughly 
streamwise lanes along which the vortex lines bulge above 
the wall surface. Since vorticity is proportional to the local 
density of, vortex lines, these lanes correspond to areas of 
low wall shear, and of low velocity at a given distance from 
the wall. They are the low-velocity streaks, as can be seen 
by the fluctuating velocity isolines on the vertical plane at 
the far end of the box. 

The second set of vortex lines is drawn through a site 
of particularly intense ox near the right-hand side of the 
box, at yf ~50. This is the upper edge of the wall region, 
as we have defined it here, and the vortex lines are seen to 
form part of a large hairpin that spans most of the thick- 
ness of the boundary layer. The legs of the hairpin extend 
back into the wall region, where they take the form of 
horizontal quasistreamwise CD, vortices. From the position 
of the right-hand leg with respect to the central streak, it is 
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FIG. 1. Direct numerical simulation of a zero pressure gradient boundary 
layer.4o Here Ree=250. The numerical method is fully spectral” with 
modal resolution 36X36X97; flow is periodic in x+ ~z+=300~240, 
going from left to right. The horizontal extent of the figure is a full 
computational box. Vortex lines are described in the text. Isolines are in 
the downstream boundary: U’ increment: *O.O5U, ; a dashed line is 
negative. 

clear that the upwash from the hairpin is creating the ver- 
tical velocity that deforms the vortex lines away from the 
wall. This process, by which the quasistreamwise vortices 
pump low-velocity fluid away from the wall and high- 
velocity fluid close to it, has long been recognized as the 
basic process for the formation of the streaks.7P’4115 In the 
particular case of Fig. 1 a second hairpin, not shown in the 
figure, less coherent and closer to the wall, exists toward 
the front of the box, staggered to the right of the one that 
is represented in the picture. Each of the two streaks is 
pumped by one leg of one of the hairpins and by the op- 
posite leg of the other, although not at the same streamwise 
location. This is typical. It was shown in Ref. 15 that 
streaks tend to be flanked by vortices of opposite signs in a 
staggered arrangement, although at any given location, 
there is usually only one of them.8111 Figure 1, and many 
others in direct numerical simulation fields, suggest that 
this is implemented by sharing parts of different more or 
less complete hairpins vortices. Fully developed hairpins 
are flow features of the logarithmic and core regions? that 
scale on the thickness of the boundary layer, while streaks 
are near wall phenomena that scale on wall units. There 
can be no one-to-one correspondence between them. The 
streaks are associated with the almost horizontal legs, and 
are influenced little by the rest of the hairpin. In fact, on 
higher Reynolds number flows, many hairpins are asym- 
metric or incomplete and, by the time that they have 
evolved enough to have strong streamwise vortices as their 
legs, much of their heads have lost their identity into the 
general turbulence of the core flow.s 

Because the streaks seem to be associated with the 
effect of almost streamwise vortices, their formation can be 
described almost two dimensionally in the cross-stream 
plane (v,z), and linearly, in the sense that the formation of 
the high and low streamwise velocity regions does not in- 
fluence the behavior of the vortices themselves.” It is easy 
to see that, as long as all features in a flow are independent 
of x, there can be no effect of the streamwise flow into the 

transverse velocities. If d/&=0, the equation for the 
transverse flow is incompressible, and the equation for the 
streamwise vorticity does not contain any contribution 
from the longitudinal velocity. 

On the other hand, the transverse flow modifies the 
distribution of streamwise velocity, carrying low-velocity 
fluid into high-velocity regions, and vice versa. This pro- 
cess, which results in the formation of streaks aligned 
strictly to the mean flow, does not introduce any longitu- 
dinal gradients, and could continue forever in the absence 
of perturbations. In the end the whole velocity difference 
across the wall layer would be redistributed into alternat- 
ing streaks of maximum and zero longitudinal velocity. 
Because of the logarithmic nature of the velocity profile in 
the outer region of the boundary layer, the velocity differ- 
ence across the wall layer is essentially the same as across 
the whole boundary layer. 

One consequence of the two-dimensionality is that this 
process alone cannot explain the maintenance of wall tur- 
bulence. Even if streamwise vortices are introduced by the 
initial conditions, they cannot draw energy from the mean 
flow, and eventually decay viscously. On the other hand, 
once the presence of streamwise vortices is assumed, their 
effect on the streaks explains much of the dynamics of the 
wall region. The advection of longitudinal momentum by 
the transverse velocities carries energy from the mean flow 
into turbulent, u’, fluctuations and generates net Reynolds 
stresses that eventually deform the mean velocity profiles. 
In the presence of a wall, the high-velocity fluid carried by 
the vortices to the neighborhood of the wall forms thin 
viscous layers, which increase locally the wall friction. 
Even if the same effect generates other areas of low friction, 
it can be shown that the net effect is an increase of the total 
drag, which is roughly of the right magnitude to explain 
the higher friction drag of turbulent layers.17*14 

The cycle has to be closed by some mechanism for the 
regeneration of the streamwise vortices. There is evidence 
from numerical experiments that this is preceded by the 
formation of thin horizontal layers of streamwise vorticity, 
which appear at the edge of the viscous sublayer.” These 
layers roll up into discrete cores that concentrate most of 
their vorticity, in a process that is also two dimensional in 
the (y,z) plane, and which is driven by the interaction of 
the vorticity in the layer with the zero normal velocity 
condition at the wall.‘* In this process there is some vis- 
cous generation of secondary streamwise vorticity of oppo- 
site sign at the wall, which is ejected into the flow and 
which can form new structures,‘9’2o but, as in any essen- 
tially two-dimensional process, no energy flows from the 
mean into the transverse flow. 

The formation of the horizontal vortex sheets has to be 
initiated by some process that breaks the uniformity in x. 
There are plenty of three-dimensional perturbations in a 
turbulent boundary layer, including all the large-scale “in- 
active” (u,w), motions coming from the core flow. These 
would distort the streaks, even if they were formed in a 
strictly two-dimensional fashion, and could seed any sub- 
sequent flow evolution. In fact, the streaks in Fig. 1 are 
seen to be distorted, in this case most probably by the effect 
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of the hairpin head passing above them. It was observed in 
Ref. 11 that, right before the violent events that culminate 
in the formation of new streaks, the old streak develops a 
transverse undulation that “breaks” at the climax of the 
event. In that case, the trigger for the undulation was also 
identified as a separate quasistreamwise vortex passing 
overhead. The importance of the lateral displacement of 
the streaks on the regeneration of turbulence has also been 
recognized theoretically and experimentally by other 
investigators.6’2’,22 

Of all the perturbations coming from the core flow, 
some will be more amplified than others by the instabilities 
of the velocity gradients present near the wall, and those 
most amplified will eventually dominate the dynamics. The 
gradients most likely to become unstable are the thin lon- 
gitudinal walls of o,, vorticity that separate laterally the 
high- from the low-velocity streaks.w They are basically 
vertical shear layers whose natural Kelvin-Helmholtz in- 
stability will tend to amplify their lateral undulations. 

The perturbations, amplified by the lateral instability 
of the shear layers, introduce a longitudinal gradient that 
interacts with the average shear and injects energy into the 
transverse flow. It has been noted often that this interac- 
tion is “fast,” in the sense that the perturbed w,, is sheared 
in a time that is short compared to the one needed for its 
self-interaction, and the rapid distortion theory for sheared 
turbulence has been studied on several occasions in the 
context of wall turbulence.2*‘24-26 Because there is no time 
for nonlinear interactions of the flow with itself, the pro- 
cess is linear and can be treated analytically. 

As the total shear s=fit increases, the longitudinal u’ 
component is amplified the fastest, the spanwise w is am- 
plified more slowly, and the vertical velocity u is damped. 
At the same time, the longitudinal integral scale increases, 
while the transverse z scale stays essentially unchanged, 
and the normal y scale decreases, especially for the trans- 
verse w component.27 

The lengthening of the longitudinal scale shows that 
the flow is becoming two dimensional in the cross plane, 
while the selective amplification of the u component re- 
flects the formation of the streaks by the action of the 
longitudinal vorticity on the mean shear. Considering now 
the resulting flow in the transverse plane, the combination 
of a large horizontal velocity component with a small veri 
tical one, plus a length scale that is much smaller in y than 
in i defines the formation of horizontal vortex sheets. In 
essence, the w,, component of the initial perturbation is 
tilted forward into w, and squashed into the form of sheets 
parallel to the wall, while the dominant w, is rotated by the 
streamwise perturbations into new w,, that defines the bor- 
ders of new streaks. 

Some representative dimensions might be of interest at 
this point. The average distance between neighboring 
streaks is2* zf =: 100, relatively independent of Reynolds 
number, and it has been shown” that turbulence decays 
when streaks are forced to be narrower than that. The 
streamwise vortices have radii R+ =: 10-15, also indepen- 
dent of Reynolds number, at least in the range Re, < 200, 
for which they have been measured.879929 The vorticity lay- 

ers from which they form have thickness S+ ~5-10, and 
stand at about that same distance from the wall.” This is 
also the distance away from the wall of the bottom of the 
streamwise vortices.g The streamwise length of the streaks 
is much larger, of the order of X+ zz 1000. 

Not all the structures in the wall region scale in wall 
units independently of Reynolds number. There is evidence 
that the circulation of the streamwise vortices, y/v, in- 
creases slowly with Reynolds number,2g and so does the 
peak intensities of the two transverse velocity fluctuations, 
v’ and w’, as well as the maximum Reynolds stress.i3 These 
two trends can be related if it is assumed that the trans- 
verse flow is dominated by the streamwise vortices. In con- 
trast, the longitudinal fluctuations u’ scale well in wall 
units, in agreement with the idea that the streak formation 
saturates only when the full velocity difference across the 
wall layer has been brought down to the viscous scale, 
independent of the strength of the streamwise vortices. 

The reason for the dependence of the vortex intensity 
on the bulk Reynolds number is not clear, and bears on the 
question of the relationship between the wall region and 
the outer flow. It has been suggested that it is due to in- 
creased stretching of the vortices,‘3 but this explanation 
contradicts the observed constancy of the radii. We suggest 
that a more likely explanation is that the perturbations 
initiating the lateral undulations of the streaks are larger at 
higher Reynolds number, since they are generated by the 
core flow, and should increase with U,/u,. Larger pertur- 
bations would result in deeper waves, which would inject 
more vorticity into the resulting vortex layers. We know, 
however, of no quantitative way of checking this hypoth- 
esis. 

111. THE SIZE OF THE STREAKS 

The conceptual model in the previous section can be 
used to obtain a rough estimate of the size of the different 
structures in the wall region, which can then be checked 
against the experimental evidence. 

Let us begin with a flow dominated by streaks sepa- 
rated by an average distance AZ= W. As long as there is no 
velocity variation with x there can be no interaction be- 
tween the streaks and the mean flow, but, as soon as some 
perturbation appears, it is tilted by the shear into an elon- 
gated structure, which has the same lateral extent as the 
initial perturbation, but which is compressed in y by the 
tilting. Assume that the streak behaves like two adjacent 
planar jets, one moving forward and one backward, each of 
which has a width F/2. The most amplified mode in a 
planar jet is sinuous, with a wavelength 2.5 times larger 
than the width of the jet,3o 

Lz5 w/4. 

Let us now estimate the thickness of the horizontal 
vortex sheets resulting from the distortion of this pertur- 
bation. The essence of the process is contained in the evo- 
lution of a vertical slab of w,, vorticity whose thickness is 
L/2, initially parallel to the cross (y,z) plane, and which is 
tilted by the mean shear a. 
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FIG. 2. Schematic representation of the tilting of a vertical blob of ov into 
a thii sheet of quasihorizontal vorticity. 

After a time t+Cl-‘, it will form with the wall an angle 
tan- ’ ( l/fit) z l/C& and its vorticity, which is always ap- 
proximately aligned parallel to the sheet, will be subject to 
an effective strain that is equal to the projection of the 
shear on the plane of the structure. Points of the sheet 
located at equal distances from the wall move at the same 
velocity, and the horizontal extent of the sheet remains 
always equal to L/2, but its normal thickness decreases 
proportionally to its tilting angle as (Fig. 2) 

s = L/2flt. (2) 

The evolution is approximately equivalent to that of a 
horizontal vorticity layer being stretched by an axial strain 
u=@c, where p= - ( l/S)&/&= l/t. The full equation 
for the axial vorticity (now approximately streamwise) is 

(3) 

which has a similarity solution of the form 

opt- 1’2 exp ( - 3y2/4yt). (4) 

This is a long time limit in which a Burger’s vortex 
sheet, subject to weak axial strain, expands under the ac- 
tion of viscosity as S z 2 (Vt) “2 The short time behavior is . 
the contraction given by Eq. (2)) and both trends intersect 
at tmz ( L2/16612~)1’3, at which time the vorticity is max- 
imum and the thickness of the layer reaches a minimum, 

S,~(2LY/~)“3~((5~Y/2~)1’3. 

Expressed in wall units based on a, 

(54 

S;=:(5w+/2)“3. (5b) 

It is at this stage that layers of streamwise vorticity would 
be identified experimentally as such. Note that, if the initial 
perturbation consisted of alternating transverse layers of 
high and low o,,, the shear would tilt them into alternating 
horizontal layers of high and low wX, and S, would stand 
as much for the thickness of the layers as for their standoff 
distance away from the wall. 

The w, layer formed in this way rolls eventually into 
streamwise vortices, whose size can be estimated by equat- 
ing the area in the sheets to that in the cores. Each streak 
will generate on the average two vortices of opposite sign, 
each of them with an area W&/2 and radius 

RfZ( w+s+/2?7)t12 m ,S,+2/ $G. (6) 

These vortices act on the transverse flow approximately as 
point vortices located at a distance h+ = R+ +Sk from the 
wall. The effect of such a vortex is to create a transverse 
recirculation bubble14 whose height is 2hf, and whose 
width at the wall is 2vTh+. We now close our estimate by 
claiming that an average streak contains two vortices of 
opposite sign, at least when averaged along its length, and 
that the distance between adjacent streaks is the width of 
the two recirculation bubbles, 

W+z4vTh+E=4vT(R++S;). (7) 

The argument is that narrower streaks, containing two vor- 
tices that are closer together than the width of their bub- 
bles, do not subsist for long times because the vortices pair, 
while wider ones, initially formed by vortices that are so far 
from each other so as not to interact, split eventually as 
each vortex creates its own streak by acting on the mean 
shear. 

Equations (5b), (6), and (7) can now be combined 
into a single one for the standoff distance, 

i&g s,+“- +s;q=o, 
whose relevant root is S+ m z 6.9. The resulting vortex radius 
and streak width are Rf z 12 and W+ z 130. All these 
estimates are in the range of values observed experimen- 
tally. 

It should be stressed at this point that we do not claim 
that the foregoing is a rigorous derivation of the width of a 
streak, and that much of the numerical agreement with the 
experiment is probably fortuitous. The arguments pre- 
sented here are only order of magnitude considerations and 
they should be taken as such. We do, however, claim that 
the different mechanisms proposed for the life cycle of the 
streak have dynamical significance, and that the approxi- 
mately correct ratio of the different dimensions in the re- 
sulting model shows that it captures their relative impor- 
tance within the cycle. 

In summary, the dynamical assumptions that were 
used in the estimates were the following: first, that the 
streamwise scale of the perturbations is selected by the 
streaks as a fixed multiple of its spanwise width; second, 
that this perturbation is converted by the mean shear into 
a vortex sheet of streamwise vorticity whose thickness and 
standoff distance are determined by an equilibrium be- 
tween the tilting and the viscous diffusion; and last, that 
the sheets roll into streamwise vortices, whose distance 
from the wall determines the width of a new streak. 

Several drastic simplifications are embedded in this 
analysis. The first one is that the mean shear stays constant 
while the tilting process takes place. This is the linear as- 
sumption implicit in rapid distortion theory and is dis- 
cussed extensively in Ref. 25, A second simplification is 
that the sheets reach their minimum thickness and then 
decouple from the shear to behave like essentially un- 
strained. This is an order of magnitude approximation. As 
long as the sheets form an appreciable angle with the wall 
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the tilting is too fast for them to decouple. It is only after 
they become almost horizontal that the tilting process 
slows down and the decoupling becomes possible. It is also 
then that viscosity can become important. There is no 
guarantee that any particular perturbation will become 
strong enough to decouple and roll into a vortex. The as- 
sumption in our analysis is that weaker ones are eventually 
dissipated, and are of no importance to the maintenance of 
turbulence. 

IV. A CONTROL EXPERlMENT 

One of the most powerful techniques for investigating 
the structure of a flow is to study its response to perturba- 
tions. One of the main advantages of numerical simulations 
with respect to physical experiments is their ability to im- 
plement perturbations that are difficult to duplicate phys- 
ically, but that can throw light on the mechanics of a par- 
ticular phenomenon. As an added benefit, when a desirable 
effect is found in this way, a physical approximation can 
sometimes be devised to take advantage of it in practical 
situations. Above we have outlined a theoretical model for 
turbulence near walls, in which the key regeneration event 
is the rapid interaction of a mean streamwise shear with 
essentially random fluctuations introduced by the core flow 
and selected by the instability of the velocity gradients 
present near the wall. 

This is not the only possible model. It is known that 
when a vortex approaches a viscous wall it sometimes pro- 
duces a strong ejection of substantial quantities of second- 
ary vorticity, resulting in the generation of a net Reynolds 
stress.‘9’31 It has been suggested that this violent event, in 
which the longitudinal vortices interact with the viscous 
wall, is a model for the sublayer “bursts,” and that it is 
responsible for most of the production of turbulent stresses 
in the near wall region and, ultimately, for the skin friction. 
A clear summary of this point of view is Ref. 20. 

These two models are very different, but they are dif- 
ficult to tell apart in natural boundary layers. The problem 
is that the key boundary condition is different in each case, 
but that both conditions are applied at the same point in 
the natural flow. The rapid distortion model depends on 
the presence of a no-slip condition for the longitudinal 
velocity II, which is responsible for the maintenance of the 
longitudinal shear. The transverse no-slip condition, w(y 
=0) =0, plays no role in this model, except as a damping 
agent for streamwise vortices that happen to come near the 
wall. 

The viscous interaction model depends critically on the 
presence of the transverse no-slip condition. It is through it 
that the interaction is implemented, and eventually results 
in the bursting phenomenon and in the generation of Rey- 
nolds stresses. 

It is therefore possible, in principle, to distinguish be- 
tween the two models by removing selectively one of the 
two boundary conditions, and observing the results. This is 
difficult in natural layers, in which both no-slip conditions 
are either present or absent at the wall, but it can be done 
numerically. Indeed, in a preliminary numerical experi- 
ment in which the transverse condition at the wall was 

substituted by a free slip, aw/ay=O, the skin friction was 
observed to increase,3215 lending support to the inviscid 
model in which transverse viscous interactions are only 
dissipative. We extend this numerical experiment here, and 
make it quantitative. 

The tool is a simulation code initially developed for 
feedback control of the skin friction in plane turbulent 
channels.5 In one of its modes of operation it fixes the local 
transverse wall velocity as a fraction of the instantaneous 
velocity at a given height, 

w(x,O,z) =aw(x,h,z). (9) 

There are several important cases. Choosing a=0 is 
equivalent to the natural no-slip condition. If hf is small 
and w can be taken to vary linearly near the wall, a= 1 is 
approximately equivalent to a transverse free slip 
botmdary.32 Under the same assumption, a < 0 is equiva- 
lent to a no-slip transverse condition applied at a “virtual 
transverse wall” located at y= -ah/( 1 -a). When 
aE (0, 1 ), this approximate condition is applied at a point 
below the wall. In practice, the velocity does not vary lin- 
early and the location of those approximate conditions has 
to be measured empirically. Note that, in all cases, the 
no-slip condition for the longitudinal velocity u is main- 
tained unchanged at y =O. 

Several experiments were run using this code with dif- 
ferent values of a. In all the cases described here the test 
point was located at h+ z 10. A few other cases using dif- 
ferent test heights were also run. Those using h+ < 10 had 
roughly the same behavior as the ones described here, 
while those using greater test heights tended be less effec- 
tive as controls. Since h+ = 10 corresponds to the edge of 
the viscous sublayer, and is close to the position of the 
streamwise vortices, it is a natural boundary for any at- 
tempt to modify the turbulent structure near the wall. In 
essence, the flow underneath that location can be consid- 
ered laminar, with only a few degrees of freedom, while 
above that level there are many more flow structures that 
have to be modified independently. 

The experiments were run at a nominal Re,.=:l20, 
which varied between 100 and 160 as a consequence of the 
control. The computational domain was 47rX47r/3 in x 
and z. The code is spectral, with a resolution of 32X 32 
Fourier modes in x,z, before dealiasing, and of 65 Cheby- 
shev modes in y, which are not dealiased. This resolution is 
insufficient for structural work, especially at the highest 
Re,, but it should be enough to study the variations of the 
low-order statistics.5 On the other hand, the relatively low 
resolution allowed us to do an extensive study of the effects 
of different boundary conditions. 

The code was run long enough to reach a statistically 
steady flow, and mean and fluctuation profiles were com- 
piled for the three velocity components and for the main 
Reynolds stress (-z/u’). 

The profiles for the spanwise velocity fluctuation w’, 
obtained for different values of a, are given in Fig. 3, where 
each prolile is normalized with its own friction velocity. In 
those cases in which a ~0, the profiles show a clear mini- 
mum, which can be identified as the position of the “virtual 
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FIG. 3. Transverse turbulence intensity profiles for controlled channels FIG. 5. Absolute position of the maxima of the fluctuation profiles as a 
with different a. Note the minimum in w’, which is present in the profiles function of the offset of the w’ maximum with respect to the natural 
with CY <O. Open triangles: a= -2, circles: - 1, squares: -0.5, dashed channel. From now on, this offset will be used as a measure of the offset 
line, -0.33, solid line: natural channel, crosses: 0.5, solid circles: 0.75, of the transverse profile. 0: u’, regression slope 0.91; 17: u’, slope 0.74; A: 
solid triangles: 1. w’, slope 1.0; @z (-a’~‘), slope 0.81. 

wall” at which wz0. The distance from that minimum to 
the real wall, where u=O, increases with the magnitude of 
a. In the cases in which a>O, where, according to the 
previous discussion, the virtual transverse boundary is be- 
low the longitudinal one, the minimum is either absent or 
much weaker. 

As the location of the minimum varies, so does the 
position of the maximum of w’, which gets farther away 
from the wall as a becomes more negative. Figure 4 dis- 
plays the displacement of the location of the maxima and 
of the minima of w’ with respect to those of the natural 
channel, for those cases in which both can be identified 
(a < 0). It can be seen that the distance between them 
remains constant, Ayf ~20, and that the net effect is a 
translation of the w’ profile as a whole, without a change in 
its thickness. Since w in the wall layer is due primarily to 

4 
I 

0 
/ I 

FIG. 4. Displacement of the position of the maximum of w’ with respect 
to the natural channel, as a function of the position of the minimum of w’ 
above the wall. The regression line has a slope of 1.04. Each flow is 
normalized with its own friction velocity. 
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the streamwise vortices, it is tempting to identify this trans- 
lation as a drift of the vortices away from the wall, in 
response to the offset between the w =0 and u =0 boundary 
conditions. Since the location of the maximum is easier to 
measure than that of the minimum, and since it can also be 
defined for those cases in which a > 0, in which the mini- 
mum does not exist, we will use it from now on as a mea- 
sure of the vertical displacement of the transverse flow in 
response to the perturbation. 

The variation of the location of the maxima of all the 
fluctuation profiles as a function of the transverse offset is 
shown in Fig. 5. In all cases, except possibly for u’, the 
slope of a linear regression line is consistent with a rigid 
translation of the whole flow pattern as a consequence of 
the drift of the vortices. The case of the maximum u’, in 
which the drift seems to be slower (dy$/dy,fzO.74), is 
complicated by the fact that it is also the one farthest away 
from the wall and that it is probably influenced by condi- 
tions outside the wall layer. It is also the widest maximum 
and the hardest one to define. 

As the maxima move away from the wall, their ampli- 
tude decreases slightly (Fig. 6), except for u’, which stays 
approximately constant. This is true for quantities ex- 
pressed in wall units, even if it will be seen later that the 
friction velocity itself becomes smaller as the transverse 
flow is pushed away from the wall. The decreasing trend 
would be somewhat more pronounced if expressed in ab- 
solute units. This behavior is inconsistent with a dynamical 
model in which the dominant phenomenon is the interac- 
tion of transverse velocity with the no-slip wall. In those 
cases in which no transverse wall can be defined (negative 
offsets), for which the interaction with the transverse wall 
is effectively being removed, the transverse flow not only 
does not decrease, but actually becomes strongest. This is 
even true in the limiting case a = 1, which is approximately 
equivalent to a free slip transverse condition for which the 
transverse viscous interaction is completely absent. On the 
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FIG. 6. Normalized maxima for the protiles of the different fluctuation FIG. 8. Mean velocity profiles for controlled channels with different a. 
magnitudes, as a function of offset. Symbols are as in Fig. 5. Regression Symbols are as in Fig. 3. Dashed straight line corresponds to a von 
slopes: u’, 0.002; v’, -0.027; w’, -0.031; and (-z/u’), -0.028. K&man constant a=O.41. 

other hand, this trend is consistent with models, like the 
rapid distortion one, in which the role of the transverse 
condition is essentially dissipative. 

As the transverse flow weakens, so does the skin fric- 
tion (Fig. 7). This is also consistent with the rapid distor- 
tion model. As the streamwise vortices move away from 
the wall, the normal strain Way that they induce at the 
wall becomes weaker, and the viscous boundary layers of 
the longitudinal velocity become thicker, resulting in a 
lower wall vorticities. Note that, in the rapid distortion 
model, the intensity of the maximum U’ fluctuation is in- 
dependent of the position of the vortices, since it is only 
limited by the alternation of maximum and zero velocities 
alongside the cores, but that its position moves out with the 
streamwise vortices. This agrees with the trends in Figs. 5 
and 6. A more quantitative discussion of these trends is 
delayed until the next section. 

An interesting observation is that the mean velocity 
profiles for these highly perturbed channels display a log- 
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FIG. 7. Variation of the friction coefficient as a function of the vertical 
offset. Regression slope, -0.09. 

25 

arithmic region whose slope is consistent with the same 
von K&man constant as in the natural case (Fig. 8). Es- 
pecially interesting is the profile for the free slip case (a 
= 1) , whose logarithmic region is much longer than would 
correspond even to its comparatively high Reynolds num- 
ber, Re r~ 160. Evidently, the logarithmic law is not par- 
ticularly influenced by the manipulation of the wall region. 

V. RIBLETS 

The result in Fig. 7 suggests that a similar argument 
can be used to explain the drag reduction observed in riblet 
mounted boundary layers.33 It has been known for some 
time that the virtual origin for viscous longitudinal flow in 
those surfaces is lower than that for transverse flow, and 
the offset between the two origins, the “protrusion height,” 
has been computed for several riblet geometries.34P35 The 
observation is that, when the llow is considered at distances 
from the wall that are large with respect with the protru- 
sion height, it sees both the longitudinal and the transverse 
zero velocity boundary conditions as applied on a plane, 
but on a different one for each of them. This is, of course, 
only true as long as the riblets themselves are small com- 
pared to the characteristic length scales of the flow in the 
vicinity of the wall. The protrusion heights for practical 
riblets are small, Ay+ =E= l-2. 

If these conditions are satisfied, the problem looks very 
similar to the one treated in the previous section, and the 
behavior of the flow should be qualitatively and even ap- 
proximately quantitatively similar. It is well known33 that 
the optimum performance of riblets of a given shape occurs 
when their pitch is S+Z 15. This is consistent with the 
previous argument, in that this is also the characteristic 
size of the streamwise vortices. Larger grooves are compa- 
rable to the vortices and are not seen as an equivalent 
boundary condition on a plane. In essence, they are seen as 
corrugated plates with a strange geometry. It is only below 
the size of optimum performance that the problem should 
be equivalent to the one in the previous section. An alter- 
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mG. 9. Drag reduction using riblets as a function of protrusion height. 
Symbols are different riblets from Ref. 33. 0: triangular, Ws=O.87; A: 
triangular, h/s=O.45; 0: scalloped, h/$=0.33. A dashed line is regression 
from Fig. 7. 

native, and equivalent, argument is that the protrusion 
height approximation is only valid as long as the inertial 
terms can be neglected for the flow around the riblets,35*36 
which requires that the Reynolds number based on u, and 
either on the riblet height h or on its pitch should be 0( 1 ), 
and implies that neither sf nor h+ can be too large. 

Unfortunately, there are not many experimental mea- 
surements in that range of riblet size, but there are enough 
measurements near optimum performance to interpolate 
between those points and the zero drag reduction at zero 
riblet height. We have compiled in Fig. 9 the drag reduc- 
tion for several riblet shapes in terms of the protrusion 
heights, and we have compared it with the drag reduction 
line derived from Fig. 7. The results from the different 
riblets do not collapse into a single curve because they 
correspond mostly for sizes larger than the optimum, for 
which the important parameter is not the boundary offset, 
but the absolute size with respect to the flow structure. 
Below the optimum size, however, all the curves can be 
joined to the point representing the flat plate by curves that 
are close to each other, and that agree reasonably well with 
the line obtained from the offset boundary simulations. 

First of all, this result has some practical significance; 
it suggests that the optimum riblet is the one that has the 
maximum protrusion height, Ay+ =e& at S+ z 15, and it 
gives an upper bound for the drag reduction to be achieved 
as cs/cfo~ l-0.09 EA. Perhaps more significantly, it also 
provides an approximate physical realization for the nu- 
merical experiments discussed in the previous section, with 
results that are close enough to give us some confidence in 
the correctness of our analysis. 

Unfortunately, the numerical resolution of our numer- 
ical experiments is not high enough to obtain good struc- 
tural information, and the little that can be obtained is 
difficult to compare with that given by previous experimen- 
tal and numerical studies, which tend to concentrate on the 
different behaviors of the flow above riblet tips and 
valleys.5~37~38 The few results that can be compared directly, 

such as the upward displacement of the mean velocity pro- 
files, and the constancy of the logarithmic slopes, agree 
with experimental evidence.’ 

In fact, we can try to apply the estimates in Sec. III to 
the effect of an offset E between the transverse and longi- 
tudinal boundary conditions. Its main effect would be to 
increase the standoff distance of the vortices above the wall 
by 6, and to substitute E into the right-hand side of Eq. (8). 
From that equation we can then estimate the derivative of 
the different quantities with respect to the offset, 

1 da,+ 
s+ p zo.04, 

m 

1 dR+ 
-- ~0.08, 
R+ de+ 

1 dW+ 
-- ZO.12, W+ de+ 

where 6, , R, and W are, respectively, the standoff distance 
of the streamwise vortices above the w=O boundary con- 
dition, their radius, and the distance between velocity 
streaks. The effect on the standoff distance is small, in 
agreement with the observation that the main effect of the 
offset is to displace the whole transverse flow by the same 
amount as the offset. The vortices, however, get thicker 
and the streaks wider. Observations over riblets show that 
the width of the streaks grows by 15%-30% for protrusion 
heights of the order of one to two wall units,39 which is in 
good agreement with the derivative in Eq. ( 10). 

An argument that relates the location and intensity of 
the streamwise to the mean shear was given in Ref. 14. In 
essence, it assumes that the velocity difference across most 
of the boundary layer is compressed by the down-draft of 
the streamwise vortices into viscous wall layers, whose 
thickness are determined by the viscosity and by the local 
strain, which is proportional to .y//.?, where y is the circu- 
lation in a streamwise vortex and h = R +6,-t E is the 
standoff distance of its center above the u=O wall. The 
viscous thickness is proportional to (~h~/y)l’~, and the 
skin friction is inversely proportional to it. The circulation 
in the vortices comes from the one contained in the initial 
perturbations from which they are formed, which is pro- 
portional to the wavelength of the initial instability and 
therefore to the width of the streak. As a consequence, 
8- W”‘/h, and the derivative of the skin friction with 
respect to the offset can be written as 

1 dW+ 1 dh+ --__~ 
2W+ d& h+ de+ ’ (11) 

where the $ factor comes from the conversion from abso- 
lute quantities to’wall units. Using the estimates in Eq. 
( lo), we obtain, after some algebra, 

1 dcf 1 dR+ 
- c= -R+ -g z -0.08, cf de 

which is in approximate agreement with the value -0.09 
obtained from Fig. 7 and with the trend of the efficiency of 
optimal riblets. 
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VI. CONCLUSIONS 

We have described a simple cycle of events that would 
result in the maintenance of turbulent flow in the near wall 
region of a turbulent boundary layer. The two key stages 
are the advection of the mean shear by the flow in the 
transverse plane, which leads to the formation of the 
streaks, and the regeneration of the transverse flow 
through the shearing and stretching of the lateral instabil- 
ity waves that form in the wu regions that separate the 
streaks. Both processes are essentially inviscid and linear, 
and are contained in the rapid distortion approximation of 
shear turbulence. In the first stage kinetic energy flows 
from the mean shear into the U’ fluctuations that constitute 
the streaks, while, in the second, energy is fed into the 
cross-flow as some of the vorticity in these fluctuations is 
tilted into the streamwise direction. 

Viscosity act as a limit to the minimum scale that can 
be achieved by the tilted structures, and it eventually sets 
the width of the streaks. It also imposes the no-slip bound- 
ary condition of u at the wall, and therefore transforms 
into skin friction the velocity fluctuations present in the 
streaks. In this way, the viscous sublayer acts like the main 
seat of dissipation in the boundary layer. 

We have shown that this model can be made quanti- 
tative, and that it can be used to obtain estimates for the 
size of the different structures, which agree with experi- 
mental observations. 

To separate the contributions from different parts of 
the models, we have presented numerical experiments in 
which the longitudinal and transverse no-slip boundary 
conditions are approximately decoupled. We have shown 
that the variation of the low-order statistics in these exper- 
iments agrees with our model, both qualitatively and quan- 
titatively. Finally, we have related the offset boundary con- 
ditions to the performance of riblets, and we have shown 
that our order of magnitude estimates can also provide 
quantitative information on that problem 

The model in this paper can only be considered pre- 
liminary, and much work needs to be done before it is 
checked completely. Some parts of it may turn out to be 
wrong, but we believe that it is consistent, both, with itself 
and with the experimental observations of the wall region. 
We have also shown that it is able to predict the response 
of wall turbulence to some types of perturbations. This is in 
the end of the mission of simplified models, and the use- 
fulness of this one should be judged on whether it can be 
made to work in other complicated situations. 
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