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The largest scales of turbulent wall flows

By Javier Jiménez1

1. Introduction
The small scales of wall-bounded turbulent flows have received a lot of attention in

recent years, especially in the near-wall region, in part because of the availability of
direct numerical simulations that made their detailed study possible (Kim, Moin &
Moser 1987). Since those simulations had necessarily moderate Reynolds numbers
and little or no separation between their largest and smallest scales, the study of
the former independently of the latter in them was difficult. The purpose of this
paper is to study the flow scales which are of the order of or larger than the channel
width or the boundary layer thickness. We will see that their contribution to the
integral flow quantities is not negligible.

The resolution of experiments and simulations is usually adjusted so that the
discretized variables are smooth while the size of the numerical box, or of the exper-
imental record, is chosen so that the correlation functions at distances comparable
to the box size decay to a negligible level. The latter is intended to guarantee that
there is little energy at scales larger than the box size, but it has to be interpreted
with care. The energy in a flow that has been low-passed filtered at scales of order
λ is proportional to the integral of the correlation function over separations longer
than λ and decays slower than the function itself. Since singular spectra such as
those in turbulent flows give rise to algebraically decaying correlation tails, it is
possible to have correlations which appear to have decayed but which still have a
substantial fraction of the energy in their tails.

The peak of the one-dimensional spectrum is moreover typically at k = 0. This
becomes important if the filtered signals are the interesting ones such as in acoustics,
where sound attenuation decreases with wavelength and only long waves survive at
long distances.

Large structures are also physically interesting because long wavelengths imply
long lifetimes and large volumes, and their integrated coherent effect can be com-
parable to those of the smaller ones even when their power per unit volume is not.
Thus if the one-dimensional power spectrum of a signal tends to a constant E0 as
k → 0, the power is contained in wavelengths longer than λ is O(E0/λ), but since
the lifetime of each structure is proportional to λ, the total energy per structure
is independent of the wavelength. As an example, even a small transverse velocity
acting for a long time would lead to substantial modifications of the velocity profile.
For a flow to be well represented in this sense implies that its resolved spectrum
should decay at the lowest wavenumbers as well as at the highest ones, which may
never be true in turbulent flows.

1 Also with the School of Aeronautics, U. Politécnica Madrid.
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A less restrictive spectral criterion, involving only considerations of power per
unit volume and, therefore, roughly equivalent to the condition on the correlation
function, is that the product

φ = kE(k), (1)

should decay for the lowest observed wavenumbers since that pre-multiplied spec-
trum is proportional to the power in a logarithmic band centered at k (Bullock,
Cooper and Abernathy, 1978). Note that the same is true if the wavelength, λ =
2π/k, is used in the abscissae instead of the wavenumber since d logλ = −d log k
and the integral is the same in both cases. In this paper we will generally use φ(λ).

There is another reason for studying these largest scales of wall turbulence. We
have already mentioned that in some parts of the flow they carry a substantial
fraction of the kinetic energy and are, therefore, important by themselves. They
may also be simpler to study than regular turbulent structures in the inertial range.
Since they are large but their velocity fluctuations are still small compared to the
velocity differences in the mean flow, their velocity gradients are weak compared to
the mean shear and can be approximately described as quasi-linear. We will in fact
see that they share some of the characteristics of rapidly distorted turbulence.

This suggests the appealing possibility that wall flows could be described, as in
the case of many free-shear ones, in terms of large-scale quasi-linear structures mod-
ulated by essentially isotropic small scales. This would contribute to the unification
of an area of turbulence research, the study of the large scales, which has usually
been considered non-universal.

2. Experimental evidence

2.1 Spanwise scales
Almost all the available information on the energy-containing spanwise scales in

wall turbulence comes from direct numerical simulations. Spectra from two channels
at Reτ = 180 (Kim, Moin & Moser, 1987) and Reτ = 590 (Mansour, Moser & Kim,
1996) are given in Fig. 1. The spectra of u and w near the wall show the well-known
peak at λ+

z ≈ 100 corresponding to the spanwise periodicity of the streaks. It is
interesting that the wall-normal v spectrum peaks at a wavelength which is twice
shorter than the other two. This was already observed in the transverse correlation
functions by Kim et al. (1987), who explained it as corresponding to the diameter
of the streamwise vortices. That explanation is only partly convincing since it is
not clear why it would not apply as well to the spanwise velocity, which is also
presumably associated with the vortices. The same effect is, moreover, observed at
all distances from the wall, where coherent vortices are not necessarily present, and
the effect should probably still be considered unexplained.

As we move away from the wall, the spectral peaks move to longer wavelengths
and, near the center of the channel, show signs of being constrained by the peri-
odicity of the numerical box. This is specially noticeable in the u spectrum of the
high-Reynolds number channel, but all the u and w pre-multiplied spectra above
y/h ≈ 0.5 have their maxima at the second numerical wavelength, making it im-
possible to predict which their behavior would be in a wider box. It is clear, on the
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Figure 1. Pre-multiplied power spectrum kzE(kz), as a function of λ+
z . (a) and

(b), Euu; (c) and (d), Evv; (e) and (f), Eww. (a), (c) and (e), Reτ = 180 channel
from Kim et al. (1987): y+ = 4, 17, 23, 38, 50, 66, 84, 107, 141, 180. (b), (d) and
(f), Reτ = 590 channel from Mansour et al. (1996): y+ = 5, 19, 39, 60, 77, 99, 129,
167, 215, 274, 357, 461, 590. In both cases increasing y+ corresponds to a rightward
shift of the short-wavelength end of the spectrum, and lines rotate between solid,
dashed, dotted and chaindotted. All the spectra are normalized to unit area, to
emphasize their frequency content.
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Figure 2. Spanwise wavelength of the maxima of the pre-multiplied spectra. ◦ ,
Euu; 4 , Evv; , Eww. Open symbols, Reτ = 590; closed symbols, Reτ = 180. The
dashed line has slope 1. (a) Wall units. (b) Outer units.

other hand, that the range of scales at Reτ = 590 is wider than at Reτ = 180, sug-
gesting that, since the wavelengths near the wall clearly scale in wall (Kolmogorov)
units, those near the center-line probably scale in outer units and are proportional
to the channel width.

The spanwise wavelengths of the energy maxima for the different pre-multiplied
spectra are given in Fig. 2. They were extracted manually from the data in Fig. 1
and should, therefore, be only taken as rough approximations. Only spectra whose
maxima are not in one of the two rightmost points have been used in the figure. It
is apparent that the data from both Reynolds numbers collapse very near the wall
to approximately 100 wall units for Euu and Eww and grow approximately linearly
as fractions of the channel height beyond y+ ≈ 50. The maxima of Evv follow the
same trend but are shorter by roughly a factor of two.

The data from v have a somewhat longer useful range near the center of the
channel although it is clear from the inspection of Fig. 1 that even they should be
treated with care. If we take them at face value and assume that their relation with
the other two scales holds all the way to the center-line, the maximum size of of
the v structures would be λzv/h ≈ 1, and those of u and w would be λz/h ≈ 2.
This agrees with the result of Kim et al. (1987) that the velocity correlations decays
beyond z/h ≈ 2.

Note that the scales given by these maxima represent the size of the energy-
containing structures and are different from the integral scale

λ0 =
π

2
E(0)∫∞

0
E(k) dk

, (2)

which can be shown to be roughly proportional to the width of the graph of φ, when
plotted against log λ, rather than to its maximum. It is actually easy to construct
families of spectra such as

E(k) = [1 + a(a− 1)k]e−ak, (3)
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Figure 3. Pre-multiplied long-wavelength power spectrum kxEuu(kx) for the
pipe in Priymak and Miyazaki (1994) at y+ = 3. The dashed line is the spectrum
in Kim et al. (1987) at y+ = 6, included for comparison. Symbols in both cases are
the numerical wave numbers.

which have a fixed integral length and an arbitrary location of the energy-containing
peak. In this example λ0 is always π/2, while the location λmax of the maximum
of φ varies from approximately 2π for a = 1 to πa for a� 1.

We will later find cases in which the position of the peak is not enough to charac-
terize the energy-containing scales since the spectrum is dominated by an E ∼ k−1

range, which appears as a broad plateau in φ(λ), but that is not the case here.

2.2 Streamwise scales

There is evidence of very long streamwise wavelengths in pipes and channels
even if the numerical simulations of Kim et al. (1987) show that the correlations
decay beyond x/h ≈ 4 in the streamwise direction. In this section we will use h to
represent either the half-width of a channel or the radius of a pipe, while δ will be
reserved for the boundary layer thickness.

Priymak and Miyazaki (1994), using coarse numerical simulations of a low Reynolds
number pipe (Reτ ≈ 150), find that their pre-multiplied streamwise spectra have an
E ∼ k−1 range that only decays beyond λx/h ≈ 5π (Fig. 3). This low-wavenumber
behavior was found below y+ ≈ 60 (y/h = 0.4). Note that as mentioned above
a substantial part of the pre-multiplied spectrum extending beyond the longest
resolved wavelength implies that part of the energy is not properly represented.

Bullock et al. (1978) found a similar low-wavenumber behavior in their exper-
imental investigation of a turbulent pipe at Reτ = 2600. Their pre-multiplied
longitudinal velocity spectra contain two ‘peaks’. The one at the shortest wave-
length is at λ+

x ≈ 600 and is the only one present near the wall. Above y+ ≈ 60
another peak appears, or rather a k−1 range develops between the near-wall peak
and a mild maximum at low wavenumbers which vary from λx/h ≈ 3 at y+ = 60 to
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λx/h ≈ 20 at y/h ≈ 0.6. Beyond this point, the long-wavenumber peak disappears
and is replaced by a shorter one at λx ≈ h, which can be traced to the migration
to longer wavelengths of a weakened version of the near-wall peak.

Both wavelength ranges are different. Radial correlations of the streamwise veloc-
ity show that the low wavenumbers are correlated across a wide radial range while
the high ones are local in the radius.

Perry, Henbest and Chong (1986) made a detailed study of the streamwise u and
v spectra in smooth pipes with Reτ = 1, 600−3, 900, with a special emphasis on the
extent and scaling of the E ∼ k−1 range. They find that, in the region y+ > 140
and y/h < 0.3, Euu has a k−1 range which extends between a short-wavelength
limit at λx/y ≈ 5 and a longer one at λx/h ≈ 15. They present no measurements
within the near-wall region, but if their short-wavelength limit were extrapolated to
the inner edge of the logarithmic layer at y+ ≈ 100, it would fall in the same range
as the near-wall peak mentioned above. Beyond y/h ≈ 0.3 the short-wavelength
end of the k−1 range is no longer proportional to y and settles around λx/h ≈ 3.
Although the uncertainties from reading printed spectra are large, the order of
magnitude of these wavelengths is comparable to the two ‘peaks’ found by Bullock
et al. (1978). The marching short-wavelength limit would originate from the near-
wall peak and eventually connect with the λx ≈ h outer peak observed in the center
of the pipe by Bullock et al., while the long-wavelength peak would be the same in
both experiments. It is interesting that in both cases the k−1 range is only found in
what is usually considered the logarithmic region and disappears towards the center
of the pipe.

In a previous paper Perry and Chong (1982) had presented results for rough
pipes at comparable Reynolds number, although only for Euu in a narrow range of
y stations within the logarithmic region. The k−1 is very apparent and appears to
be longer than in the smooth case. Its long-wavelength limit is at the same location
as in the latter, but it extends to shorter wavelengths of the order of λx ≈ y.

The streamwise spectra for the two numerical channels discussed in the previous
section are shown in Fig. 4. There is a clear difference between the spectra of the
streamwise fluctuations and those of the other two components. While the latter
show only a mild drift to longer scales as they get farther from the wall, the former
have most of their energy at very long wavelengths, in agreement with the previous
discussion, and are clearly constrained by the numerical box. Note that in the
Reτ = 180 channel the short end of the k−1 range at the edge of the similarity
region would be 5y+ ≈ 300, shorter than the expected viscous length near the
wall. As a consequence the position of the spectral peak moves towards shorter
wavelengths as it moves away from the wall.

The short-wavelength peak found near the wall in all these cases is probably re-
lated to previous observations in experiments and numerical simulations. Clark and
Markland (1971) report that the mean streamwise spacing between near-wall vor-
tices is λ+

x = 440, while various investigators have reported that the mean distance
between substructures within turbulent boundary layer spots is λ+

x ≈ 200−500 (see
Sankaran et al. 1988, and references therein). Jiménez & Moin (1991) observed that
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Figure 4. Pre-multiplied power spectra φ(λx). Symbols as in Fig. 1, but in
this case the spectra for Reτ = 180 move to shorter wavelengths with increasing
distance from the wall.

turbulence could not be maintained in numerical boxes with a streamwise periodic-
ity shorter than λ+

x ≈ 350, while Jiménez & Pinelli (1998) showed that turbulence
decays if the streamwise coherence of the velocity streaks near the wall is disturbed
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below λ+
x ≈ 400. In both cases the minimum streamwise period corresponds to

boxes containing a single pair of streamwise vortices flanking each sublayer velocity
streak.

The long wavenumber range has been reported less often, probably in most cases
because of insufficient extent of the numerical or experimental records. Choi and
Moin (1990), for example, while studying the wall pressure spectra in the channel
of Kim et al. (1987), noticed a spurious peak at their lowest wavenumber, kxh = 0.5
(λx/h = 4π), which they attributed to the periodicity of the box, suggesting that
the long wavelengths were poorly resolved.

In boundary layers, whose low-wavenumber characteristics need not be identical
to those of internal flows, Farabee and Casarella (1991) measured spectra of the
wall pressure fluctuations down to very low frequencies. They found that the low-
wavenumber end of their pre-multiplied spectra collapses well in outer flow variables
and only decreases beyond kxδ ≈ 0.25 (λ/δ ≈ 8π), where δ is a boundary layer
thickness roughly equivalent to the pipe radius. Their Reynolds numbers are Reτ ≈
1, 000− 2, 000.

Nagib and Hites (1995) and Hites (1997) measured longitudinal velocity spectra
in boundary layers with Reθ = 4− 20× 103, corresponding to Reτ ≈ 1.5− 6× 103.
They report a k−1 range above y+ = 50, extending from a short-wavelength limit
at λ+

x ≈ 600 to a longest wavelength of λx/δ ≈ 4. The latter is substantially shorter
than the long-wavelength limit observed in pipes and channels and also shorter than
the wavelength implied by the pressure spectra of Farabee and Casarella (1991).
This might be due to a procedural artifact. Their spectra are computed digitally
from records which limit them to wavelengths shorter than about λ+

x ≈ 105, which
at their highest Reynolds numbers corresponds to λx/δ ≈ 20. Since the last few
points in the spectrum are generally corrupted by the windowing algorithm, this
implies that the location of their low frequency peak is uncertain. It is interesting
that their k−1 range is only present below y+ ≈ 200 and that above that range
their pre-multiplied spectra contain a single peak at long wavelengths, suggesting
again, when compared to other results, that their longest wavelengths may have
been missed by the experimental procedure. In fact, in a different analysis of the
same data, Hites (1997) measured the fraction of the streamwise kinetic energy in a
low-pass filtered version of his velocity signals and found that about 30–50% of the
energy was associated with wavelengths longer than the long-wavenumber peak in
his spectra and that this fraction increased with the Reynolds number. About 15%
was associated with wavelengths longer than λx/δ = 10. This was observed at the
only two locations studied in this way, y+ = 100 and 300.

The experimental results for the longitudinal extent of the streamwise velocity
fluctuations are summarized in Fig. 5. Figure 5agives the location of the short-
wavenumber end of the energy-containing range. This is the only longitudinal scale
which exists at all positions across the flow. Near the wall it corresponds to an
isolated energy peak in the pre-multiplied spectrum near λ+

x ≈ 600. It grows away
from the wall until y/h ≈ 0.3, and it remains constant or decreases slightly above
that level. The few data available do not collapse well in either wall or outer units,
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Figure 5. Wavelength of the two limits of the k−1 range in Euu(kx), as a
function of the distance from the wall. ◦ , Hites (1997), Reτ = 1350; 4 , Hites(1997),
Reτ = 5900; , Bullock et al. (1978), Reτ = 2600; ∇ , Kim et al. (1987), Reτ = 180;
� , Mansour et al. (1996), Reτ = 590; , Perry et al. (1986), Reτ ≈ 3000. (a)
Short-wavelength limit in wall units. (b) Long-wavelength limit, in outer units. The
dashed line has slope 1/2. (c) Ratio between the two limits of the energy-containing
range.

and the support for a linear growth with wall distance is only moderate. The range
of useful experimental Reynolds available is not large, Reτ = 1, 000 − 6, 000, but
in that range the maximum wavelength of this peak near the center of the channel
is λx/h = 1− 2. We have seen in the previous section that the spanwise extent of
the structures containing the streamwise kinetic energy varies from λ+

z = 100 near
the wall to λz ≈ 2h at the center. Assuming that the structures involved are the
same in both cases, this would imply that the large scales vary smoothly from a
streamwise aspect ratio of about 6 near the wall to approximate isotropy near the
center.

The real picture is more complicated. Between y+ ≈ 100 and y/h ≈ 0.3− 0.5 a
second limit appears, which is given in Fig. 5b. It scales well in outer units within
the present range of Reynolds numbers and constitutes the long-wavelength limit
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of an E ∼ k−1 spectral range which contains essentially all the streamwise kinetic
energy. The available data, except for those in Perry et al. (1986), suggest that the
ratio between those two limits is always approximately equal to 10 (Fig. 5c) and
that both scales grow as y1/2. The long-wavelength limit disappears in the center
of the channel, and the k−1 range again collapses to a single spectral peak. The
existence of the k−1 range approximately coincides in these experiments with the
logarithmic region of the mean velocity profile.

The square-root dependence on wall distance is surprising and would imply that
the length scale is determined by some viscous mechanism, probably based on an
eddy viscosity which stays constant across the flow. This would be difficult to
understand, and there is enough scatter in the data to leave open the possibility of
a linear dependence, but this is one of the many points in these data that call for
urgent clarification.

The data on the other velocity components are scantier. The wall-normal com-
ponent v has been measured in several occasions, and there is general agreement
that it does not contain a k−1 range (Perry et al., 1986). The k−5/3 inertial range
in its one-dimensional streamwise spectrum connects directly with a low-frequency
range which is essentially flat. The corner between the two regimes is at about
the same scale as the short-wavelength end of the k−1 range in Euu, and it is at
those scales that most of its energy is concentrated. The data in Fig. 4 support this
interpretation.

There are even less data on the spanwise component w. The numerical data
in Fig. 4 suggest that there is no k−1 spectrum for this component and that its
characteristic wavelengths are those of v rather than u. The same can be deduced
from the spectra given by Lawn (1971), in a pipe at Reτ ≈ 2, 000. Although his
spectra are noisy and clearly truncated at low frequency, they fall in two groups:
long ones for Euu, which continue growing at his lowest measured frequencies, and
short ones for Evv and Eww, which flatten beyond λx/h ≈ 2.

Perry, Lim and Henbest (1987) suggest that Eww has a short k−1 range in contrast
to Evv, but inspection of their data reveals that if this range exists it is much
narrower than that of Euu and is located at wavelengths which are an order of
magnitude shorter than those of u.

Saddoughi & Veeravalli (1994) and Saddoughi (1997) made measurements in
rough perturbed boundary layers at Reτ = 30, 000− 160, 000. Although their anal-
ysis is centered on the isotropy of the inertial range, the long-wavelength behavior
of their spectra can be used as a check of the Reynolds number independence of the
previous conclusions since their Reτ are at least an order of magnitude larger than
those discussed up to now. Their spectra also fall clearly in a short group for v and
w and a long one for u.

2.3 Reynolds stresses
Perry et al. (1987) suggest, mostly on theoretical grounds, that no k−1 range

should be found in the Euv cospectrum. The basic argument, which goes back to
Townsend (1976) and which is implicit in the classical distinction between ‘active’
and ‘inactive’ motions, is that, since Reynolds stresses depend on the presence of v,
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Figure 6. Pre-multiplied power co-spectra. (a) and (b) kzEuv(kz), as a function
of λ+

z . (c) and (d) kxEuv(kx), as a function of λ+
x . (a) and (c) Reτ = 180 channel

from Kim et al. (1987): y+ = 17, 23, 38, 50, 66, 84, 107, 141. (b) and (d), Reτ = 590
channel from Mansour et al. (1996): y+ = 16, 60, 77, 99, 129, 167, 215, 274, 357,
461. In both cases lines rotate between solid, dashed, dotted, and chaindotted.
The spectra are not normalized to unit area, and decreasing amplitudes generally
correspond to larger distances from the wall. Note that, as for the velocity spectra
in Fig. 4a, the scale of the Reτ = 180 cospectrum in (c) decreases away from the
wall.

they can not be present at scales at which the latter is not active. A little thought
reveal that this is not necessarily so. Consider the low-frequency spectral range in
which Euu ∼ k−1 and Evv ∼ 1. The only limitation for the cospectrum is that
E2
uv ≤ EuuEvv, and it is possible to have substantial Reynolds stresses even at

wavenumbers at which the v spectrum is already constant.
The streamwise and spanwise cospectra from the two numerical channel simula-

tions are given in Fig. 6. The drift in λz away from the wall is similar to that of
u and w in Fig. 1, and there is a clear suggestion of a k−1

x range in the streamwise
cospectrum of the higher Reynolds number case. A comparison with Fig. 4 shows
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that the characteristic wavelengths of the cospectra are those of u rather than those
of v.

Krogstad, Antonia and Browne (1992) give spectra for Euu, Evv, and Euv in
a boundary layer at Reτ ≈ 2, 000. The pre-multiplied Euu and Euv have broad
maxima, both of which only decay beyond λx/δ ≈ 6, while Evv has a narrower peak
at wavelengths which are an order of magnitude shorter.

Saddoughi & Veeravalli (1994) measured Euv at y/δ = 0.1 and 0.4. The cospectra
at the near-wall station have a well-developed k−1

x range that extends from λ/δ ≈ 0.5
to λ/δ ≈ 7. Note that these values are very close to the limits of the k−1

x range for
Euu given in Fig. 5 at this distance from the wall. Their cospectra at the mid-layer
location have essentially no k−1 range.

Lawn (1971) measured some cospectra. They are generally short, like v and w,
but it is interesting that the two cospectra for which y+ > 200 and y/h < 0.5 are
‘long’ and continue to increase beyond their lowest wavenumber λx/h = 50.

3. Discussion

The general picture suggested by the data discussed above is that there exist in
the region of the flow generally associated with a logarithmic velocity profile very
long structures with longitudinal aspect ratios of the order of 10, which essentially
consist of streamwise velocity fluctuations. They contain most of the streamwise ki-
netic energy. Spanwise and wall-normal velocities have shorter wavelengths, roughly
coincident with the shorter end of the scales of the u structures, and are only slightly
elongated in the streamwise direction.

Long streamwise structures which contain predominantly streamwise velocity can
best be described as a system of longitudinal jets and are reminiscent of the sublayer
low- and high-velocity streaks, although in this case they would clearly be turbulent
themselves. In the sublayer streaks, for example, the quasi-streamwise vortices
responsible for the v and w fluctuations are also shorter than the streaks, and the
latter are the result of the action of several vortex pairs (Jeong, Hussain, Schoppa
& Kim 1997).

In Fig. 7 we give an instantaneous picture of the u and v contours for a wall-
parallel plane of the numerical Reτ = 590 numerical channel from Mansour, Moser
and Kim (1996), even if we have seen that their box is too short to represent these
structures correctly. There is clearly a large low-velocity streak on the upper half
of the u-plane which is not present in v. The transverse section in the lower frame
of the figure shows that this is not an isolated case and that there are several jets
at roughly the same scale. They are distinct from the sublayer streaks, being much
larger, but they seem to form from the joint effect of several of them.

Komminaho, Lundbladh, and Johansson (1996), who have observed streamwise
structures of the order of 40h in low-Reynolds-number Couette flow, publish snap-
shots of their simulations which look strikingly similar to Fig. 7.

Very large streaky features with widths and heights of several hundred meters
are known to occur in the atmospheric boundary layer, apparently associated with
storms having a large geostrophic shear (J. C. R. Hunt, private communication), and
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Figure 7. Instantaneous filtered velocities in the channel of Mansour et al.
(1996), Reτ = 590. (a) and (b): y+ ≈ 300 from the lower wall. Flow is from left
to right. Velocities are filtered by averaging on a 133 stencil (∆x+×∆y+×∆z+ ≈
130 × 75 × 60). (a) Streamwise velocity fluctuations; contours are u′ = ±0.75(1).
Negative contours are dashed, and the fluctuations are computed with respect to the
instantaneous mean velocity on the x-z plane. (b) Wall-normal velocity; contours
are v′ = ±0.375(0.5). (c) Transverse section of u′ at x+ ≈ 2500. Fluctuations, filter
and contours as in (a), but there is no filtering in y.
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have been observed underneath tropical hurricanes (Wuman and Winslow, 1998).
Smaller scale features, although still much larger than sublayer streaks, are observed
in wind-blown sand in beaches (Jiménez, personal observation), and in blowing snow
in snow fields (Adrian, private communication).

Perry et al. (1986) describe their results in terms of an ‘attached eddy’ model
which is an elaboration of an earlier one proposed by Townsend (1976). Briefly, in
the logarithmic region, the v structures are blocked by the presence of the wall and
are constrained to sizes at most of order y. This argument has been extended by
Hunt (1984) to any turbulent flow in the presence of a wall, independently of the
presence of shear, and to wall-normal correlations lengths. These blocked eddies
would form the ‘short’ λx ∼ y peak in both v and u. A similar peak would also be
expected to appear in λz, and we saw evidence for it in Fig. 2. For the tangential
components there is no blocking effect, and much larger structures are possible.
The peak at λ ∼ y would only constitute a short-wavelength limit for them, and
one could expect a range of eddies, large in the tangential directions but attached
to the wall in the wall-normal one. Perry et al. (1986) give a very specific model for
these eddies as attached hairpin vortices and use it to derive the k−1 form of the
spectrum. The latter behavior is, however, more general than the hairpin model
and can be derived from simple dimensional considerations for near-wall structures
that are so large that their distance to the wall should not be important (Perry and
Abell, 1977).

We have mentioned in the introduction that the internal velocity gradients associ-
ated with these large structures are so low that their dynamics should be dominated
by the shear in the mean velocity profile. They can, to a first approximation, be
considered linear and described by rapid distortion theory. The blocking of v men-
tioned above is one such linear effect, but it is independent of the mean shear and
depends only on the presence of an impermeable wall. It is easy to see that the effect
of a mean shear is that any initial turbulence gets deformed into a series of stream-
wise jets. In essence, any spectral component with a non-trivial dependence on x
gets damped by the shear, and only the x-independent motion in the cross-plane
is left. This transverse motion depends on the initial conditions and is uncoupled
from the streamwise velocity. Except for viscosity, which would be negligible at
these large scales, it is undamped and will last for long times. The u component
is transported by this transverse velocity as a passive scalar (Orlandi and Jiménez
1994). Wherever v moves towards the wall, u increases, and vice versa. Even if
the transverse flow is weak, the modulation of u increases linearly in time and will
grow to form large amplitude longitudinal jets until either viscosity or nonlinear
effects halt the growth. It was shown by Orlandi & Jiménez (1994) in the context
of ‘laminar’ near-wall streaks that this processes changes the mean velocity profile
and, therefore, carries Reynolds stresses.

4. Conclusions and open questions

We have shown that eddies with streamwise lengths of the order of 10−20 bound-
ary layer thicknesses are present in the logarithmic region of wall-bounded flows.
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They contain a substantial fraction of the streamwise kinetic energy and, probably,
also of the Reynolds stresses. They can be approximately visualized as a system of
streamwise turbulent jets, roughly comparable to the sublayer velocity streaks at a
much larger scale.

We have given arguments that they should be describable to a first approximation
by the combined linear effects of the blocking by the wall and of the mean shear.
The first effect has been treated, for example, by Hunt (1984), who showed that it
explains the difference between v and the two tangential spectra. In the absence of
a mean shear, there should be no difference in the behavior of the u and w spectra,
both of which should be ‘large’. We have shown that shear breaks that symmetry
and leads directly to longitudinal jets and to a u spectrum which is much longer
than the one for w.

The appeal of this argument is that it provides some unification to the arguments
on the largest scales of turbulent flows. It has been understood for some time that
the large structures of free shear flows correspond closely to the most unstable eigen-
functions of their mean velocity profiles (Cimbala, Nagib and Roshko, 1988; Gaster,
Kit and Wygnanski, 1985). This explanation does not work for wall-bounded flows,
whose profiles are typically stable, but it is easy to convince oneself that the linear
mechanism described at the end of the last section is nothing but the result of the
neutrally-stable Squire’s modes of the inviscid Rayleigh stability equation for the
mean profile (Betchov and Criminale 1967).

A unified theory for all these largest structures would treat them as solutions of
the linear, inviscid stability equations. If an unstable eigenvalue exists, it dominates
the initial value problem. Otherwise, the linearly growing Squire’s modes prevail.

As satisfying as that conclusion might be, it is clear that it should only be con-
sidered a preliminary step of a wider work program. Many questions are left unan-
swered.

Some of them are experimental. There is essentially no information on the span-
wise structure of these large scales. We lack experimental data, and the Reynolds
numbers of the numerical simulations are too low to draw scaling conclusions. The
data on the streamwise scales is better but partially contradictory. Most of the
available high Reynolds number experiments either lack spectral information, have
too few y-stations, or have data records which are too short to capture the largest
scales. The situation is specially bad for the spanwise velocity component w and
for the cospectrum, for which contradictory interpretations exist.

Except with the use of massive probe rakes it is unlikely that experiments would
give geometrical information about the structure of these eddies. Numerical simula-
tions should help, but the twin requirements of very long boxes and high Reynolds
numbers make direct simulations difficult. It should be possible, however, to at-
tempt large eddy simulations of a few cases to clarify both the scaling an the ge-
ometry.

On the theoretical side, the linear model outlined above is clearly only a first
approximation. Nonlinearity has to be taken into account although, hopefully, only
as a secular perturbation. In free shear flows it appears in the form of Reynolds
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stresses that modify the mean profile responsible for the instability. This is probably
the root of the ‘marginal instability principle’ used by Lessen (1978) and co-workers
to explain some of their properties. This nonlinear mechanism does not work in wall
flows because the mean profile does not feed back into the transverse velocities of
the Squire’s modes. Weakly nonlinear models of the near-wall streaks have been
proposed by Waleffe (1997) and others, and they could perhaps be adapted to the
present case. A cycle for the generation of large streamwise structures in a turbulent
profile was proposed by Townsend (1976).

Two especially troublesome aspects of the experiments are related to the question
of nonlinearity. The first is the difference of about a factor of 2 between the observed
spanwise wavelengths of v and of the other two velocity component (see Figs. 1 and
2). It is difficult to explain it as a linear property. The second is the apparent
y1/2 scaling of the longitudinal scales in Fig. 5 and the corresponding finite range
of wavelengths associated with the k−1 range, which is supported by the cospectral
measurements of Saddoughi and Veeravalli (1994) at higher Reynolds numbers.
The square-root scaling suggests a mechanism which is more global than strict self-
similarity based on local conditions, but the finite extent of the k−1 range suggest
the opposite. More experimental results are needed in both cases.

The pay-off of this work should come in various ways. By far the most interesting
would be the already discussed possibility of unifying the understanding of the large
turbulent scales, which are at present considered non-universal and usually treated
in separate ‘botanical’ ways. Some practical applications may also follow. Since
these structures contain energy and Reynolds stresses, they are of practical impor-
tance, but their large size makes them expensive to compute. A quasi-linear model
would open the way for their ‘super-grid’ modeling (S. Lele, personal communica-
tion). We have already mentioned that they probably control the low frequency
noise from boundary layers.
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