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This paper discusses numerical experiments in which an initially uniform columnar
vortex is subject to several types of axisymmetric forcing that mimic the strain field of
a turbulent flow. The mean value of the strain along the vortex axis is in all cases zero,
and the vortex is alternately stretched and compressed. The emphasis is on identifying
the parameter range in which the vortex survives indefinitely. This extends previous
work in which the effect of steady single-scale non-uniform strains was studied. In
a first series of experiments the effect of the unsteadiness of the forcing is analysed,
and it is found that the vortex survives as a compact object if the ratio between the
oscillation frequency and the strain itself is low enough. A theoretical explanation is
given which agrees with the numerical results. The strain is then generalized to include
several spatial scales and oscillation frequencies, with characteristics similar to those in
turbulent flows. The largest velocities are carried by the large scales, while the highest
gradients and faster time scales are associated with the shorter wavelengths. Also in
these cases ‘infinitely long’ vortices are obtained which are more or less uniform and
compact. Vorticity profiles averaged along their axes are approximately Gaussian.
The radii obtained from these profiles are proportional to the Burgers’ radius of
the r.m.s. (small-scale) axial strain, while the azimuthal velocities are proportional
to the maximum (large-scale) axial velocity differences. The study is motivated by
previous observations of intense vortex filaments in turbulent flows, and the scalings
found in the present experiments are consistent with those found in the turbulent
simulations.

1. Introduction
In the last decade there has been an increasing interest in the strong coherent

vortices (‘worms’) which are found among the small scales of many turbulent flows.
Numerical simulations (Siggia 1981; Vincent & Meneguzzi 1991; Jimenez et al. 1993
and references therein) and laboratory experiments (Douady, Couder & Brachet
1991; Villermaux, Sixou & Gagne 1995) have shown that these vortices can be traced
over lengths comparable to the integral scale of the flow (Le), although Jiménez
& Wray (1998) find that they contain shorter substructures with lengths of the
order of the Taylor microscale λ. Their radii are of the order of the Kolmogorov
scale η, and their circumferential velocities are of the order of the r.m.s. velocity
fluctuations u′. They have lifetimes of the order of the eddy turn-over time of the
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large turbulent scales Te = Le/u
′, which are also implied by their length. A recent

survey of their properties, including results from experimental observations at high
Reynolds numbers, is Jiménez (1998), which confirms those scalings.

They are therefore very elongated objects, since λ/η = Re
1/2
λ and Le/η ∼ Re

3/2
λ ,

where Reλ = u′λ/ν � 1. Their vorticity, O(u′/η), is much higher than the r.m.s.
vorticity over the bulk of the flow, ω′, and they can therefore only be created by
stretching pre-existing structures. Their radius is compatible with this explanation,
since the strains available in the background are O(ω′) and can stretch a vortex until
its radius is of the order of the Burgers’ limit (ν/ω′)1/2 ∼ η. They are however too long
for this simple model. A straightforward consideration of the Kolmogorov spectrum
shows that the correlation length of any velocity gradient, taken over the bulk of the
flow, is of the order of η. This was shown by Jimenez & Wray (1994b) to be also
the case for the stretching along the worm axes, σ = ωSω/ω2, and is much shorter
than the length of the observed filaments. The same paper shows that not only the
length scale of σ, but its magnitude and p.d.f. are essentially the same along the axes
of the worms as in the bulk of the flow, with compressive and stretching segments of
roughly comparable lengths.

There are therefore several levels of organization along the worms axes, on none
of which can they be considered uniformly stretched vortices. They are coherent over
lengths of O(λ), and retain enough structure over the longer scale O(Le) that they
can be recognized as single objects by most tracking algorithms. Over those lengths
they are subject to a more or less random stretching which is of O(ω′), but which
is only coherent over the much shorter length scale O(η), and which is partially
compressive. We have seen that their radii are compatible with strains of the order
of ω′, even if the mean stretching over the longer distance cannot be higher than
O(u′/Le)� O(ω′).

A related observation is that the filaments are essentially stable, since their observed
lifetimes, O(Te), are much longer than their internal rotation times η/u′ ∼ TeRe

−3/2
λ .

This can be qualitatively explained because their vorticity is much stronger than the
velocity gradients in the surrounding flow, which they see as small perturbations.
An isolated axisymmetric columnar vortex is linearly stable, although it supports
neutral waves. It becomes unstable when subject to a non-axisymmetric external
strain, but the eigenvalues of the instability are only of the order of the imposed
strain (Saffman 1992), and the perturbation will not grow unless the forcing maintains
roughly the same orientation over times comparable with the inverse of the growth
rates. Incoherent turbulent fluctuations have lifetimes which are of the order of the
inverse of their velocity gradients, and are therefore unlikely to force the breakdown
of a strong vortex.

A related breakdown mechanism was proposed by Miyazaki & Hunt (1998), who
studied the interaction of an initially straight vortex with weaker turbulence. They
observe the production of linear non-axisymmetric waves on the vortex, and conjecture
that they could resonate with the self-induced motion of the turbulent fluctuations.
That is unlikely in the case of the filaments observed in the isotropic simulations. The
resonance requires the celerity of the axial waves to be similar to the self-induced
velocity of the turbulent structures. The former is of the order of ω0r0, where ω0 is
the characteristic vorticity of the core and r0 its radius. The important perturbations
are those near the vortex, which interact among themselves across distances of O(r0)
and which, to have self-induced velocities of the same order as the wave celerity,
would need vorticities comparable to those of the core. Thus, while a vortex can be
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destroyed by another one of the same intensity, that is unlikely to happen in the
interaction with weaker perturbations.

While these arguments may explain why the vortices survive for long times, they
do not explain how such long coherent structures form in the first place. There is
numerical evidence for the formation of short vortices by rolling of pre-existing vortex
sheets (Vincent & Menneguzzi 1994; Passot et al. 1995) but, in explaining how those
vortices attain the lengths of the observed structures, that mechanism runs into the
coherence problems mentioned above. Since the observed radii are of the order of
the Burgers’ limit for ω′, the weak strains which are coherent over scales of the order
of Le are not strong enough to stretch them to the observed radii, while the stronger
strains of O(ω′) are not coherent enough to explain the observed lengths.

Jiménez & Wray (1994a) conjectured that the mechanism for the formation of
long vortices in the presence of essentially incoherent zero-mean stretching is the
presence of Kelvin waves travelling along the vortex axes, which tend to smooth the
effect of the imposed strain. The proposal was that short strong vortices form with
lengths of the order of the incoherent background scales, possibly by roll-up, and are
then fused together by the axial waves. They also showed that a consequence of this
model is that the vortices cannot be stretched by an inhomogeneous strain beyond
the point in which their azimuthal velocity is of the same order as the maximum
velocity difference in the driving flow, independently of the vortex circulation and of
the strain magnitude. The first mechanism addresses the difficulty of having vortices
much longer than the characteristic scale of the stretching strain, while the second
observation explains why the velocity p.d.f.s are not intermittent (Anselmet et al.
1984) since, contrary to what happens to the vorticity of a stretched vortex, the
velocity difference is never amplified.

The formation of nonlinear axial waves in perturbed vortices had already been
studied by Lundgren & Ashurst (1989) and Melander & Hussain (1994), among
others. Verzicco, Jiménez & Orlandi (1995, from now on referred to as VJO) contains
a more complete list of references on the subject prior to 1994. Most of them focus
on the importance of the waves in the breakdown of the vortices. Schoppa, Hussain
& Metcalfe (1995), for example, propose them as a possible route for small-scale
generation inplane mixing layers, and the intent is the same in Melander & Hussain
(1993), Marshall (1997) and Miyazaki & Hunt (1998).

Moore & Saffman (1972), on the other hand, mentioned the possibility of hom-
ogenization by axial waves as a reason to study the behaviour of uniform vortex cores,
and Villasenor & Vincent (1992), analysing the simulations in Vincent & Meneguzzi
(1991), mention that short precursor vortices are occasionally connected to longer
ones by what appears to be axial waves. Andreotti, Douady & Couder (1998) have
recently observed the homogenization of axial stretching in the core of strong vortices,
and Hagen & Kurosaka (1993) proposed that axial flows induced by inhomogeneity
of the cores of hairpin vortices could be important in the transport of momentum in
boundary layers.

VJO were the first to demonstrate a detailed mechanism by which axial waves
in viscous vortices could act as a stabilizing effect, and to investigate the range of
parameters for which the vortex survives indefinitely. The driving strains that they
used were, however, steady and with a simple sinusoidal axial structure, and some
details of the survival mechanism seemed to be dependent on the simple structure of
the external perturbations.

The homogenization of the axial strain was, for example, traced to the formation
of a steady separation bubble at the plane of maximum compression and, since
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separation is a notoriously unstable process, it it was not clear whether the same
mechanism would act under more general perturbations, such as those likely to be
found in turbulence.

Another doubtful point was the mechanism limiting the loss of vortex circulation
to infinity. In the compressive regions the vortex thickens, and the vortex lines are
carried away from the axis. In an inviscid situation they would reach infinity and the
vortex would eventually lose all its circulation in this way. It was argued in VJO that
this is prevented by viscous cancellation between vortex sheets of opposite (radial)
sign which are advected along neighbouring outgoing streamlines. It was not clear
whether this process would survive in unsteady situations in which, in contrast to
the steady case, all the points along the axis are under compression at one time
or another. It will indeed be seen below that this is not always the case, and that
some unsteady conditions result in vortex disintegration, but that there are parameter
ranges for which the vortex survives indefinitely.

The purpose of the present paper is to extend the experiments in VJO to un-
steady multiscale strains, still with zero axial mean, and to set the limits in which
approximately uniform compact vortices survive indefinitely under such strains. One
important goal is to clarify, within the necessarily simple strain distributions that can
be used in high-resolution simulations, the scaling of the mean vortex radius and
azimuthal velocity. It has been mentioned above that the filaments in turbulent flows
have radii which correspond to the Burgers’ limit of the applied r.m.s. stretching,
and azimuthal velocities of the order of the applied r.m.s. velocity difference. These
two properties are associated in turbulence with different length scales. While the
gradients are highest at the Kolmogorov scale, the velocity differences occur over
lengths which are at least O(λ) but which, on the average, are O(Le). This separation
of scales could not be investigated using the single-scale simulations in VJO, and the
present experiments are designed to test it.

The organization of this paper is as follows. The next section describes the set-up
for the numerical experiments, together with the run parameters and the convergence
checks. In § 3 the results are discussed, considering first the unsteady single-scale
strains and then the multiscale ones, followed by closing remarks in § 4.

2. Numerical set-up
2.1. Numerical scheme

The simulations are performed by solving numerically the axisymmetric time-
dependent Navier–Stokes and continuity equations for an incompressible viscous
flow. The numerical method is that described in Verzicco & Orlandi (1996) with the
extensions of VJO to include the effect of an external strain. The main points are the
following: the equations, in primitive variables, are discretized on a staggered grid
by central second-order finite-difference approximations that conserve the energy in
the inviscid limit. The resulting system of equations is solved by the fractional-step
method. The advancement in time uses a low-storage third-order Runge–Kutta scheme
(A. Wray, personal communication) with the nonlinear terms computed explicitly and
the viscous terms implicitly, to avoid the viscous stability limit.

VJO gave the expression for an axisymmetric irrotational strain with zero spatial
average, and with a simple sinusoidal behaviour along the x-axis. We use here more
general forcings which can be expressed as sums of those single-scale fields, and which
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are allowed in general to oscillate in time. The axial strain has the expression

s(r, x, t) = ∂xu = −
NS∑
i=1

SiI0(κir) sin (κix) sin (fit), (2.1)

where NS is the number of axial scales and I0 is the modified Bessel function of
the first kind. Si is the maximum axial strain at the axis (r = 0) associated with the
wavenumber κi = 2π/`i, and fi is its oscillation frequency.

Note that, for r � `i, I0(κir) ' 1 + O(κir)
2, and (2.1) describes a time-dependent

strain which is uniform in the radial direction but non-uniform along the axis, and
which has zero axial average. As r → ∞ the strain grows exponentially, making (2.1)
unphysical and complicating the numerical treatment. In a real turbulent flow such
strains would be generated by distributions of azimuthal vorticity away from the
axis, which are not included here to focus the attention on the dynamics of the axial
vortex. If κi → 0 the velocity of one summand in (2.1) tends to ui = Six sin (fit) and
vi = Sir

2 sin (fit)/2, and approximates a uniform axisymmetric strain oscillating in
time.

The axisymmetry of the forcing strain and of the code are the strongest assumptions
in this paper, and it is probably true that sufficiently asymmetric perturbations would
lead to different results. The problem that we are trying understand, however, is how
the filaments can form and survive under partially compressing situations, in which
it appears at first sight that they should break down. We are especially interested in
how they achieve a mean radius which is corresponds to the r.m.s. of the strain strain,
rather than to its mean. All these are axial effects, only related to the triaxial nature
of the perturbations inasmuch as the latter can lead to vortex breakdown, which we
have argued in the Introduction to be unlikely. In fact, some non-axisymmetric initial
conditions were tried in VJO, without any obvious difference in the final results.

There is moreover evidence that a strong vortex might lead to some symmetrization
of the local turbulence. Melander & Hussain (1993) showed that a columnar vortex
immersed in an initially turbulent flow field wraps the small-scale turbulence around
the core and this process results in the generation of a periodic array of vortex
rings of alternating sign surrounding the core. Similar results were recently obtained
by Miyazaki & Hunt (1998) who investigated the structure of turbulence around
a columnar vortex using rapid distortion theory. In view of those results Marshall
(1997) modelled the effect of turbulence on vortex columns by considering coaxial
counter-rotating axisymmetric vortex rings whose induced strain field, in its spatial
structure, is very similar to (2.1). The main difference with those cases is that we treat
stronger vortices, and put the emphasis on finding parameter ranges in which vortices
survive, rather than being destroyed.

2.2. Initial and boundary conditions

The initial condition is a uniform vortex with a Gaussian axial vorticity distribution

ωx(r, x) =
Γ

πr2
0

e−(r/r0)2

, (2.2)

where Γ is the circulation of the vortex and r0 its radius. The initial velocity field
is found by adding the azimuthal velocity due to this vortex to the axially periodic
irrotational velocity induced by (2.1). The resulting field is axially periodic with the
same wavelength as (2.1), and the computation retains this spatial periodicity.
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In this paper the circulation is always Γ = 1 and the initial radius is r0 = 1
2
.

The former is an arbitrary normalization, but the latter implies a particular initial
condition, since the length scale is already defined by the axial wavelength. Also
problematic is the assumption that the initial vortex is already a uniform connected
filament, but the problem of filament formation has already been discussed in the
Introduction, and the independence of the final state from the initial conditions was
extensively checked in VJO. In the present case, some simulations were performed in
which a background vorticity (uniform, non-uniform or with a random distribution)
was superimposed onto the columnar vortex (2.2). In all the cases, the final state was
found to depend only on the net circulation of the initial field.

The computational domain is axially periodic but finite in the radial direction. The
conditions imposed at the outer boundary are that the axial and radial velocities are
those of the irrotational strain (2.1), while the azimuthal component satisfies that
the axial vorticity vanishes. The position of the outer boundary is a compromise
between the need of avoiding artificial effects due to the boundary condition and the
constraints imposed on the stability of the code by the exponential growth of the
irrotational velocity at infinity. Locating the boundary too far from the axis implies
the use of time steps which are uneconomically small, while locating it too near leads
to errors that manifest themselves as a loss of circulation. A reasonable compromise
was found in VJO to be R = 4, and it is the one used here. The conservation of the
total circulation was checked in all the simulations as an indicator of the quality of
the results.

2.3. Run parameters

The flow is characterized by two dimensionless parameters: an azimuthal Reynolds
number ReΓ = Γ/ν, based on the vortex circulation, and a longitudinal one, Re` =
S`2/ν, based on the forcing strain and on its axial length scale. For a purely sinusoidal
forcing there is no ambiguity in the definition of S and `. VJO used the amplitude
of (2.1) and its wavelength. Here it was found convenient to use the maximum
strain Smax generated at the axis by (2.1), and the length ` = π∆ux/Smax , defined
in terms of the maximum velocity difference ∆ux induced by (2.1) along the axis.
For a single-scale forcing they are equivalent to the older definitions. Their physical
significance is that an O(S) strain generates axial velocity differences which are
O(S`).

We have already noted that the exponential radial behaviour of the driving velocity
is essentially artificial, but it produces unnecessary complications in the dynamics
whenever the vorticity is transported to large distances from the axis. It was shown
by VJO that the effect of this radial structure is negligible provided that the ratio
ReΓ/Re` > 10, and the present simulations use parameter combinations beyond that
threshold.

A first set of simulations is run with unsteady single-scale forcing, NS = 1, to
investigate the effect of the unsteadiness on the core dynamic. The wavelength in all
these cases is ` = 6, and the other run parameters are given in table 1. The numerical
grid used in these simulations is 128 × 128, similar to the ones in VJO, where grid
independence was established.

A second set of simulations is run using steady two-scale forcing,NS = 2, to simulate
conditions closer to real turbulence. In those cases the parameters are chosen so that
the strain associated with the shorter wavelength is higher than that associated with
the longer one, while the opposite is true for the velocities, Si`i. This is intended to
mimic the velocity spectrum of turbulent flows.
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Case S ReΓ P f/S Comment

1 0.3947 25 3.530 0.050 d
2 0.3947 25 3.530 0.202 d
3 0.3947 25 3.530 0.506 d
4 0.3947 50 5.604 0.050 d
5 0.3947 50 5.604 0.506 d
6 0.3947 71 7.059 0.250 o
7 0.3947 75 7.343 0.500 d
8 0.3947 100 8.895 0.050 o
9 0.3947 100 8.895 0.202 o

10 0.3947 176 13.000 0.400 o
11 0.3947 200 14.120 0.250 o
12 0.3947 200 14.120 0.500 o
13 0.3947 200 14.120 1.000 d
14 0.3947 400 22.414 0.500 o
15 0.3947 400 22.414 0.750 d
16 0.7895 75 5.827 0.500 d
17 0.7895 82 6.200 0.100 d?
18 0.7895 94 6.800 0.100 o
19 0.7895 100 7.059 0.250 o
20 0.7895 114 7.700 0.375 d?
21 0.7895 120 8.000 0.500 d
22 0.7895 150 9.250 0.250 o
23 0.7895 150 9.250 0.375 o
24 0.7895 168 10.000 0.625 d
25 0.7895 200 11.206 0.250 o
26 0.7895 200 11.206 0.375 o
27 0.7895 200 11.206 0.500 o
28 0.7895 235 12.500 0.500 d
29 0.7895 250 13.000 0.375 o
30 0.7895 300 14.685 0.250 o
31 0.7895 300 14.685 0.500 o
32 0.7895 300 14.685 0.625 d
33 0.7895 300 14.685 0.750 d
34 0.7895 400 17.789 0.500 o
35 0.7895 400 17.789 0.625 d

Table 1. Run parameters for the cases with oscillating non-uniform strain. The comment ‘d’ means
that the vortex diffuses, ‘o’ that it survives, and the ‘d?’ notation in 17 and 20 marks cases where

it is not clear whether the vortex survives or decays very slowly. The parameter P = ReΓ/Re
1/3
` is

discussed in § 3.1.

In a last set of simulations the two-scale forcing is made unsteady, with the
oscillation frequencies chosen so that the shorter wavelengths oscillate faster. This
again mimics real turbulence, although no effort is made to simulate quantitatively
the k−5/3 spectrum. The parameters of these last two sets of simulations are given
in table 2. It is found necessary in some cases to increase the axial domain length
to accommodate the higher aspect ratios of the multiscale forcing. In those cases
the number of grid points in the axial direction is increased to maintain the same
numerical resolution as in the single-scale cases discussed above. Strains with NS > 2,
or having a larger scale ratio than those in table 2, are made numerically impractical
by the exponential behaviour of the velocities away from the axis.
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Case ReΓ S1 S2 `1 `2 f1/S1 f2/S2 P fmax/Smax Comment

1 70 0.13 0.53 15 3 0 0 6.43 0 —
2 100 0.44 0.53 6 3 0 0 9.87 0 —
3 100 0.39 0.53 12 3 0 0 6.56 0 —
4 100 0.20 0.53 12 3 0 0 8.20 0 —
5 168 0.13 0.53 15 3 0 0 11.52 0 —
6 100 0.30 0.60 6 3 0.20 0.3 10.44 0.20 o
7 100 0.30 0.60 9 3 0.20 0.3 7.63 0.20 o
8 100 0.23 0.49 16 4 0.20 0.3 6.46 0.20 o
9 100 0.23 0.49 16 4 0.50 0.8 6.46 0.54 d

10 200 0.23 0.49 16 4 0.35 0.5 12.26 0.34 o
11 300 0.23 0.49 16 4 0.35 0.5 13.45 0.34 o
12 400 0.11 0.25 16 4 0.35 0.5 20.56 0.34 o
13 400 0.23 0.49 16 4 0.35 0.5 16.25 0.34 o

Table 2. Run parameters for the cases with multiscale steady and oscillating strains.
Smax and ` are defined in § 2.3 and fmax is the highest of the two frequencies.

3. Results
Before discussing the results of an unsteady external forcing we will briefly recall

the behaviour found in VJO for a steady non-uniform strain. The vortex reacts
to the inhomogeneity by creating axial currents (Kelvin waves) whose effect is to
locally reverse the sign of the forcing, making the vortex survival possible even where
it is compressed. This process only works if the vortex is intense enough, and is

quantitatively described by the parameter P = ReΓ/Re
1/3
` , which separates the core

dynamics into three distinct regimes. For P 6 PI ≈ 6 the vortex is compact in those
places where it is stretched by the external strain, and bursts where it is compressed.
In this regime the axial waves do not form or are weak, and the axial strain maintains
the same sign at the axis as away from it. The maximum vorticity and azimuthal
velocity increase with ReΓ roughly as they would for a uniform Burgers’ vortex. For
PI < P 6 PII ≈ 12 the axial waves are strong enough to reverse locally the sign of
the compressive strain. This creates a separation bubble centred on the compressed
part of the vortex which, as P increases, becomes longer and fills the whole axis
when P ' PII . The reversal process of the strain is complete for P > PII , and
the flow becomes basically independent of the Reynolds number. In this regime the

maximum vorticity at the axis, normalized by SRe
1/3
` /4π, becomes independent of P

(see figure 5b).
This classification applies to the final steady state of the flow. When the forcing is

applied to an initially cylindrical vortex there is a transient phase during which the
separation bubble is generated, spreads along the vortex axis, and eventually reverses
the sign of the compressive strain.

3.1. Unsteady forcing

In the unsteady case, the situation is complicated because, when the external strain
changes, the effect of the axial waves depends on how fast they can form and react.
This is shown in figure 1, where the meridional stream function and the axial vorticity
are shown at several phases of the oscillation cycle. The instantaneous structure of
the strain on the axis is shown to the right of each frame, and it is clear that the
formation of the separation bubble lags behind the forcing. For example, the strongest
separation does not happen in panel (a), when the compressive strain is maximum,
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Figure 1. Meridional streamlines (left column) and axial vorticity (centre) for case 25 of
table 1: (a) t = 0, (b) T/8, (c) 2T/8, (d) 3T/8, (e) 4T/8, (f) 5T/8. Stream function: ,
negative values; , positive; , ψ = 0. ∆ψ = 0.009. Only the values up to |ψ| = 0.046 are
plotted. Vorticity: ∆ω = ±0.2. The instantaneous strain at the axis is shown to the right of each
frame.

but in (b), when the strain is already decreasing. It follows that the survival of the
vortex depends on the relation between the formation time of the waves and the
forcing frequency. If the oscillation of the external strain is too fast, the waves do not
have time to form, and each section of the vortex ‘feels’ a spatially uniform oscillating
strain. Lundgren (1982) gave a general solution for the evolution of vortices in a
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Figure 2. Evolution of the maximum, minimum and average vorticity at the axis,
for cases 6 ( ) and 19 ( ) in table 1, scaled as in VJO.

uniform axial strain. In our case, in which the mean stretching is zero, it implies that
the radius of the vortex increases asymptotically as t1/2 and that its vorticity decays
as ω0 ∼ t−1, as in the case of pure viscous diffusion. This behaviour is found here, for
example, in figures 3(a), 3(c) and 7(b).

The essence of the argument in VJO was that the magnitude of the strain generated
by the vortex reaction is of the order of

Sw =
ΓRe

2/3
`

`2
= SP , (3.1)

which suggests that the formation time of the separation bubble is of order S−1
w , and

that the importance of the unsteadiness should be measured either by f/S , which
is the relevant time ratio for the stretching part of the cycle, or by f/SP , which
applies during the compressive part. The behaviour of the axial vorticity for two
unsteady cases, which were chosen with similar values of f/S and P to check whether
the scaling (3.1) still applies in the unsteady case, is shown in figure 2 and agrees
reasonably well. A similar check was run between cases 10 and 29 of table 1.

These arguments suggest that the (f/S, P )-plane should be divided according to
three criteria:

(a) Below a ‘reaction’ threshold, P <PI , the vortices do not survive because the
Kelvin waves are not strong enough to counteract the compressive strain, even if
given infinite time to act.

(b) Above a maximum ‘stretching frequency’, f/S ∼ 1, the oscillation is too fast
for the vortex to reach equilibrium during the stretching phase of the cycle, and the
vortex diffuses.

(c) Above a maximum ‘compression frequency’, f/S ∼ P , the oscillation is too fast
for the reactive strain to develop during the compressive phase of the cycle, and the
vortex bursts.

Only within these boundaries is the vortex able to survive.
Note that the previous discussion on time scales could be framed as the interaction

of the vortex, seen as a linear damped oscillator, and the external periodic forcing.
This approach was for example taken by Miyazaki & Hunt (1998), who speculated
that resonance could be responsible for the strong coupling between the two. This is
not completely implausible, since we have already mentioned that the basic reaction
mechanism by the vortex is the generation of Kelvin waves, which are essentially linear
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Figure 3. Time evolution of the average vorticity at the axis. (a) Case 13, (b) case 25,
(c) case 16. , Numerical result; , power law fit.
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Figure 4. Meridional streamlines at t = T/8 in the oscillation cycle, for (a) case 33; (b) 19 and (c)
21, table 1. The three columns correspond to the second, third and fifth oscillation cycles. Only the
values up to |ψ| = 0.046 are plotted: , negative; , positive values. ∆ψ = ±0.009.

phenomena. It should be clear, however, that the effects that we are describing here are
nonlinear. It will be seen below that the description in (a)–(c) is essentially correct. At
large times the vortex either survives intact, or decays completely, and such bimodal
behaviours cannot be accounted for by linear models. In the cases in which the vortex
survives, its mean radius is not determined linearly, proportional to the mean forcing
strain, which is zero, but as a nonlinear function of the oscillating amplitude. It
was also shown in VJO that the parameter P , which distinguishes between surviving
and decaying vortices, can only be explained by taking into account the finite axial
variations of the core radius. Thus, while some vortex interactions can probably
be explained by resonant interactions of linear waves, nonlinearity is an intrinsic
ingredient of the phenomena described in this paper. It was, in addition, already
noted in the Introduction that the perturbations found in turbulent flows, which are
the ones of interest here, are too slow to resonate with the fast axial waves associated
with the strong cores observed in the direct simulations and in the experiments.

3.2. Single-scale unsteady forcing

A convenient way of characterizing the vortex behaviour is to monitor its average

vorticity at the axis, ωx(t) = L−1
∫ L

0
ωx(0, x, t) dx, which undergoes fast oscillations

with frequencies of the order of f, superimposed on a secular trend with a viscous



272 R. Verzicco and J. Jiménez
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Figure 5. (a) Vortex behaviour in the plane f/S, P : solid symbols mark oscillating cases, open
symbols, diffusing ones: ◦, single-scale; �, multiscale runs; , reactive limit; , frequency
limits. (b) Maximum axial vorticity at the axis vs. the local separation parameter for the case of
steady, single-scale forcing in VJO: , Burger’s limit; ◦, Re`/ReΓ = 28.4; •, 14.2.

time scale tv = t/ReΓ . The character of the latter defines the survival of the vortex,
and the three types of observed behaviour are summarized in figure 3.

(a) In some cases the vorticity decays viscously as t−1
v . The plots in figure 4(a) show

that the streamlines are in this case essentially those of the external forcing and that
the presence of the vortex does not affect the meridional flow.

(b) For combinations of f/S and P satisfying the three criteria explained above,
the vortex survives, and the vorticity is oscillatory. In those cases a separation bubble
forms periodically in the compressed regions of the vortex axis, as shown in figures 1
and figure 4(b).

(c) There are intermediate cases in which the vortex initially diffuses slowly, showing
that there is some reaction from the axial waves. But as the axial vorticity gets weaker,
so do the waves and, after an initial transient, the t−1

v viscous diffusion dominates
(figure 4c).

The results of the single-scale simulations are summarized in figure 5(a) where it
is evident that the vortices survive only in the region of the (P , f/S)-plane bounded
by the three criteria given above. The corresponding figure for steady strains is
reproduced from VJO in figure 5(b), and it is clear that the threshold PI is the same
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(a) (b)

(c) (d)

Figure 6. Contour plots at the steady state for: (a, b) case 2 and (c, d) 3, table 2. (a, c) are contours
of axial vorticity, ∆ω = 0.1; (b, d) are streamlines, ∆ψ = ±0.009.

in both cases. It is also seen from the comparison that the compression and stretching
frequency thresholds intersect at a value of P very close PII , which is where the
separation bubble spans the whole axis. It is not clear whether this is coincidental,
but it is intuitively reasonable that, once the waves are strong enough to induce
separation over the whole vortex axis, and their stationary state becomes independent
of P , the same should be true for the frequency criterion.

Cases 17 and 20, in which our limited-time simulations cannot distinguish if the
vortex survives or decays very slowly, are both close to the boundary of the ‘survival
region’ in figure 5(a).

3.3. Multiscale forcings

The results in the previous section show that unsteady non-uniform strains can sustain
compact vortices as long as the oscillation frequency is of the same order of magnitude
as the strain, as it would be in a turbulent flow. The spatial structure is however still
sinusoidal which, as noted in the Introduction, is a poor model for real turbulence
and does not allow us to determine properly the scaling behaviours. In this section we
discuss the experiments summarized in table 2, in which the driving strain is defined
as the sum of two different sine waves. Note that, as discussed in § 2.3, Si and `i have
been chosen so that the largest strain is associated with the smaller wavelength, while
the opposite is true for the velocities, Ui ∼ `iSi. The purpose of the experiments in
this section is not so much to identify new mechanisms of vortex survival, which will
be seen to be essentially the same as in the cases discussed up to now, but to test
whether those mechanisms still work in more complex situations. There is therefore
no systematic variation of parameters. Instead we use the definitions given in § 2.3
for the global strain and length, and choose parameters inside the ‘survival’ region
identified in the previous section. As a consequence most of our experiments reach
a steady state in the form of approximately compact vortices. Case 9 was purposely
chosen outside that zone, and it is the only one in which the vortex fails to reach a
compact state.

The strains in cases 1–5 are steady, and the simulations are continued until the
vortex reaches a steady state. The final flow fields are shown in figure 6 for two
examples with different wavelength ratios, and show features which are essentially
the same as those found in the simpler cases of the previous section and in VJO.
Note that the resulting vorticity distributions, especially in the case with the highest
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Figure 7. Evolution of the average axial vorticity at the axis. (a) Case 7, (b) 9, table 2.
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Figure 8. Instantaneous contour plots for: (a, b) case 8 and (c, d) 9, table 2. (a, c) are contours of
axial vorticity, ∆ω = 0.2; (b, d) are streamlines, ∆ψ = ±0.009.

wavelength ratio (case 3, `1/`2 = 4) would be readily classified as continuous vortices
by most identification algorithms. Note also that in this section, as in the previous
ones, the averaged strain along the axis is zero.

The remaining cases of table 2 are the most complex experiments in the present
set, with strains that are both multiscale and unsteady. Following the results of the
previous section, and the motivation from turbulent flows, the oscillation frequency for
each harmonic has been chosen as roughly proportional to its strain, but not precisely
so. As a consequence, even if the wavelengths of the two components are multiples
of each other, the frequencies are not, and the strain distribution varies essentially
randomly in time. The best parameter to describe the effect of the unsteadiness was
found to be the ratio fmax/Smax , between the highest frequency and the maximum
strain defined in § 2.3. It is given in table 2 and has been used to include these cases in
figure 5(a). Whenever the effective f/S, P pair is inside the survival zone, the vortex
evolves more or less periodically in time and remains compact, with strong axial
waves along its axis (see figures 7a and 8a). On the other hand, when the frequency
is chosen too large, the vortex eventually diffuses (figures 7b and 8c). As in the
single-scale case, once this happens the meridional streamlines are essentially those
of the external forcing (figure 8d), but surviving vortices (figure 8b) react to the local
compression, forming unsteady separation bubbles.

The vortices that result from this last set of simulations are the ones which are
closer to those found in turbulent flows, although the similarity is incomplete. Not
only are turbulent vortices not straight and axisymmetric but they are free to orient
themselves with respect to the local strain tensor, and the mean stretching is for them
slightly positive rather than zero (Betchov 1956).

It is still interesting to compare the statistical properties of the vortices obtained
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which fit the present data, while the dashed ones, r0/R
′
B = 1.18 and uθ/u

′
x = 0.92, are averages from

the turbulence simulations in Jiménez & Wray (1998).

here with those observed in turbulence. It is impractical in the latter case to obtain
vorticity maps with a detail comparable to the present ones, but azimuthally and
axially averaged vorticity profiles have been published by Jiménez & Wray (1994b,
1998). Axially averaged profiles for the multiscale simulations discussed here are given
in figure 9. Both the steady and the unsteady cases, but especially the latter, are well
approximated by a Gaussian profile, as in real turbulent flows. Figure 9 includes
typical profiles of the standard deviation of the vorticity with respect to the mean,
which is small. It may be significant that the standard deviations of the unsteady
cases are lower than those of the steady ones. In turbulent flows these deviations are
still lower (' 0.1), consistent with a trend in which more irregular forcings would give
rise to smoother vortices.

By fitting the individual profiles in figure 9 to the Gaussian model in (2.2) it is
possible to define an average maximum vorticity and radius for each case, which
can then be compared to similar fits in Jiménez et al. (1993). The results for all
the surviving multiscale cases are given in figure 10. In figure 10(a) the radius is
normalized with the Burgers’ radius R′B = 2(ν/S ′)1/2, obtained from the r.m.s. strain
along the axis. The comparable result in turbulence would be the ratio of the vortex
radius to the Burgers’ radius based on the r.m.s. value of the axial stretching 〈σ2〉1/2.



276 R. Verzicco and J. Jiménez
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The latter is not published for any of the simulations cited in the Introduction, but a
re-analysis of the p.d.f.s published by Jiménez & Wray (1994b) gives R/R′B ≈ 1.18, in
reasonable agreement with the values in figure 10.

Another important quantity is the averaged maximum azimuthal velocity in the
vortex cores that, for a Gaussian vortex, is approximately uθ ≈ 0.32 r0ωx0. In turbulent
flows this quantity is approximately equal to the one-component r.m.s. value of the
velocity u′ (Jiménez & Wray 1998). The results for the present multiscale simulations
are given in figure 10(b), where we have used the r.m.s. value of the driving velocity
at the axis instead of u′. The result is lower than in the fully turbulent case, but the
scaling is the same and the order of magnitude is correct. As previously noted the
correspondence of the present experiments with real turbulence cannot be carried too
far, and any quantitative result has to be treated with care, but the agreement in
scaling behaviour and in order of magnitude is encouraging and supports the claim
that the dominant effects are the same in both cases.

A final result is given in figure 11, which includes some single-scale cases and
results from VJO, besides the multiscale simulations discussed in this section. The
issue to be tested is whether the vortices are indeed globally modified by the axial
wave mechanism. The quantity displayed in the figure is the absolute maximum
azimuthal velocity found anywhere in a given simulation. If we were dealing with a
uniformly stretched vortex, this would be the Burgers’ velocity, which is given by the
vortex circulation and by the Burgers’ radius associated with the maximum stretching
strain,

uB ≈ 0.32
ReΓ

2π
(νSmax )1/2. (3.2)

The prediction of the wave-dominated model is that the maximum azimuthal vorticity
is proportional to the maximum imposed velocity difference along the axis, since
the axial waves do not let the vortex collapse anywhere beyond a radius which
is determined globally, rather than locally (Jiménez & Wray 1994b; VJO). Both
comparisons are made in figure 11 as a function of the separation parameter P .
It is clear that, while the Burgers’ regime is dominant at low P , where the waves
are known to be weak, as soon as P > PI the Burgers’ scaling ceases to apply and
the azimuthal velocity is determined globally as a fraction of the driving velocity
difference.
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4. Conclusions
We have shown that a strong enough vortex core can survive indefinitely in the

presence of essentially random axial driving strains, as long as certain parameter
ranges are satisfied. We have also shown that, if the vortex survives, its mean radius is
determined by the r.m.s. amplitude of the axial strain, rather than by its mean value,
so that its length is not limited by the coherence length of the strain, and is essentially
infinite. The experiments in this paper were carried out in the extreme case in which
the average axial strain is zero, and the axis is therefore approximately evenly divided
into stretching and compressive segments.

The study was motivated by the observations of strong coherent vortex filaments
in turbulent flows, whose radii are of the order of the Burgers’ limit for strains of the
order of the r.m.s. velocity gradients over the rest of the flow, but which are much
longer than the observed correlation lengths for those gradients. The mean strains over
those long distances are much smaller than the r.m.s. value, and observations confirm
that the filaments are compressed rather than stretched over a substantial fraction of
their length. The model used here, a columnar vortex subject to an alternating strain
with global zero average, was suggested by those observations.

The conclusions in this paper generalize similar results in VJO for the simpler case
of a steady sinusoidal forcing. In both cases a critical condition for vortex survival is
that the ratio

P = ReΓ/Re
1/3
` (4.1)

should be large enough. While ReΓ is unambiguously defined in terms of the vortex
circulation, it was not clear from VJO how Re` was to be defined for more general
strains. It is confirmed here that the proper definition is

Re` = π2∆u2
x/νSmax , (4.2)

where ∆ux is the maximum velocity difference induced by the strain, and Smax the
maximum strain. Note that the former is a global quantity, while the latter is a local
one. In turbulence, where ∆ux ∼ u′ and Smax ∼ ω′, (4.2) would be proportional to the
microscale Reynolds number Reλ.

Another condition has to be satisfied in the case of unsteady strains. The time
scale for the unsteadiness cannot be much shorter than the inverse of the maximum
strain. This is clearly true for inertial-range fluctuations in turbulence, where both
the strain and the unsteadiness are determined by a single time scale. As before, the
present multiscale experiments allow us to define the proper scales to use, which are
the fastest oscillation frequency and the strongest pointwise strain.

The theoretical criteria for vortex survival have been related to considerations of the
behaviour of axial pressure waves. Those arguments explain all the new observations
and are compatible with those in VJO in the steady case. The new experiments, on
the other hand, allow us to distinguish between different interpretations of the old
criterion, and in particular separate the effects of maximum strain and maximum
driving velocity.

The average azimuthal velocity and radius of the vortices subject to complex
strains scale with the different flow parameters in a way which is consistent with
the behaviour of vortex filaments in turbulent flows, and which agrees quantitatively
with them within a factor better than 2. Their lengths, which in the present spatially
periodic experiments is essentially infinite, explain the anomalously long lengths
observed in the turbulent filaments. We also confirm that the maximum azimuthal
velocity found in the vortices is bounded by the maximum driving velocity difference,
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and is independent of the maximum local stretching and of the vortex circulation.
This observation, when translated to the turbulent flow, reinforces the previous claim
by Jiménez & Wray (1994a) and VJO that the axial wave mechanism is responsible for
the lack of intermittency effects in the turbulent velocity, as opposed to the velocity
gradients.

It is interesting that the mean vorticity profiles of the driven vortices are approx-
imately Gaussian, even in the presence of extensive unsteady separation along their
cores, and that this behaviour, that is also found in turbulent simulations, becomes
more marked as the driving strain becomes more complex.

The research was partially supported by CICYT (Spain) under contract PB95-
0159, and by grants from ‘Ministero dell’ Università e della Ricerca Scientifica e
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Verzicco, R., Jiménez, J. & Orlandi, P. 1995 On steady columnar vortices under local compression.
J. Fluid Mech. 299, 367–387 (referred to herein as VJO).

Verzicco, R. & Orlandi, P. 1996 A finite-difference scheme for three-dimensional incompressible
flows in cylindrical coordinates. J. Comput. Phys. 123, 402–414.

Villasenor, J. & Vincent, A. 1992 An algorithm for the space recognition and time tracking of
vorticity tubes in turbulence. CVGIP: Image Understanding 55, 27–35.

Villermaux, E., Sixou, B. & Gagne, Y. 1995 Intense vortical structures in grid generated turbulence.
Phys. Fluids 7, 2008–2013.

Vincent, A. & Meneguzzi, M. 1991 The spatial structure and statistical properties of homogeneous
turbulence. J. Fluid Mech. 225, 1–25.

Vincent, A. & Meneguzzi, M. 1994 On the dynamics of vorticity tubes in homogeneous turbulence.
J. Fluid Mech. 258, 245–254.


