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1 Introduction

An especially intriguing aspect of turbulence is the interplay between struc-
ture and statistics. It is tempting to conclude that turbulent flows, because
of many degrees of freedom,should be studied statistically, and that the limit
theorems for the probability distributions should apply. The earliest theoret-
ical results on the subject were indeed based on postulating ‘structureless’
models and applying to them scaling laws (Kolmogorov 1941) but, while it
works in some approximation, it is known that this description is incomplete.
Deterministic structures exist both at the largest scales (Brown and Roshko
1974) and at the smallest ones (Batchelor and Townsend 1949). Less is known
about the intermediate length scales, and the study of their structure has tra-
ditionally been done statistically, in terms of the ‘anomalous’ scaling of the
difference of the velocities at two points. The basic model in this range is
the self-similar multiplicative cascade, which we will briefly discuss below
(see Frisch, 1994 for a summary), but the main subject of this paper is the
characterization of the inertial-range structures, if they can be shown to exist.

Anomalous scaling is, after all, probably the reflection of coherent struc-
tures within the inertial range of scales, but their study is complicated by
experimental difficulties. The large-scale coherent structures are easily visu-
alized, since they span the flow, while those at the smallest scales manifest
themselves by strong gradients which can also be easily extracted from the
velocity signals. None of those observational advantages are available in the
inertial range, where structures are too small, and probably too numerous, to
be readily apparent in visualizations of the velocity field, and also too weak to
be seen in those of the gradients (see however the visualizations by Hosokawa,
Oide and Yamamoto 1997, and by Porter, Woodward and Pouquet 1998).
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In the next section we discuss our motivation for reconsidering the theory of
the turbulent cascade. This is followed by the analysis of experimental velocity
data, first of their coarse-grained dissipation, and latter of the conditional
distributions of the velocity increments and of band-pass filtered velocities.
Discussions and conclusions are finally offered in §6.

2 Multiplicative cascades and blocking

The concept of cascade was probably first explicitly introduced by Richard-
son (1922) to describe high-Reynolds number turbulence. Kolmogorov (1941)
made it quantitative, on the implicit assumption that the velocity fluctuations
were small enough for all the points in the flow to be described in terms of
uniform characteristic scales. His later introduction of intermittency correc-
tions (Kolmogorov 1962) improved on this approximation, but still assumed
a uniform cascade in the sense that the only effect of local fluctuations was to
introduce a locally variable velocity scale. It was pointed out by Jiménez and
Wray (1998) and Jiménez (2000) that more complicated effects are possible.

Out of the many possible cascade models, self-similar multiplicative pro-
cesses were first applied to turbulent flows by Gurvich and Yaglom (1967), and
in more detail by Novikov (1971, 1990), although they were already implicit
in the original Kolmogorov (1962) paper. Recent reviews are due to Mene-
veau and Sreenivasan (1991), Nelkin (1994) and Sreenivasan and Stolovitzky
(1995). We will briefly summarize the basic ideas.

Consider a positive variable, vn, that is assumed to cascade in discrete
steps. Assume that the cascade is locally deterministic, which was defined by
Jiménez (2000) as one in which the probability distribution of the cascading
variable at one point, pn(vn), depends only on its value at the previous step,

pn+1(vn+1) =
∫

pt(vn+1|vn; n)pn(vn) dvn. (2.1)

This is in contrast to more complicated functional dependences, such as on the
values of vn in some extended spatial neighbourhood, or on several previous
cascade stages. This assumption intuitively implies that vn+1 evolves faster,
or on a smaller scale, than vn, and is in some kind of equilibrium with its
precursor. If the cascade is deterministic in this sense, vn can be represented
as a product

vn = xnxn−1 · · · x1u0. (2.2)

of factors, xn = vn/vn−1, which are statistically independent of one another.

If moreover the underlying process is invariant to scaling transformations
of v it should also be true that the transition probability density function has
the form

pt(vn+1|vn) = v−1
n w(vn+1/vn), (2.3)
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It can easily be shown that local deterministic self-similar cascades lead nat-
urally to intermittent distributions, in the sense that the high-order flatness
factors for vn become arbitrarily large as n increases, implying that arbitrar-
ily strong, although rare, events inevitably appear at the later stages of the
cascade.

If (2.3) does not depend explicitly on the cascade stage, these assumptions
lead to power laws for the statistical moments of the pdfs, and to the theory
of multifractal probability distributions. In particular the pdfs of vn vary with
the cascade step n in well-defined manner that depends only on the distri-
bution, w, of the ‘breakdown’ coefficients x. The application of this theory
to turbulence is usually justified by the invariance of the Euler equations to
scaling transformations (Frisch 1994) but, although this addresses (2.3), it
says nothing about the locality hypothesis (2.1).

It was pointed out by Jiménez (2000) that locality is unlikely to be satisfied
in multiplicative cascades involving fields. The reason is that each cascading
step, presumably an instability of some structure, is bound to be controlled
at least partly by the background fluctuations, which introduce a spatially
global scale v′

n. The break-up of a given eddy is then controlled by two velocity
scales, its own intensity and the global fluctuation level, and self-similarity is
broken.

Consider for example the decay of a large-scale vortex in a turbulent flow.
As long as its vorticity is of the same order as that of the background its decay
is controlled by the outside perturbations, which for example fix the time scale
of the break-up. One of the consequences of the random cascade process is
however that some of resulting vortices will be more intense than others and,
as noted before, this will eventually lead to some structures which are much
stronger than the average. Those strong structures are no longer subject to the
influence of the background, and they in essence decouple from it. In some
sense the cascade is ‘blocked’ for them, although all that we can conclude
without going into the specific physics of a particular cascade process is that
the breakdown of the weak and of the strong structures will be different,
and that the flow will eventually differentiate into two distinct components.
Simple models for cascades displaying such nonlinear blocking were given by
Jiménez (2000), who also argued that, for the reasons sketched above, it is
an almost inevitable consequence of applying random multiplicative cascades
to fields. Such blocked cascades do not lead to power-law behaviours for the
statistics.

In the particular case of vorticity in Navier-Stokes turbulence, it had been
previously argued by Jiménez and Wray (1998) that the compact dissipation-
range vortex filaments observed in many turbulent flows (Siggia 1981, Jiménez
et al. 1993, Jiménez 1998) are in fact examples of such a blocked component
of the standard Kolmogorov (or multifractal) cascade, which decouple from
the background turbulent flow by virtue of their large internal vorticity.
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3 Experimental setup

To test these theoretical ideas we have analyzed experimental data of approx-
imately isotropic turbulence at three different Reynolds numbers.

The set-up is the same as that described by Zocchi et al. (1994), Tabeling
et al. (1996), Belin et al. (1997) and Moisy, Tabeling and Willaime (1999).
The flow is confined to a cylinder limited axially by disks equipped with blades
rotating in opposite directions at approximately equal angular velocities. The
disks are driven by DC motors modified to work at low temperatures, whose
rotation speeds are accurately measured by analyzing the frequency content
of the electrical current supply. The cylindrical working volume in which
turbulence takes place is 20 cm in diameter, and 13.1 cm in height. The
whole system is enclosed in a larger cylindrical vessel in thermal contact with
a liquid helium bath, and is filled with helium gas at controlled pressure. Its
temperature is kept constant between 4.2 and 6.5 K, with a long term stability
better than 1 mK. Under those conditions the kinematic viscosity of the gas
is typically between 10−3 − 10−2 cm2/s, which is considerably below that of
most conventional fluids. Far from the blades and away from the walls the
flow behaves as a confined circular mixing layer (Zocchi et al. 1994), although
the wall region is more complicated. For the data sets used in this paper the
probe is located 4.7 cm from the mid-plane of the system, and 6.5 cm from the
cylinder axis. This corresponds to the outer part of the mixing layer, which is
more likely to have simple properties and where the presence of a substantial
mean flow justifies the use of Taylor’s hypothesis.

Velocity measurements are performed with a ‘hot’-wire anemometer, whose
sensor is a 7 µm thick carbon fibre stretched across a rigid frame. A metallic
layer, 1000 A thick, covers the fibre everywhere except on a spot at the centre,
7 µm long, which defines the active length of the probe. The time response
of the probe was analyzed by Tabeling et al. (1996). It depends on various
factors, such the overheat ratio, but it is typically on the order of 2 µs. The
sensor is unconventionally short but, owing to the thermal characteristics of
carbon, no substantial enhancement of thermal inertia is to be expected. It
was shown in the references given above that King’s law accurately applies to
the sensors in the range of operating conditions used in the experiments. Their
directionality is bound to be poor but, because of the presence of a non-zero
mean velocity, the measured fluctuations are predominantly longitudinal, and
will be consider so in the rest of the paper.

The voltage from the anemometer is low-pass filtered, digitized and recorded.
The reduction to velocity is done during the analysis, and time intervals are
converted to lengths using Taylor’s approximation with the overall mean ve-
locity, ∆x = −U∆t. We consider three data sets, summarized in table 1.
They are sampled at the Kolmogorov passing frequency, U/η, and restricted
to Reynolds numbers which are low enough for the dissipative range of scales
to be well resolved. The three sets span a full decade of microscale Reynolds
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Reλ Lε/η ∆x/η u′/U N L/Lε

155 2.5 × 102 1.6 0.20 1.4 × 107 8.8 × 104

760 2.8 × 103 1.8 0.22 3.7 × 107 2.5 × 104

1600 8.4 × 103 1.5 0.21 3.7 × 107 6.5 × 103

Table 1.- Characteristics of the three data sets used in this paper.
u′ is the one-component r.m.s. velocity fluctuation intensity, and
U is the mean longitudinal velocity. The total number of sam-
ples in the set is N , which corresponds to a total sample length
L. The sampling distance, using Taylor’s hypothesis, is ∆x. The
globally averaged energy dissipation ε is used to compute the in-
tegral length, Lε = ε/u′3, and the Kolmogorov length scale η. Line
types are consistently used in the figures.
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Figure 1.- One-dimensional power spectra of the three data sets
analyzed in this paper. Line types as in table 1.

numbers, and the spectrum at the highest Reynolds number, shown in fig-
ure 1, presents almost three orders of magnitude of k−5/3 power law. We will
consider this to be the inertial range, although alternative characterizations
are discussed by Moisy, Tabeling and Willaime (1999).
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4 The breakdown coefficients for the dissipa-

tion

The usual scaling analysis of the coarse-grained surrogate dissipation,

ε∆x =
1

∆x

∫ x+∆x/2

x−∆x/2
(∂xu)2 dx, (4.1)

was done first (Meneveau and Sreenivasan 1991). The pdfs of the centred
breakdown coefficients

q2∆x =
1

2
ε∆x/ε2∆x, (4.2)

are bell-shaped in the inertial range, as previously reported by Van Atta and
Yeh (1975) and by Chhabra and Sreenivasan (1992), but they become less
so, and even concave, at the dissipative scales (see figure 2-a). Somewhat sur-
prising, the shapes of the distributions vary continuously with the averaging
scale, becoming more concentrated as the scale is made larger. This contra-
dicts the conclusions of the two papers mentioned above, which were that the
distributions are universal in the inertial range, and which have often been
cited as experimental corroboration for the existence of a self-similar dissipa-
tive cascade. In fact, in spite of their own conclusions, the data of Van Atta
and Yeh (1975) clearly show that their distributions vary with scale. They
propose as a measure of the shape of the pdfs their value p0.5 at q = 0.5.
These values are plotted in figure 2(b), and it is clear that the same logarith-
mic trend is observed in their experiment as in ours. Chhabra and Sreenivasan
(1992) published plot is small and difficult to read, and suggest p0.5 ≈ 2 across
the inertial range. Newer data from Sreenivasan in the atmospheric boundary
layer (private communication) are included in figure 2(b), and show variation
with scale.

To get a clearer view of the cause of this variation, the pdfs of the break-
down coefficients q∆x of a ‘parent’ segment of length ∆x were conditioned
not only on ∆x, but also on its integrated dissipation, which is expressed for
convenience as a surrogate velocity difference

δu = (ε∆x∆x)
1
3 . (4.3)

The conditioning cells are spaced logarithmically in both variables, by a factor
of 2 in ∆x, and by

√
2 in δu. The result is a two-dimensional array of pdfs,

each of which can be characterized by its maximum. Contour plots of the
distribution of the conditional p0.5 are given in figure 3 for two Reynolds
numbers. Both plots have been scaled so that the Kolmogorov length maps
to zero in the abscissae, and the integral length maps to 1.5. The abscissae
0.5 corresponds to the Taylor microscale λ. In the ordinates, zero corresponds
to the large-scale fluctuation intensity u′, and −1 to the Kolmogorov velocity
scale uK = ν/η. The dashed diagonal line in each plot therefore represents
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Figure 2.- (a) Pdfs of the breakdown coefficients of the surrogate
averaged dissipation, for several averaging lengths. Reλ = 1600.

, ∆x/η = 3; , 24; , 380; , 3000. (b) Midpoint
value of the pdf as a function of averaging length. Lines are as in
table 1; ◦ , Van Atta and Yeh (1975). Reλ = 2600; 4 , Sreenivasan
(private communication). Reλ = 15, 000.
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Figure 3.- Midpoint value of the conditional pdfs of the breakdown
coefficients for the surrogate averaged dissipation, as a function of
the averaging length and of the surrogate velocity increment. (a)
Reλ = 155. (b) Reλ = 1600.

the usual Kolmogorov cascade, δu = (ε∆x)
1
3 . The black areas in the plots do

not label cases in which the maximum value of the pdf vanishes, but cells for
which there are not enough data to compile statistics. Not surprisingly, the
cells containing more data cluster around the classical Kolmogorov line.

The behaviour of p0.5 is the same in both cases. The distributions of the
breakdown coefficients of weaker fluctuations are, for a given length scale,
more concentrated about the mean than those of stronger ones, and therefore
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Figure 4.- Conditional pdfs of the dissipation breakdown coeffi-
cients, for several dissipations and length scales. Reλ = 1600. (a)
∆x/η = 23, corresponding to an abscissa of 0.5 in figure 3. Dis-
sipations correspond to the following ordinates in figure 3: ,
−0.94; , −0.82; , −0.59; , −0.36. (b) ∆x/η = 1500
(abscissa, 1.2). Ordinates: , −0.36; , −0.24; ,
−0.12; , 0.

have higher maxima. Concentrated distributions are the result of uncorrelated
random processes. The integrated dissipation (4.1) is a sum of variables and,
in the simplest hypothesis that the dissipation is only coherent over distances
of the order of the Kolmogorov scale, it is easy to show that the distributions
of ε∆x and of q should quickly become approximately Gaussian, with maxima
increasing as (∆x/η)

1
2 . The same conclusion would follow from a model in

which a limited number of strong isolated small-scale structures account for
the bulk of the dissipation. That this is not true is clear from figure 2(b), where
the maxima increase only logarithmically with ∆x, suggesting the presence
of structure in the velocity field at all scales.

Low maxima and wide distributions are the results of coherence, or at least
of local statistical inhomogeneity, since the distribution of the dissipation over
the two halves of a segment ∆x can take any value depending on where the
mid-point lies with respect to the inhomogeneous structure. Over most of
the plots in figure 3 is it clear that weaker fluctuations break more randomly,
while stronger ones break more coherently. The pattern is apparently reversed
for distances in the dissipative range, but this can be shown to be due to a
different effect. The dissipation is effectively constant over those distances,
and segments are again most likely to contain one half of the dissipation of
their parents. In fact the dissipative distributions tend to be trimodal, with
a larger peak at q = 0.5 and weaker ones at q = 0 and q = 1.

Some examples of conditioned inertial pdfs are shown in figure 4. All the
distributions are roughly bell-shaped, but those which correspond to very
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strong structures over short distances are almost flat, suggesting a breakdown
into random subintervals of single structures with sizes comparable to that of
the averaging segment. Note that the distributions are not exactly symmetric.
While the most probable value for the dissipation of the central half of a weak
fluctuation is weaker than that of its parent, that of of a strong fluctuation
tends to be stronger.

This lack of universality of the breakdown coefficients weakens the ex-
perimental support for the the self-similar cascade models, but it does not
completely disprove them. It has been noted in several occasions that the
integrated dissipation is not a good quantity on which to base a local cascade
theory since, in the first place, it only represents the energy transfer rate
in an averaged sense and, in any case, the transfer rate is itself not a local
quantity. It is easy to see from simple dimensional considerations that the
spatial energy fluxes are of the same order as the energy transfer to smaller
scales, and that the kinetic energy of a fluid volume is as likely to diffuse to
a neighbouring structure of roughly the same scale, as to decay into smaller
structures (see e.g. the discussion in Jiménez 1999). An experimentally con-
firmed consequence is that the local energy transfer to subgrid can be positive
or negative with comparable probabilities (Piomelli et al. 1991).

4.1 The scaling exponents

That the pdfs of the breakdown coefficients are not found to be universal
raises the question of why reasonably good power laws are experimentally
found for the moments of the dissipation and for the structure functions of
the velocity increments.

In the multiplicative model, and subject only to the statistical indepen-
dence of consecutive cascade steps, the moments of the dissipation after n
steps can be expressed as products of the moments of individual breakdown
coefficients and, if we assume that Kolmogorov’s detailed similarity hypothe-
sis is satisfied, the scaling exponents of the structure functions of the absolute
values of the velocity increments are given by (Frisch 1994)

Sp = 〈|∆u|p∆x〉 ∼ ∆xζp , ζp = −1

3
log2〈q

p
∆x〉, (4.4)

where,
∆u∆x = u(x + ∆x/2) − u(x − ∆x/2). (4.5)

The logarithm in (4.4) is one of the reasons why the slopes ζp appear to be
relatively constant in experiments, even if the underlying distributions are
not. Another reason, already noted by Sreenivasan and Stolovitzky (1995)
and by Nelkin and Stolovitzky (1996), is that moments are poor indicators of
the shape of probability distributions of bounded variables. The bell-shaped
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Figure 5.- (a) Approximation of the experimental pdfs of the dis-
sipation breakdown coefficients by symmetric Beta distributions
having the same maxima. Reλ = 1600. , ∆x/η = 23; ,
370; , 6000. (b) Best value of α for the Beta approximation
of the breakdown pdfs. Lines as in table 1.

functions in figure 2(a) can be approximated by Beta distributions,

pα(q) =
qα−1(1 − q)α−1

B(α, α)
, (4.6)

where B(α, α) is the Beta function, and α ≈ 4 − 8 (see figure 5). The p-th
moment of (4.6) is

〈qp
∆x〉 =

B(α + p, α)

B(α, α)
, (4.7)

and is given, in the form of ζp, by the solid lines in figure 6(a). They are
relatively insensitive to α in the range of interest, but they would still give a
noticeable curvature in a logarithmic plot of Sp against ∆x. A procedure to
obtain better power laws was introduced by Benzi et al. (1993), by plotting
Sp not against ∆x (or α in our case), but against ζ3, which should theoret-
ically scale linearly with ∆x in an ideal inertial range. This is equivalent to
substituting the scaling exponents by

ζ ′
p = ζp/ζ3, (4.8)

and has often been used since then to analyze experiments. These extended
exponents are given as dashed lines in 6(a), and are even less sensitive than
ζp to variations in α. Finally the results of (4.8) are compared in figure 6(b)
with experimental data, with reasonable results.

It should be emphasized how little this subsection has to do with physics.
Its only input is that the pdfs of the breakdown coefficients are approximately
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Figure 6.- (a) Scaling exponents for the Beta distributions, as a
function of the parameter α. p = 2, 4, 6, 8, in increasing order.

, true exponent; , extended self-similarity. (b) Scal-
ing exponents of the longitudinal velocity structure functions. 2 ,
Herweijer and van de Water (1994); 4 , Anselmet et al. (1984).
Reλ ≈ 500 − 800 in both cases; , Beta distribution with
α = 5; , α = 8.

bell-shaped, even if their maxima change by more than a factor of two in the
scales being considered, but it ends with the analytic formula (4.4)–(4.7) for
the scaling exponents. It was noted by Sreenivasan and Stolovitzky (1995)
that similar results can be achieved with even less information.

Our purpose in this case cannot be to explain the physics of the cascade,
even if we have already observed that there is some physical information in the
relatively slow variation of the pdfs with the length scale, but to emphasize
once more the insensitivity of the scaling exponents as a tool for this purpose.
It can be noted in passing that the extended self-similarity procedure appears
in this light as essentially a mathematical artifact, which hides, rather than
highlights, the underlying physical processes.

5 The velocity increments

To get more information on the inertial range than was possible from the
coarse-grained dissipation, we now consider directly the velocity increments
(4.5). It is unfortunately difficult to study them from the point of view of
multiplicative cascades since they are not intrinsically positive and their most
probable value is close to zero. It is easier to compute directly the joint prob-
ability function of the velocity increments at different scales, which contains
the full two-point statistical information. The multiplicative cascade is just a
particular model for this object. As in the previous section we will consider
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Figure 7.- Joint pdfs of the velocity increments across centred
segments whose lengths differ by a factor of two. Reλ = 1600.
(a) ∆x/η = 6. (b) ∆x/η = 90. Contour lines are logarithmically
spaced by factors of 10.

centred segments whose lengths differ by a factor of two. The joint pdfs of the
velocity increments were recently studied by Friedrich and Peinke (1997), who
showed that they are consistent with a Markovian cascade characterized by a
drift, depending linearly on the parent velocity difference, and by an additive
noise with a parabolic variance. They analyzed data from the centreline of a
jet at Reλ ≈ 600, and their pdfs look similar to those in figure 7, which belong
to our highest Reynolds number case. They are not Gaussian, and the corre-
lation coefficient of the two increments, which is roughly proportional to the
elongation of the ellipses, depends on the scale. It is given for our three data
sets by the symbols in figure 8(a). It is close to unity for very short scales,
and decays to almost zero near the integral length. For the higher Reynolds
numbers the correlation has a plateau in a range that roughly coincides with
the inertial range.

While that plateau looks interesting, it says more about our data analysis
than about the structure of the flow. The reason for using velocity differences
is to isolate particular length scales, which means that the difference operator
is being used as a band-pass filter. As such it is far from ideal. If we consider
the Fourier transform û(k) of the velocity, any homogeneous linear operator
multiplies û by a transfer function which, in the particular case of (4.5), is

∆̂u/û = F (k∆x) = 2i sin(k∆x/2). (5.1)

It follows from Parseval’s theorem that the covariance of two functions can
be written in terms of their cospectrum

〈uv〉 = <
∫ ∞

0
ûv̂ dk, (5.2)
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Figure 8.- (a) Correlation coefficients for the joint pdfs in figure 7,
as a function of the separation distance. Lines are as in table 1. (b)
Transfer functions for the difference operator. , |F (k∆x)|2;

, |F (2k∆x)|2; , |F (k∆x)F ∗(2k∆x)|.

which, for two velocity differences, takes the form

〈∆1u ∆2u〉 =
∫ ∞

0
<{F (k∆1x)F ∗(k∆2x)}E(k) dk, (5.3)

where the asterisk stands for complex conjugation and E(k) is the energy
spectrum of u. Since the variance of each velocity difference can also be com-
puted in terms of spectrum and of the transfer function,

〈∆u2〉 =
∫ ∞

0
|F (k∆x)|2E(k) dk, (5.4)

the correlation coefficient

Corr(∆1u ∆2u) = 〈∆1u ∆2u〉/
(
〈∆1u

2〉〈∆2u
2〉

) 1
2 , (5.5)

can be expressed solely in terms of the spectrum and of the filter. The key
quantity is the overlap of the two transfer functions, which appears in (5.3). If
the band-pass filters are narrower than the separation of the two filter widths,
the correlation of the filtered velocities is small while, in the opposite case, it
is large. The magnitude of (5.1) at separations spaced by a factor of two is
given in figure 8(b), together with their product. The overlap is substantial,
and the product has a wide support, implying that the correlation seen in
figure 8(a) is mostly due to inadequacy of our filtering scheme. The lines in
figure 8(a) are computed using (5.1)–(5.4) and the measured velocity spectra.

While the previous discussion is elementary, it should caution us against
reading too much physics into the properties of the velocity differences since,
at least in part, they may be due to the spectral spillage between different
separation scales.
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Figure 9.- Normalized pdfs of ∆u∆x conditioned on the velocity
increment ∆u2∆x of its parent interval. Reλ = 1600. (a) ∆x/η =
12, |∆u2∆x/uK | = 1 − 14. (b) ∆x/η = 750, |∆u2∆x/uK | = 4 − 60.
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Figure 10.- (a) Mean value of ∆u∆x, conditioned on the velocity
increment ∆u2∆x of its parent interval. (b) Standard deviations. In
both figures ∆x/η ranges from 1.5 to 3000, increasing by factors
of 2 in the direction of longer lines. Reλ = 1600.

Consider for example the conditional pdfs of ∆u∆x, conditioned on the
value of ∆u2∆x, some of which are given in figure 9. It is interesting that,
once normalized with their own mean and standard deviation, they approx-
imately collapse for a given ∆x, independently of the conditioning velocity.
They are however not Gaussian, and their shape depends on ∆x, being more
intermittent for the smaller scales, and looking generally similar to the global
pdfs of the velocity increments at the same length scale. Their conditional
means and standard deviations are shown in figure 10, where each line cor-
responds to a given ∆x, and where the quantities are plotted against the
conditioning velocity difference. Note that the local self-similarity hypothesis
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Figure 11.- (a) Slope of the conditional mean values in figure 10(a),
d〈∆u∆x|∆u2∆x〉/d∆u2∆x. (b) Minimum conditional standard de-
viations in figure 10(b). Lines as in table 1. The slope of the dotted
line is 1.6.

for the cascade would imply that both the mean and the standard devia-
tions should be proportional to the conditioning ∆u2∆x, and that, while this
is approximately true for the former, it is not for the latter. This was also
noted by Friedrich and Peinke (1997), and implies that self similarity is in-
complete, as discussed in §2, and that the weak perturbations are dominated
by background fluctuations.

The minimum value of the conditional standard deviations for each ∆x
is plotted in figure 11(b), and is proportional to the Kolmogorov velocity at
that scale (ε∆x)1/3. The slope of the conditional mean with respect to the
conditioning velocity is given in 11(a), and is close to 0.5, as it would be for
the velocity differences of a smooth variable. This suggests that the behaviour
of the mean is a property of the filtering procedure rather than intrinsic to the
velocity, which is not smooth at inertial scales. It is indeed easy to construct
filters whose band-pass characteristics are sharp enough for the correlation
of the filtered velocities to be much smaller than for the increments. We will
discuss one such filter below, and we will see that the slope of the mean
values can be made very small, or even negative, while the behaviour of the
standard deviations is robust. Note that the deviations of both the mean and
the standard deviation from their ‘inertial’ values collapse well in Kolmogorov
variables across different Reynolds numbers, and that there is no indication of
other scales, such as the Taylor microscale, being important for the behaviour
of the pdfs.

The parabolic shape of the standard deviations in figure 10(b) suggests that
the cascade process can be understood in terms of two processes. The random
background noise discussed in the previous paragraph, and a more determin-
istic process which generates ‘coherent’ fluctuations which are proportional
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Figure 12.- (a) ‘Coherent’ conditional standard deviation of the
velocity increments, as a function of the conditioning velocity in-
crements. Data as in figure 10. Each line represents a different
∆x. Reλ = 1600. (b) Slope of the coherent standard deviation in
(a) with respect to the conditioning velocity increments. Lines as
in table 1. The slopes of the positive and negative branches of (a)
have been averaged for this figure.

to those in the parent interval. Assuming both processes to be independent,
their variances add, and we can define a coherent standard deviation for the
second process

Stdc =
(
Std2 − Std2

min

) 1
2 . (5.6)

This is plotted in figure 12(a), and indeed varies approximately linearly with
the parent velocity increment. Its slope, for our three data sets, is plotted in
12(b) as a function of the interval length. At least for the two higher Reynolds
numbers it has a plateau at roughly 0.25 at the inertial scales, and falls to
very low values in the dissipative range, as the flow becomes smooth and its
stochastic component disappears. The location of the decay, 10−20η roughly
corresponds to the end of the power-law behaviour in the energy spectrum.

5.1 Sharper filters

We have noted that the properties of the velocity difference as a band-pass
filter are far from ideal, which led to some spurious properties of the joint
statistics of increments at different length scales. Sharper filters, with less
spectral leakage, can be constructed, but generally need to use velocities from
more points than the two used in (4.5), and they are most effective when
tuned to a particular energy spectrum. In this section we will consider the
next simplest filter, using four instead of two points. It can be written in the
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Figure 13.- (a) Filtered inertial spectra kE(k)|F (k)|2, with E =
k−5/3. , for the difference operator (4.5); , for the ‘sharp’
filter (5.7). (b) Slope of the conditional mean values. Simple lines
are the same as in figure 11(a). Those with symbols are computed
with (5.7).

general form

∆̃u = a
[
u(x + ∆̃x/2) − u(x − ∆̃x/2)

]
−ab

[
u(x + ∆̃x) − u(x − ∆̃x)

]
, (5.7)

where the parameters a, b and p can be adjusted to get the desired transfer
function. We will use

a = 1.075, b = 0.4, ∆̃x =
3

2
∆x, (5.8)

which are chosen so that the peak of the transfer function is at the same
location as in (5.1), and the correlation (5.3) vanishes when applied to an
inertial power spectrum E(k) = k−5/3 (see figure 13-a). Note that, if (4.5) is a
discrete approximation to the velocity gradient, (5.7), with the coefficients in
(5.8), is very close to a discrete third derivative, and that it is also possible to
think of it as an orthogonal wavelet basis in which orthogonality is defined by
the integral in (5.3) with a weighting function which is the energy spectrum
(Farge 1992)

When the analysis in the previous section is applied to velocities filtered
in this way, instead of to the velocity differences, the general shape of the
joint pdfs is the same, but the correlation of ∆̃u∆x and ∆̃u2∆x vanishes, and
the slope of the conditional means is now much smaller than before, and even
reverses in sign for the largest scales (figure 13-b).

Other properties are more robust. The standard deviations of the condi-
tional probabilities have the same general behaviour as in the previous case.
Its incoherent part is still proportional to the background fluctuation inten-
sity, although with a slightly higher numerical factor, Stdmin(ε∆x)−1/3 ≈ 1.8,
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rather than the 1.6 in figure 11(b). A coherent part can also be defined, and
it also depends approximately linearly on the filtered velocity of the par-
ent interval, with a proportionality coefficient that reaches a plateau beyond
∆̃x/η ≈ 10, as in figure 12(b), but which is now 0.3 instead of 0.25.

6 Discussion and conclusions

We have analyzed longitudinal velocity signals from three different data sets
of approximately isotropic turbulence at low to moderate Reynolds numbers,
the highest of which contains a well-developed inertial range over almost three
decades. The classical analysis of the scaling of the coarse-grained dissipation
does not support the often quoted assumption that the pdfs of the breakdown
coefficients are universal in the inertial range, although their variation with
scale is much slower than would correspond to a completely uncorrelated
dissipation field.

A classification of the pdfs in terms of the length scale and of the dis-
sipation of the parent interval shows the structure of the cascade, which is
given in figure 2. Weaker fluctuations at each length scale break according to
concentrated distributions, which correspond to uncorrelated processes, while
stronger ones break more coherently, with broader pdfs. That separation be-
comes stronger at the smaller scales.

This interpretation, which is consistent with the theoretical ideas, sum-
marized in §2, of how the strong fluctuations should decouple from the back-
ground, are confirmed by the conditional pdfs in §5, which are conditioned on
the velocity increment of the parent interval. They do not support full self-
similarity of the cascade, because the standard deviations of the ‘children’
increments are not proportional to the magnitude of their ‘parents’. This is
however approximately true of the stronger fluctuations, and the distributions
can be separated into two components. A weaker one, which is dominated by
the background, and whose standard deviation is independent of the inten-
sity of the parent interval, and a stronger one, whose standard deviation is
proportional to that intensity. The proportionality constant (∼ 0.25) is ap-
proximately constant through the inertial range.

The velocity scale separating the two ranges is the Kolmogorov velocity
at the particular length scale, u′

∆x = (ε∆x)1/3. This contradicts the earlier
assumption by Jiménez and Wray (1998), who had guessed that the relevant
scale was the r.m.s. vorticity magnitude at the Kolmogorov scale (ε/ν)1/2,
and implies that there is no preferred length scale in the cascade except for
the Kolmogorov and the integral scales that bound it. The Reynolds num-
ber scaling of the observed distributions is consistent with this conclusion. It
cannot however be concluded from the present statistics whether the intermit-
tent structures form a self-similar continuum across the inertial range, or are
simply the reflection of the known coherence at the integral and Kolmogorov
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scales.

Another self-similar property, that of the mean values of the conditional
distributions, was traced to the poor performance of the velocity increments as
band-pass filters. It disappears when a sharper filter is used, but the behaviour
of the standard deviation is robust.

We have also noted that the lack of self-similarity found for the break-
down distributions is consistent with the experimentally observed approxi-
mate power-law behaviour of the structure functions, and we have stressed,
once more, that the latter are poor indicators of the self-similarity of the
underlying processes, and should be used with care. We have shown this by
computing the scaling exponents from a simple parametric approximation to
the observed pdfs, and observed that, in this light, the better power laws
obtained from extended self-similarity should be seen as hiding, rather than
illuminating, the underlying physics of the cascade.

It should in any case be stressed that the analysis presented here, as most
similar ones, is essentially kinematic, describing the state of the flow at a
given time, and should not be confused with a dynamical description of a
possible cascade process, which would require the study of the time evolution
of individual structures.
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