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The spectra of numerically simulated channels at=R&0 and Re=550 in very large boxes are
described and analyzed. They support a model in whiclutbguctures can be decomposed in two
components. The first one is formed by structures of size5 h, A ,~2 h, which span most of the
channel height, and penetrate into the buffer layer. The second one has maximum intensity in the
near-wall region, where it is highly anisotropic and scales in inner units. It widens, lengthens, and
becomes more isotropic in the outer layer, where it scales witfhe cospectrum exhibits an
analogous quasi-isotropic range, whose width grows linearly with wall distance. At the present
Reynolds numbers, nothing can be said about a possible streamwise similarity, due to limited scale
separation. An extensive set of statistics from the simulations is downloadable from
ftp://torroja.dmt.upm.es/channels. 8003 American Institute of Physics.

[DOI: 10.1063/1.1570830

We discuss direct numerical simulations of the turbulentcenter of the channel. In order to quantify how much those
incompressible flow in plane channels at Reynolds numberscales are constrained by the size of the box, we calculated
Re,=180 and Re=550, based on the wall friction velocity, the fraction 6} of the streamwise kinetic energy 2 con-

u,, and on the channel half-width. Our emphasis will be tained in the very long wavelengths =2#/k, =L, aty

on the comparison of the two numerical experiments. Fol=0.5h, and the fractiond) of the spanwise kinetic energy
lowing Kim et al,! we integrate the Navier—Stokes equa-w’? contained in the very wide wavelengths,=2/k,
tions in the form of evolution problems for the wall-normal =L, at the center of the channel. These are the scales which
vorticity w, and for the Laplacian of the wall-normal veloc- either do not fit in the box or do so only marginally. In the
ity ¢=V2v. The spatial discretization is fully spectral, using present Re=550 simulation,gy~0.2 and#y~0.1, while in
dealiased Fourier expansions in the wall-parallel planes, aniloseret al.” the size of whose box has been overlaid on the
Chebychev polynomials ig. The temporal discretization is spectra in Figs. () and X1d), 6;~0.5 and #}~0.4. This
third-order semi-implicit Runge—Kutta, as in Mosetral suggests that the boxes of the previous simulafidngere

Table | summarizes the parameters of the present nuoo small to represent the largest structures in the flow, and
merical experiments, together with those of previous compathat even the present one is in some ways marginal, particu-
rable simulationg:® Although those simulations had some- larly in the streamwise direction.
what higher Reynolds numbers, we will show below that the ~ Achieving stationary statistics in these very long boxes
present ones are the first in which the numerical box is largés fairly expensive, and our experience with test cases at
enough not to interfere with the largest structures in the outeRe, =180 indicates that at least 10 wash-out times are needed
flow. The streamwise periodicities of the boxes were chosetp have confidence in the statistics of the largest scales. The
to be at least.,= 8= h based on experimental evidence thatpresent statistics were collected for the times given in last
these structures have lengthe 515 h.#~®Little information ~ column of Table I, after discarding initial transients.
about their widths was available in the literature, and pre-  Figure Xa) displays linearly spaced isocontours of the
liminary simulations in boxes of different sizes at,R480  premultiplied two-dimensional energy spectrum of the

and Re=550 were used to adJUSt the spanwise pe”OdICIty tOTABLE . Summary of cases. The resolution is measured in collocation

L,=4m h. ) points, andJ,, is the bulk velocity.
The present results show that, in channels, the longest
scales appear in the streamwise velocitgit y=0.5n, while Re, Ax" Az" Aypa Le/h Li/h tUy /L,

the widest ones appear in the spanwise veloaityat the  poseretal. (Ref.2 590 7.2 36 72 2 = —
Abe et al. (Ref. 3 640 8.0 5.0 8.2 6.4 2 —
Present 180 89 45 6.1 2 4w 22
@Electronic mail: juanc@torroja.dmt.upm.es Present 550 8.9 45 6.7 @ 4w 10
YAlso at Center for Turbulence Research, Stanford University, CA 94305.
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FIG. 1. (a), (b) Premultiplied two-dimensional spectifa,,/u?, as functions oh, and\,. Shaded contours, Re180; line contours, Re=550. The contours

are 0.20.2)0.8 times the common maximum value for both spectra at each wall-distance. The chain-dotted lines separate the bands of integration of the spectra
in Fig. 2. The dashed straight lines (i@ have logarithmic slopes 1/3, while iib) they represent,=2 \, and\,=1.75h. (c), (d) The hatched patches are

15% contours of the two-dimensional spectral autocorrelation fungtigroetweeny* =15, y’/h=0.5. Horizontal hatching, Re-550; vertical hatching,

Re,=180. The shaded areas lie between the two lowest contours of thebR@u-spectrum at the corresponding wall distances. The chain-dotted rectangles

mark the size of the box in Moset al. (Ref. 2. (a), (c) Inner units,y"=15. (b), (d) Outer units,y/h=0.5. The solid straight lines are everywhevg

=\,.

streamwise velocity ¢ ,= KK (O(Ky Kk, ,y) 0% (K, K,,Y)), lar thatu’/u, increases with the Reynolds number through-
where is the Fourier coefficient afi, andk, andk, are the  out the wall layer at a fixe¢ ". Some researchérd have
streamwise and spanwise wavenumbers. This spectral deargued that the Reynolds number dependence is due to the
sity measures the streamwise kinetic energy contained in eontribution of Townsend “inactive” motions. They note
logarithmic wavelength interval centered\gt, \,. The line  that this contribution scales in outer units, and are motivated
contours come from the simulation at Ré&50, while the by this observation to introduce a “mixed” scaling in which
shaded ones are from the one at:R&80. The wall distance u’? is proportional to the product of the friction and outer

in the figureyy " =15, is roughly the location of the near-wall velocities. Hite$ presents a similar argument, but favors an

peak ofu’. interpretation in which the inner and outer contributions are
The u-spectrum in the near-wall region lies approxi- scaled independently.
mately along the power lawk,; ~(\;)3, implying that, The present data agree with the latter idea. The only

while the structures of the streamwise velocity widen as theyegion of the two-dimensionali-spectra in Fig. (a) that
become longer, they also become more elongated, since thelpes not collapse in wall units is their long-wavelength end.
progressively separate from the spectral locus of two-There is more kinetic energy there at R480 than at Re
dimensional isotropyr,=X\,. This behavior is consistent =550 for scales narrower thaw, ~400, while the opposite
with viscously-spreading similarity solutions of the linear- is true for wider scales. The reason for this incomplete scal-
ized Squire’s equation, under the assumption of a lineaing can be seen in Fig.(d), where the hatched patches rep-
mean velocity profile and of a constant eddy viscosity in theresent the premultiplied two-dimensional autocorrelation
near-wall regior. function of the streamwise velocity

There is still no general agreement about the scaling in N . , , L
the near-wall region.gContrarygtJo the classical idea that ingner Puu= Kk ATk Kz, y) 0% (Ky K,y LU’ (y)u' (y )],1
scaling should work close enough to the wall, recent experi- @
mental evidence suggests that it does4fotand in particu-  which can be understood as the spectral distribution of the
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FIG. 2. Premultiplied one-dimensional spectra as functions of wavelength and wall distaneet5Be Shaded contoursj-spectra; line contours,
uv-cospectra(a), (c) Streamwise spectrab), (d) spanwise spectra. The dashed straight lines have unit gl@péb) Outer units;(c), (d) inner units.(a)
Spanwise modes with,>0.75h; (b) streamwise modes witk,>5 h; (c) spanwise modes with,<0.75h; (d) streamwise modes with,<5 h.

fraction of the streamwise kinetic energy that is correlatedp,,, is represented in outer uniffig. 1(d)], and they also
betweeny andy’. Note that the absolute value in the nu- coincide at both Reynolds numbers with the tailsdgf, in
merator of(1) defines the correlation function independently the outer layer, which are located aroung=5h, \,~2 h.
of the relative phases of the modes. This suggests that the outer-layestructures can be decom-

Figures 1c) and Xd) show the regions where the corre- posed into two types of modes. The first one would corre-
lation p,,, betweerny " =15 andy’ =0.5 h is larger than 15% spond to the hatched patches near the dashed horizontal line
of its maximum. The shaded areas also included in thosa Fig. 1(b). These modes are long anisotropic structures
figures lie between the two lowest levels of the, RB50  whose sizes scale with, and which are very deep in the
u-spectrum, and have been added to allow comparisons afall-normal direction. Long regions of uniform’ which
these plots with Figs. (&) and ib). For each of the two extend from the near-wall region into the outer flow have
Reynolds numbers, the regions of higl, roughly coincide  been identified by Adriaret al,'! who argue that they may
with the wavelengths in which there is an excess of streambe the induced effect of coherent packets of hairpin vortices.
wise kinetic energy in the near-wall region, suggesting thaffhe second class of modes forms a quasi-isotropic range
the latter is the result of the penetration into the buffer regiorwhich lies in Fig. 1b) along the ridgen,=2\,. The loca-
of outer-layer structures. The integral @f, in wavenumber tion of the large-wavelength end of this ridge scales in outer
space is a measure of the fracti@y(y,y’) of u’? which is  units, while that of the short-wavelength end scales in inner
correlated between the two heights. For the two wall-units, so that the ridge becomes longer as the Reynolds num-
distances in Fig. 1C,~0.15, indicating that the penetration ber increases. Similar nearly-isotropic modes can be found
effect is strong. The fractions of the correlated energy for thelong\,=\, in the premultiplied spectra af andw in the
other two velocity components ar€,~0.01 and C,,  outer regionnot shown. These quasi-isotropic modes of the
~0.05, in agreement with Townsentfsdea that the imper- three velocity components probably belong to the same kind
meability condition limits global contributions to the of outer-layer structures. In fact, when only wavelengths
v-spectrum in the near-wall region, but not thosel tandw. shorter thar\,=5 h are considered, the energieswandw

The locations of the two hatched patches coincide whemre roughly equal abowe' =100, and the three components
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are equally important at the center of the channel. Otherwisenoved in Fig. 2d) the u-spectrum is much closer to self-

u’? is roughly twicew’?, and three times'?, throughout similarity. Thev- and w-spectra, which have weaker deep

the outer layer. The modes associated with the deep compeemponents, widen approximately linearly with at all

nent of theu-spectrum are less prominent é,,,, and are  wavelengths.

essentially irrelevant inp,,, as could already be inferred An attempt to check for streamwise similarity of the nar-

from comparing the values given above f©f, C, andC,,. row scales in Fig. @) fails because there is very little scale

This suggests that the mean shear has a direct effect on teeparation between the length of the structures near the wall

generation of the deep-modes, since the main difference (A, ~1000) and those in the outer layex,&3 h). It is not

between the three velocity components is that the energglear from our data whether this is a low-Reynolds number

production feeds directly only inta’?. effect, or whether the anisotropy of the near-wall structures
The wall-normal organizations of the one-dimensionalwill keep increasing with the Reynolds number, preventing

u-spectrum and of thew-cospectrum are shown in Fig. 2. streamwise self-similarity from ever developing.

They are separated into wavelength bands to isolate the dif-

ferent components mentioned above. The lines separatingCKNOWLEDGMENTS

these bands are shown in Figga)land Xb). Figure Za)
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