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ABSTRACT
This paper is concerned with the structure of steady two–

dimensional flow inside the viscous sublayer in hypersonic
boundary–layer flow over a flat surface in which microscopic
cavities (’microcavities’) are embedded. Such a so–called Ultra
Absorptive Coating (UAC) has been predicted theoretically [1]
and demonstrated experimentally [2] to stabilize passively hy-
personic boundary–layer flow.

In an effort to further quantify the physical mechanism lead-
ing to flow stabilization, this paper focuses on the nature of the
basic flows developing in the configuration in question. Direct
numerical simulations are performed, addressing firstly steady
flow inside a singe microcavity, driven by a constant shear, and
secondly a model of a UAC surface in which the two–dimensional
boundary layer over a flat plate and a minimum nontrivial of two
microcavities embedded in the wall are solved in a coupled man-
ner. The influence of flow– and geometric parameters on the ob-
tained solutions is illustrated. Based on the results obtained, the
limitations of currently used theoretical methodologies for the
description of flow instability are identified and suggestions for
the improved prediction of the instability characteristics of UAC
surfaces are discussed.

∗Address all correspondence to this author.

NOMENCLATURE

Latin symbols
d microcavity diameter
D microcavity depth
f forcing frequency
Re Reynolds number
s spacing between successive microcavities
t time
(u,v)T basic flow velocity vector
x,y Cartesian coordinates

Greek symbols
ε infinitesimal quantity
ν kinematic viscosity
ψ stream function

Subscripts
x, y ∂/∂x, ∂/∂y
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INTRODUCTION
Interest in instability and control of a hypersonic boundary

layer has been raised by the recent discovery of Fedorov and
Malmuth [1] and Rasheedet al. [2], who have demonstrated the-
oretically and experimentally, respectively, that mode II insta-
bility, which prevails in hypersonic boundary–layer flow under a
variety of environmental conditions, can be effectively controlled
passively by coating the surface on which the instability develops
by a porous material. A schematic representation of the Ultra–
Absorptive Coating (UAC) surface employed is shown in Fig. 1.
The key feature of this technology is the large disparity of scales
between a typical mode II wavelength and the diameterd of each
of the microscopic cavities on the coating. The porous material
can thus be modeled by a row of cavities which are embedded at a
characteristic distances from each other inside the wall–coating;
the cavities are of small size compared with the thickness of the
boundary layer and are referred to asmicrocavities. In their im-
mediate vicinity the external boundary–flow can be considered
as driving flow inside each microcavity by a constant shear, as
schematically depicted in Fig. 1. The optimal distribution of the
microcavities on the coating surface is currently limited by the
unknown nature of the interaction between the flowfields in the
immediate vicinity of neighboring microcavities, which has pro-
vided motivation for the present work.

This paper and associated recent theoretical efforts intend
to contribute to a better understanding of the flow inside porous
coatings by providing detailed numerical predictions of the flow-
field in the neighborhood of UAC surfaces, thus extending the
original theoretical investigations of Fedorov and Malmuth [1]
who have used an integral condition to model the effect of the
microcavities on the hypersonic boundary layer. Two different
approaches have been followed in the present work; the first con-
siders independently the regimes of boundary–layer flow over
the porous wall [4] and that inside an isolated microcavity [3]
and the boundary condition at the open end of the microcavity is
used to provide the link between the two flow regimes. In this
approach, two aspects of the problem have been considered nu-
merically, recovery of two–dimensional, essentially nonparallel
basic states and three–dimensional BiGlobal instability analysis
of such basic states [5]. Only basic flow results are discussed here
and are contrasted with those of a second approach, which ques-
tions the conclusions put forward in all previous theoretical anal-
yses by presenting, for the first time, results on the basic flow in
the near–wall region of the UAC surface, obtained using spatial
direct numerical simulation (DNS) based on a highly-accurate
spectral–element approach.

The present analysis relies heavily on the slow nature of the
flow in the immediate vicinity of the UAC surface. Indeed, pre-
vious work [1, 4, 5] has argued that, firstly, the flow inside the
microcavity is expected to be of a viscous nature, driven by a
constant shear at the open end of the microcavity and, secondly,
that an incompressible model may be used for the description

Figure 1. SCHEMATIC REPRESENTATION OF THE UAC SURFACE [3]

of the basic state in the immediate vicinity of the microcavi-
ties. Results were first obtained in a single microcavity, in which
the outer (boundary–layer) flow was assumed to affect the inner
(cavity) flow, but not vice-versa. The nature of two–dimensional
basic flow inside a microcavity driven by a uniform shear-stress
on one face was established by use of an accurate and efficient
eigenvalue decomposition algorithm for DNS. The results ob-
tained in this configuration were perturbed by small–amplitude
harmonic perturbations superimposed at the lip of the microcav-
ity. This extension is necessary in order to permit a more in-
teractive regime, especially with respect to the perturbed flow.
In particular a more realistic boundary condition recently sug-
gested by [4] can be used to relate the wall–normal component of
the disturbance velocity and disturbance pressure on the external
face of the cavity. Finally, the basic flow results obtained using
the previous two sets of approximations have been put in per-
spective by performing (unsteady) spectral–element DNS of flow
over the entire model UAC surface, which encompasses both the
near–wall viscous sublayer part of the hypersonic boundary layer
flow and two microcavities embedded in the wall.
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RESULTS
Single cavity, steady runs

The two–dimensional incompressible equations of motion
have been solved using spectral collocation and a highly–
efficient eigenvalue decomposition algorithm; details of the nu-
merical approach are discussed by Theofilis [6]. The uniform
tangential velocity at the cavity roofy = D has been replaced
by that of uniform wall shear stress. The issue of the singular-
ity of the boundary conditions at the NE and NW corners of the
cavity is thus absent in the present calculations and the time–
accurate spectral collocation scheme utilized for the calculation
of the basic flow demonstrates exponential convergence. Unlike
the standard lid–driven cavity problem [7,8], in which the condi-
tion ψy = 1 is imposed at the N boundary and defines the effec-
tive flow Reynolds number, there is some ambiguity in the defini-
tion of a Reynolds number in the present case. Given that in the
present approach the roof shear stress is constant (orψyy = 1),
the input Reynolds number may be regarded as either of

Re= uy(y = D)d2/ν, or Reint =
1
ν

∫ d

x=0
u(x,y = D) dx, (1)

ν being the kinematic viscosity of the fluid. Whileν is a fixed
parameter in the basic flow calculation code,u(x,y = D) is un-
knowna priori and is determined from the converged basic–flow
field. Takingd = D = 1 basic flow results have been obtained
using a rectangular grid comprising upwards of 96 collocation
points per spatial direction. These have been compared against
the classic lid–driven cavity flow [7], the Reynolds number in the
latter case taken to be ofO(Reint) in the former; this comparison
points to a general qualitative agreement between the two model
flows, discussed in some detail in [3,5].

Single cavity, unsteady runs
Next, the DNS algorithm has been modified to address un-

steadiness at the microcavity lip, generated by instability in the
external field which penetrates inside the microcavity, or un-
steadiness due to resonance originating inside the microcavity
which propagates in the boundary layer. This coupling is piv-
otal in order to combine the analytic/numeric approach of [4] in
the external boundary layer flow with the present fully numerical
approach required to describe flow inside the microcavity.

To this end, aD = 2 microcavity has been considered and a
linear harmonic forcing has been imposed upon the flow at the
N boundary. Representative results are shown atRe= 100, in
the form of time–dependence of a flow quantity at a given po-
sition in the flowfield in Fig. 2; hereu is monitored, although
others exhibit qualitatively analogous behavior. In Fig. 2 it can
be seen that, starting from rest, att < 20 a steady state solution
is approached. When non–zero amplitude forcing is applied at

Table 1. PARAMETERS FOR THE SINGLE–CAVITY UNSTEADY DNS

t ε f

< 20 0 0

20< t < 40 10−4 1

40< t < 60 10−4 0.5

> 60 0 0
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open cavity flow driven by constant shear

Figure 2. RESPONSE OF THE FLOW INSIDE A MICROCAVITY SET

UP BY A SHEAR WHICH IS HARMONICALLY-DEPENDENT ON TIME

DURING t ∈ [20,60]. SHOWN IS u(x = 0.5,y = 1;t).

the N boundary of the cavity, the flow responds linearly in a pe-
riodic manner. After rather short transients following the (Heav-
iside) changes of the forcing amplitudeε at t = 20 and of f at
t = 40, the flow settles to two different harmonic motions with
periodsT20−40 = 1/ f = 1 at 20≤ t < 40 andT40−60 = 1/ f = 2 at
40≤ t < 60. A snapshot of the normal velocity component solu-
tion att = 40 is shown in Fig. 3. Att = 60 the forcing is removed
and, by the end of the simulation, the flow approaches the same
steady–state reached att = 20−. Convergence of the results pre-
sented has been demonstrated and qualitatively analogous results
obtained at parameter values different to those presented in table
1 point to the fact that imposition of harmonic motion at the open
end of the cavity sets up a linear response of the flow inside the
cavity in resonance with the imposed frequency, provided that the
forcing amplitude is kept small. Another potentially significant
result for subsequent modeling is the finding that the bulk of the
fluid flow motion, both unforced and forced, is confined within
a depth approximately equal to the length of the microcavity, as
also shown in Fig. 3.
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open cavity flow driven by constant shear
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Figure 3. A SNAPSHOT, AT t = 40, OF THE NORMAL VELOCITY

COMPONENT OF THE PERIODIC FLOW OF FIG. 2

Two microcavities, unsteady runs
The results of the previous sections are next compared with

those obtained in a model UAC surface, encompassing the mini-
mum nontrivial number of two microcavities embedded into the
wall, as schematically depicted in Fig. 4. Consistent with the
previous sections a two–dimensional approximation is made and
a spectral–/mortar–element methodology [9] is used to discretize
space. The equations of motion are solved in primitive variables
and time–integration proceeds, using one of several alternative
semi–implicit schemes available, until convergence to a steady
state is obtained. The viscous boundary conditions at the walls
are complemented by a constant shear imposed at the inflow
W and farfield N boundaries, respectively, and natural bound-
ary conditions of vanishing stresses, employed in the outflow E
boundary. Simulations in the configuration shown in Fig. 4 re-
quire an order–of–magnitude larger computing effort compared
with single–domain calculations and, hence, a limited amount
of results monitoring variations of the essential flow parameters
have been obtained. Nevertheless, results obtained suffice to
highlight essential differences between the numerical solutions
obtained in the previous two and the present section. Specifi-
cally, two questions have been posed and answered:

• First, how does the flowfield in the near–microcavity region
compare with solutions obtained using the assumptions of
earlier theoretical work by Fedorov and Malmuth [1]?
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Figure 4. SKETCH OF THE GEOMETRY CONSIDERED

• Second, how do the geometric parameterssandD affect the
flowfield of a microcavity (including the induced boundary–
layer flow) and the interaction of this flowfield with neigh-
boring microcavities?

Answers to these questions can provide guidance to theory
through identification of the range of minimum spacing/depth of
microcavities for which the integral conditions used by Fedorov
and Malmuth [1] hold, and to experiment, through use of this
information when manufacturing materials whose stability prop-
erties are reliably predicted by theory.

TakingL = d = D = 1, some numerical experimentation was
necessary in order to determine the remaining geometric param-
eters, such that(a) the location of the inflow boundary does not
interfere with the flowfield in the neighborhood of the upstream
microcavity, on the one hand permitting the boundary layer to
develop on the upstream wall of the configuration and on the
other hand not placing excessive resolution requirements on ac-
count of a long upstream domain,(b) the location of the outflow
boundary be placed well downstream of the downstream cavity,
such that the outflow boundary conditions are physically plausi-
ble and, finally,(c) the location at which the domain is truncated
in they−spatial direction be such that activity taking place in the
neighborhood of the microcavities is not affected by this (artifi-
cial) domain truncation.

Having satisfied these three requirements, the remaining
physical parameters to be determined were the Reynolds number
and the distances between the microcavities. Related numeri-
cal parameters were the time–step∆t of the unsteady simulations
and the number of subdomains in which each of the parent sub-
domains (p1− p7 in Fig. 4) was to be subdivided, as well as
the degree of polynomial approximation within each subdomain.
The last two parameters determine the convergence properties of
the algorithm and the accuracy of the solutions obtained and are
(alongsideRe) linked with ∆t via the CFL condition.

Results have been obtained forRe∈ [10,103] ands∈ [1,4]
while, in order to verify the conclusion put forward in the pre-
vious section regarding the significance of the microcavity depth
parameter, simulations comparing the results ofD = 1 and 2 have
also been performed. In all calculations each of the 7 parent
subdomainsp1− p7 was further subdivided into 42 subdomains,
within each of which flow quantities were resolved using a 7th
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Figure 5. Re= 50 FLOW OVER TWO UNIT SQUARE MICROCAVI-

TIES, SET APART BY s= 1. UPPER: STREAMWISE VELOCITY COM-

PONENT. LOWER: NORMAL VELOCITY COMPONENT

degree polynomial. These values represent a compromise be-
tween accuracy and efficiency; resolving a parent subdomain us-
ing 22 subdomains and lower degree polynomials produces qual-
itatively correct results, while further increasing the number of
subdomains (62×7 = 252 being the next possibility, compared
with the currently used 42×7 = 112 subdomains) was found to
be unnecessarily expensive. In the parameter ranges explored
the unsteady algorithm has yielded stationary solutions only; at
convergence successive time–step results exhibit a relative time
variation of less than 1×10−7.

Of the results obtained most relevant for the problem at hand
are low Reynolds number calculations [1, 4, 5]. The spatial dis-
tribution of the steady states foru(x,y) andv(x,y) atRe= 50 and
s= D = 1 is presented in Fig. 5; the slow motion of flow inside
the microcavity can be appreciated in this result. The normal (to
the wall on which the boundary layer develops) velocity compo-
nent reveals an interesting aspect of the flow. On the one hand,
fluid in the microcavity is found to be in near–solid–body rota-
tion, as expected by the smallness of the Reynolds number. On
the other hand, compensation of this phenomenon takes place in-
side the boundary layer, where the presence of the microcavity
appears to exert influence on the flow over a relatively large part

Figure 6. EFFECT OF SPACING s∈ [2,4] ON A TWO-UNIT-SQUARE-

MICROCAVITY CONFIGURATION AT Re= 20.

of the domain outside the microcavity itself. The first result is in
line with the assumption of the previous two sections and those
of Fedorov and Malmuth [1] and Duck [4]. The second result is
expected to have a strong influence on the stability characteristics
of the boundary layer and can only be predicted numerically by
simulations, such as these presented herein. Further inspection
of the normal velocity component appears to suggest thats= 1
is a distance at which the fluid motion induced in the boundary
layer by one microcavity interacts nonlinearly with that induced
by its next neighbor. In other words, placement of microcavities
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at distancess≤ 1 apart will prohibit application to a row of mi-
crocavities (in an integral manner) of analytical models derived
on the basis of a single microcavity.

Next, the effect ofson the solutions obtained at constantRe
andD is examined; representative results are presented in Fig. 6
at Re= 20,D = 1. It can be seen thats≥ 4 is necessary in or-
der for the induced flowfields of two neighboring microcavities
to become qualitatively similar. Unless three–dimensional insta-
bility modifies these basic flows, this result suggests that using
such a spacing between microcavities can ensure that the model
used to describe the induced flowfield of a single microcavity
can be applied in an integral manner to describe the interaction
between the boundary layer and a porous material. In the pa-
rameter ranges investigated, in which no unsteadiness occurs,
the Reynolds–number effect, also examined, is substantially less
pronounced than that of the spacing between microcavities. Fi-
nally, the conclusion of the previous sections that the bulk of the
activity inside the microcavity takes place within a depth equal
to the width of the microcavity has been confirmed in the frame-
work of the present multiple–microcavity simulations; quantita-
tive inspection of all solutions obtained iny∈ [−2,−1] revealed
a rapid decay of all flow quantities with depth.

DISCUSSION
This paper is a first step in modeling the flow inside porous

media coatings which are known to be useful in controlling hy-
personic (in particular mode II) boundary–layer flow instabili-
ties. Here direct numerical simulations have been performed to
shed light upon the structure of the essentially incompressible
viscous sublayer established inside the hypersonic boundary–
layer on account of the presence of the microcavities. The first
set of results obtained has assumed the outer flow to affect the
inner (cavity) flow, but not vice-versa and established the nature
of two–dimensional basic flow inside a microcavity driven by a
uniform shear-stress. Some BiGlobal [6] instability results of
this flow have also been obtained [5] and they strongly suggest
the flow to be quite stable in likely practical regimes (Reynolds
numbers), particularly when compared with the lid–driven cav-
ity problem [8]. The second set of results obtained has permitted
small–amplitude harmonic perturbations superimposed upon the
solutions obtained in the first leg of the investigations. An iso-
lated microcavity has been shown to respond to external forcing
in a linear manner, periodic flow being set up inside the cavity at
the imposed external frequency.

The basic flow results obtained using the previous two sets
of approximations have been put in perspective by performing
DNS of a model UAC surface. It has been shown that the pa-
rameter on which the flowfield most critically depends on is the
spacing between microcavities; beyond a spacings≈ 4 (which
scales with other geometric parameters of the flow) it appears
to be permissible to study microcavities in isolation from one–

another (but interacting with the boundary layer) and calculate
the effect of the induced flow motion on the boundary layer in
an analytical (integral) manner. Other parameters, such as the
depth of the cavities and the Reynolds number have been found
to have a lesser impact on the flow, at least in the parameter range
of interest where steady states prevail.

Future work aiming to aid optimization of microcavity scale
and distribution should address the key issue left open in the cur-
rent investigations, namely three–dimensionality. The most effi-
cient means to accomplish this task is to study harmonic modi-
fications of the present two–dimensional basic states in the third
spatial direction, by employing BiGlobal instability analysis.
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