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Results are presented of BiGlobal stability analysis of incompressible flow over a row
of T-106/300 Low Pressure Turbine blades. In particular the two- and three-dimensional
stability of a two-dimensional steady state is investigated for Reynolds numbers below
915. Both structured and unstructured meshes have been used at different degrees of
refinement, while variations of the polynomial order of the numerical methods in either
approach have ensured numerical convergence. The analysis shows that the transition
from steady to periodic flow takes place at a Reynolds number of Rec = 905 ± 10. The
flow remains linearly stable to three-dimensional disturbances below Rec. The leading
eigenvalues of the LPT flow are obtained in a range of Reynolds and spanwise wavenumber
parameters. The two most interesting BiGlobal eigenmodes have been found to be related
with the wake of the blade and the separated flow in the trailing-edge region on the suction
side of the blade.

Nomenclature
Abbreviations

EVP Eigenvalue problem
DNS Direct numerical simulation
LPT Low pressure turbine
KH/TS Kelvin-Helmholtz/

Tollmien-Schlichting
OSE/PSE Orr-Sommerfeld-equations/

Parabolised stability equations
c.c. complex conjugate

Latin Symbols

Re Reynolds number
Rec primary critical

Reynolds number
ReDc primary critical

Reynolds number
based on D

D equivalent bluff body
diameter

Lz spanwise wavelength
q̄ = (ū, v̄, p̄)T steady basic flow
q̂ = (û, v̂, p̂)T amplitude functions of perturbations

The material is based upon work supported by the Air Force
Office of Scientific Research, under Grant No. F49620-03-1-0295 to
nu-modelling S.L., monitored by Dr. Thomas Beutner.

q = (u, v, p)T transient solution
t time
i imaginary unit
U velocity vector
A,B,C,D eigenproblem matrices
p polynomial order
h characteristic elemental size

Greek Symbols

β real wavenumber parameter
Ω two-dimensional computational domain
ω complex eigenvalue
ωr growth/damping rate
ωi circular frequency
ε infinitesimal quantity
ξ coordinate

Subscripts

i imaginary part
r real part

Calligraphic symbols

L (1/Re)(D2
x +D2

y − β2)− ūDx − v̄Dy

Dx ∂/∂x
Dy ∂/∂y
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Introduction
Research on control of low-pressure turbine flows has

received renewed impetus recently, in line with ever
increasing hardware capabilities which permit probing
the range of Reynolds numbers relevant to such flows
for the first time. State-of-the-art direct numerical
simulation (DNS) investigations3,15–17 modelled the
actual flow in a LPT passage, which is characterised by
Reynolds numbers of order 105. These investigations
are based on different simplifications and modellings of
the flow and the blade geometry as well as on different
conceptual approaches toward the goal of flow control.
Wu et.al17 performed DNS modelling the blade geom-
etry as well as the incoming wake in order to show the
connection of classic KH/TS (e.g. Kleiser and Zang6)
and bypass transition mechanisms. It was found that
instability in the chosen configuration shared princi-
pal characteristics with transient growth phenomena
in archetypal flat-plate and channel flows4,13 Fasel et
al.3 employed active control using two- and three-
dimensional DNS in order to shed light on yet un-
known instability mechanisms which may successfully
improve flow performance in experiments.

Wu and Durbin16 simplified the model by neglecting
the periodic wake of the stator blade and assuming the
incoming flow to be parallel, which revealed the corre-
lation between longitudinal vortices in the free stream
and counter-rotating vorticity inside the boundary
layer. This vorticity can be associated to algebraically
growing instabilities in flat-plate boundary-layer and
channel canonical flows. Both DNS studies by Durbin
and co-workers have identified transient growth to be
a physical effect of rather higher significance com-
pared with mean flow deformation inside the respec-
tive boundary layer. Consequently, understanding and
modelling transient growth mechanisms in this class of
flows appears to be a key to devising successful flow-
control methodologies; this, in turn, requires knowl-
edge of the (BiGlobal) eigenspectrum that describes
instability of LPT flows. In order to gain this basic
knowledge, the present work focuses on a moderate–
Reynolds number range, where the onset of primary
and secondary bifurcations is expected to be.

Central to this class of investigations are the mech-
anisms that describe the three-dimensional nature of
the instabilities of this class of flows. The compu-
tational effort that underlies three-dimensional DNS
renders this numerical approach accessible only to
large–scale facilities and is certainly inappropriate for
parametric studies. An alternative, more efficient,
methodology based on BiGlobal linear stability anal-
ysis has been chosen in the current research effort. In
this context, only a two–dimensional DNS need be per-
formed, the results of which are analysed with respect
to their stability against the full range of spanwise
wavenumbers at each Reynolds number.

The numerical solution of the two-dimensional

Navier-Stokes equations has been performed by means
of Nektar, a DNS solver based on the spectral/hp el-
ement method.5 The subsequent instability analysis
was also performed using a spectral element method-
ology, which has been shown in the past to be ap-
propriate (as well as efficient) means to study the
stability of complex flows (cf. that over a NACA0012
airfoil11). The present effort is devoted to investi-
gation of alternative spatial discretization approaches
for both the DNS and the BiGlobal stability analysis,
while for the latter the development of both two- and
three-dimensional disturbances has been studied using
the Arnoldi method, an efficient approach to calculate
the most significant eigenvalues and eigenmodes of the
spectrum.

Theory
Linear Stability Analysis

Central to linear flow stability research is the con-
cept of decomposition of any flow quantity into a
steady or time periodic laminar basic flow upon which
small-amplitude multi-dimensional disturbances are
permitted to develop. In order to transfer the idea
of this basic concept to the present context, where the
basic state is time-independent and homogeneous in
its third dimension, we consider the two relevant de-
compositions, given in the following by equations (1)
and (2) for the case of incompressible flow.

Transition from 2D-steady to 2D-periodic flow

Investigating the two-dimensional instability of a
two-dimensional steady basic flow, the appropriate de-
composition is described by

q(x, y, t) = q̄(x, y) + εq̂(x, y) eωt + c.c., (1)

where q̄ = (ū, v̄, p̄)T is a steady solution of the two-
dimensional continuity and Navier-Stokes equations
(w̄ = 0) and q̂ = (û, v̂, ŵ, p̂)T represents the ampli-
tude of the flow perturbation, with ŵ ≡ 0 in this case.

Transition from 2D-steady to 3D flow

In order to identify transitional states from a two- to
a three-dimensional flow, the disturbance is permitted
to assume a harmonic expansion in z, satisfying the
Ansatz

q(x, y, z, t) = q̄(x, y) + εq̂(x, y) e[ωt+i βz] + c.c., (2)

where the perturbation is now assumed to comprise
all three velocity components and is periodic over a
domain of spanwise extent Lz = 2π/β, where β is a
real wavenumber parameter.

Eigenvalue problem

Introducing the more general equation (2) into the
incompressible continuity and Navier-Stokes equations
a non-linear (in terms of both q̄ and q̂) system of equa-
tions is obtained. The basic flow terms associated with
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q̄ are then subtracted out and the resulting system is
linearised about q̄ assuming that ε � 1, to obtain the
following equations

[L − (Dxū)] û− (Dyū)v̂ −Dxp̂ = ω û, (3)
−(Dxv̄)û + [L − (Dy v̄)] v̂ −Dyp̂ = ω v̂, (4)

Lŵ − i βp̂ = ω ŵ, (5)
Dxû +Dy v̂ + i βŵ = 0, (6)

which are subject to appropriate boundary conditions
over the two-dimensional region Ω. For the present
problem these are the no-slip condition at the surface
of the turbine-blade, zero velocity at the inflow and
∂û/∂n = ∂v̂/∂n = 0 at the outflow as well as pe-
riodic connectivity of all flow quantities at the lower
and upper boundaries, as illustrated in figure (1). In
equations (3) - (5) we note that

L = (1/Re)(D2
x +D2

y − β2) (7)
−ūDx − v̄Dy, (8)
Dx = ∂/∂x (9)
Dy = ∂/∂y (10)

The system is discretised in both the x and y spatial
directions, resulting in the two-dimensional, partial
derivative matrix eigenvalue problem for a given set
of parameters β and Re

A(β, Re)q̂ = ωB(β, Re)q̂. (11)

In general the matrix-eigenvalue problem is complex
and non-symmetric, although here a redefinition of ŵ
and p̂ in (5-6) results in a real EVP;10 this redefinition
has the advantage of halving the storage requirements
for the solution of the eigenvalue problem which, in
turn, is interesting since the leading dimension of the
matrices A and B is proportional to the degrees of
freedom used to discretise the spatial domain. Still,
the large resolution requirements in combination with
the relative complexity of the geometry suggest use
of a spatial discretisation scheme which provides opti-
mal accuracy at a modest resolution; the spectral/hp
element method, previously demonstrated on the prob-
lem of instability of a NACA0012 aerofoil,11 has been
chosen to accomplish this target.

In order to solve the time-differential form of equa-
tion (11) in an efficient manner the Arnoldi algorithm,
which is based on a Krylov subspace iteration method,
has been used in combination with the exponential
power method. The exponential power method solves
the time-differential form of equation (11)

∂q/∂t = Cq, (12)

which has the solution

q(t + ∆t) = D q(t) = q(t) e

∫ t+∆t

t
Cdτ

. (13)

Employing the Arnoldi algorithm to solve equation
(13) using a time-stepping scheme yields the dominant
eigenvalues of D = e∆tC (where we have assumed C
is independent of time) are the leading eigenvalues
(i.e. the ones with the largest real part) of the ma-
trix ∆tC.14 Since only the stability-significant lead-
ing eigenvalues are calculated, the run-time associated
with the total process of building the Krylov subspace
and obtaining the eigenvalues of the Hessenberg ma-
trix constructed by the iteration is a small fraction
of that required by classic methods, such as the QZ
algorithm.8

Results
Structured vs. unstructured grid generation

The spectral/hp element method has been employed
in the context of the Nektar code,5 which permits use
of both structured and unstructured meshes, based on
triangular and/or quadrilateral elements. In order to
yield optimum performance of the computations the
possibilities of the code were exploited by generating
two different grids.

Figures 1 and 2 illustrate the generated meshes
around a T-106/300 low-pressure turbine blade. Both
meshes consist of quadrilateral elements forming a
boundary layer around the blade. Outside of the
boundary layer region the elements remain quadrilat-
eral in the mesh presented in figure 1 and are triangu-
lar in the mesh presented in figure 2. Since the mesh in
figure 2 consists of mainly unstructured triangular ele-
ments, it will be referred to as the unstructured mesh,
the grid in figure 1 is referred to as the structured mesh.

In both cases the blade geometry is approximated by
200 coordinates, which are utilised to perform cubic b-
spline interpolations to obtain a smooth blade surface
representation. Results concerning convergence and
accuracy using the different meshes will be given in
the following sections. In order to obtain a basic un-
derstanding of the flow and its stability characteristics,
initial computations were based on the less expensive
structured mesh.

Identification of the critical Reynolds number for
two-dimensional instability

In order to obtain the steady states as basis for the
linear stability analysis, two-dimensional DNS of the
flow have been performed for different Reynolds num-
bers in the expected range of the first two-dimensional
instability. Figure 3 illustrates the vorticity of the
computed domain for the flow of Reynolds numbers
890, after a steady state has been reached.

We define the Reynolds number Re as Re = U∞c/ν,
where U∞ is the inflow velocity magnitude, c is the
aerofoil chord and ν is the kinemeatic viscosity. Com-
putations for Re = 895 lead to qualitatively analo-
gous results, whereas the flow for Re = 896 becomes
time-periodic as illustrated in figure 4 for a Reynolds
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Fig. 1 Structured domain consisting of approxi-
mately 200 quadrilateral elements and collocation
points using polynomial order p=4 (upper); detail
around the LPT blade surface (lower).

number of 1000. The transition from steady state to
periodic flow has hereby been identified for the mesh
based on 200 structured elements. Re = 896 will
initially be referred to as the first critical Reynolds
number Rec.

Associating this Reynolds number to an equivalent
bluff body diameter D allows the comparison with the
well studied flow past a circular cylinder, whose pri-
mary instability takes place at Rec = 46.1 For this
purpose, the equivalent diameter D has been defined
to be the distance between the local maxima of the
velocities on a line as illustrated in figure 5. This line
is touching the trailing edge and is perpendicular to
the flow in the far wake. Describing the line using the
coordinate ξ, the equivalent bluff body diameter can
be expressed as

D = |ξ(max1|U |)− ξ(max2|U |)| (14)

For flows close to the transitional state D ≈ 0.30c and
hence ReDc ≈ 270.

Fig. 2 Unstructured domain consisting of approxi-
mately 2000 elements (upper); detail of the trailing
edge (lower).

Linear stability analysis confirms the results found
by the DNS approach. Basic states at Reynolds num-
bers below Rec have been analysed using the Arnoldi
algorithm to compute the leading eigenvalues of the
system (3-6); one result is shown in figure 6.

As the critical Reynolds number for unsteadiness
is approached, increasingly long time-integration is
required to reach steady state. However, a linear ex-
trapolation of Re and the leading eigenvalue, as shown
in figure 6, suggests that the flow becomes unstable to
two-dimensional disturbances at Re ≈ 897, This re-
sult in consistent (though slightly different) with that
of the DNS. The least stable eigenmodes at Re = 820
and Re = 893 are shown in terms of amplitude func-
tions of the disturbance flow vorticity in figure 7; we
term this structure the wake mode. As the critical
Reynolds number for amplification of two-dimensional
disturbances is approached, the intensity of the wake
mode increases and the amplitude function tends to-
ward the trailing edge.
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Fig. 3 Time-independent base flow vorticity for
Re = 890 obtained using 200 structured elements
and 7th-order polynomials

Fig. 4 Time-periodic base flow vorticity for Re =
1000

h-refinement

The integrity of our results is demonstrated by em-
ploying the unstructured mesh to deliver results prac-
tically identical to the above. A mesh refinement using
unstructured triangular elements allows a more flexi-
ble distribution of mesh density at specific locations
of interest and of necessary resolution at the trail-
ing and leading edge. In order to ensure adequate
h−refinement with the unstructured mesh, the number
of elements was increased by up to an order of mag-
nitude when compared to the structured grid. This
necessarily results in higher computational cost per
time step when using the unstructured mesh. Com-
parisons of the results using the structured mesh and

ξ

D

Fig. 5 Determination of the equivalent bluff body
diameter D

Reynolds number

ωr
struct
unstr

Fig. 6 Linear correlation between Reynolds num-
ber and growth rate of the leading eigenvalue,
structured and unstructured mesh.

Fig. 7 Least stable eigenmode for Re = 820 (left)
and Re = 893 (right, same isocontours)
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element count leading damping- frequency
eigenvl. rate ωr ωi

Structured ω1 -0.557930
Grid ω2 -1.119470 ±2.08443

(224 elements)

Unstructured ω1 -0.589960
Grid ω2 -1.04967 ±1.70023

(1586 elements)

Unstructured ω1 -0.589963
Grid ω2 -1.05098 ±1.70362

(2028 elements)

Table 1 Variation of mesh density and its distri-
bution for Re=700 and p=7

different unstructured meshes with various mesh den-
sities can be seen in table 1 at a single Re = 700.

The differences in the results on the damping rate of
the leading eigenvalues, as generated by the inexpen-
sive structured and either of the unstructured meshes,
is confined in the third significant; that between the
well-resolved unstructured meshes is of O(10−6). In
the range of stable Reynolds numbers all eigenvalues
are real, although as the flow comes closer to Rec, as
illustrated by the dotted line in figure 6, convergence
is increasingly challenging to obtain. The highest-
Reynolds number results shown in this figure have
been obtained using a refined mesh with more than
2000 unstructured elements. Extrapolation of these
results leads to a prediction of critical Reynolds num-
ber for amplification of two-dimensional instabilities at
Rec ≈ 905. Considering that both growth rate and fre-
quency change only slightly in this range of mesh reso-
lution, we conclude that the critical Reynolds number
is Rec = 905± 10.

p-refinement

The high-order spectral/hp scheme has been applied
using different polynomial orders p in order to in-
vestigate the correlation between the accuracy of the
solution and the chosen polynomial expansion. The
objective here is to employ polynomial orders of suffi-
cient degree to describe the flow physics and yet low
enough for the computations to remain efficient. Table
2 summarises results based on the structured mesh for
different values of p at Re = 870.

Comparing the leading eigenvalue with the polyno-
mial order shows that p = 8 yields satisfying results
to two significant figures in terms of p−resolution. A
convergence study for the unstructured mesh yields
the results shown in table 3. As expected the degree
polynomial to reach convergence when using an un-
structured mesh is lower than that required by the

p ωr ωi

3 -0.213743 ±1.69066
6 -0.218046 ±1.67449
7 -0.155037 ±1.59812
8 -0.149364 ±1.58672
9 -0.153072 ±1.58980
10 -0.154779 ±1.54819
11 -0.150711 ±1.55559

Table 2 Variation of the polynomial order p and
the obtained eigenvalues for Re=870 using Arnoldi,
structured mesh

p ωr ωi

3 -0.199461 ±1.63790
5 -0.187792 ±1.62469
6 -0.187688 ±1.62462
8 -0.187697 ±1.62444
9 -0.187684 ±1.62445

Table 3 Polynomial order p and the obtained
eigenvalues at Re = 870, unstructured mesh

structured code; p=5 yields satisfactory convergence
to three significant figures. This result raises the
question (and future task of our investigations) of op-
timisation of p- versus h-refinement with respect to
computational effort and obtained accuracy.

Investigation of the three-dimensional instability

The question whether two- or three-dimensional in-
stability will be the first to be observed in a given flow
cannot be answered in a unique manner, except in the
simple cases of instability of one-dimensional shear-
flow profiles.2 Even in that narrow context, numerical
solutions of the boundary layer stability equations7 are
necessary in order to shed light into the different flow
ranges where two- or three-dimensional instabilities
will first be amplified. In the case of two-dimensional
base states evidence from a handful of analysed flows
is contradictory. As an example, while the steady
state of the circular cylinder first becomes unstable
to two-dimensional modes through a Hopf bifurcation
and subsequently through three-dimensional instabil-
ity of the ensuing time-periodic state,1 the lid-driven
cavity flow becomes unstable to three-dimensional dis-
turbances prior to the onset of 2D unsteadiness.9,12 It
is therefore necessary to investigate three-dimensional
instability of the steady flow past the LPT-blade with
respect to three-dimensional disturbances.
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Wavelength L = 2π/β

ωr

Re 893
Re 890
Re 870
Re 850,cmpl.
Re 850, real

Re

Fig. 8 Damping rates of perturbations at differ-
ent wave lengths Lz. The dotted line represents
the eigenvalues associated to the real eigenmodes,
the dashed line the ones associated to the complex
eigenmode.

Linear stability analysis has been performed based
on equation (2), which introduces the decomposition
of the flow into a two-dimensional base flow and a
three-dimensional perturbation, seeking results by pa-
rameter studies based on changing β at a fixed Re, in
a range of subcritical Reynolds numbers.

Each symbol in figure 8 represents a constant
Reynolds number. All real-parts of the eigenvalues
remain negative, with a tendency toward the positive
complex plane for increasing Reynolds number and de-
creasing β, suggesting that three-dimensional linear
instability does not occur below Rec. The eigenvalues
obtained for Lz < 2/3 are real, the ones obtained for
Lz > 1 are complex and so are the associated eigen-
modes as shown in figures 10 and 11. Interestingly,
it appears that the long-(spanwise)-wavelength results
shown in figure 11 are associated with the wake mode,
as known from the two-dimensional analysis, while the
short-wavelength results shown in figure 10 are asso-
ciated with an instability arising in the trailing-edge
region where separation of the basic state occurs, as
seen in figure 3. We term this the bubble-mode insta-
bility and are currently analysing its relation to the
results obtained by Fasel et al.,3 who have shown the
significance of instabilities in this region in terms of
control of the flow over the LPT blade surface.

Conclusions
BiGlobal stability analysis has been employed in or-

der to investigate the eigenspectrum of a T-106/300
LPT blade under uniform incoming flow conditions.
The incompressible two–dimensional laminar Navier–
Stokes equations were solved using a spectral/hp ele-
ment methodology in order to obtain the steady basic
state to be analyzed. This relatively straightforward
numerical problem has served as testbed for different

Fig. 9 Least stable eigenmode for Lz = 0.25 at
Re = 893

Fig. 10 Least stable eigenmode for Lz = 0.25 at
Re = 893, magnification of the trailing edge

Fig. 11 Least stable eigenmode for  Lz = 2 at Re =
893

meshing strategies, one based on structured and one
on unstructured domain decomposition. h- as well as
p- refinements have been performed with either type
of grid in order to achieve convergence. An efficient
algorithm for the recovery of the most interesting part
of the eigenspectrum has subsequently been utilized in
order to analyse the basic state with respect to both
two– and three–dimensional instability.

The critical Reynolds number for two-dimensional
instability has been identified in the range Rec =
905± 10 for the first time. Consistency between DNS
and linear stability analysis supports this result. Fur-
ther numerical experimentation, modifying the extent
of the computational domain and introducing further
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mesh-refinement, is expected to narrow the presented
range of Rec in the near future. Investigations con-
cerning three-dimensional instability, for a range of
spanwise wavenumbers below Rec, yielded two results
of significance. First, the two–dimensional flow has
been shown to be the first to become unstable; second,
the two least-damped eigenmodes are related with the
wake of the blade and the separation region near its
trailing edge.

With the present numerical experimentation con-
cluded, the results obtained have opened several av-
enues for future research from a physical point of view.
One interesting question, which is currently actively
pursued, is that of instability of the time-periodic ba-
sic state set up at Re > Rec. Answering this question
requires slightly modified algorithms in order to cap-
ture the expected onset of three-dimensionality as well
as the linear stability characteristics of the most sig-
nificant Floquet eigenmodes. A different aspect to be
pursued, once the eigenspectrum of the LPT is docu-
mented in detail, in a study of the pseudospectrum of
this blade and its relation to transient growth in the
LPT passage. Both questions are currently actively
pursued in order to shed light onto the fundamental
instability mechanisms of this technologically signifi-
cant flow.
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