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Abstract The scope of the present study is to demonstrate the use of spectral/hp-element
methods in understanding the global instability mechanisms of vortex dominated
flows. Using a BiGlobal stability analysis, analytically constructed and numeri-
cally evaluated base flows have been investigated, with the leading eigenvalues
obtained by the Arnoldi algorithm. Subsequently, Direct Numerical Simulation
(DNS) was used to investigate the non-linear development of an unstable Batch-
elor vortex. It was found that a spiral-type instability, if allowed to develop in an
axially unconstrained manner, leads to an axial loss of energy and the formation
of a stagnation point.
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1. Introduction
Although vortex breakdown has been researched for some time, there re-

mains no accepted explanation of the phenomenon. Following Leibovich,
1978, breakdown is defined as, ‘a disturbance characterised by the formation
of an internal stagnation point on the vortex axis, followed by reversed flow in
a region of limited extent’. The main theories associated with breakdown are
those of vortex stability; and the wave-motion theories, primarily attributed to
Squire (1960) and Benjamin (1962).

The concept of hydrodynamic stability, and its advancement to global lin-
ear instability theory (summarised by Theofilis, 2003), has resulted in con-
siderable investigation into the unstable modes of the Batchelor (1964) vortex
model. Initially investigated by Lessen et al. (1974) and more recently by Ash
and Khorrami (1995), several spiral-type modes of instability exist. It is not
immediately evident, however, how an instability can lead to an abrupt change
in flow structure; although the DNS of Abid and Brachet (1998) does relate the
non-linear development with a lateral expansion. The aim of the current re-
search is to unify linear stability analysis with three-dimensional DNS to show
how a slowly developing spiral instability can lead to an axial stagnation.
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2. Numerical Method
The numerical method applied consists of solving the eigenvalues of a ma-

trix system corresponding to the linearised incompressible Navier-Stokes equa-
tions. Following the methods of Barkley and Tuckerman (2000), an exponen-
tial power method – coupled with an Arnoldi algorithm – is used to evaluate the
leading eigenvalues of the system; which is reduced to a Krylov subspace span-
ning the number of eigenvalues sought. Validation of the method was achieved
by comparing the results for an isolated Batchelor Trailing Vortex (BTV) with
the classical one-dimensional stability analysis of Mayer and Powell (1992),
which assumes both a streamwise and an azimuthal Fourier decomposition.

Linearised stability analysis is based upon the decomposition of all flow
variables into a steady mean component upon which small-amplitude three-
dimensional disturbances are permitted to develop (i.e. q = q̄+q

′). By allow-
ing a mild dependence of the base flow on the streamwise spatial coordinate z,
an eigenmode Ansatz is introduced, according to which

q
′(x, y, z) = q̂(x, y, z∗) exp iΘ + c.c. (1)

Θ = Θ3D =

∫ z

z0

β(ξ)dξ − Ωt (2)

Applied to the linearised Navier-Stokes equations this leads to the follow-
ing system of equations that define the Parabolised Stability Equation (PSE)
concept (originally developed by Herbert, 1997) for three-dimensional flows

ûx + v̂y + iβŵ = −ŵz (3)

{L − ūx} û − ūyv̂ − p̂x + iΩû = w̄ûz + ūzŵ −
2iβ

Re
ûz (4)

−v̄xû + {L − v̄y} v̂ − p̂y + iΩv̂ = w̄v̂z + v̄zŵ −
2iβ

Re
v̂z (5)

−w̄xû − w̄y v̂ + Lŵ − iβp̂ + iΩŵ = w̄ŵz + w̄zŵ −
2iβ

Re
ŵz + p̂z (6)

Where L = (1/Re){∂xx + ∂yy − β2} − ū∂x − v̄∂y − iβw̄. Implicit in
this derivation is that the disturbance takes the form of a rapidly varying phase
function and a slowly varying shape function, for which second derivatives
with respect to z (along with products of first derivatives) can be neglected.

3. Stability of a Batchelor Vortex
A single Batchelor vortex (defined by Batchelor, 1964) with a swirl value

of q = 0.8 and a co-flow parameter of a = 0 has been investigated. A typi-
cal linearly unstable perturbation mode is illustrated in Figure 1 for a Reynolds
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Figure 1. Two-dimensional view of the
linear perturbation mode for an isolated
Batchelor vortex with β = 2.0. Visualised
using contours of axial velocity.

Figure 2. Three-dimensional view of
the linear perturbation mode for an isolated
Batchelor vortex with β = 2.0. Visualised
using iso-surfaces of axial velocity.
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Figure 3. Temporal development of
the kinetic energy within the zeroth axial
Fourier mode.

Figure 4. Temporal development of the
kinetic energy within the first axial Fourier
mode.

number based on the vortex core radius of Re = 667; the corresponding eigen-
value is 0.296±1.189i. This was evaluated using a BiGlobal stability analysis;
equivalent to Eqs. (3)–(6) with the RHS terms – which are related with deriva-
tives of the basic flow and the disturbance terms in the z-direction – neglected.

4. Non-linear Development
The non-linear development of an isolated vortex has been analysed by DNS

using N εκταr 1, for Re = 1000. Initially, a periodic representation was ap-
plied in the axial direction, with the non-linear temporal development analysed
from initial conditions constituting the isolated BTV with the first mode of in-
stability superimposed as a small perturbation. As illustrated in Figures 3 and

1A spectral/hp-element solver developed by Sherwin and Karniadakis (1995)
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t = 0 t = 50 t = 60

t = 70 t = 80 t = 90

Figure 5. Non-linear development of an isolated Batchelor vortex assuming a periodic repre-
sentation in the axial z-direction and a Fourier approximation consisting of the first 16 modes.
Visualised using iso-surfaces of λ2 = −0.2.

t = 20 t = 30 t = 40

Figure 6. Three-dimensional temporal development of an isolated Batchelor vortex illus-
trating axial deceleration and formation of a stagnation point. Visualised using iso-surfaces of
λ2 = −0.4, shaded by axial velocity.

4, an energy transfer between the zeroth axial Fourier mode and the linear per-
turbation mode is identified. This is significant, since it implies that the growth
of the linear instability leads to a loss of axial energy in the mean flow, which
must be accompanied by a cross-section expansion to satisfy continuity, visu-
alised in Figure 5. Consequently, the associated drop in axial velocity suggests
a causal relationship between instability and breakdown.

Enforcing an axial periodicity in the solution restricts how the streamwise
w-component of the velocity can change, limiting the extent of axial decelera-
tion. To resolve this problem, 3D-DNS on the same BTV has been conducted
(Figure 6). Although the initial development correlates well with the periodic
representation, the axial deceleration now develops into a stagnation point –
confirming the link between a spiral-type of instability and vortex breakdown.

5. Potential Applications
Whereas classical stability analysis places restrictions on the complexity of

the instability modes that can be studied, BiGlobal analysis allows more gen-
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Figure 7. Computational grid in the
wake of a low aspect ratio wing.

Figure 8. RANS-evaluated base flow
computed about a low aspect ratio wing.

Figure 9. Short wavelength unstable per-
turbation mode of the trailing vortex.

Figure 10. DNS of wake vortex system
illustrating development of breakdown.

eral flows, with arbitrarily complicated vorticity distributions in the plane nor-
mal to the axial flow direction. The use of unstructured grids, coupled with the
high spatial accuracy of spectral methods, also offers a significant flexibility
to the method. For example, the complicated vortex system originating from
a low aspect ratio wing close to the ground, along with a corresponding short-
wavelength mode of instability, is illustrated in Figures 8 and 9 respectively;
where the base flow was evaluated from a RANS-simulation.

Although there is a question on the appropriateness of taking such a solu-
tion from an analytic perspective, DNS of the RANS-evaluated wake system
(visualised using λ2 iso-surfaces in Figure 10) confirmed the development of
an instability with a wavelength (β = 100) comparable with the most unsta-
ble perturbation mode. Analogous to an isolated Batchelor vortex, the devel-
opment of the instability also leads to an axial loss of velocity in the vortex
core. In a similar analysis, Crouch et al. (2004) used RANS-obtained basic
states, coupled with a compressible BiGlobal stability analysis to obtain realis-
tic eigenmodes related to the buffeting of an 18% thick bi-convex airfoil. This
illustrates the scope of the method and suggests that it is valid.
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6. Conclusions and Future Research
A unified approach to analysing vortex stability has been discussed, and a

causal relationship between stability and breakdown implied. Spiral modes of
instability were found to cause a lateral expansion of the cross-section, and a
corresponding drop in axial velocity (a prerequisite of vortex breakdown). This
confirms the proposals of Ash and Khorrami (1995), who describe breakdown
as, ‘a final outcome of vortex instability, with the caveat that vortex breakdown
can also be produced by external means’.

External influences might include an adverse pressure gradient, which can-
not be investigated through BiGlobal stability analysis. A suitable technique is
the Parabolised Stability Equation concept derived in Section 2. This formula-
tion permits flows with a mild variation in the axial direction and is currently
being implemented to address the influence of axial pressure gradients, and
their role in vortex instability and development to breakdown.
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