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Abstract

This paper demonstrates the applicability of a two-dimensional eigenvalue problem approach to the

study of linear instability of analytically constructed and numerically calculated models of trailing-vortex

systems. Chebyshev collocation is used in the 2D eigenvalue problem solution in order to discretize two

spatial directions on which non-axisymmetric vorticity distributions are defined, while the third, axial

spatial direction is taken to be homogeneous and is resolved by a Fourier expansion. The leading eigen-
values of the matrix discretizing the equations which govern small-amplitude perturbations superimposed

upon such a vorticity distribution are obtained by Arnoldi iteration. The present approach has been val-

idated by comparison of its results on the problem of instability of an isolated Batchelor vortex. Here

benchmark computations exist, employing classic instability analysis, in which the azimuthal direction is

also treated as homogeneous. Subsequently, the proposed methodology has been shown to be able to re-

cover the classic long- (Crow) and short-wavelength instabilities of a counter-rotating vortex-pair basic flow

obtained by direct numerical simulation. Finally, the effect on the eigenspectrum of the isolated Batchelor

vortex is documented, when the basic flow consists of a linear superposition of such vortices. The modi-
fications of the eigenspectrum of a single vortex point to the potential pitfalls of drawing conclusions on the

instability characteristics of a trailing-vortex system by monitoring the constituent vortices in isolation.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Renewed industrial interest in control of wakes behind commercial airliners, in particular those
of the ICAO �heavy� class prompted by the introduction of the A380, has sparked a large-scale
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European activity in this field, analogous with efforts around the B747 in the US in the late 1970s.
Amongst the broad spectrum of flow control methodologies currently examined from the point of
view of their technological feasibility, control of vortex instability has been identified as one
option which could potentially be exploited in order to arrive at physically based criteria to
minimize aircraft separation [4]. Besides this technological driver, vortex instability and break-
down is of practical interest in other areas of external aerodynamics. Flight characteristics of delta
wings at high angle of attack are to a large extent determined by vortex instability and break-
down. While several idealized models to describe vortex instability and breakdown in either the
wake-vortex system or a delta wing configuration have been used (and hotly debated), experi-
mental evidence exists that minimally two or more vortices (and their symmetric/antisymmetric
counterparts), each with distinct core structures, are involved in these processes. Moreover, core
radii and core structures, as well as spacing between the individual vortices are slowly changing in
the axial/downstream direction.

A plethora of models of isolated vortices exist in the literature. Of these, the best known model
which incorporates an axial velocity component in the analysis is the Batchelor [2] vortex. Mayer
and Powell [15] were the first to employ numerical solution of ODE-based eigenvalue problems to
study both the inviscid and viscous instability properties of an axisymmetric Batchelor vortex
model flow. This approach is restrictive as regards modelling the trailing-vortex system behind
aircraft, since it assumes an axisymmetric basic state, thus neglecting in principle the influence of
any neighbouring vortices. Nevertheless, it provides detailed instability characteristics for com-
parisons with results of more elaborate, partial-differential-equation-based, instability analyses.
Crow [5], Jim�eenez [13], Crouch [3] and Fabre and Jacquin [10], amongst others, have used vortex
filament methods to analyze the instabilities triggered by interaction between neighbouring vor-
tices. However, vortex core instabilities [15] or absolute instability [6] are beyond the scope of a
vortex filament approach. In addition, the vortex filament method has limitations (besides that of
strictly being applicable to inviscid flow) in the permissible distributions of vorticity in the wake,
in terms of both strength and placement of the constitutive vortices. Motivation thus exists to
expand the scope of available analysis methodologies in order to address viscous instability of
arbitrary azimuthally inhomogeneous (non-axisymmetric) vorticity distributions on a plane nor-
mal to the axial flow direction, where all three two-dimensional velocity components may exist.

BiGlobal instability analysis [21], based on the numerical solution of partial-derivative eigen-
value problems, is such a methodology. The goal of the present work is to investigate its appli-
cability to non-axisymmetric open vortical flows. The ambiguity of choice of a basic state to
analyze is circumvented here by focussing on wake-vortex models constructed by linear super-
position of analytical Batchelor vortices. Further, in view of the fact that linear superposition of
such vortices does not satisfy the equations of motion, a counter-rotating vortex pair is obtained
by direct numerical simulation and analyzed with respect to its linear instability. Noteably, in the
BiGlobal instability analysis methodology, unlike that based on the classic vortex filament
method (e.g. Saffman [18]), no restrictions are imposed on the core size and location of the vortices
constituting the basic flow. In Section 2 the Batchelor model is introduced, some details of the
direct numerical simulation approach for the recovery of a basic state are discussed and the
equations governing the BiGlobal instability problem are presented. In Section 3 the methods
utilized for the numerical solution of the two-dimensional eigenvalue problem are briefly exposed.
Results are presented in Section 4, where first the partial-derivative eigenvalue problem is vali-
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dated on a single Batchelor vortex. This aids identification of the limitations of the present nu-
merical approach and proposal of alternatives. Subsequently, long- and short-wavelength insta-
bilities of a counter-rotating vortex pair are recovered by employing BiGlobal instability analysis.
Finally, eigenspectrum results pertaining to systems of two and four Batchelor vortices are pre-
sented. Concluding remarks are provided in Section 5.
2. Theory

2.1. Analytical models for the basic flow

Here the basic flow is taken to be described by linear superposition of Batchelor vortices. A
single such vortex comprises three velocity components �qqðx; y; zÞ ¼ ð�uu;�vv; �wwÞT in a Cartesian co-
ordinate system ðx; y; zÞ in which x denotes the axial flow direction. Taking U1 to denote the free-
stream velocity in the axial direction of the vortex, DU ¼ Uc � U1, with Uc the axial core velocity,
Xc the rotation rate on the axis and R a measure of the core radius, the following dimensionless
parameters [6] may be defined
a ¼ U1

DU
; qn ¼

Xc;nR
DU

; Re ¼ DUR
m

; ð1Þ
where m denotes the kinematic viscosity of the incompressible fluid. In terms of this non-dimen-
sionalisation the basic Batchelor vortex flowfield in Cartesian coordinates is
�uuðy; zÞ ¼ aþ expð�r2Þ; ð2Þ

�vvðy; zÞ ¼ �qnðz� znÞf1� expð�r2Þg=r2; ð3Þ

�wwðy; zÞ ¼ qnðy � ynÞf1� expð�r2Þg=r2; ð4Þ
where r2 ¼ ðy � ynÞ2 þ ðz� znÞ2 and ðyn; znÞ denotes the centre of vortex n.

2.2. A basic flow model obtained numerically

It can be argued that the far-field of a vortex will deform in a non-linear manner if an additional
vortex is introduced in the flow. Consequently, instability results obtained using a basic flow
composed of a system of linearly superimposed vortices may differ from those of a basic state
which satisfies the two-dimensional equations of motion. A basic flow of the latter class is cal-
culated here by incompressible direct numerical simulation; numerical details of the spectrally
accurate methodology are presented elsewhere [21].

The initial condition is analytically prescribed as linear superposition of the elliptic vorticity
distributions
Xðy; z; t ¼ 0Þ ¼ qþ exp

(
� ðy � yþÞ2 þ ðz� zþÞ2=16

r20

)
þ q� exp

(
� ðy � y�Þ2 þ ðz� z�Þ2=16

r20

)
:

ð5Þ
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Two sets of simulations have been performed at Re ¼ 102 and 103. In the first case a square
computational domain ½�12; 12�2 comprising 4002 equidistributed spectral collocation points has
been considered. The parameters q� ¼ �p, r0 ¼ 1

4
, y� ¼ 4, z� ¼ �2 have been used in the initial

condition (5) and the equations of motion have been integrated in time until t1 ¼ 50, when a
single pair of vortices has developed and descends with a constant speed. In the second set of
simulations, the respective parameters are a computational domain ½�18; 18�2 resolved by 6002

points, with q� ¼ �p, r0 ¼ 1
4
, y� ¼ 6, z� ¼ �0:5 and t1 ¼ 65. Considering a frame of reference

moving with the respective descent speed, quasi-steady states satisfying the incompressible
Navier–Stokes and continuity equations are obtained; the axial velocity component in either case
is taken to be zero.

2.3. The disturbance flow

Separability of the time and space coordinates in the governing equations of motion and in-
troduction of harmonic time-dependence of the disturbance quantities results in a three-dimen-
sional eigenvalue problem which is currently not tractable numerically at Reynolds numbers of
relevance to external aerodynamics. Hence, the dependence of the basic state on one spatial di-
rection must be neglected on grounds of numerical feasibility. Taking this direction to be that
along the axial coordinate, x, restricts the class of flows that may be studied to vortical systems in
which
�qqx � �qqy ; and �qqx � �qqz: ð6Þ
Note that this assumption is more general than that leading to the classic Orr–Sommerfeld type of
ordinary-differential-equation-based eigenvalue problems [6,15], where in addition to (6) spatial
homogeneity in the azimuthal direction is assumed. By contrast, (6) permits introducing into the
linearized disturbance equations small-amplitude perturbations q̂q of the form
q̂qðx; y; z; tÞ ¼ ~qqðy; zÞ expðiH2DÞ þ c:c:; ð7Þ

where
H2D ¼ ax� xt: ð8Þ

This results in the following partial-derivative eigenvalue problem
iaûuþDy v̂vþDzŵw ¼ 0; ð9Þ

Lûu� ðDy�uuÞv̂v� ðDz�uuÞŵw� iap̂p ¼ �ixûu; ð10Þ

½L� ðDy�vvÞ�v̂v� ðDz�vvÞŵw�Dyp̂p ¼ �ixv̂v; ð11Þ

�ðDy �wwÞv̂vþ ½L� ðDz�wwÞ�ŵw�Dzp̂p ¼ �ixŵw; ð12Þ

where the linear operator is
L ¼ ð1=ReÞð�a2 þD2
y þD2

z Þ � ia�uu� �vvDy � �wwDz: ð13Þ
Here Dy � @y , Dz � @z and a is a wavenumber in the direction of the aircraft motion, x, which
defines a periodicity length Lx ¼ 2p=a. In the temporal framework chosen in the present work, x is
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a complex eigenvalue the real part of which, xr � Rfxg, is related with the frequency of an ei-
genmode q̂q while the imaginary part, xi � Ifxg, is its growth/damping rate; a positive value of xi

indicates exponential growth of q̂q in time, while xi < 0 denotes decay of the eigenmode in time.
The objective of the analysis becomes the identification of unstable eigenvalues xi and associated
eigenvector amplitude functions ~qq for a given basic state �qq describing the wake-vortex system.

Straightforward extensions of the eigenvalue problem (9)–(12) employing Floquet theory [1,12]
may relax the assumption of a steady to that of a time-periodic basic state. Further, potentially
existing downwash of the wake-vortex system can be formally addressed by solving (9)–(12) on a
coordinate system which moves downwards by the same constant speed of the wake-vortex system
basic flow; neither of these refinements will be considered here. On the other hand, it should also
be noted that solution of one of the alternative simplified (and computationally less demanding)
forms of the partial derivative eigenvalue problem (9)–(12), valid in case of a single velocity
component in either viscous [19] or inviscid flow [11], is not permissible in the wake-vortex sta-
bility problem.
3. Numerical methods

A general discussion of methods appropriate for the numerical solution of the partial-derivative
eigenvalue problem is presented elsewhere [21]; we concentrate here on the particular require-
ments of vortical systems. Numerical methods of high formal order of accuracy are necessary
since the coupled spatial discretization in the numerical solution of the eigenvalue problem (9)–
(12) cannot be increased at will in order for convergence to be achieved; here Chebyshev poly-
nomials have been used to discretize both spatial directions. Use of an analytic basic state
eliminates concerns regarding the influence of inadequate resolution of the basic state on the
instability results and attention can be exclusively focussed on the numerical solution of the ei-
genvalue problem. On the other hand, convergence of the numerically obtained basic states has
been ensured in the spectrally accurate direct numerical simulation.

The resolution requirements for the eigenvalue problem may be inferred from the structure of
typical azimuthally inhomogeneous eigendisturbances of the Batchelor vortex [9,15,16], one of
which is shown in Fig. 1. The domain boundary shown is approximately one-third of that cor-
responding to the radius value rb at which the azimuthal velocity of the Batchelor vortex attains
a maximum. In the specific example, where qn ¼ q0 ¼ 2, yn ¼ zn ¼ 0, rb can be calculated by
combining (3) and (4) to give V ¼ q0=r½1� e�r2 � and solving the transcendental equation

ðdV =drÞr¼rb
¼ �ðq0=r2bÞð1� e�r2bÞ þ 2q0e�r2b ¼ 0, which results in rb � 1:12091. In other words,

eigenmodes of reasonably complex structure are confined within a radius approximately rb=3,
which is more than an order of magnitude smaller than the radius value at which the basic flow
itself decays to machine-zero level. A corollary of this observation is that vortex centres need to be
resolved using substantially higher-density grids than those required for the accurate description
of the basic flow. On the other hand, in order to reduce the integration domain in the far-field,
asymptotic boundary conditions can be derived and imposed. However, such boundary condi-
tions are particular to the single-vortex basic flow model and this lack of generality makes ho-
mogeneous Dirichlet boundary conditions on disturbance components the first candidate to be
imposed. This results in the need to address rather wide integration domains and the issue of



Fig. 1. A non-axisymmetric eigenmode of the Batchelor vortex [9,15,16]. The figure boundary approximately corre-

sponds to 1
3
rb.
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appropriate mappings between the standard Chebyshev grid x 2 ½�1; 1� and the actual calculation
domain becomes critical to the success of the overall algorithm. One mapping used, which satisfies
the requirements outlined is
Fig
g ¼ g0 þ g1
tan cp

2
x

tan cp
2

; ð14Þ
where g is either of the discretized spatial directions y or z, while g0 and g1 are the respective
centrepoint and farfield truncation locations. A typical grid for the calculations in shown in Fig. 2.

In all but the lowest Reynolds number calculations, where a QZ algorithm can be used (such
calculations are not presented here), a shift-and-invert Arnoldi algorithm has been employed for
the recovery of the eigenvalues. The difference between the QZ and the Arnoldi algorithm is that
. 2. A typical grid, generated by (14), for BiGlobal instability analysis of an isolated or a system of vortices.
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in the former the entire spectrum of the complex non-symmetric eigenvalue problem (9)–(12) can
be recovered, while the latter algorithm delivers a window of eigenvalues around a prescribed
estimate. Specifically, the Arnoldi algorithm solves the standard eigenvalue problem
1 Th

distrib
ÂAX ¼ lX ; ÂA ¼ ðA� rBÞ�1
B; l ¼ 1

x� r
; ð15Þ
where A and B are the matrices discretizing the original system (9)–(12) and r is a shift parameter.
All calculations presented in what follows have been performed using 64-bit arithmetic.
4. Results

Indicative of successful applications of BiGlobal instability analysis based on (9)–(12) are the
studies of instability in a pressure-gradient-driven rectangular duct [20], where the symmetries of
the respective basic states were not a priori imposed in order to reduce the computing effort but
were recovered as part of the computations [19]. This is conceptually relevant to the present
computations of instability of isolated vortices, where symmetries such as those shown in Fig. 1
are also present but are not explicitly imposed on the expected solutions. Further successful
applications of the present methodology to vortical flows are the analyses of lid-driven- and open-
cavity configurations [22,25], that of boundary-layer flow which encompasses a closed recircu-
lation bubble [24] and the swept attachment-line boundary layer [23].

Here, numerical solutions of the partial-differential-equation eigenvalue problem have been
obtained using c 2 ½0:8; 1Þ in (14), leading (complex) matrix dimension in (15) of up to 4 · 722,
where the two factors respectively reflect the number of equations in (9)–(12) and the degrees of
freedom used to discretized domain y 2 ½�y1; y1� � z 2 ½�z1; z1� with y1; z1 ¼ 40 in the single
Batchelor vortex case, y1; z1 ¼ 60 in the case of the numerically obtained basic flow, and
y1 ¼ 45, z1 ¼ 40 in the four-vortex case.

We discuss first the instability analysis results of the basic flow obtained by direct numerical
simulation. The counter-rotating vortex systems are expected to support both long-wavelength
(Crow) and short-wavelength instabilities. In Fig. 3(a) and (c) we respectively present the vorticity
Xðy; z;Re ¼ 100; t ¼ 50Þ and Xðy; z;Re ¼ 1000; t ¼ 65Þ of the basic states analyzed at Re ¼ 102 and
103. In both results the non-linear deformation of the counter-rotating vortices can be seen and an
estimate of the distance between the centres of the vortex cores can be obtained d100 � 4:6 and
d1000 � 2:0, respectively. Fig. 3(b) shows the dependence of the amplification rate xi on the axial
wavenumber a in the low-Reynolds number case. Only long-wavelength instabilities are moni-
tored here; it can be seen that the instability recovered by the present BiGlobal analysis peaks at
Lx � 2p=0:17 ¼ 37:0, an axial wavelength corresponding to the classic Crow instability, the am-
plification of which peaks at around Lx � 10d100. At Re ¼ 103, on the other hand, short-wave-
length instabilities have been monitored and the amplitude functions of the most amplified
eigenmode at a ¼ p are shown in Fig. 3(d). The eigenvalue 1 is ð�0:0305; 0:0125Þ, corresponding
to two eigendisturbances travelling in opposite directions along the x-axis. At the highest
e convergence of which has been ensured by grid analysis studies comprising up to 722 collocation points,

uted according to (14) with c ¼ 0:975.



Fig. 3. (a) Vorticity Xðy; z; t ¼ 50Þ of the field evolving from the initial condition (5) at Re ¼ 102. Ten equidistributed

contours respectively between the maximum and zero (solid) and the zero and minimum (dashed) values are drawn. (b)

Long-wavelength (Crow) instability developing upon the basic state shown in (a). (c) Vorticity Xðy; z; t ¼ 100Þ of the
field evolving from the initial condition (5) at Re ¼ 103. (d) Amplitude functions of the short-wavelength instability

developing upon the basic state shown in (c); upper left: jûuj, upper right: jv̂vj, lower left: jŵwj, lower right: jp̂pj.
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resolution these computations demand �7 GB of main memory, whereby a large portion of the
discretization points is wasted in the farfield. In this respect, an alternative spatial discretization
scheme, e.g. based on spectral elements [7,8,14], could become worthy of investigation in this
problem.
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Subsequently attention is focussed exclusively on the analytically constructed basic state. Fig. 4
shows a summary of calculations performed for different vortical flowfields in terms of the re-
spective axial component of the basic flow and the obtained eigenspectrum. As a means of further
validation of the numerical approach on vortical flows, our first concern has been with repro-
duction of the benchmark calculation results of Mayer and Powell [15] at several combinations of
the parameters ðqn;Re; aÞ. Of these, Fig. 4(a), shows the eigenspectrum obtained at a ¼ 0,
qn ¼ 0:475, Re ¼ 100, a ¼ 0:418. This set of parameters according to Mayer and Powell [15]
pertains to the most amplified viscous mode at Re ¼ 100, which is an asymmetric mode with an
azimuthal wavenumber (in the notation of [15]) of m ¼ 1. Unfortunately, at these conditions these
authors provide growth rate information only. Hence, this value is marked in the presently ob-
tained eigenvalue spectrum as a horizontal dashed line at a positive value of xr.

Of prime interest in this result is the agreement between the eigenvalues obtained by the two
alternative descriptions, that based on numerical solution of the partial-derivative eigenvalue
problem being orders of magnitude more intensive computationally than numerical solution of
the appropriate Orr–Sommerfeld equation. However, it should be pointed out that in the ap-
proach of Mayer and Powell [15] the azimuthal wavenumber is an input parameter in the nu-
merical solution of the appropriate one-dimensional eigenvalue problem, whereas the present
BiGlobal instability analysis, when applied to an axisymmetric case, provides solutions of dif-
ferent azimuthal periodicities in a single run. However, the resolution utilized in the latter ap-
proach cannot be increased at will for reasons which have been discussed earlier and,
consequently, only non-axisymmetric modes of low m can be expected to be resolved. Note also
that, despite the (characteristic of viscous flow instability) smallness of the amplification rates at
these parameters, the numerical algorithm outlined in the previous section is capable of suc-
cessfully addressing this class of problems. Results showing analogously good agreement at
several different parameter values have been obtained but are not shown here due to space lim-
itations; for the same reason the respective convergence histories and studies of influence of the
mapping parameter on the results are omitted.

Instead, attention is focussed on the issue of modelling the trailing-vortex system from a
physical point of view. The main concern in this respect is the potential modification of the well-
understood (single) Batchelor vortex eigenspectrum [6,9,15] on account of the linear superposition
of a second such vortex in the flowfield, taken to be counter-rotating with respect to the first. Such
a system delivers initial conditions for a quasi-steady solution of the equations of motion in a
frame of reference moving at a given downwash speed. At the parameters chosen, the downwash
speed is in the range of one tenth of DU , which has been taken to be zero in this simplified linear
superposition model. Compared with the grid used for the single Batchelor vortex instability
calculations, the clustering of grid points in y has been relaxed by choosing a mapping parameter
value c ¼ 0:93. All other parameters, in particular qn, a and Re remained unchanged. The resulting
eigenspectrum is shown in Fig. 4(b).

The most interesting point which can be made when comparing this spectrum against that of
the single Batchelor vortex is the strong modification of the instability characteristics of the latter
vortex. Both the amplification rates and the frequencies of the two systems are practically un-
related to one-another. This result is qualitatively in line with that obtained in a variety of flows
using classical linear theory based on numerical solution of variants of the Orr–Sommerfeld
equation, where the precise characteristics of the basic flowfield strongly influence the instability



Fig. 4. Axial basic flow velocities and eigenspectra of (a) an isolated Batchelor vortex at a ¼ 0, qn ¼ 0:475, Re ¼ 100,

a ¼ 0:418, (b) pair of counter-rotating Batchelor vortices at the same parameters as (a), (c) four counter-rotating

Batchelor vortices satisfying the Rennich and Lele [17] condition at Re ¼ 100, (d) the same as (c) at Re ¼ 120.
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properties of the flow. This result is especially significant in terms of proposing flow control
methodologies that are based on frequency information of the most unstable flow eigenmode. For
such reliable methodologies to be devised, the detailed properties of the appropriate basic flow
need be known. Given that the trailing-vortex system of a particular aircraft is a consequence of
the roll-up process of the particular circulation/vorticity distribution on the aircraft wings, it is
unlikely that a unique flow-control methodology can be proposed by monitoring the instability
characteristics of generic vortices in isolation.

As a next step a basic state is constructed by introducing a second pair of vortices in the
previous basic flow, as a model of the vortical system generated at the tips of the wing and
the horizontal stabilizer. Such a four-vortex system also corresponds to a quasi-steady solution of
the equations of motion when the Rennich and Lele [17] criterion is satisfied. The eigenspectrum
resulting at the parameters Re ¼ 100, a ¼ 0:30, and ratios of circulation, radii and core distance of
the inner and outer pairs of )0.4, 0.5 and 0.14, respectively, [10,17] is presented in Fig. 4(c). Note
that the ratio of vortex core radii to distance between the vortices has been imposed by appli-
cability of the Rennich–Lele criterion and the vortex filament method. Such a restriction can in
principle be relaxed by the present BiGlobal analysis. On the other hand, the eigenspectrum result
(c) (being typical of those obtained at different parameters) further strengthens the assertion that
frequency information to be used for flow-control purposes strongly depends on the structure of
the basic flow.

Finally, the question is posed what the modifications of the spectrum are when small parameter
changes are considered in structurally identical flows. Fig. 4(d) demonstrates the effect on the
BiGlobal eigenspectrum of an increase of the Reynolds number considered in (c) to Re ¼ 120 by
increasing the core-radius of the outer vortices by 20%. This results in an increase of the vortex
distances as described by the Rennich–Lele condition, while all other parameters cited in case (c)
remain the same. Compared with case (c) two points can be made. While the frequencies of the
modes amplifying at both Re ¼ 100 and 120 remain practically unchanged, two new eigenmodes
have crossed the axis xi ¼ 0 and are amplified at Re ¼ 120. Their frequencies are unrelated with
those of the modes amplifying at both Re ¼ 100 and 120. 2 The implication is that all eigenfre-
quencies must be taken into consideration if a methodology based on control of flow instability is
to be devised at the higher Reynolds number value. This result too points to the direction of the
conclusion reached on account of considering different basic states. It further underlines the fact
that flow control methodologies based on exploitation of unstable eigenmode frequencies, al-
though presumably effective at the parameter range around which they have been designed,
cannot be extrapolated too far off their respective design points.
5. Discussion

This work has addressed the question of applicability of BiGlobal linear instability analysis to
study viscous instability properties of trailing-vortex models flows. Results delivered by the
present approach have been validated against a known viscous core instability of an isolated
2 Although the modes amplified at Re ¼ 120 can be identified as damped eigendisturbances at the lower Reynolds

number value.
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vortex and both short- and long-wavelength instability mechanisms in a single counter-rotating
vortex pair. Subsequently, focus has been placed on non-axisymmetric configurations modelling
the wake by a single and two pairs of counter-rotating Batchelor vortices. It has been demon-
strated that the instability characteristics of the systems differ significantly from those of a single
Batchelor vortex. Resolution requirements have not been prohibitive for the analysis of multi-
vortex configurations at the modest Reynolds numbers monitored, although an alternative nu-
merical methodology to improve efficiency has been proposed.
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[9] Fabre D. Stabilit�ee et contrôole d�un sillage d�avion. PhD thesis, Univ Paris IV, 2002.

[10] Fabre D, Jacquin L. Stability of a four-vortex aircraft wake model. Phys Fluids 2000;12(10):2438–43.

[11] Hall P, Horseman NJ. The linear inviscid secondary instability of longitudinal vortex structures in boundary layers.

J Fluid Mech 1991;232:357–75.

[12] Herbert Th. Secondary instability of plane channel flow to subharmonic 3D-disturbances. Phys Fluids

1983;26:871–4.

[13] Jim�eenez J. Stability of a pair of co-rotating vortices. Phys Fluids 1975;18:1580–1.

[14] Karniadakis GE, Sherwin SJ. Spectral/hp element methods for CFD. OUP, 1999.

[15] Mayer EW, Powell KG. Viscous and inviscid instabilities of a trailing vortex. J Fluid Mech 1992;245:91–114.

[16] Pfauwadel C, Theofilis V. Calculation and visualisation of vortex basic flows and instabilities. Technical Report IB

224-2002 A 18, DLR, 2002.

[17] Rennich SC, Lele SK. A method for accelerating the destruction of aircraft wake vortices. J Aircraft 1999;36:398–

404.

[18] Saffman PG. Vortex dynamics. CUP, 1992.



S. Hein, V. Theofilis / Computers & Fluids 33 (2004) 741–753 753
[19] Tatsumi T, Yoshimura T. Stability of the laminar flow in a rectangular duct. J Fluid Mech 1990;212:437–49.

[20] Theofilis V. Linear instability in two spatial dimensions. In: Papailiou K, et al., editors. Proc of the European

Computational Fluid Dynamics Conference ECCOMAS �98, Athens, Greece, 1998. p. 547–52.

[21] Theofilis V. Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog Aero Sci

2003;39(4):249–315.

[22] Theofilis V, Colonius T. An algorithm for the recovery of 2- and 3-d BiGlobal instabilities of compressible flow

over 2-d open cavities. AIAA Paper 2003-4143. 33rd Fluid Dynamics Conference and Exhibit, Orlando, FL, June

23–26, 2003.

[23] Theofilis V, Fedorov A, Obrist D, Dallmann UCh. The extended G€oortler–H€aammerlin model for linear instability of

three-dimensional incompressible swept attachment-line boundary layer flow. J Fluid Mech 2003;487:271–313.

[24] Theofilis V, Hein S, Dallmann UCh. On the origins of unsteadiness and three-dimensionality in a laminar

separation bubble. Philos Trans R Soc London (A) 2000;358:3229–46.

[25] Theofilis V. Globally unstable basic flows in open cavities. AIAA 2000-1965, 2000. p. 12.


	On instability characteristics of isolated vortices and models of trailing-vortex systems
	Introduction
	Theory
	Analytical models for the basic flow
	A basic flow model obtained numerically
	The disturbance flow

	Numerical methods
	Results
	Discussion
	Acknowledgements
	References


