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We report progress in our ongoing effort to compute and understand the insta-
bilities of open cavity flows from incompressible to supersonic speeds. We consider
three-dimensional instabilities of nominally two dimensional (spanwise homogeneous) cav-
ity flows (BiGlobal instabilities). Experiments, DNS/LES computations, and preliminary
instability computations have shown that the modes of oscillation are influenced by com-
plex interactions between the shear layer and the recirculating flow within the cavity. We
present here a framework for computation of the two-dimensional eigenvalue problem for
the compressible open cavity. We validate the numerical scheme by computing several
canonical flows: square duct flow, boundary layers at speeds from incompressible to su-
personic, and two-dimensional parallel shear layers. We present preliminary results for
the three-dimensional modes of the compressible open cavity flow with length-to-depth
ratio of two at a Mach number of 0.325.

Nomenclature
Abbreviations

DNS direct numerical simulation
EVP eigenvalue problem

Latin symbols

c.c. complex conjugate
i imaginary unit
Lz periodicity length in the z−direction
M Mach number
q̄, q̃ basic, disturbance flow vector
q̂ amplitude functions of linear disturbances
Re Reynolds number
t time
(x, y, z) cartesian coordinates

Calligraphic symbols

Dx,Dy ∂/∂x, ∂/∂y
L,R linear operators

The material is based upon work supported by the European
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F49620-02-1-0362 (Caltech) and FA8655-03-1-3059 (nu modelling
S.L.) monitored by Dr. John D. Schmisseur (AFOSR) and Mr.
Wayne Donaldson (EOARD).

Greek symbols

α real wavenumber in the x−direction
β real wavenumber in the z−direction
ε infinitesimal quantity
κ ratio of specific heats
µ viscosity
Ω complex eigenvalue

Subscripts

i imaginary part
r real part
x, y, t ∂

∂x ,
∂
∂y ,

∂
∂t
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Introduction
Our present concern is with linear stability anal-

ysis of compressible open cavity flows. The relative
complexity of the geometry has resulted in a large
amount of information being available on one partic-
ular aspect of this stability problem, namely that of
the shear-layer emanating from the upstream corner
of the cavity. In real cavity flows this shear layer has
significant non-local interactions, in the form of scat-
tering into acoustic waves at the downstream edge, and
in turn the receptivity of the separated shear layer
to these acoustic waves. In most previous work the
shear layer is seen in isolation from the cavity and
treated as an one-dimensional profile whose stabil-
ity characteristics are then semi-empirically correlated
with the geometric features of the cavity in order to ar-
rive at the celebrated Rossiter formula which predicts
resonance frequencies as a function of the flow Mach
number. Recently Alvarez et al.1 have made progress
in developing improved linear models of the scatter-
ing/receptivity, and acoustic propagation aspects of
the Rossiter modes and are able to eliminate many
of the empirical parameters in the original Rossiter
model.

However, there are also significant interactions be-
tween the shear layer and the flow within the cavity.
In the most extreme form, this leads to a completely
different form of cavity resonance–the so-called wake
mode.6,13 The wake mode appears to be a global
instability more akin to vortex shedding from bluff
bodies; unlike the Rossiter mode the frequency of oscil-
lation is independent of Mach number indicating that
acoustic feedback does not play a role in the instabil-
ity. However, wake mode is not commonly observed
in shallow cavity flows at moderate subsonic to super-
sonic Mach number. It is known, for example, that
the development of three-dimensionality in the reso-
nant oscillations plays a role in suppressing the wake
mode instability.7,14

Between the two extremes (Rossiter and wake mode)
are a large number of experimental observations that
involve significant interactions between the shear layer
dynamics and the flow within the cavity (e.g.5,8).
However, there is very little theory available with
which to understand the interaction and its potential
impact on quantities of interest such as frequency and
amplitude of oscillations, the interactions of multiple
tones, loads on internal cavity surfaces, etc.

Our work is aimed at calculating and understanding
the instabilities and resonance of open cavities over the
entire parameter space, including those regimes where
significant shear layer and cavity interactions occur. In
order to do this, we must compute the eigenspectrum
of the cavity steady flow field which is inhomogeneous
in at least two (streamwise and depth) spatial direc-
tions (in future work we will also consider cavities that
are inhomogeneous in the third, spanwise direction).

Advances in algorithms and the sustained increase in
hardware capabilities have permitted the development
of novel tools to probe into the (global) eigenspectrum
of such flows. In our previous work,20 we made some
preliminary calculations using an existing database of
two-dimensional DNS computations of cavities with
laminar upstream boundary layers. These calculations
show clearly that the shear-layer instabilities are but
one feature of a global cavity instability mode that in-
volves interaction with the internal cavity flow. The
methodology we used extracted the global instability
modes from time series of the residuals of a sub-critical
state. In the present paper, we extend this method-
ology to direct solution of the two-dimensional eigen-
value problem (EVP) for compressible flow.

The remainder of the paper is organized as follows.
In the next section we present the equations for the lin-
ear stability of compressible flows with two inhomoge-
neous directions. In the following section we describe
our numerical method for solving the 2D EVP. Results
are given beginning with cases that serve to validate
the numerical method and illustrate our approach.
These include an incompressible square duct, the flat
plate boundary layer from incompressible speed to
M = 6, and an isolated parallel two-dimensional shear
layer. Finally, preliminary results for the open cavity
flow are presented.

Linear Stability Theory
The analysis of flow stability is based on the com-

pressible equations of motion

∂ρ

∂t
+∇ · (ρu) = 0, (1)

∂(ρu)
∂t

+∇ · (ρuu) =
−1
γM2

∇p

+
1
Re
∇ · σ, (2)

∂p

∂t
+ u · ∇p+ γp∇ · u =

γ

RePr
∇ · (κ∇T )

+
γ(γ − 1)M2

Re
Φ, (3)

where,

σ = µ

[
(∇u +∇uT )− 2

3
(∇ · u) I

]
and

Φ =
1
2
(∇u +∇uT ) : σ

are the viscous stress tensor and the dissipation
function, respectively, and Stokes’ hypothesis has been
invoked. Here µ and κ are nondimensionalized by their
free-stream values (which appear in the definitions of
Re and Pr, respectively, and pressure is normalized
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with the free-stream density and velocity. The equa-
tion of state of perfect gases with constant γ = 1.4 has
been used. We take Pr = 0.7.

Central to linear flow instability research is the
concept of decomposition of any flow quantity into
an O(1) steady or time–periodic laminar basic flow
upon which small–amplitude three–dimensional dis-
turbances are permitted to develop. The most gen-
eral framework in which a linear instability analysis
can be performed is one in which three inhomoge-
neous spatial directions are resolved and time–periodic
small–amplitude disturbances, inhomogeneous in all
three directions, are superimposed upon the under-
lying steady or time-periodic O(1) basic state. The
related three-dimensional global TriGlobal instability
Ansatz (named according to the dimensionality of the
basic state18,19) yields a three-dimensional eigenvalue
problem in which all three spatial directions must be
resolved simultaneously in a coupled manner. Though
this most general Ansatz is consistent with the sepa-
rability in the governing equations of time on the one
hand and the three spatial directions on the other, the
size of the resulting EVP is such that currently avail-
able computing hardware and algorithms permit its
solution in a very limited range of Reynolds numbers,
of Re ≈ O(102).

BiGlobal linear theory:

The compressible two-dimensional linear EVP

In order to proceed, the basic state is assumed in-
dependent of one spatial coordinate, z, an assumption
in line with the two–dimensional cavity geometry.13

Flow quantities are then decomposed according to

q(x, y, z, t) = q̄(x, y) + ε q̃(x, y, z, t), (4)

with q̄ = (ū, v̄, w̄, T̄ , p̄)T and q̃ = (ũ, ṽ, w̃, T̃ , p̃)T rep-
resenting the steady two-dimensional basic flow and
the unsteady three-dimensional infinitesimal perturba-
tions, respectively, the latter being inhomogeneous in
x and y and periodic in z. Note also that, unlike the
incompressible case, pressure is a predictive variable
in, rather than a constraint of, the equations of mo-
tion. On substituting (4) into the governing equations
(1-3), taking ε � 1 and linearizing about q̄, one may
write

q̃(x, y, z, t) = q̂(x, y) ei Θ2D + c.c., (5)

with q̂ = (û, v̂, ŵ, θ̂, p̂)T representing the vector of two–
dimensional complex amplitude functions of the in-
finitesimal three-dimensional perturbations, Ω a com-
plex eigenvalue and

Θ2D = βz − Ωt (6)

a complex phase function.
The linear disturbance equations of BiGlobal stabil-

ity analysis are obtained at O(ε) by substituting the

decomposition (4-6) into the equations of motion, sub-
tracting out the O(1) basic flow terms and neglecting
terms at O(ε2). In the present temporal framework, β
is taken to be a real wavenumber parameter describing
an eigenmode in the z−direction, while the complex
eigenvalue Ω, and the associated eigenvectors q̂ are
sought. The real part of the eigenvalue, Ωr ≡ <{Ω},
is related with the frequency of the global eigenmode
while the imaginary part is its growth/damping rate;
a positive value of Ωi ≡ ={Ω} indicates exponential
growth of the instability mode q̃ = q̂ei Θ2D in time t
while Ωi < 0 denotes decay of q̃ in time. The system
for the determination of the eigenvalue Ω and the as-
sociated eigenfunctions q̂ in its most general form can
be written as the complex non-symmetric generalized
EVP

L q̂ = ΩR q̂, (7)

or, more explicitly,
Lxû Lxv̂ Lxŵ Lxθ̂ ILxp̂

Lyû Lyv̂ Lyŵ Lyθ̂ ILyp̂

Lzû Lzv̂ Lzŵ Lzθ̂ ILzp̂

Leû Lev̂ Leŵ Leθ̂ ILep̂

JLcû JLcv̂ JLcŵ JLcθ̂ LG
cp̂




û
v̂
ŵ

θ̂
p̂



= Ω


Rxû 0 0 0 0
0 Ryv̂ 0 0 0
0 0 Rzŵ 0 0
0 0 0 0 IRep̂

0 0 0 JRcθ̂ RG
cp̂




û
v̂
ŵ

θ̂
p̂

 , (8)

subject to appropriate boundary conditions. Here
the linearized equation of state

p̂ = ρ̂/ρ̄+ θ̂/T̄

has been used, viscosity and thermal conductivity of
the medium have been taken as functions of tempera-
ture alone, resulting in

µ̂ =
dµ̄

dT
θ̂, κ̂ =

dκ̄

dT
θ̂.

Moreover,
I = IG

GL, J = IGL
G

are interpolation arrays transferring data from the
Gauss–Lobatto to the Gauss and from the Gauss to
the Gauss-Lobatto spectral collocation grids, respec-
tively, and will be defined in the next section. The
entries of matrix L are presented in the Appendix; all
sub-matrices are defined on a two–dimensional Cheby-
shev Gauss-Lobatto (CGL) grid, except for LG

cp̂ and
RG

cp̂, which are defined on a two–dimensional Cheby-
shev Gauss (CG) grid.

Classic linear theory:

The one-dimensional compressible linear EVP

When developing a new algorithm for the solution
of (7) it is convenient to compare results against those
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of the established classic theory of linear instability of
boundary- and shear-layer flows (cf. Mack11). The
latter theory is based on the Ansatz

q(x, y, z, t) = q̄(y) + ε q̂(y) ei Θ1D + c.c. (9)

In (9) q̂ is the vector of one–dimensional complex am-
plitude functions of the infinitesimal perturbations and
Ω is in general complex. The phase function, Θ1D, is

Θ1D = αx+ βz − Ωt, (10)

where α and β are wavenumber parameters in the spa-
tial directions x and z, respectively.

Substitution of the decomposition (9-10) into the
governing equations (1-3) linearization and considera-
tion of terms at O(ε) results in the eigenvalue problem
governing linear stability of boundary- and shear-layer
flows; the same system results directly from (7) if one
makes the following (”parallel flow”) assumptions:

• ∂q̄/∂x ≡ 0, ∂q̄/∂x ≡ 0

(basic flow independent of x),

i.e. ∂q̂/∂x ≡ i α q̂, ∂q̂/∂z ≡ i β q̂

(harmonic expansion of disturbances in x and z),

• v̄ ≡ 0, and

• p̄ ≡ cnst.,

then (7) takes the form of the system of equa-
tions governing linear stability of viscous compress-
ible boundary- and shear-layer flows (cf. eqns. (8.9)
of Mack11). This provides direct means for compar-
isons between the present novel and the established
methodologies. It should be noted that the crucial dif-
ference between the two–dimensional eigenvalue prob-
lem (7) and the limiting case of the one–dimensional
EVP is that the eigenvector q̂ in (7) comprises two–
dimensional amplitude functions, while those in the
limiting parallel–flow case are one–dimensional. Fur-
ther, while p̄(y) = cnst. in taken to be a constant in
one-dimensional basic states satisfying (9), p̄(x, y) ap-
pearing in (7) is, in general, a known function of the
two resolved spatial coordinates.

Solution approach
It has been stressed that a key difference between

the classic linear stability theory and the present
BiGlobal analysis methodology is that the amplitude
functions of the small–amplitude disturbances in the
latter framework develop along two inhomogeneous
spatial directions which must be solved simultane-
ously. Consequently, the resolution requirements for
adequate description of BiGlobal instabilities can be
quite challenging; a thorough discussion of this point,

mainly focusing on incompressible flows, has been pre-
sented by Theofilis.19 The demands placed on memory
by a compressible BiGlobal analysis are aggravated not
only by the need to solve the energy equation in ad-
dition to those of incompressible flow, but also by the
well–known fact that increasing Mach numbers result
in tighter eigenmode structures to be resolved, com-
pared with their incompressible counterparts. Conse-
quently, numerical methods of high resolution capacity
are essential in this problem.

In the present analysis spectral collocation has been
used, based on two sets of Chebyshev points, the
Chebyshev Gauss–Lobatto (CGL)

ξj = cos
jπ

N
, (j = 0, ..., N), (11)

the extrema of the N−th order Chebyshev poly-
nomials TN (ξ) = cos(Ncos−1ξ), and the Chebyshev
Gauss (CG)

ξj = cos
π(2j + 1)

2N
, (j = 0, ..., N − 1), (12)

the roots of the TN (ξ); both sets of points are
depicted in figure 1. These two sets of points are
introduced in view of the different type of bound-
ary conditions pertaining to the stability problem.
While boundary conditions are readily available for
the disturbance velocity components and tempera-
ture perturbations, no physically meaningful boundary
conditions exist for the pressure perturbation. Con-
sequently the momentum and energy equations are
collocated on the CGL points, while the equation of
continuity is collocated on the CG points of a two–
dimensional staggered grid.

Each sub-matrix of the linear two–dimensional
eigenvalue problem (7) has the form

L = A ∂2
xx +B ∂2

xy + C ∂2
yy +D ∂x + E ∂y + F

and is either defined on the CGL or the CG points.
First derivatives on the CGL points are calculated
using the collocation derivative matrix, presented by
Boyd,3

(D(1)
GL)k,j =



2N2+1
6 , j = k = 0

− ξj

2(1−ξ2
j
)
, j = k

ck

cj

(−1)j+k

ξk−ξj
, j 6= k

− 2N2+1
6 , j = k = N

with ξj defined by (11), while those on the CG points
are calculated using
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(D(1)
G )k,j =


0.5ξj

1−ξ2
j

, j = k

(−1)k+j

ξk−ξj

√
1−ξ2

j

1−ξ2
k

, j 6= k

with ξj defined by (12). Higher derivatives on either
the CGL or the CG points may be calculated using

D
(m)
k,j =

(
D

(1)
k,j

)m

,

while the cross–derivatives appearing in (7) may be
calculated using

∂2
xyfi,k =

∑
l

Dy
k,l

[ ∑
j

Dx
i,jfj,l

]
(13)

with (k, l = 0, · · · , Ny), (i, j = 0, · · · , Nx) and su-
perscripts denote differentiation along the indicated
coordinate.

Data may be transferred between the grids using the
interpolation arrays IG

GL and IGL
G introduced in (7),

IG
GL = C−1

G CGL, (14)
IGL
G = C−1

GL CG, (15)

where, for (k = 0, · · · , N),

(CGL)k,j =
2

ck cj
cos

k j π

N
, (j = 0, · · · , N)

(CGL)−1
j,k = cos

k j π

N
, (j = 0, · · · , N)

(CG)k,j =
2

N ck
cos

(j + 1
2 ) π k
N

, (j = 0, · · · , N − 1)

(CG)−1
j,k = cos

(j + 1
2 ) π k
N

, (j = 0, · · · , N − 1),

c0 = cN = 2 and ck,j = 1, (k, j = 1, · · · , N − 1).
Flexibility is added into the solution algorithm by

incorporating different types of coordinate transfor-
mations, to be employed independently in each of the
resolved x− and y−directions. The mappings and the
related transformation metrics used in what follows
are, that due to Kosloff and Tal-Ezer,9 which maps
the standard CGL domain [−1, 1] onto itself through

x =
sin−1(pξ)
sin−1 p

, (16)

dξ

dx
=

sin−1 p

p

√
1− (pξ)2, (17)

a well-tested mapping transformation for semi-
infinite domains of boundary–layer type22

x = l
1− ξ

1 + s+ ξ
, (18)

dξ

dx
= −l 2 + s

(ξ + l)2
(19)

Fig. 1 Upper: The CGL (full symbols) and the
CG (open symbols) collocation points.
Lower: A two-dimensional staggered grid
after mapping the two sets of collocation
points using the Kosloff Tal-Ezer transfor-
mation

as well as a transformation of [−1, 1] onto (−∞,∞),

x = l
sinh(s ξ)

sinh s
, (20)

dξ

dx
=

sinh s
l s

√
1 +

(x
l

)2

sinh2 s. (21)

The solution domain resulting by employing the
Kosloff and Tal-Ezer transformation in both the x and
y directions is also shown in figure 1.

Using the tools exposed the compressible BiGlobal
linear eigenvalue problem (7) is transformed into a dis-
crete matrix eigenvalue problem. In the absence of
prior information on interesting regions of the param-
eter space, the latter problem is solved using the QZ
algorithm.

Results
The rectangular duct

Our first concern, when developing a new algorithm
has been with the recovery of established linear sta-
bility results in a variety of flows related with the

5 of 13

American Institute of Aeronautics and Astronautics Paper 2004–2544



Fig. 2 The eigenspectrum of rectangular duct
flow, obtained using the present analysis
methodology at M = 10−4, and compared
with incompressible theory.

open cavity problem. In view of the virtual absence
of analytically known two–dimensional compressible
basic states, the incompressible rectangular duct,15

for which an analytic solution is known to exist,12,16

has been first analyzed at M = 10−4. Figure 2
shows results obtained by numerical solution of (7)
at Re = 100, β = 1, using either an unmapped square
domain or one in which the Kosloff-Tal Ezer9 (KTE)
mapping is incorporated. Superimposed are results ob-
tained using an independent algorithm for the solution
of the incompressible BiGlobal stability problem,16,21

based on Krylov subspace iteration for the recovery of
the most significant part of the eigenspectrum. Excel-
lent agreement is obtained between all modes delivered
by the incompressible analysis and either compress-
ible approach. In addition, the present solution of the
compressible EVP delivers modes related with the en-
ergy equation which, at the conditions examined, are
slightly more stable than the modes known from in-
compressible analysis.

The flat–plate boundary layer

This flow been the subject of extensive numerical
investigation by Mack11 in a series of papers spanning
more than three decades. Viscous instability domi-
nates at the incompressible and low subsonic limit,
but the development of inflection points as the Mach
number increases results in the presence of a multi-
tude (in fact infinite) instability modes, both viscous
and inviscid in nature. The basic state, describing
zero–pressure–gradient compressible laminar bound-
ary layer flow over a flat plate, as well as an approach
for the numerical solution of this problem are pre-
sented by Mack.11 For completeness we present the

equations solved in dimensionless form

d

dη

(
dū

dη

)
+
g

µ̄

(
µ̄
dū

dη

)
= 0, (22)

d

dη

(
µ̄

P r

dT̄

dη

)
+
gPr

µ̄

(
µ̄

P r

dT̄

dη

)
= −2µ̄

(
dū

dη

)2

(23)

where η is the boundary-layer similarity variable and
use has been made of

g(η) =
1
2

∫ η

0

ū

T̄
dη.

The relations
R =

√
Rx

and
R = (1/δ∗)Rδ∗

relate the Reynolds number R built on an integral
length scale L∗ and that built on the dimensional
streamwise coordinate x∗ and the boundary layer dis-
placement thickness δ∗ respectively. A linear (Chap-
man) viscosity law has been used at Te = 288.89 and
the boundary-layer coordinate transformation pre-
sented earlier is employed for the spectral collocation
solution of this problem.

Several test cases have been solved, first under the
parallel flow assumption. Some results for the com-
puted eigenvalues of the unstable mode are presented
next. Eigenfunctions follow in graphical form in fig-
ures 3-4.

• Almost incompressible Case I:
M = 10−3, R = 800, α = 0.1200,
ψ = tan−1(β/α) = 30, δ∗ = 1.720788L.
Computed Eigenvalue:
ω = ωr + iωi = 0.040583234 + 0.001728706i.

• Compressible Case II:
M = 1, R = 1000, α = 0.1,
ψ = 45, δ∗ = 2.004500L.
Computed Eigenvalue:
ω = ωr + iωi = 0.038017729 + 0.001350618i.

• High supersonic Case III:
M = 6, R = 1000, α = 0.0800,
ψ = 45, δ∗ = 17.696682L.
Computed Eigenvalue:
ω = ωr + iωi = 0.072487839 + 0.001052149i.

The resolution requirements for compressible linear
stability analysis become clear by inspection of the
eigenmode results. As the Mach number increases,
sharp gradients develop both in the near-wall region
and the neighborhood of the critical layer, the latter
moving well into the free-stream.

Next, the dependence of the basic state on x is rein-
stated and the two–dimensional EVP is solved, using
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Fig. 3 The most unstable eigenvector of com-
pressible flat-plate flow at Ma = 1, R =
1000, α = β = 0.1

Fig. 4 The most unstable eigenvector of com-
pressible flat-plate flow at Ma = 6, R =
1000, α = β = 0.08
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the one–dimensional base flow profiles delivered by
(22-23). No direct comparisons with the classic linear
theory are possible in this case, because of the slow
but finite growth of the basic state in the streamwise
coordinate. An approximation of the results delivered
under the simplifying assumptions may be obtained by
imposing on the two–dimensional amplitude functions
a wave–like character behavior through the boundary
conditions

∂2q̂(x, y)
∂x2

+ α̃2q̂(x, y) = 0,

imposed at both the inflow and the outflow bound-
aries, with α̃ = 2π/Lx determined via the streamwise
extent Lx of the integration domain. Results obtained
exhibit qualitative analogous behavior along the well-
resolved y direction, while the boundary condition (24)
selects amplitude functions with wave-like character in
x. Nevertheless, in a manner analogous with incom-
pressible flow,19 the key finding in this part of the
validation studies is that the memory requirements
for compressible BiGlobal instability analysis at high
(coupled) resolution can be very demanding. Cur-
rently parallelization of the numerical solution of (7)
is investigated.

A shear layer

The final validation case, relevant to compressible
open cavity flow, is that of a model shear-layer, the
basic state of which is given by

ū = tanh(y), y ∈ (−∞,∞). (26)

The temperature distribution is obtained by the
Crocco-Busemann integral

T̄ =
1
2
(γ − 1)M2

∞

[
1− tanh2(y)

]
+

1
2

[
1 + tanh(y)

]
+

1
2

[
1− tanh(y)

]
. (27)

Again, in view of the one–dimensional base flow pro-
file (26-27), classic linear theory is used, albeit solved
as a limiting case of (7). We first compare our results
to those of Blumen2 and Macaraeg et al.10 for sub-
sonic Mach numbers. Since Blumen’s theory is valid
at the inviscid limit we set, as was done in,10 the
Reynolds number R = 10000 throughout our calcu-
lations. The comparisons may be found in table 1. At
finite Reynolds numbers sample results for the growth
rate of the unstable (stationary) modes may be found
in table 2.

While successful in identifying elements of instabil-
ities in the open cavity flow, the single–domain algo-
rithm discussed cannot be extended to cover the entire
domain of this flow. In order to extend the BiGlobal

ωi

M α Blumen2 Macaraeg et al.10 present
0.0 0.445 0.190 0.18954 0.189539
0.2 0.426 0.181 0.18112 0.181156
0.4 0.409 0.158 0.15760 0.157581
0.6 0.370 0.122 0.12180 0.121763
0.8 0.279 0.078 0.07760 0.077607

Table 1 Comparison of present results with those
of earlier inviscid and viscous analyses.

Re M α ωi

2× 102 0.2 0.426 0.173858
103 0.2 0.426 0.179787
104 0.2 0.426 0.181156

2× 102 0.6 0.370 0.114727
103 0.6 0.370 0.120443
104 0.6 0.370 0.121763

Table 2 Effect of increasing Re on the growth
rates of shear layer instability.

stability analysis methodology to complex geometries
with a certain degree of regularity, the spectral multi–
domain algorithm of Macaraeg et al.10 is an obvious
candidate to be employed and investigations are cur-
rently underway in this direction.

Compressible flow in an open cavity

Turning to BiGlobal instability of compressible open
cavity flow, we are first concerned with the issue of
accurate basic states to be analyzed. Clearly only nu-
merical solutions exist for the basic state; we compute
them using DNS of the compressible, two-dimensional
Navier-Stokes equations. Our methodology and vali-
dation are presented in detail in Colonius et al.13 The
DNS computations are carried out over a range of pa-
rameters: 1 < L/D < 5 (where L is cavity length, and
D is depth), 20 < L/θ < 120 (where θ is the momen-
tum thickness of the upstream laminar boundary layer
at the cavity leading edge), 0.2 < M < 2.0 (where
M is the Mach number), and 40 < Reθ < 90. For
supersonic (and high subsonic cases) a hybrid high-
order Weighted Essentially Non-Oscillatory (WENO)
/ Compact finite difference scheme is used for shock
capturing.

Earlier work has shown the potential that BiGlobal
instability theory has in analyzing the instability of
this class of flows (Theofilis and Colonius20). In the
latter work, analysis of the time-signal provides a uni-
fied framework in which different known aspects of
open cavity instability, such as the shear-layer and the
acoustic modes, can be classified. Moreover, it was
shown that modes akin to that of the lid–driven cav-
ity flow17 exist in the two–dimensional open cavity.
Up to now we have only considered the stability char-
acteristics of the least damped eigenmode in a two–

8 of 13

American Institute of Aeronautics and Astronautics Paper 2004–2544



Fig. 5 The eigenspectrum of compressible open
cavity flow at Re = 1500, M = 0.325 and
β = 2π.

dimensional BiGlobal instability context, leaving the
question of instability to three-dimensional BiGlobal
eigenmodes open.

We present here preliminary computations of three-
dimensional modes using the new algorithm described
in the previous sections. Based on previous work for
the lid-driven cavity and flow over back step, we expect
that the first three-dimensional bifurcation will be in
the recirculating flow within the cavity.4,21 Thus for
simplicity we only compute the eigenspectrum for the
flow within the cavity proper. In the simplified anal-
ysis we apply a Neumann boundary condition for the
velocity fluctuations along the top of the cavity. This
is clearly a crude approximation that will be removed
in future computations where the eigenspectra will be
computed on a block rectangular grid that includes a
the flow above the cavity. Thus we impose the bound-
ary conditions:

û = v̂ = ŵ = 0 (28)

along the cavity surface

∂û/∂n = ∂v̂/∂n = ∂ŵ/∂n = 0, (29)

along the open cavity surface, and

∂θ̂/∂n = ∂p̂/∂n = 0, (30)

on all boundaries. Grid experimentation has been
performed in order to reach convergence of the least-
damped portion of the eigenspectrum at a set of pa-
rameters L/D = 2, ReD = 1500 (based on cavity
depth and free-stream velocity) and M = 0.325. Out
of several values of the spanwise wavenumber β exam-
ined, we present results for β = 2π, i.e. Lz = |D| = 1.

Figure 5 shows the most interesting part of the
eigenspectrum of the flow in question. At the flow

parameters chosen a modest resolution of 20x20 col-
location points per eigenmode, i.e. a leading dimen-
sion of 1000 of the matrices in the eigenvalue problem
(7), suffices. Only damped traveling and stationary
eigenmodes have been found within the range of span-
wise wavenumbers β examined. This implies that the
steady solution from DNS persists in spanwise peri-
odic three-dimensional domains corresponding up to
the wavenumbers examined.

In figures (6-7) the spatial structure of the (linear)
disturbance flow field is shown in terms of isocontours
of û, v̂, ŵ and the magnitude of the disturbance vor-
ticity. Several aspects of these results, and analogous
ones not presented here, may be stressed. First, it ap-
pears that there exists a connection of the modes inside
the cavity with those in the oncoming flow, and that
the present BiGlobal analysis is able to capture. Sec-
ond, the significance of the downstream corner of the
cavity, as known from experiment and numerical sim-
ulations, is evident in the amplitude functions of the
leading eigenmodes. Third, these leading eigenmodes
suggest possible means of three-dimensionalization of
the steady basic flow once the respective modes be-
come amplified.

Conclusions
A new methodology for the numerical solution of

the compressible two–dimensional eigenvalue problem
governing BiGlobal flow instability has been developed
and validated against several canonical flows. It has
been shown that spectral collocation methods on a
two-dimensional staggered grid can deliver accurate re-
sults in an efficient manner. Preliminary investigations
of the problem of BiGlobal instability of compressible
flow in an aspect-ratio two open cavity flow have been
performed. It was shown that three dimensional dis-
turbances having wavenumbers in the range β ∈ [0, 2π]
are stable at for a particular cavity with L/D = 2
and M = 0.325. Further algorithmic developments
are necessary to enable addressing the open cavity do-
main in its entirety, as well as to make computations
of the BiGlobal eigenspectrum more efficient; once
completed we will characterize the eigenspectrum of
three dimensional disturbances more completely over
a broad range of cavity parameters.
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Fig. 6 Upper to lower: Isosurfaces of û, v̂, ŵ and
disturbance vorticity magnitude of the
least stable traveling eigenmode of the
flow.

Fig. 7 Upper to lower: Isosurfaces of û, v̂, ŵ and
disturbance vorticity magnitude of the
least stable stationary eigenmode of the
flow.
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Appendix: The coefficients of the EVP (7)

Disturbance x−momentum:

Lxû = − 4
3

µ̄
Re ∂

2
xx +

[
− 4

3
1

Re

(
dµ̄
dT̄

)
T̄x + ρ̄ ū

]
∂x − µ̄

Re ∂
2
yy +

[
− 1

Re

(
dµ̄
dT̄

)
T̄y + ρ̄ v̄

]
∂y

+β2µ̄
Re + 2 ρ̄ ūx + ρ̄ v̄y + i β ρ̄ w̄ + ū ρ̄x + v̄ ρ̄y

Lxv̂ = − 1
3

µ̄
Re ∂

2
xy − 1

Re

(
dµ̄
dT̄

)
T̄y ∂x + 2

3
1

Re

(
dµ̄
dT̄

)
T̄x ∂y + ρ̄ ūy

Lxŵ = − i β
3 Re µ̄ ∂x + 2 i β

3 Re

(
dµ̄
dT̄

)
T̄x

Lxθ̂ = − 1
Re

(
dµ̄
dT̄

) (
4
3 ūx − 2

3 v̄y

)
∂x − 1

Re

(
dµ̄
dT̄

) (
ūy + v̄x

)
∂y

− 1
Re

(
dµ̄
dT̄

) (
i β w̄x + 4

3 ūxx + ūyy + 1
3 v̄xy

)
− 1

Re

(
d2µ̄

dT̄ 2

) (
4
3 T̄xūx + T̄yūy + T̄y v̄x − 2

3 T̄x v̄y

)
− ρ̄

T̄

(
ū ūx + v̄ ūy

)
Lxp̂ = 1

γ M2 ∂x + 1
T̄

(
ū ūx + v̄ ūy

)
Rxû = i ρ̄

Disturbance y-momentum:

Lyû = − 1
3

µ̄
Re ∂

2
xy + 2

3Re

(
dµ̄
dT̄

)
T̄y ∂x − 1

Re

(
dµ̄
dT̄

)
T̄x ∂y + ρ̄ v̄x

Lyv̂ = − µ̄
Re ∂

2
xx +

[
− 1

Re

(
dµ̄
dT̄

)
T̄x + ρ̄ ū

]
∂x − 4

3
µ̄

Re ∂
2
yy +

[
− 4

3Re

(
dµ̄
dT̄

)
T̄y + ρ̄ v̄

]
∂y

+β2µ̄
Re + ρ̄ ūx + 2 ρ̄ v̄y + i β ρ̄ w̄ + ū ρ̄x + v̄ ρ̄y

Lyŵ = − i β
3

µ̄
Re ∂y + 2i β

3
1

Re

(
dµ̄
dT̄

)
T̄y

Lyθ̂ = − 1
Re

(
dµ̄
dT̄

)
(ūy + v̄x) ∂x − 1

Re

(
dµ̄
dT̄

)
( 4
3 v̄y − 2

3 ūx) ∂y

− 1
Re

(
dµ̄
dT̄

)
(i β w̄y + 4

3 v̄yy + 1
3 ūxy + v̄xx)− 1

Re

(
d2µ̄

dT̄ 2

) (
T̄x ūy + 4

3 T̄y v̄y − 2
3 T̄y ūx + T̄x v̄x

)
− ρ̄

T̄

(
ū v̄x + v̄ v̄y

) ]
Lyp̂ = 1

γ M2 ∂y + 1
T̄

(
ū v̄x + v̄ v̄y

)
Ryv̂ = i ρ̄

Disturbance z-momentum:

Lzû = − i β
3 Re µ̄ ∂x − i β

Re

(
dµ̄
dT̄

)
T̄x + ρ̄ w̄x

Lzv̂ = − i β
3 Re µ̄ ∂y − i β

Re

(
dµ̄
dT̄

)
T̄y + ρ̄ w̄y

Lzŵ = − 1
Re µ̄ ∂

2
xx − 1

Re µ̄ ∂
2
yy +

[
− 1

Re

(
dµ̄
dT̄

)
T̄x + ρ̄ ū

]
∂x +

[
− 1

Re

(
dµ̄
dT̄

)
T̄y + ρ̄ v̄

]
∂y

+ 4
3Re µ̄ β

2 + ρ̄ ūx + ρ̄ v̄y + i β ρ̄ w̄ + ū ρ̄x + v̄ ρ̄y

Lzθ̂ = − 1
Re

(
dµ̄
dT̄

)
w̄x ∂x − 1

Re

(
dµ̄
dT̄

)
w̄y ∂y

− 1
Re

(
dµ̄
dT̄

) [
w̄xx + w̄yy − 2

3 i β
(
ūx + v̄y

)]
− 1

Re

(
d2µ̄

dT̄ 2

) [
T̄x w̄x + T̄y w̄y

]
− ρ̄

T̄

(
ū w̄x + v̄ w̄y

)
Lzp̂ = i β

γ M2 + 1
T̄

(
ū w̄x + v̄ w̄y

)
Rzŵ = i ρ̄
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Disturbance Energy:

Leû =
[
−2 γ (γ−1) M2

Re µ̄
(

4
3 ūx − 2

3 v̄y

)
+ γ ρ̄ T̄

]
∂x − 2 γ (γ−1) M2

Re µ̄
(
ūy + v̄x

)
∂y

−2 i β γ (γ−1) M2

Re µ̄ w̄x + T̄ ρ̄x + ρ̄ T̄x

Lev̂ = −2 γ (γ−1) M2

Re µ̄
(
ūy + v̄x

)
∂x +

[
−2 γ (γ−1) M2

Re µ̄
(
− 2

3 ūx + 4
3 v̄y

)
+ γ ρ̄ T̄

]
∂y

−2 i β γ (γ−1) M2

Re µ̄ w̄y + T̄ ρ̄y + ρ̄ T̄y

Leŵ = −2 γ (γ−1) M2

Re µ̄ w̄x ∂x − 2 γ (γ−1) M2

Re µ̄ w̄y ∂y

+ 4
3

i β γ (γ−1) M2

Re µ̄
(
ūx + v̄y

)
+ i β γ ρ̄ T̄

Leθ̂ = − γ κ̄
Re Pr ∂

2
xx − 2 γ

Re Pr

(
dκ̄
dT̄

)
T̄x ∂x − γ κ̄

Re Pr ∂
2
yy − 2 γ

Re Pr

(
dκ̄
dT̄

)
T̄y ∂y

+β2 γ κ̄
Re Pr − γ

Re Pr

(
dκ̄
dT̄

) (
T̄xx + T̄yy

)
− γ

Re Pr

(
d2κ̄
dT̄ 2

) (
T̄ 2

x + T̄ 2
y

)
−γ (γ−1) M2

Re

(
dµ̄
dT̄

) (
4
3 ū

2
x + v̄2

x + w̄2
x + ū2

y + 4
3 v̄

2
y + w̄2

y − 4
3 ūx v̄y + 2ūy v̄x

)
Lep̂ = ū ∂x + v̄ ∂y + i β w̄ + γ

(
ūx + v̄y

)
Rep̂ = i

Disturbance Continuity:

Lcû = ρ̄ T̄ ∂x + T̄ ρ̄x

Lcv̂ = ρ̄ T̄ ∂y + T̄ ρ̄y

Lcŵ = i β ρ̄ T̄ ŵ

Lcθ̂ = −ρ̄ ū ∂x − ρ̄ v̄ ∂y − ρ̄ ūx − ρ̄ v̄y − i β ρ̄ w̄ − ū ρ̄x − v̄ ρ̄y + ρ̄
T̄

(
ū T̄x + v̄ T̄y

)
LG

cp̂ = ū ∂x + v̄ ∂y + i β w̄ + ūx + v̄y − 1
T̄

(
ū T̄x + v̄ T̄y

)
Rcθ̂ = −i ρ̄
Rcp̂ = i
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