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Abstract. The study of turbulence near walls has experienced a renaissance in the
last decade, largely because of the availability of high-quality numerical simulations.
The resulting emerging models for the viscous and buffer layers over smooth walls are
briefly reviewed. It is shown that these near-wall layers are essentially independent
of the outer flow, and that there is a family of numerically-exact nonlinear structures
which account for about half of the energy production and dissipation in the layer.
The other half can be modelled in terms of the unsteady bursting of those structures.
Many of the best-known characteristics of the wall layer, such as the dimensions of
the dominant structures, are well predicted by these models. It is also noted that
as much as two thirds of the friction coefficient in wall-bounded flows at moderate
Reynolds numbers depends on processes below y+ = 50, and that this fraction
decays only logarithmically when the Reynolds number increases.
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1. INTRODUCTION

Many papers dealing with turbulence start with the promise of providing simple
models for the flow being considered, but few of them succeed. The present paper
claims to be one of the former, but probably will not be one of the latter. Turbulence
is a complex phenomenon, and simple explanations to complex systems only tend
to make them look more complicated than what they really are. However some
aspects of turbulence can be easily explained, and those exceptions, even if the
models are imperfect, stand out as reasonably safe grounds on which the complexity
of the rest of the phenomenon can be anchored. The Kolmogorov cascade theory is
a well-known example1, and so are the discovery and analysis of coherent structures
in free shear flows2 during the 1970’s, and the clarification in the 1990’s of the
structure of the dissipative scales of the vorticity in isotropic turbulence3,4. Since
the present book and the present meeting celebrate a scientific life dedicated to
clarifying difficult problems, it is appropriate to summarize the progress that has
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been recently made in providing simple models for a particular turbulent flow.
Our example will be wall-bounded turbulence, and in particular the thin layer in

the immediate vicinity of smooth walls. We will see that this layer, although geomet-
rically negligible when compared with the bulk of the flow, is both technologically
and scientifically important, and that the viscous effects due to the nearness of the
wall make it relatively easy to understand. The modern study of this region began
experimentally5,6 in the 1970’s, and got a strong impulse with the advent of high-
quality direct numerical simulations7 in the late 1980’s and in the 1990’s. That the
present review emphasizes numerical results is partly a personal bias of the author,
but it is not altogether arbitrary. The near-wall region is relatively well suited to
numerical simulation, and relatively difficult to explore experimentally. Much of the
available information is numerical.

This paper is organized as follows. In the next section we define the near-wall
layer and outline the classical models for it. In section 3 we review the recent work
on equilibrium solutions for wall-bounded shear flows, and how they are related to
turbulence, and in section 4 we discuss the evidence for time-dependent bursting.
Finally some conclusions are offered.

2. THE STRUCTURE OF NEAR-WALL TURBULENCE

It is well known8 that wall-bounded turbulence over smooth walls can be de-
scribed to a good approximation in terms of two sets of scaling parameters. Viscosity
is important near the wall, and the length and velocity scales in that region are con-
structed with the kinematic viscosity ν and with the friction velocity uτ = (τw/ρ)1/2,
based on the shear stress at the wall τw, and on the fluid density ρ. Magnitudes
expressed in these ‘wall units’ are denoted by + superscripts. Note that, if y is the
distance to the wall, y+ is a Reynolds number for the size of the structures. The
near-wall layer extends at most9 to y+ = 150, and it is because of those relatively low
values that turbulence near smooth walls is a good candidate for simple modelling.

Far from the wall the velocity also scales with uτ , but the length scale is the
flow thickness h. Between the inner and the outer regions there is an intermediate
solution with no length scale, where the mean velocity is given approximately by

U+ = κ−1 log y+ + A. (1)

The Kármán constant κ ≈ 0.4 is approximately universal. The intercept constant
is A ≈ 5 for smooth walls, but depends on the details of the near-wall region.

The viscous inner layer is extremely important for the flow as a whole. The ratio
between the inner and outer length scales is the friction Reynolds number, h+, which
ranges from 200 for barely turbulent flows to h+ = 5 × 105 for large water pipes.
In the latter the near-wall layer is only about 3 × 10−4 times the pipe radius, but
it follows from (1) that, even in that case, 40% of the velocity drop takes place
below y+ = 50. Turbulence is characterized by the expulsion towards the small
scales of the energy dissipation, away from the large energy-containing eddies. In
wall-bounded flows that separation occurs not only in scale space for the velocity
fluctuations, but also in the shape of the mean velocity profile. The singularities
are expelled both from the large scales, and from the centre of the flow towards the
wall.

Consider for example the energy balance in a turbulent channel. The energy
input is the work of the volumetric flux, 2hUb, against the pressure gradient, and
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Figure 1. Total energy dissipation by processes below a given wall distance, as a function of
Reynolds number. Almost half of the dissipation is due to viscous damping of the mean flow below
y+ = 20, and a large part of the rest is due to turbulent fluctuations in the viscous and lower
buffer layer. Those two contributions are almost independent of the Reynolds number. The rest is
turbulent dissipation in the logarithmic layer, and increases logarithmically with h+. The upper
dashed line is U+

b = κ−1 log h+ + 3. The two dotted lines are linear fits to aid the eye.

has to balance the total dissipation if the flow is to be statistically stationary. In
wall units this is expressed as

U+
b =

∫ h+

0

[ε+ + (∂yU)+2
] dy+, (2)

where ε = ν|∇ũ|2 is the ‘turbulent’ dissipation due to the gradients of the velocity
fluctuations ũ, and the second term of the integral is the dissipation due to the effect
of the viscosity on the mean profile. The contributions to (2) from the different parts
of the flow are given in figure 1.

In flows away from walls the dissipation due to the mean velocity profile is
O(Re−1) with respect to the turbulent dissipation, and can be neglected. In wall-
bounded flows, figure 1 shows that both contributions are of the same order, although
the part due to the mean flow resides almost exclusively below y+ = 20. Most of
the turbulent dissipation also happens below y+ = 50.

In the logarithmic layer the dissipation is almost exclusively turbulent, and can
be approximated by the local energy production8. It can be written as

ε ≈ Π = −〈ũṽ〉∂yU = u2
τ (1 − y/h)∂yU, (3)

where U can be taken from (1) if corrections from the outer ‘wake’ component are
neglected. The dissipation above y0 is then∫ h+

y+
0

ε+ dy+ ≈ κ−1 log h+ − κ−1(1 + log y+
0 ). (4)

If we take y+
0 = 50, as in figure 1, the additive constant in equation (4) is approxi-

mately 12, although the experimental value from figure 1 is closer to 11. Only when
h+ � 105 does the logarithmic contribution (3) from the velocity fluctuations in the
logarithmic layer begin to be larger than that from the near-wall region.



Integrating the volume flux from equation (1) this constant can be related to the
intercept A by

A ≈ Ay0 − κ−1 log y+
0 , (5)

where Ay0 is the value of the integral in (2) in y = (0, y0), and the second summand
comes from the additive constant in (4), corrected by the volume flux that would
have been obtained by extending (1) from y0 to the wall. The experimental value
A ≈ 5 is the difference between A50 ≈ 14 and κ−1 log 50 ≈ 9, and therefore depends
strongly, through A50, on the near-wall details.

Because of this singular nature, the near-wall layer is not only important for
the rest of the flow, but it is also essentially independent from it. That was for
example shown by numerical experiments with ‘autonomous’ simulations10 in which
the outer flow was artificially removed above a certain wall distance δ. The near-wall
dynamics were unaffected as long as δ+ � 60.

Understanding the structure of this part of the flow has practical implications.
The energy input U+

b = (2/cf )
1/2 determines the friction coefficient cf . The relation

is inverse; a high normalized dissipation implies low friction, because ε+ = νε/u4
τ

measures the efficiency of the flow in generating shear stresses for a given energy
input. An ideally low-friction turbulent flow would dissipate all its energy without
generating Reynolds stresses, and would have ε+ → ∞. It follows from figure 1 that
any attempt to control wall friction has to centre on the near-wall region, and that
only through understanding its mechanics can any such control succeed.

2.1. The classical model

Because of its global influence on the flow, the region below y+ ≈ 100 has been
intensively studied. It is dominated by coherent streaks of the streamwise velocity
and by quasi-streamwise vortices. The former are an irregular array of long (x+ ≈
1000) sinuous alternating streamwise jets superimposed on the mean shear, with
an average spanwise separation11 of the order of z+ ≈ 100. The quasi-streamwise
vortices are slightly tilted away from the wall12, and stay in the near-wall region only
for x+ ≈ 200. Several vortices are associated with each streak13, with a longitudinal
spacing of the order of x+ ≈ 400. Most of them merge into disorganized vorticity
after leaving the immediate wall neighbourhood14.

It was proposed very early that streaks and vortices were involved in a mutual
regeneration cycle in which the vortices were the results of an instability of the
streaks15, while the streaks were caused by the advection of the mean velocity gra-
dient by the vortices5,16. While there is still some discussion on how the vortices
are generated, it is known that they derive from the streaks, because disturbing the
latter inhibits their formation10. That manipulation is only effective if the flow is
perturbed below y+ ≈ 60, and fails if it is applied only below y+ ≈ 10, suggesting
that it is predominantly between those two levels that the streaks are involved in
the vortex-generation process. There is a substantial body of numerical17–19 and
analytic20,21 work on the linear instability of model streaks. It shows that streaks
are unstable to a variety of sinuous perturbations associated with inflection points of
the perturbed velocity profile, whose eigenfunctions correspond well with the shape
and location of the observed vortices. The model implied by these instabilities is a
time-dependent cycle in which streaks and vortices are created, grow, generate each
other, and eventually decay. Reference 10 discusses other unsteady models of this
type, and gives additional references.
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Figure 2. Exact permanent-wave solution for the Navier-Stokes equations in an ‘autonomous’
domain below δ+ = 40. The flow is from top-right to bottom-left. The central object is an
isosurface of the streamwise velocity, ũ+ = −3.5, bounding the streak, and it is flanked by two
staggered streamwise vortices of opposite signs, ω+

x = ±0.18, whose effect is to create an upwash
that maintains the streak26.

3. EXACT SOLUTIONS FOR THE SUBLAYER

A slightly different point of view is that the regeneration cycle is organized around
a nonlinear travelling wave, a fixed point in some phase space, which represents a
nonuniform streak. This is actually not too different from the previous model, which
essentially assumes that the undisturbed streak is a fixed point in phase space, and
that the cycle is an approximation to an orbit along its unstable manifold. The new
model however considers fixed points which are non-trivially perturbed streaks, and
therefore separates the dynamics of turbulence from those of transition.

Nonlinear equilibrium solutions of the three-dimensional Navier–Stokes equations,
with characteristics which suggest that they may be useful in such a description,
have been obtained numerically in the past few years for plane Couette flow22,23,
plane Poiseuille flow23–25, and an autonomous wall flow26. All those solutions look
qualitatively similar21,27, and take the form of a wavy low-velocity streak flanked by
a pair of staggered quasi-streamwise vortices of alternating signs, closely resembling
the spatially-coherent objects educed from the near-wall region of true turbulence.
An example is shown in figure 2. Their mean and fluctuation intensity profiles are
reminiscent of experimental values23,26, as shown in figure 3. Other properties are
also suggestive of real turbulence. For example, the range of spanwise wavelengths
in which the nonlinear solutions exist is always in the neighbourhood of the observed
spacing of the streaks in the sublayer, z+ ≈ 100.

In those cases in which the stability of the equilibrium solutions has been investi-
gated, they have been found to be unstable saddles in phase space at the Reynolds
numbers at which turbulence is observed. They are not therefore expected to exist as
such in real turbulence, but any turbulent flow could spend a substantial fraction of
its lifetime in their neighbourhood. Exact limit cycles and heteroclinic orbits based
on these fixed points have been found numerically28,29, and several reduced dynami-
cal models of the near-wall region have been formulated in terms of low-dimensional
projections of such solutions30–32.

Two questions have to be addressed. The first one is whether all the exact
solutions that have been published for wall-bounded flows are related to each other
and to near-wall turbulence. The second one is whether real turbulence is best
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Figure 3. Profiles of the root-mean-square velocity fluctuations in a full channel7 with h+ =
180 (lines without symbols), and in the permanent-wave autonomous solution in figure 2 (with
symbols). , streamwise velocity; , wall-normal velocity.

described in terms of steady structures or of an unsteady cycle.
The first question is addressed in figure 4. The earliest and best-understood

nontrivial steady solutions of a wall-bounded Navier-Stokes shear flow are those by
Nagata22 for a plane Couette flow, which were recently extended by Kawahara34

to a wider range of parameters. They can be classified into ‘upper’ and ‘lower’
branches in terms of their mean wall shear, and both branches have very different
profiles of their fluctuation intensities. It can be shown34 that most of the known
wall-bounded solutions by other authors can also be classified into one or the other
of Nagata’s branches. The ‘upper’ solutions have relatively weak sinuous streaks
flanked by strong vortices. They consequently have relatively weak root-mean-square
streamwise-velocity fluctuations u′, and strong wall-normal ones v′ compared with
those in the lower branch. The solution in figure 2 belongs to the upper branch,
and we already saw in figure 3 that its r.m.s. velocity-fluctuations profiles agree well
with those of a full channel. ‘Lower’ solutions have stronger and essentially straight
streaks, and much weaker vortices.

The relative strength of both types of fluctuations for a particular solution can
be characterized by the maximum values of its u′ and v′ profiles, both of which
are usually attained within the near-wall layer. Different solutions can then be
compared among themselves, and with fully-turbulent flows, by comparing those
two numbers. This is done in figure 4, but the comparison with full turbulence
is not straightforward. Statistics compiled over small boxes of different sizes are
not comparable, even within the same flow, because they are not ‘converged’. In
particular the r.m.s. profiles of the exact solutions, which are computed over periodic
domains of size L+

x × L+
z ≈ 400 × 100 parallel to the wall, cannot be compared

directly with the standard intensity profiles compiled from full experiments or from
computations, which typically have domains of the order of L+

x × L+
z ≈ 10, 000 ×

5, 000.
To allow the comparison in figure 4, each wall of the large computational boxes

is divided into ‘minimal’ sub-boxes with the same wall-parallel dimensions as the
smaller computational boxes of the exact solutions, b+

x × b+
z ≈ 380 × 110, and the
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Figure 4. Comparison of some exact solutions with the near-wall turbulent structures, in terms of
the maxima of the u′ and v′ profiles taken over boxes of size b+

x × b+
z × y+ = 380 × 110 × 50. � ,

Nagata’s solutions for Couette flow, at different Reynolds numbers34. Solid symbols are ‘upper
branch’ solutions, and open ones are ‘lower branch’. • , autonomous permanent waves26. The
solid loop is an exact limit cycle in plane Couette flow28. Other open symbols are probability
isocontours from large-box Poiseuille flows36,37: � , h+ = 1880; ♦ , 950; � , 550; ◦ , 180. They
contain 90% of the boxes in the p.d.f.

statistics are compiled over them. In addition, each wall of the full channels is
treated independently, and the intensity profiles are compiled only from the wall to
y+ = 50. Each sub-box is characterized by its maximum r.m.s. intensities, and the
values for different sub-boxes are summarized as a joint probability density function
of the two quantities, compiled over the different sub-boxes and over time. Each flow
is not therefore characterized by a single point, but by the probability distribution
of the possible states of the sub-boxes.

The results of the figure suggest that only the ‘upper-branch’ exact solutions are
representative of real turbulence, at least at the scales corresponding to a single
streak and to a single vortex pair. They also show that the correspondence is
reasonably good, but only for the weaker turbulent fluctuations. Specially for the
wall-normal velocities, there are turbulent fluctuations in the near-wall region which
are substantially stronger than those of the exact solutions. Note that the probability
densities of the turbulent flows depend on the Reynolds number, but that they
saturate beyond approximately h+ = 1000. This is not the case for the velocity
fluctuation profiles compiled over full flows, which keep increasing for much higher
Reynolds numbers38. That effect is due to large outer-flow velocity fluctuations
reaching the wall35,36, and is unrelated to the structures being considered here.

The classification of the wall-parallel size of the structures in the near-wall region
is shown in figure 5, which contains two-dimensional premultiplied energy spectra of
the streamwise velocity, kxkzEuu(kx, kz), displayed as functions of the wavelengths
λ = 2π/k, instead of the wavenumbers k. The three spectra in the figure correspond
to an autonomous flow and to two large channels at moderate Reynolds numbers.
They differ from each other almost exclusively in the long and wide structures rep-
resented in the upper-right corner of the spectrum, whose sizes are of the order of
λx ×λz = 10h×h. Those spectra are fairly well understood35,36. The lower-left cor-
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Figure 5. Two-dimensional spectral energy density of the streamwise velocity in the near-wall
region (y+ = 16), in terms of the streamwise and spanwise wavelengths. Shaded contours are
an autonomous flow35 whose vorticity fluctuations are masked above y+ = 60. Lines are full
channels37. , h+ = 550; , h+ = 940. The two solid dots are λx × λz = 10h × h for
the two full flows. The solid diagonal line is isotropy, λx = λz, and the dotted rectangle is the
approximate extent of the transfer function of the averaging boxes used in figure 4. Isolines are
equispaced from zero to the maximum of the autonomous spectrum.

ner contains the structures discussed in this section, which are very approximately
universal and local to the near-wall layer. The anisotropic ridge shared by the three
spectra is formed by dynamically-passive wakes of those small active structures.
The larger structures in the upper edge of the spectra, and specially those in the
top-right corner, extend into the logarithmic and outer layers, scale in outer units,
and correspond approximately to the ‘attached eddies’ proposed by Townsend39.
Because they are too large to be contained within the averaging boxes used in this
section, they do not influence the statistics in figure 4.

4. BURSTING VERSUS STEADY SOLUTIONS

The next question is whether near-wall turbulence is best described by steady or
by unsteady solutions. The unsteady models discussed in section 2 follow the origi-
nal interpretation of the visualizations of the sublayer5, which was that the streaks
regenerate through intermittent ‘bursting’. That interpretation has sometimes been
dismissed as a visualization artifact, and even the original authors acknowledged
that their visualizations could be consistent with advecting permanent objects33.
Bursting eventually became associated with the ejections observed by stationary ve-
locity probes, specially after numerical simulations showed that the velocity streaks
were long-lived. The sweeps and the ejections identified in the analysis of single-
point data were then associated to the passing of shorter quasi-streamwise vortices,
intermittent in space but not necessarily in time14. The question of whether the ob-
served temporally-intermittent sublayer events were artifacts or really existed, was
bypassed by this explanation.

The difficulty of following for long times individual structures in fully turbu-
lent flows complicates the experimental or numerical distinction between permanent
structures and time-dependent processes with a long period, but intermittent break-
down of near-wall turbulence is observed in minimal-flow numerical simulations13
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Figure 6. Joint probability density functions of: (a) The turbulent energy production and dissipa-
tion, integrated below y+ = 35. The chaindotted diagonal line is energy equilibrium, P = D. The
arrows are explained in the text. (b) Production below y+ = 35, and the maximum of the Reynolds
stress. , minimal Poiseuille flow, L+

x × L+
z = 450 × 125; , full channel, analysed over

similar sub-boxes. In both cases, h+ ≈ 180, and the probability isolines contain 40% and 90% of
the data. The solid circles are as in figure 4.

in which spatial intermittency is not an issue. The same is true of autonomous wall
flows in which the observation is simplified by the small wall-normal dimensions of
the simulation domain10.

Minimal channels are numerical simulations in which the wall-parallel periodic
dimensions of the computational box are small enough to produce a periodic array
of identical essentially-single structures. They are known to approximate well fully-
turbulent flows near the wall13, and they are useful in analysing the dynamics of
the flow because their single structures can easily be followed in time. An example
is given in figure 6(a), where the evolution of the flow near the wall in a minimal
channel is represented in terms of the production and of the dissipation of turbulent
energy below δ+ = 50,

P = −
∫ δ

0

〈ũṽ〉 ∂yU dy, (6)

and

D = ν

∫ δ

0

〈|∇ũ|2〉 dy. (7)

The balance of those two quantities determines how energy accumulates or drains
from the perturbations. Each instantaneous state of the minimal flow is represented
by a point in the (P, D) plane, and the joint p.d.f. in figure 6(a) is compiled as the
system evolves in time. The arrows in the figure represent the evolution velocity
of the system in parameter space, (dP/dt, dD/dt). The p.d.f. is compiled as a
histogram over 25×25 bins, and the arrows represent the mean evolution velocity of
all the points within a particular bin. These velocities are in general somewhat lower
than the true evolution velocities of the individual systems within the bin, because of
the effect of the vector averaging, but the mean velocities measured in the bins near
the periphery of the distribution are of the same order as their standard deviations
over those bins, and they are therefore probably representative of the true values.

The wall region of this minimal flow describes a cycle in the (P, D) plane, during
which the fluctuations accumulate energy when P > D, grow, cross into the dissi-
pative part of the plane where D > P , and finally decay. The period of the cycle is



of the order of T+ ≈ 400 in the high-Reynolds number limit34, which is fairly long.
The structures advect about x+ = 5000 during that time40. The steady autonomous
waves in figure 2 are seen in this representation to be production-dominated and
relatively quiescent. They produce extra turbulent energy which they export to the
numerically-damped outer region. This behaviour is similar to that of real near-wall
turbulence, which exports energy to the outer flow41. The Couette limit cycle which
was included in figure 4, but which is not plotted here for clarity, is a miniature ver-
sion of the energy cycle in figure 6(a), with whom it shares many characteristics34.

Figure 6(a) shows that the minimal flow ‘bursts’ in the sense of the original
unsteady descriptions in reference 5. It is difficult to obtain the same temporal
information for full flows, because of the problem of identifying individual structures,
but a joint p.d.f. of P and D can be compiled in those cases over minimal sub-boxes,
in the same way as above. Such a p.d.f. is included in figure 6(a), and it is similar
enough to that of the minimal case to suggest that the full flow is also bursting.

The final question is whether the bursting of the sublayer is important for the
flow as a whole. We saw at the beginning of this paper that a large fraction of the
total energy dissipation in a channel happens below y+ = 50, and that roughly half
of that dissipation is associated with the gradient of the mean velocity profile below
y+ = 20. It is interesting to know what fraction of the dissipation is associated with
bursts, and how much is due to the quiescent structures. Figure 6(a) cannot be
used for that purpose, because the mean flow is not included in (7), but it can be
shown that the correlation between the production and the total dissipation is even
stronger than for D. If we define ‘bursts’ from figure 6(a) as points where P+ � 4,
roughly half of the total dissipation is due to them.

Even more closely related to the friction coefficient than the dissipation is the
Reynolds stress averaged over individual boxes. The joint p.d.f of the production
and the maximum stress is given in figure 6(b) and, if we again use P as diagnostic
for bursting, it is clear that most of the Reynolds stress is associated with unsteady
bursting. Note that these bursts are not the ejections associated with the passing
of quiescent vortices. The sub-boxes that we have used to analyse the flow are large
enough to contain a full vortex pair, and in particular they are large enough for
their mean wall-normal velocity to be always very close to zero. The differences of
the Reynolds stresses in figure 6(b) are differences between quiescent and excited
full sets of structures. Other mean profiles also change according to the location of
the sub-box in the bursting cycle34. The general effect of bursting is to move the
active structures away from the wall.

5. CONCLUSIONS

We have briefly reviewed the present state of the understanding of the dynamics
of turbulent flows near smooth walls. This is a subject that, like most others in
turbulence, is not completely closed, but which has evolved in the last two decades
from empirical observations to relatively coherent theoretical models. It is also
one of the first cases in turbulence, perhaps together with the structure of small-
scale vorticity in isotropic turbulence, in which the key technique responsible for
cracking the problem has been the numerical simulation of the flow. The reason
is that the Reynolds numbers of the important structures are low, and therefore
accessible to computation, while experiments are difficult. For example the spanwise
Reynolds number of the streaks is only of the order of z+ = 100, which is less than



a millimetre in most experiments, but we have seen that it is well predicted by the
range of parameters in which the associated equilibrium solutions exit. We have seen
that the larger structures coming from the outside flow interfere only weakly with
the near-wall region, because the local dynamics are intense enough to be always
dominant. The spacing of the streaks just mentioned has been observed up to the
highest Reynolds numbers of the atmospheric boundary layer42.

On the other hand the thinness of the layer in which the dynamics takes place
makes the flow very sensitive to small perturbations at the wall. Roughness elements
with heights of the order of a few wall units, microns in a large pipe, completely
destroy the delicate cycle that has been described here, and can increase the friction
coefficient by a factor of two43. Conversely it only takes a concentration of polymers
of a few parts per million in the near-wall region44 to decrease the drag coefficient
by 40%. The same can be said of the control strategies based on the manipulation of
the near-wall structures45,46. It has often been questioned whether such strategies,
which have mostly been developed in low-Reynolds-number numerical simulations,
would lose effectiveness at higher Reynolds numbers. The analysis in section 2 shows
that they will, because the dissipation in the logarithmic layer cannot be avoided,
but that the degradation with h+ is only logarithmic. The same conclusion follows
from the experience with riblets, another near-wall manipulation method, which are
known to remain effective at flight Reynolds numbers47.

The preparation of this paper was supported in part by the CICYT grant DPI2003–
03434. I am deeply indebted to J.C. del Álamo, O. Flores, G. Kawahara and M.P.
Simens for providing most of the data used in the figures.
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