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The effect of the wall-normal diffusion on the spanwise spreading of a steady passive
scalar interface is computed for a laminar channel in which the Péclét number, Pe, is
high but the velocity profile is parabolic. Two regimes are found according to whether
the dimensionless streamwise coordinate x̃ is smaller or larger than Pe. In both cases
the mixing layer spreads as x̃1/2 to the lowest approximation in Pe−1, although with
different numerical coefficients. When x̃ � Pe there is a faster growth of order x̃1/3 that
is restricted to boundary layers near the wall. The intermediate region between those
two limits is universal, and is computed numerically. Quantitative results are given that
should be useful to experimentally measure diffusion coefficients. The results are easily
generalizable to other velocity profiles.

1. Introduction
Taylor (1953, 1954) showed in two classic papers that the effective diffusion coeffi-

cient of a solute is enhanced when the mixing occurs in a sheared flow. His analysis
deals with the experimentally important case in which the solute is injected as a plug
filling a tube, and the diffusion is nominally streamwise. It therefore competes with the
advection by the sheared streamwise velocity, which generates a wall-normal concent-
ration gradient that is responsible for the increased diffusion. A different experimental
configuration has recently become common in which the diffusion happens in a narrow
channel where two streams of different solute concentrations are injected side by side
in the spanwise direction. That configuration has for example been used to measure
diffusion coefficients and reaction parameters between different species (Ismagilov
et al. 2000; Kamholz & Yager 2001; Baroud et al. 2002). The conditions are such
that, although the Reynolds number is low enough for the flow to remain laminar,
so that the mean velocity profile stays approximately parabolic, the Péclét number,
Pe, of the solute is large, and the lateral diffusion occurs slowly. Since the evolution
of the mixing layer is then also slow, its growth is also modified by the interaction
with the streamwise shear. It is for example clear that, were it not for the wall-normal
diffusion, the mixing layer would grow at different rates at different wall distances,
corresponding to the different local velocities.

This configuration has been analysed qualitatively in the chemical literature, with
results which generally agree with those obtained below. Kamholz et al. (1999) argued
for example that the diffusion laws are different when the streamwise development
length is small or large, and that the criterion separating the two regions is the
Péclét number. They analysed the far-downstream case, and concluded that the layer
grows there as if the flow were uniform with the bulk velocity. Ismagilov et al. (2000)
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concentrated on the upstream region and noted that the spreading law near the
wall had then to be different from that in the core of the channel. They generalized
Levèque’s (1928) analysis of diffusion in a shear (see Schlichting 1979) to show that
the layer should spread near the wall as the cube root of the downstream coordinate,
but that at the centre of the channel it should follow the more classical square-root
law. They documented the two spreading exponents in their experimental channel.
Kamholz & Yager (2002) have more recently presented a numerical calculation of the
flow that is essentially equivalent to the one given below in § 2, and which confirms
the previous qualitative conclusions. They however apparently failed to realize that
the problem is parameter-free, and that their solution could be applied to any
channel with a parabolic profile as long as the dimensionless distance is of the order
of Pe.

The purpose of the present paper is to analyse quantitatively the steady mixing
layer in the idealized case in which the velocity profile is parabolic, and the solute
is diluted enough for the diffusion to be Fickian. We will show that the problem
can be expressed to lowest approximation in a universal form, and we will give
solutions in enough detail to allow the experimental arrangement to be used in the
determination of molecular diffusion coefficients. Special emphasis will be put on
the two asymptotic limits in which the downstream dimensionless distance is much
smaller or much greater than the Péclét number, which are difficult to treat as part
of the numerical simulation mentioned above.

A secondary motivation for this paper is the recent identification of two coexisting
spreading laws in the spectral density of the streamwise velocity fluctuations in
turbulent wall flows. It was shown by del Álamo et al. (2004) and by Jiménez, del
Álamo & Flores (2004) that those spectra contain relatively narrow ridges at long
wavelengths, scaling as λz ∼ λ1/3

x in the viscous and buffer sublayers, and as λz ∼ λ1/2
x

in the logarithmic region. By interpreting the wavelengths λx and λz as characteristic
streamwise and spanwise dimensions of individual velocity structures, those authors
suggested that the above laws could be explained by the spreading of wakes left in
the mean velocity profile by compact wall-normal-velocity structures.

It has often been noted that, for long streamwise structures, the equations for
the streamwise and for the transverse velocity components approximately decouple,
and that the former can be approximated as a passive species advected by the latter
(Orlandi & Jiménez 1994). In a turbulent flow this advection can be represented as
a turbulent diffusion, and it was shown by del Álamo et al. (2004) that reasonable
assumptions on the advection velocity of the generating structures and on the effective
eddy viscosity yield spreading rates which agree quantitatively with the spectral
square-root behaviour observed in the logarithmic layer. It was also noted by Jiménez
et al. (2004) that the conditions of uniform shear and constant diffusion coefficient
required for the cube-root diffusion law cited above are reasonable assumptions near
the wall. Finally, the physical structure of the wakes in the logarithmic region was
isolated by means of conditional statistics in del Álamo et al. (2005), and supporting
evidence for wakes in the buffer layer was provided by Jiménez et al. (2004).

Diffusion in turbulent flows is complicated by the spatial variability of the eddy
viscosity, and the comparison between theory and experiments is weakened by the
doubtful nature of the eddy-viscosity model itself. That question will therefore not
be pursued further, and the extent to which we will consider this secondary problem
here will only be to document the interaction of the two spreading laws in a simple
setting in which the underlying equations are well defined, and where the experimental
comparison can be carried out unambiguously.
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Figure 1. Problem geometry.

The structure of the paper is as follows. The basic equations are defined in § 2, which
also contains the numerical integration of the reduced universal problem. The near-
and far-field limits of that solution are analysed in § § 3 and 4, and the conclusions are
summarized in § 5. A preliminary version of this work appeared in Jiménez (2004),
but the reader is warned that it contained incorrect notation and minor factual errors
that were pointed out during the refereeing of this paper, and which have now been
corrected.

2. Basic scaling
Consider a channel between two infinite parallel plates located at y∗ = ±h, and

assume that its velocity profile is parabolic (see figure 1). Normalize the velocity U ∗

with its maximum Uc, and the coordinates with h, so that U =1 − ỹ2, where ỹ = y∗/h

and U = U ∗/Uc. Denote by x̃ and z̃ the streamwise and spanwise coordinates,
normalized in a similar way. Two streams with different concentrations of a passive
scalar c are initially at z̃ > 0 and z̃ < 0, and come together at x̃ = 0. The diffusion
equation for c is

Pe (1 − ỹ2)∂x̃c = ∂x̃x̃c + ∂ỹỹc + ∂z̃ z̃c, (2.1)

where Pe = Uch/κ � 1, and κ is the diffusivity of c. We will assume that there is no
diffusion flux into the walls, so that

∂ỹc = 0 at ỹ = ±1, (2.2)

and that the mixing takes place between

c → ±1/2 as z̃ → ±∞. (2.3)

As long as x̃ � 1 the streamwise diffusion term is negligible with respect to the other
two directions, and can be neglected. The spreading of the mixing layer involves the
balance of the streamwise advection with the spanwise diffusion, which have to be of
the same order. If x̃ = O(L), the spanwise scale then has to be z̃ = O(L/Pe)1/2, and
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Figure 2. Numerical solution of (2.6), for s > 0 and y < 0. The wall is at the bottom, and the
channel centre at the top. The flow is from bottom left to top right. The isosurface represented
is c = 0.3. The isolines on the top plane are c = 0.05(0.05)0.3, and those at the bottom plane
are c =0.3(0.05)0.45.

(2.1) becomes

(1 − y2)∂xc = (LPe)−1∂xxc + LPe−1∂yyc + ∂zzc, (2.4)

where x = x̃/L, y = ỹ, and z = z̃(Pe/L)1/2.
There is a natural scaling, L = Pe, in which the three largest terms of (2.4) are of

comparable magnitude. Defining final stretched coordinates

x = x̃/Pe, y = ỹ, z = z̃, (2.5)

we obtain

(1 − y2)∂xc = ∂yyc + ∂zzc + O(Pe−2). (2.6)

The leading order of this equation is parameter-free, and can be integrated numeric-
ally. The solution is symmetric with respect to y = 0, and antisymmetric with respect
to z = 0, and is shown in figure 2 as a function of the scaled x, of y, and of the usual
similarity variable for two-dimensional diffusion problems

s = z/x1/2. (2.7)

It has been computed using a second-order Crank–Nicholson marching code, using
200 grid points in y, and between 200 and 800 points in z, depending on the distance
to the origin. The step in x was refined to ensure grid independence in the critical
region of small x. The solution in the figure corresponds to the overlap of three
different computations in three different x-ranges, and the lack of discontinuities
between the ranges was used as a criterion for numerical convergence.

It is seen in the figure that the solution follows the square-root law fairly well at the
central plane, but that near the wall it spreads faster, specially at the early stages of
the mixing. Even at the central plane there is a transition in the growth rate around
x = 1. As mentioned in the introduction, Kamholz & Yager (2002) discuss a numerical
solution of (2.6) which is essentially equivalent to the one in figure 2, although they
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present it as applying only to a particular Péclét number. They analyse it in terms of
the local growth exponent, which is the logarithmic slope of the growth of the mixing
width. They for example describe the transition between the two different growth
coefficients near the central plane of the channel as a local growth exponent of 2/3.

The numerical integration cannot be extended in practice to values of x which
are much smaller or much bigger than 1, where the layer is either very thin or very
thick. To understand those two limits it is easier to consider directly the asymptotic
behaviour of the solutions in the two cases.

3. The near limit, x̃ � Pe

This is the relevant experimental case when Pe � 1, unless very long channels
are available. When x � 1, which corresponds to L � Pe in (2.4), the longitudinal
transport and the transverse diffusion are the dominant terms in (2.6). It is then
natural to attempt a representation of this near solution cnear as an asymptotic series
in L/Pe � 1, each of whose terms would satisfy a diffusion equation in the (x, z)-
plane, with small corrections due to the wall-normal diffusion. However, since L/Pe
was defined as a measure of the magnitude of x, this suggests an expansion

c ≡ cnear = cn,0 + xcn,1 + . . . + xNcn,N + O(xN+1), (3.1)

for some chosen asymptotic order N . The coefficients cn,k are functions of y and of s.
They satisfy

∂sscn,k + (1 − y2)

(
s

2
∂scn,k − kcn,k

)
= −∂yycn,k−1, (3.2)

where cn,0 satisfies the boundary conditions (2.3), and all the higher-order terms vanish
as z → ±∞. This is a well-ordered hierarchy of equations for cn,k in which y appears
only as a parameter or in a right-hand side that depends on the solution cn,k−1 of a
previously obtained member of the hierarchy. In the leading-order equation

∂sscn,0 + (1 − y2)
s

2
∂sc0,k = 0, (3.3)

the right-hand side vanishes, and the solution can be written immediately as

cn,0 = 1
2
erf(Z/2), (3.4)

where

Z = s(1 − y2)1/2. (3.5)

Equation (3.4) satisfies the boundary conditions for c at z → ±∞, but not the zero-flux
conditions (2.2) at the walls.

Consider the neighbourhood of the lower wall, and define the distance to the wall
as y ′ = y + 1. When y ′ � 1 the velocity is U ≈ 2y ′, and cn,0 behaves as y ′1/2. In this
region the width of the mixing layer given by (3.4) is z = O([x/y ′]1/2), and there is a
boundary layer of thickness y ′ = O(x1/3) in which the wall-normal diffusion cannot
be neglected. There are then new similarity variables

η = y ′/x1/3, (3.6)

and

ζ = z/x1/3, (3.7)
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Figure 3. (a) Similarity solution for the boundary layer near the lower wall. ——, Similarity
solution; – – –, outer solution (3.9). The contours are cBL = 0.1(0.1)0.4. (b) Correction to the
vertically integrated concentration due to the boundary layer. ——, 〈cBL − cn,0〉; – – –, large-ζ
limit, 0.5/ζ 2.

in terms of which (2.6) becomes

∂ηηc + ∂ζζ c + 2
3
η(η∂ηc + ζ∂ζ c) = O

(
x1/3

)
. (3.8)

The error term on the right-hand side is due primarily to the expansion of U near
the wall in terms of η. The concentration c must satisfy (2.2) at η = 0, and (2.3) at
ζ = ± ∞. It also has to match, when η � 1, the y ′ � 1 limit of the outer solution (3.4),

cn,0 ≈ 1
2
erf

[
ζ (η/2)1/2

]
. (3.9)

This is a parameter-free elliptic problem that can be solved numerically. Its solution,
cBL, is antisymmetric with respect to ζ = 0, and is shown graphically in figure 3(a).
It has been obtained in the domain ζ = (0, 8) and η = (0, 6), using a straightforward
second-order finite-difference code with a grid of 200 × 250 points. It tends to (3.9)
away from the wall, but it has a finite width in ζ at the wall.

Note that the higher-order terms of the outer expansion for cnear become increasing
singular near the wall. While the only singularity of cn,0 comes from the similarity
variable Z, the next term,

cn,1 = −Z(3 + 3y2 + y2Z2)

12
√

π(1 − y2)3
exp(−Z2/4), (3.10)

has an extra factor factor y ′−3. It is easy to show that cn,kx
k behaves near the wall as

(x/y ′3)k = η−3k . Since Z is also approximately ζη1/2 in that limit, it follows that the
inner limit of the outer solution is a function of ζ and η which has contributions
from all the orders in the expansion (3.1). It is however clear from the previous
discussion that the contributions to this function of the higher-order terms decay
quickly as η increases, and that the boundary-layer solution can be matched safely
to cn,0 as long as the matching is done far enough away. On the other hand, this is a
problem in which the only way to avoid singularities in the higher-order terms is to
use in the right-hand side of (3.2) the composite solutions formed by the lower-order
boundary-layer and outer solutions, instead of just by the outer ones (Van Dyke
1964). This has no effect in the outer region, where the inner and outer solutions
coincide but, within the boundary layer where ∂yycBL =O(x−2/3), the correction xc1

is O(x1/3). This was already suggested by the right-hand side of (3.8).
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What is often measured in experiments is the vertically integrated concentration

〈c〉 =
1

2

∫ 1

−1

c dy. (3.11)

Using (3.4), it can be written in the present case as

〈c〉 ≈ 〈cn,0〉 + x1/3〈�c〉 =

√
π

8
s exp(−s2/8)[I0(s

2/8) + I1(s
2/8)] + x1/3〈�c〉, (3.12)

where I0 and I1 are Bessel functions. The correction 〈�c〉 due to the boundary layers
is

〈�c〉(ζ ) =

∫ ∞

0

(cBL − cn,0) dη, (3.13)

and is given in figure 3(b). For ζ � 1 the solution cBL is everywhere close to its
asymptotic value 1/2, and (3.13) is mostly due to the integral of 1/2 − cn,0, which
can be evaluated exactly. That limit, 〈�c〉 ≈ 1/2ζ 2, is included in figure 3(b) for
comparison.

Because 〈cn,0〉(s) and 〈�c〉(ζ ) depend differently on x it is impossible to express
the composite solution in terms of a single similarity variable but, since (3.12) and
(3.13) only hold in the limit x � 1, it is usually possible to write asymptotically valid
expressions for most quantities. Consider for example the dimensionless ‘slope’ thick-
ness defined by

δs = δ∗
s /h =

c∞ − c−∞

〈c〉′
z

(3.14)

where c′
z stands for ∂zc at z = 0. Using the expressions above,

δ−1
s,near = 〈cn,0〉′

sx
−1/2 + 〈�c〉′

ζ ≈
√

π

8
x−1/2 + 0.0551, (3.15)

where 〈cn,0〉′
s follows from (3.12), and 〈�c〉′

ζ has been estimated numerically from
figure 3(b). Similar expressions can be obtained for other product thicknesses.

4. The limit x̃ � Pe

When x � 1, the mixing layer becomes much wider than h, and the dominant
diffusion term is the one normal to the wall. In this far region, the natural expansion
is an asymptotic series in powers of the small quantity Pe/L which, as in the previous
section, is actually an expansion in inverse powers of x,

c ≡ cfar = cf,0 + x−1cf,1 + . . . + x−Ncf,N + O(x−N−1), (4.1)

where the coefficients are again functions of s and y, and satisfy

∂yycf,k+1 = −∂sscf,k − (1 − y2)

(
s

2
∂scf,k + kcf,k

)
. (4.2)

To leading order, ∂yycf,0 = 0 and, from the boundary conditions (2.2), it follows that
cf,0 is only a function of s. To obtain it we must enforce a compatibility condition
from the next order, where

∂yycf,1 = −(1 − y2)
s

2
∂scf,0 − ∂sscf,0. (4.3)

The correction cf,1 has to satisfy the Neumann conditions (2.2) at y = ±1, and it
follows from the integration of (4.3) between the two walls that this is only possible
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Figure 4. (a) Slope thickness of the mixing layer, scaled with x1/2. , Numerical result;
, small-x limit (3.15); , large-x limit (4.6). (b) Lateral position of the isosurface

c = 0.4, scaled with x1/2, for different wall distances. , y ′ =0.01; , y ′ = 0.15; ,
central plane. y ′ =1. The dotted line corresponds to z ∼ x1/3.

if

〈(1 − y2)〉 s

2
∂scf,0 + ∂sscf,0 =

s

3
∂scf,0 + ∂sscf,0 = 0, (4.4)

from where we write immediately

cf,0 = 〈cf,0〉 = 1
2
erf(s/

√
6). (4.5)

Note that the similarity variable in (4.5) is the same as the one for 〈cn,0〉 in the
previous section, but that the spreading rate is different. The first-order correction
cf,1 can be obtained by integrating (4.3) with respect to y, and contains an unknown
additive function of s that has to satisfy a diffusion equation similar to (4.4), but the
solution is now uniformly valid across the channel, and the correction is everywhere
O(x−1). To leading order, the slope thickness of the mixing layer is

δs,far = (6πx)1/2. (4.6)

In figure 4(a) the evolution of the slope thickness obtained from the numerical
solution of (2.6) is compared to the asymptotic expressions (3.15) and (4.6). The
approximation is much better in the downstream limit than in the one near the origin,
in agreement with the different orders of the corrections which have been neglected,
but the solution deviates little in general from a square-root growth law.

Note that we could have written the similarity variable s in the far region with an
arbitrary shift in the origin of x, since the approximation in this section does not hold
at the physical origin of the mixing region. Any shift in the virtual origin can however
be expected to be at most O(1), and would only appear in a large-x expansion as a
term of O(x−1).

The growth of the mixing layer at different distances from the wall is summarized
in figure 4(b), which is compiled from the numerical results. The square-root growth
appears as constant in this plot, and it is followed by the layer at the central plane.
The two different constants at small and large downstream locations correspond to
the two outer solutions (3.9) and (4.5). Near the wall the layer follows initially the
x1/3 growth law, and only joins the square-root behaviour when the mixing layer
becomes vertically uniform farther downstream. The behaviour of the intermediate
location at y ′ = 0.15 is interesting. It is initially in the outer core of the channel, where
it follows approximately the square-root law. It then changes to an x1/3 behaviour as



Growth of a mixing layer in a laminar channel 253

it is swallowed by the growth of the wall boundary layer, and it only returns to x1/2

in the downstream limit in which the layer becomes uniform.

5. Conclusions
We have shown that the spreading of a spanwise discontinuity of a passive scalar in

a laminar channel is modified by the wall-normal diffusion due to the variation of the
advection velocity with the distance to the wall. The spreading in the central plane is
always approximately like (x̃/Pe)1/2, but the constant is different near the origin and
far downstream. Near the origin the wall-normal diffusion is negligible in this central
region, but it becomes dominant far downstream, where the layer is much wider than
the channel thickness. The layer then becomes uniform in the wall-normal direction,
and behaves as if the advection velocity were constant and equal to the bulk velocity.

Near the origin the wall-normal diffusion is only important in boundary layers
that develop near each wall. They have widths and heights of the order of (x̃/Pe)1/3,
and they account for corrections of that order to the square-root behaviour of the
vertically integrated scalar profiles. The transition between the two regimes occurs at
x̃ ≈ Pe, when the wall layers fill the whole channel. We have given numerical results
which can be used to interpret experiments.

Because the shear is orthogonal to the spreading, its effect on the vertically averaged
concentration profile is weaker than in the better-known case of the longitudinal
diffusion of a plug in a tube. While in that case the effective diffusion coefficient
increases without bound with the Péclét number (Taylor 1953), here the maximum
difference is between the asymptotic laws (3.15) and (4.6), which correspond to an
effective advection velocity π2Uc/16 ≈ 0.62Uc near the origin, and to the bulk velocity
2Uc/3 far downstream. The resulting change of the averaged spreading rate is less
than 5%. Other experimental configurations would be more sensitive to this effect.
We have already mentioned that differentiating the present analysis with respect to
z gives the spreading of a scalar injected from a line source aligned with the y-axis.
Injecting the scalar from a point at one wall, on the other hand, would result in
an x1/3 initial spreading as long as the plume stays close to the wall, changing later
to x1/2 as it penetrates into the core region. The turbulent wakes mentioned in the
introduction are presumably closer to this configuration.

Real experimental channels do not have infinite span, and their profiles are not
always completely developed. Their velocity is then not exactly parabolic, but most of
the previous analysis applies to them with few changes. In the far region, equation (4.4)
applies to any velocity profile, with the only difference being how the bulk velocity
is determined. In the region x � 1, the second factor in the core similarity variable
(3.5) is the square root of the velocity, and this also holds for any profile. In the
boundary layers of that region, the velocity profile only enters as the approximation
U ≈ 2y ′, and the analysis can be extended to other cases by substituting the numerical
coefficient 2/3 in front of the last term in the left-hand side of (3.8) by U ′(0)/3.

Other extensions are not so trivial. The information obtained here on the diffusion
of a solute is enough to compute the product thickness of a fast chemical reaction,
such as those often used as tracers (Liñán & Williams 1993), but the generalization
to several solutes or reaction products with different diffusion coefficients is not easy,
and introduces extra parameters. It will not be pursued here.

This work was supported in part by CICYT, under grant BPI2003-03434, and by
the US Department of Energy under the ASC program.
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