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The study of turbulence near walls has experienced a renaissance in the last decade,
largely owing to the availability of high-quality numerical simulations. The viscous and
buffer layers over smooth walls are essentially independent of the outer flow, and there is
a family of numerically exact nonlinear structures that account for about half of the
energy production and dissipation. The rest can be modelled by their unsteady bursting.
Many characteristics of the wall layer, such as the dimensions of the dominant
structures, are well predicted by those models, which were essentially completed in the
1990s after the increase in computer power made the kinematic simulations of the late
1980s cheap enough to undertake dynamic experiments.
Today, we are at the early stages of simulating the logarithmic (or overlap) layer, and

a number of details regarding its global properties are becoming clear. For instance, a
finite Reynolds number correction to the logarithmic law has been validated in turbulent
channels. This has allowed upper and lower limits of the overlap region to be clarified,
with both upper and lower bounds occurring at much larger distances from the wall than
commonly assumed. A kinematic picture of the various cascades present in this part of
the flow is also beginning to emerge. Dynamical understanding can be expected in the
next decade.
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1. Introduction

Some of the first systems in which turbulence was identified were wall-bounded
flows (Hagen 1839; Darcy 1854), but to date they remain poorly understood
compared with homogeneous or free-shear turbulence. Part of the reason is that we
are interested in different things in each case.While the emphasis away fromwalls is
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on the self-similar energy cascade (Kolmogorov 1941) or in the energy-containing
structures controlled by large-scale instabilities (Brown & Roshko 1974),
wall-bounded turbulence is essentially inhomogeneous and anisotropic. The eddies
containing most of the energy at one wall distance are in the midst of the inertial
cascade when they are observed farther away from the wall. The local Reynolds
number, defined as the scale disparity between energy and dissipation, also changes
with the wall distance. The main emphasis in wall turbulence is not so much on the
energy cascade between eddies at the same geometric location, which is probably
similar to that in other turbulent flows, but on the interplay between different scales
at different distances from the wall.

A particularly simple part of wall-bounded turbulent flows is the thin near-
wall region formed by the viscous and the buffer layers in the immediate vicinity
of smooth walls, where viscosity is important and the energetic and dissipative
scales overlap. This layer, although geometrically negligible when compared with
the bulk of the flow, is both technologically and scientifically important, because
a relatively large fraction of the velocity difference across boundary layers resides
in it. Its modern study began experimentally by Kim et al. (1971) and Morrison
et al. (1971) in the 1970s, and got a strong impulse with the advent of the first
high-quality direct numerical simulations by Kim et al. (1987) in the late 1980s
and 1990s.

The logarithmic layer is located just above that region, and it is also unique to
wall turbulence. It has been studied experimentally for a long time, but its
numerical simulation is only now beginning to be possible. It is still poorly
understood compared with the viscous layers.

The numerical emphasis of the present review is partly a personal bias of the
authors, but it is not altogether arbitrary. When direct numerical simulations are
possible, they allow much more general ‘instrumentation’, but more importantly
they allow non-physical numerical ‘experiments’ to probe turbulence dynamics in
a way not possible in the laboratory. However, the simulations are limited in
Reynolds number, and for this reason, the near-wall region is well suited to
numerical investigation. It has also been difficult to explore experimentally, so
much of the available information is numerical. We explore here what can be
learned from this rich source of information. There is also a large, valuable and
complementary experimental literature on wall-bounded turbulence, which
covers a larger range of Reynolds numbers and uses continuously improving
instrumentation; see the papers in this special issue for reviews.

This paper is organized as follows. In §2, we define the near-wall layer and
outline the classical models for it. In §3, we review the recent work on
equilibrium solutions for wall-bounded shear flows and how they are related to
turbulence, and in §4, we discuss briefly the present status of our understanding
of the logarithmic layer. Finally some conclusions are offered.
2. The structure of near-wall turbulence

Wall-bounded turbulence over smooth walls can be described to a good
approximation in terms of two sets of scaling parameters (Tennekes & Lumley
1972). Viscosity is important near the wall, and the units for length and
velocity are constructed with the kinematic viscosity n and the friction velocity
Phil. Trans. R. Soc. A (2007)
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utZ(tw/r)
1/2, which is based on the shear wall stress tw and the fluid density r.

Magnitudes expressed in these ‘wall units’ are denoted byCsuperscripts.
The wall distance yC can, for example, be interpreted as a Reynolds number
for wall-attached eddies. Viscosity remains relevant up to yCz150 (Österlund
et al. 2000), and it is owing to those relatively low values that this region is a
good candidate for simple modelling.

Farther from the wall, the velocity also scales approximately with ut but the
length-scale is the flow thickness h. Between the inner and the outer regions,
there is an intermediate layer where the only length-scale is the wall distance y.
The mean velocity in that ‘logarithmic’ layer is given approximately by

UCZ kK1log yCCB: ð2:1Þ

The Kármán constant kz0.4 is approximately universal. The intercept constant
is Bz5 for smooth walls, but depends on the details of the near-wall region.

The two viscous inner layers are extremely important for the flow as a whole.
If h is the half-height in channels, the boundary layer thickness, or the pipe
radius, the ratio between the inner and the outer length-scales is the friction
Reynolds number, hC, which ranges from 200 for barely turbulent flows to hCZ
5!105 for large water pipes. In the latter, the near-wall layer is only
approximately 3!10K4 times the pipe radius, but it follows from (2.1) that
40% of the velocity drop takes place below yCZ50. Turbulence is characterized
by the expulsion towards the small scales of the energy dissipation, away from
the energy-containing eddies. In wall-bounded flows, this separation occurs not
only in the scales of the velocity fluctuations, but also in the mean velocity profile
from the centre of the flow towards the walls.

Owing to this ‘singular’ nature, the near-wall layer is not only important for
the rest of the flow, but it is also essentially independent from it. This was shown
by numerical experiments with ‘autonomous’ simulations by Jiménez & Pinelli
(1999), where the outer flow was artificially removed above a certain wall
distance d. The near-wall dynamics was unaffected as long as dCT60, at least
when compared with low-Reynolds number flows. We will see below that there is
some influence of the outer flow even in the viscous sublayer, but it happens at
scales which are different from those of the typical inner layer dynamics.

Most of the velocity difference that does not reside in the near-wall region
is concentrated in the logarithmic layer, which extends experimentally up to
yZ0.2h (figure 1). It follows from (2.1) that the velocity difference above
this limit is only 20% of the total when hCz200, and decreases logarithmically
for higher Reynolds numbers. In the limit of infinite Reynolds number, all the
velocity drop is in the logarithmic layer.

The buffer, viscous and logarithmic layers are the most characteristic features
of wall-bounded flows, and they constitute the main difference between them and
other types of turbulence. The first two layers are today relatively easy to
compute, because the local Reynolds numbers are low, and we will see below that
they can be described in terms of relatively simple eddies. Owing to the velocity
estimates in the previous paragraphs, understanding those layers has practical
implications. They are, for example, responsible for most of the friction drag at
moderate Reynolds numbers, and any attempt to control wall friction has to
centre on them.
Phil. Trans. R. Soc. A (2007)
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Figure 1. Pre-multiplied spectra, kE(k), of the kinetic energy, ju 0j2 (shaded), and of the entropy,
ju0j2 (lines), as functions of the streamwise wavelength lxZ2p/kx , and of the wall distance, y.
At each y, the lowest contour is 0.86 times the local maximum. The two horizontal lines are the
yCZ80 and y/hZ0.2, and represent the limits of the logarithmic layer. The diagonal line is lxZ2y.
Channel by Hoyas & Jiménez (2006). hCZ2000.
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The logarithmic layer, on the other hand, is an intrinsically high-Reynolds
number region. Its existence requires at least that its upper limit should be above
the lower one, so that 0.2hCT100 and hCT500. Owing to this, numerical
simulations with an appreciable logarithmic region have only recently become
available (del Álamo et al. 2004; Hoyas & Jiménez 2006).
(a ) The classical model

The region below yCz100 has been intensively studied. It is dominated by
coherent streaks of the streamwise velocity and by quasi-streamwise vortices.
The former are an irregular array of long (xCz103–104) sinuous alternating
streamwise jets superimposed on the mean shear, with an average spanwise
separation of the order of zCz100 (Smith & Metzler 1983). The vortices are
slightly tilted away from the wall (Jeong et al. 1997) and stay in the near-wall
region only for xCz200. Several vortices are associated with each streak
(Jiménez & Moin 1991), with a longitudinal spacing of the order of xCz400.
Most of them merge into disorganized vorticity outside the immediate
neighbourhood of the wall (Robinson 1991).

It was proposed very early that streaks and vortices were involved in a mutual
regeneration cycle in which the vortices were the results of instability of the
streaks (Swearingen & Blackwelder 1987), while the streaks were caused by the
advection of the mean velocity gradient by the vortices (Bakewell & Lumley
1967; Kim et al. 1971). There is still some discussion on how the vortices are
generated, but it is known that they derive from the streaks, because disturbing
the latter inhibits their formation (Jiménez & Pinelli 1999). This manipulation is
only effective between yCz60 and 10, suggesting that the streaks are involved in
the vortex-generation process mostly within that region. Numerical (Hamilton et
al. 1995; Waleffe 1997; Schoppa & Hussain 2002) and analytical (Reddy et al.
1998; Kawahara et al. 2003) work on model streaks shows that they are linearly
unstable to a variety of sinuous perturbations, associated with inflection points of
Phil. Trans. R. Soc. A (2007)
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the perturbed velocity profile, whose eigenfunctions correspond well with the
shape and the location of the observed vortices. The model implied by these
instabilities is a time-dependent cycle in which streaks and vortices grow,
generate each other and eventually decay. Jiménez & Pinelli (1999) discuss other
unsteady models of this type and give additional references.
3. Exact solutions for the sublayer

A slightly different point of view is that the regeneration cycle is organized around a
nonlinear travelling wave, a fixed point in some phase space, representing a non-
uniform streak. This is actually not too different from the previous model, which
essentially assumes that the undisturbed streak is a fixed point in phase space, and
that the cycle is an approximation to an orbit along its unstable manifold. The new
model, however, considers fixed points which are non-trivially perturbed streaks
and separates the dynamics of turbulence from that of transition.

The organization of the buffer layer does not require the chaos observed in
fully turbulent flows. Simulations in which the flow is substituted by an ordered
array of identical structures reproduce the correct statistics (Jiménez & Moin
1991). In a further simplification, which occurred at roughly the same time as
the previous one, nonlinear equilibrium solutions of the three-dimensional
Navier–Stokes equations were obtained numerically by Nagata (1990), with
characteristics which suggested that they could be useful in describing the
near-wall region. Other such solutions were later found for plane Couette flow
(Waleffe 2003), plane Poiseuille flow (Toh & Itano 2001; Waleffe 2001, 2003),
and for an autonomous wall flow (Jiménez & Simens 2001). All of them look
qualitatively similar (Waleffe 1998; Kawahara et al. 2003), and contain a
wavy low-velocity streak flanked by a pair of staggered quasi-streamwise
vortices of alternating signs, closely resembling the spatially coherent objects
educed from the near-wall region of true turbulence. An example is shown in
figure 2. Their mean and fluctuation intensity profiles are reminiscent of
experimental values (Jiménez & Simens 2001; Waleffe 2003), as shown in
figure 3a, and the range of spanwise wavelengths in which they exist is in the
neighbourhood of the observed spacing of the streaks in the sublayer
(Jiménez et al. 2005).

In those cases in which the stability of the equilibrium solutions has been
investigated, they have been found to be unstable saddles in phase space at the
Reynolds numbers at which turbulence is observed. They are not therefore
expected to exist as such in real turbulence, but any turbulent flow could spend a
substantial fraction of its lifetime in their neighbourhood. Exact limit cycles and
heteroclinic orbits based on these fixed points have been found numerically
(Kawahara & Kida 2001; Toh & Itano 2003), and several reduced dynamical
models of the near-wall region have been formulated in terms of low-dimensional
projections of such solutions (Aubry et al. 1988; Sirovich & Zhou 1994; Waleffe
1997). Such unsteadiness is an important part of wall turbulence. Jiménez et al.
(2005) showed that a well-defined bursting cycle can be identified both in
simplified solutions and in fully turbulent flows, and that the unsteadiness
accounts for roughly 50% of the production and dissipation of turbulent energy in
the buffer region.
Phil. Trans. R. Soc. A (2007)
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Figure 2. Exact permanent-wave solution for the Navier–Stokes equations in an ‘autonomous’
domain below dCZ40. The flow is from top-right to bottom-left. The central object is an isosurface
of the streamwise perturbation velocity, ~uCZK3:5, and defines the streak. It is flanked by two
staggered streamwise vortices of opposite signs, uCx ZG0:18, whose effect is to create an upwash
that maintains the streak ( Jiménez & Simens 2001).
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Figure 3. (a) Profiles of the root-mean-square velocity fluctuations in a channel (Kim et al. 1987)
with hCZ180 (without symbols), and in the permanent-wave solution in figure 2 (symbols).
Straight line represents streamwise velocity; dashed line represents wall-normal velocity. (b)
Comparison of the maxima of the u 0 and v0 profiles of some exact solutions with near-wall
turbulence, taken over boxes of size xC!zC!yCZ380!110!50. Line of triangles represent
Couette flow, at different Reynolds numbers ( Jiménez et al. 2005). Solid symbols are ‘upper
branch’ solutions, and open ones are ‘lower branch’. Filled circles represent autonomous permanent
waves ( Jiménez & Simens 2001). The solid loop is a limit cycle in plane Couette flow (Kawahara &
Kida 2001). Other symbols are 90% probability isocontours from large numerical channels (del
Álamo & Jiménez 2003; del Álamo et al. 2004): upward open triangle, hCZ1880; open rhombus,
950; downward open triangle, 550; open circle, 180.
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Another question is whether all the exact solutions that have been published for
wall-bounded flows are related to each other and to near-wall turbulence. This is
addressed in figure 3b, taken from Jiménez et al. (2005). The earliest and
best-understood non-trivial steady solutions of a wall-bounded Navier–Stokes
Phil. Trans. R. Soc. A (2007)
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Figure 4. Spectral energy density, kxkzE(kx,kz), in the near-wall region (yCZ15) of (a) stream-
wise velocity and (b) pressure, in terms of the streamwise and spanwise wavelengths. Numerical
channels (del Álamo & Jiménez 2003; del Álamo et al. 2004; Hoyas & Jiménez 2006). Dash-dotted
line, hCZ547; dashed line, 934; straight line, 2003. Spectra are normalized in wall units, and the
contours are 0.125 and 0.625 times the maximum of the spectrum for the highest Reynolds number.
The straight line is lzZ0.75lx, and the heavy dots are lzZ1.5 h for the three cases.
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shear flow are those byNagata (1990) for plane Couette flow. They can be classified
into ‘upper’ and ‘lower’ branches in terms of their mean wall shear, and Jiménez
et al. (2005) showed that this classification can be extended to most of the other
known wall-bounded steady solutions. Both branches have very different
characteristics. The ‘upper’ solutions have relatively weak sinuous streaks flanked
by strong vortices. They consequently have relatively weak root-mean-square
streamwise-velocity fluctuations u 0, and strong wall-normal ones v0, at least when
compared with those in the lower branch. The solution in figure 2 belongs to the
upper branch, and we already saw in figure 3a that its r.m.s. velocity fluctuations
profiles agree well with those of a full channel. ‘Lower’ solutions have stronger and
essentially straight streaks and much weaker vortices.

The relative strength of both the types of fluctuations for a particular solution
can be characterized by the maximum values of its u0 and v0 profiles, both of which
are usually attained within the near-wall layer. Those two numbers can then be
used to compare different solutions among themselves, and with fully turbulent
flows. This is done in figure 3b, which compares single points from individual
equilibrium solutions, with probability density functions of the statistics taken
over sub-boxes of similar size in fully turbulent large-box simulations.

The results of the figure suggest that only the ‘upper-branch’ exact solutions
are representative of real turbulence, at least at the scales corresponding to a
single streak and to a single vortex pair. They also show that the correspondence
is reasonably good for the weaker turbulent fluctuations. As mentioned above,
stronger fluctuations correspond to unsteady bursting.
(a ) The failure of wall scaling

Note that the probability densities in figure 3b depend on the Reynolds
number, but they saturate beyond approximately hCZ1000. The same is not
true for the velocity fluctuation profiles compiled over full flows, instead of
Phil. Trans. R. Soc. A (2007)
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over small sub-boxes, which keep increasing as the Reynolds number grows
(DeGraaf & Eaton 2000). That effect is due to large outer flow velocity
fluctuations reaching the wall (del Álamo & Jiménez 2003; Jiménez et al. 2004),
and is unrelated to the structures considered in §3.

This is shown in figure 4a, which contains two-dimensional pre-multiplied
energy spectra of the streamwise velocity, displayed as functions of the
streamwise and the spanwise wavelengths. The three spectra correspond to
large numerical channels at different Reynolds numbers. The lower left corner
contains the streamwise velocity streaks discussed above, which are very
approximately universal and local to the near-wall layer. They have widths of
the order of zCZ100, and total lengths xCz104, independent of the Reynolds
number. The spectra differ from each other almost exclusively in the long and
wide structures represented in the upper right corner of the spectrum, whose
sizes are of the order of lx!lzZ10h!h (del Álamo & Jiménez 2003; Jiménez
et al. 2004; Hoyas & Jiménez 2006). Those structures extend into the
logarithmic layer, scale in outer units, and correspond approximately to the
‘attached eddies’ proposed by Townsend (1976). Since they are too large to
be contained within the averaging boxes used in §3, they do not influence the
statistics in figure 3b.

The most obvious interaction between the inner and outer layers is through
the pressure, which is a global quantity that has long been suspected of not
scaling in wall units (Townsend 1976, p. 168). It was also soon realized that a
failure of the pressure scaling should translate into a similar failure in the
velocities, since the pressure fluctuations would drive wall-parallel ‘inactive’
motions (Bradshaw 1967).

The pressure spectra for three Reynolds numbers are displayed in figure 4b.
They can be integrated to obtain the intensity of the pressure fluctuations, which
turns out to depend on log( y/h), because only eddies whose sizes are between y
and h contribute to the pressure at a given point. The logarithm comes about
because the pressure satisfies a Poisson equation whose right-hand side is a
combination of squares of the velocity gradients (Bradshaw & Koh 1981), which
Phil. Trans. R. Soc. A (2007)
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behave like ut/y in the overlap layer. Their integration results in

p0
2ðyÞwu4

tlog
3 y

h

� �
: ð3:1Þ

This behaviour is confirmed by figure 5. The maximum fluctuation is at
the top of the viscous layer, where p02 is proportional to log3(hC). This
agrees qualitatively with a recent survey of pressure fluctuations at the wall by
Hu et al. (2006), who found that p02w scales linearly with log(hC). The difference
in the exponents of the logarithm is not significant, because the range of
experimental Reynolds numbers is not enough to distinguish among exponents of
O(1). In fact, even if Hu et al. (2006) propose a linear law in their text, their
graphic compilation suggests a quadratic one. A similar scaling ambiguity was
found for the velocity fluctuations by del Álamo et al. (2004).

It follows from (2.1) that UC
N wlogðhCÞ and logarithmic scalings are sometimes

interpreted as ‘mixed’ scalings with some power of UN. From the argument
above, we believe that the logarithm is the correct quantity. Rough walls, where
the additive constant of (2.1) can be much smaller than the smooth ones, can
distinguish between the two interpretations. Flores & Jiménez (2006) collected
data for the velocity fluctuations over both the types of walls, and found that the
logarithm is in that case a much better scale than UC

N .
In this view, the scaling failure for some quantities near the wall is due to

the divergence at the wall of the Poisson integral for the pressure, which would
be logarithmically singular at infinite Reynolds number. The better-known
scaling failure of UC

N is due to a similar divergence of the integral of the mean
velocity gradient.
4. The logarithmic layer

We noted in §1 that the logarithmic layer is expensive to compute. The first
simulations with an appreciable logarithmic range have only appeared in the last
few years, and even in them the extent of the log layer is limited. Further, there
has been recent controversy regarding the limits of the logarithmic law, the
constants and even the functional form of the mean velocity profile. There is thus
some uncertainty regarding conditions under which a log layer is expected, and
its properties. This issue is addressed here by exploring finite Reynolds number
effects in the log layer.

(a ) The mean velocity in the logarithmic layer

The logarithmic velocity profile first deduced by Millikan (1938) was later
reinterpreted as arising from a high Reynolds number asymptotic analysis
(Yajnik 1970; Mellor 1972; Phillips 1987). In essence, the logarithmic law is the
matching condition in a multi-scale asymptotic analysis, in which the small inner
scale is the wall unit (n/ut), and the large outer scale is (in the channel) the
channel half-width h. As the leading term in an asymptotic approximation, it is
strictly valid only in the limit of infinite Reynolds number. However, since all
experiments and computations are at finite Reynolds number, it is of great
practical importance to determine how this asymptotic limit is approached with
increasing Reynolds number, so that the finite Reynolds number of available
observations can be accounted for. To this end, Afzal & Yajnik (1973) and
Phil. Trans. R. Soc. A (2007)
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Afzal (1976) extended the asymptotic analysis for channels and pipes to include
the lowest order finite Reynolds number effects in the overlap region, and
Phillips (1987) pursued a somewhat different asymptotic approach in boundary
layers with the same goal. But, to our knowledge, these finite Reynolds number
corrections have not yet been corroborated by experimental or computational
data. Here, numerical simulation data (del Álamo et al. 2004; Hoyas & Jiménez
2006) are employed for this purpose.

The asymptotic analysis is unusual because, due to the closure problem, the
functions appearing in the asymptotic expansion will not be solved for. Instead,
only the limiting behaviours of the inner and outer solutions are determined from
the asymptotic matching, which can be accomplished without further modelling
assumptions (Afzal 1976). Thus, the asymptotic behaviour of the mean velocity
described here is just a consequence of the well-known multi-scale structure of
the wall-layer. To demonstrate the ideas, a simplified version of the analysis is
outlined below. As in the Millikan analysis, matching is done on an expansion for
the velocity gradient, rather than on the velocity, and for simplicity, the
asymptotic form suggested by the Millikan results is adopted:

vuC

vyC
Z

1

yC
f0

1

yC

� �
Cd1f1

1

yC

� �
C/ inner; ð4:1Þ

vuC

vyC
Z

e

~y
F0ð~yÞC

D1

~y
F1ð~yÞC/ outer: ð4:2Þ

The gauge functions di and Di are functions of the small parameter eZ1/hC,
and the outer variable is ~yZeyC. For notational convenience, the inner
functions fi are expressed in terms of 1/yC, rather than yC. The matching
conditions will apply in the limit of yC/N (1/yC/0), while ~y/0. Since the
inner and outer solutions fi and Fi will not be determined, they are
represented in terms of a Taylor series about zero (essentially a Laurent
series in yC for the inner solution). The values of fi, Fi and their derivatives at
zero will thus be undetermined constants (like the Karman constant k). In
pursuing this analysis, we implicitly assume that the functions are sufficiently
regular at zero for the derivatives to exist. Matching is accomplished using the
technique of van Dyke (1975) and is pursued here for three steps, with the
following results at each step.

Step 1 : F0ð0ÞZ f0ð0ÞZ
1

k
: ð4:3Þ

Step 2 : d1 Z 3 f1ð0ÞZF 0
0ð0ÞZa: ð4:4Þ

Step 3 : D1 Z e2 F1ð0ÞZ f 01ð0ÞZb f 00 Z 0: ð4:5Þ
The first matching step reproduces the results of Millikan and the constant

is written 1/k for consistency with the standard nomenclature. The resulting
asymptotic forms for the inner and the outer expansions are obtained by
replacing the fi and Fi with the terms of their Taylor expansion that are
determined by the matching. These can then be integrated in y to obtain the
Phil. Trans. R. Soc. A (2007)
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Figure 6. yduC/dy from direct numerical simulation at hCZ550, 940 and 2000.
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refined overlap expressions:

uC
i Z

1

k
C

b

hC

� �
ln yCC

ayC

hC
CBi; ð4:6Þ

uC
o KuC

c Z
1

k
C

b

hC

� �
ln ~yCa~yCBo: ð4:7Þ

In the context of this analysis, the integration constants Bi and B0 are, in
general, Reynolds number-dependent, though k, a and b are not. However, the
data presented below indicates that this Reynolds number dependence should
not be strong.

A nearly identical result was obtained by Afzal & Yajnik (1973), though they
retained the possibility of a non-zero f0, by allowing F1 to be singular at zero,
which is not considered here because it violates our assumptions of the regularity
of the functions at zero. However, such a singular term could arise if a y shift is
introduced in the logarithmic law (Lindgren et al. 2004), which might extend the
range of validity of the representation to somewhat smaller y. This possibility
will not be explored here.

To evaluate the validity of the finite Reynolds number refinement of the
logarithmic law described above, numerical simulations (del Álamo et al. 2004;
Hoyas & Jiménez 2006) are used to determine the quantity yðduC=dyÞ, which is
plotted versus yC and ~y in figure 6. According to the above analysis, expressions
for this quantity in inner and outer coordinates are

y
vuC

vy
Z

1

k
C

ayC

hC
C

b

hC
; ð4:8Þ

y
vuC

vy
Z

1

k
Ca~yC

b

hC
: ð4:9Þ

In the overlap region where these expressions apply, yðvuC=vyÞ, which would
be a constant with value 1/k in a log-layer, will be a line with slope of a/hC when
plotted in inner units. In this way, a log-layer is approached at high hC as
the slope of yðvuC=vyÞ goes to zero in the overlap. In outer units, the slope of
yðvuC=vyÞ in the overlap region is independent of hC. In figure 6, it appears that
the hCZ940 and hCZ2000 channels exhibit a straight region with these
Phil. Trans. R. Soc. A (2007)
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The thin lines are yðduC=dyÞ determined from equation (4.8), with constants aZ1.0, bZ150 and
1/kZ2.49, which were determined from the simulation data in (a).
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properties for ~y!0:45 and yCO300, which are thus the limits of applicability of
the overlap expressions (4.8) and (4.9). The slope of the curves in the overlap
region is az1.0, which is estimated from the hCZ2000 case.

These limits are much larger than those commonly assumed and discussed in §2.
However, recent experiments also suggest amuch larger inner limit for the log layer,
ranging from yCw200 to 600 (Österlund et al. 2000; Zanoun et al. 2003; McKeon
et al. 2004). Further in Wosnik et al. (2000), a Reynolds number-dependent
mesolayer in the range 30!hC!300 is postulated, with a log layer only evident
beyond yCw300, and Lindgren et al. (2004) propose that the apparent log layer
breaks down for yC!200 owing to a y offset in the logarithmic term.

The extension of the outer limit of the overlap representation to ~yz0:45 is
somewhat surprising, but it may be that including the next order term expands
the range of applicability. For example, in the overlap range, the value of
yðduC=dyÞ, which can be considered the local value of 1/k, varies by
approximately 20% (independent of hC). If one insisted on a region with
negligible variation of k (i.e. a true logarithmic layer), one would likely choose a
more limited range of ~y.

The values of k and b in the channel are estimated from the numerical simulation
profiles at hCZ940 and2000 (figure 7a).The lines describedby (4.8) intersect at the
point yCZKb/azK150, yðduC=dyÞZ1=kz2:49. The parameters are thus
estimated to be kz0.40 and bz150. These estimates must be considered
preliminary, since the overlap region is marginal at hCZ940. There are also
statistical uncertainties in yðduC=dyÞ at large ~y, estimated to be as high as 0.04 in
the hCZ2000 case, leading to uncertainties of order G0.02,G0.1 andG40 in k, a
and b, respectively. The agreement with the standard value of k may thus be
coincidental. In addition, (4.8) is shown in figure 7a evaluated for hCZ550, and it
does not approach the hCZ550 curve. This Reynolds number is too low for the flow
to exhibit an overlap region, since, in this case, yCZ300 is at ~yZ0:54O0:45.

Experimental profiles that can be meaningfully differentiated are difficult to
obtain, which is probably why the yðduC=dyÞ diagnostic has not often been used
(exceptions include Zanoun et al. (2003); Lindgren et al. (2004)). However, the
mean velocity data from the experiments of Natrajan & Christensen (2006) are
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just smooth enough to yield meaningful derivatives, and yðduC=dyÞ from this
data is shown in figure 7b. Assuming that the magnitude of the fluctuations in
these curves is representative of the uncertainty in yðduC=dyÞ, it appears that the
experimental profiles are consistent (within the uncertainties) with (4.8) and the
values of the coefficients determined above. The data of Zanoun et al. (2003)
produce much noisier values of yðduC=dyÞ (not shown), but they are also
consistent (i.e. within the noise band) with (4.8) and the constants given above.

The analysis and simulation results presented above suggest that the log-layer
refinement (4.8–4.9) is an accurate representation of finite Reynolds number
effects in the channel. However, to convincingly demonstrate this and refine the
associated constants and limits of applicability, reliable data at Reynolds
numbers hCz4000 or higher are needed. At this Reynolds number, the
asymptotic scaling described here should be unambiguous, so that much higher
Reynolds numbers should not be required to develop dynamic models of the
logarithmic layer of the type described in §3. Direct numerical simulations at
these Reynolds numbers should be possible in the next few years.

While the current analysis was performed for channel flow, the approach is
generally applicable to wall-bounded shear flows (e.g. pipes and boundary
layers), though it would be somewhat more complicated in a boundary layer
(Mellor 1972). In the context of the current analysis, there is no reason to expect
universality of the constants, and indeed the superpipe data of Zagarola et al.
(1997) suggest a value of az2.5, while it appears that az0 in the boundary layer
of Österlund et al. (2000) (a careful analysis of the available data would be useful
to confirm this). The universality of k between the boundary layer and channel is
also of interest, but for now, statistical uncertainties make the value of kZ0.4
determined here indistinguishable from the value of 0.384 in the boundary layer
of Österlund et al. (2000). In any case, a possible small discrepancy in k may be
less significant than the apparent lack of universality in a.
(b ) Kinematics and dynamics of log-layer turbulence

The simulations of del Álamo et al. (2004) andHoyas&Jiménez (2006), aswell as
corresponding advances in experimental methods, have already greatly improved
our kinematic understanding of the structures in the logarithmic layer. For
example, it is known that there is a self-similar hierarchy of compact ejections
extending from the buffer layer into the outer flow, within which the vorticity is
more intense than elsewhere. They are associatedwith extremely long, conical, low-
velocity regions in the logarithmic layer (del Álamo et al. 2006), ‘wakes’, which
agree well with the energy-containing structures of the streamwise velocity
spectrum.The arrangement is reminiscent of the association of vortices and streaks
in the buffer layer, but at a much larger scale. It is also known that the low-velocity
regions are almost identical to the transient-growth structures forced on the mean
velocity profile by a concentrated ejection (del Álamo & Jiménez 2006), but that
whatever is causing them does not grow directly from the buffer layer. The spectra
of flows in which the buffer region has been purposefully destroyed are essentially
identical to those over smooth walls (Flores & Jiménez 2006).

We know less about how the ejections are created, although there are
indications that their association with the low-velocity regions goes both ways.
The wakes are seen when the statistics are conditioned on the ejections, but the
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lifetimes of the observed ejections are too short for them to be the origin of
the wakes (del Álamo & Jiménez 2003). The knowledge that we are gaining from
the present simulations is, however, essentially kinematic. Numerical experi-
ments to probe the dynamics of log-layer turbulence will likely be required to go
beyond that level of understanding.
5. Conclusions

We have briefly reviewed the present state of understanding of the dynamics of
turbulent flows near smooth walls. This is a subject that, like most others in
turbulence, is not fully closed, but which has evolved in the last two decades from
empirical observations to relatively coherent theoretical models. It is also one of
the first cases in turbulence, perhaps together with the structure of small-scale
vorticity in isotropic turbulence, in which the key technique has been the
numerical simulation of the flow. The reason is that the Reynolds numbers of the
important structures are low, and therefore accessible to computation, while
experiments are difficult. For example, the spanwise spacing of the streaks is of
the order of zCZ100, which is less than a millimetre in most experiments, but we
have seen that it is well predicted by the range of parameters in which the
associated equilibrium solutions exist. We have seen that the larger structures
coming from the outside flow interfere only weakly with the near-wall region,
because the local dynamics are intense enough to be always dominant. The
streak spacing just mentioned has been observed up to the highest Reynolds
numbers of the atmospheric boundary layer (Klewicki et al. 1995).

On the other hand, the thinness of the layer in which this dynamics takes place
makes the flow very sensitive to small perturbations at the wall. Roughness
elements with heights of the order of a few wall units, micrometres in a large
pipe, completely destroy the delicate cycle that we have described and can
increase the friction coefficient by a factor of two or more (Jiménez 2004).
Conversely, it only takes a polymer concentration of a few parts per million in
the near-wall region to decrease the drag coefficient by 40% (McComb 1990). The
same is true of the control strategies based on the manipulation of the near-wall
structures (Choi et al. 1994; Jiménez 1994).

In the logarithmic layer, recent numerical simulations have been extremely
valuable in determining scaling and kinematic characteristics. For example,
validating and parameterizing a finite Reynolds number correction to the
logarithmic profile has allowed the occurrence and extent of the overlap region in
a channel at finite Reynolds numbers to be determined. As important as these
refinements are to describing the logarithmic layer and interpreting experiments
and simulations, they tell us little about the workings of the turbulence. After all,
the asymptotic analysis that leads to the logarithmic law and to the finite
Reynolds number correction relies only on the existence of an inner and outer
length-scale, not on the dynamic properties of the turbulence.

In essence, numerical simulations have so far allowed us to observe the structure
of the logarithmic layer, but not its dynamics. The problem is one of cost, and was
shared by the original low-Reynolds number simulations that eventually led to the
understanding of the buffer layer. The simulation in Hoyas & Jiménez (2006) took
six months on 2100 supercomputer processors. It took a similar time to run the
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simulation in Kim et al. (1987) at hCZ180. As long as each numerical experiment
takes such long times, it is only possible to observe the results, and simulations are
little more than better-instrumented laboratory experiments.

As computers improve, other things become possible. When the low-Reynolds
number simulations of the 1980s became roughly 100 times cheaper in the 1990s,
it became possible to experiment with them in ways that were impossible in the
laboratory. The ‘conceptual’ simulations that led to the results in §3 were of this
kind. The perturbed-wall simulations cited above by Flores & Jiménez (2006) are
one of the first examples of this type of simulations for the logarithmic layer, but
their Reynolds numbers are still only marginal, and they are in any case
conceptually similar to flows over rough walls.

There is, however, no reason to believe that computer improvements have
stopped, and the next decade will bring the cost of the simulations of the
logarithmic layer to the level at which dynamical experiments should become
commonplace. It is only then that we can expect a dynamical theory for this part
of the flow to emerge from simulations. The motivation for such research is both
theoretical and technological. The cascade of momentum across the range of
scales in the logarithmic layer is probably the first three-dimensional self-similar
cascade that will be accessible to computational experiments. Its simplifying
feature is the alignment of most of the net transfer along the direction normal to
the wall. The main practical drive is probably large-eddy simulation, in which
the momentum transfer across scales in the inertial range has to be modelled
for the method to be practical (Jiménez & Moser 2000). Only by understanding
the structures involved, we will be sure of how to accomplish that.

The preparation of this paper was supported in part by the CICYT grant DPI2003-03434 (J.J.)
and NSF grant CTS-0352552 (R.D.M.). We are deeply indebted to J.C. del Álamo, O. Flores,
S. Hoyas, G. Kawahara, M.P. Simens and K. T. Christensen for providing most of the data used in
the figures.
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