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Summary

A code for the direct numerical simulation of spatially developing turbulent boundary layers has
been implemented by the Computational Fluid Dynamics group at the School of Aeronautics in
Madrid. The code uses a fractional-step scheme to solve the incompressible three-dimensional
Navier–Stokes equations. It is formally second-order accurate, using two-point centred staggered
finite differences for the pressure correction substep. The advective derivatives are however
discretized using fourth-order compact finite differences in two directions, and Fourier expansions
spanwise. Temporal advancement is by a three-step Runge-Kutta. These choices are discussed
in the report.

Boundary conditions are fairly general, allowing the simulation of arbitrary imposed pressure
gradients, as well as control manipulations at the wall and on the free stream. Turbulent inflow
conditions can be generated by recycling a properly-scaled interior plane. The code has been
parallelized (MPI) for distributed-memory machines, and has been tested to scale well for large
problems, in up to 300 processors.

Here we briefly describe the code implementation and performance, and report on two sets of test
cases. One is a zero-pressure-gradient turbulent boundary layer, at Reθ = 600− 900. The other
is a set of three laminar separation bubbles, induced by a strong adverse pressure gradient, that
transition within the separated region, and, as a consequence, reattach. The turbulent attached
regions of both test cases are compared with previous simulations, and with experiments. The
results are generally satisfactory.
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1 Introduction

Direct numerical simulations of incompressible turbulent boundary layers are more complicated,
and more expensive, than those of simple internal flows. This is in part because the boundary
conditions are more complex, but also because the computational domain usually has to be
longer, to allow enough distance for flow development. Probably because of this, the range of
formulations and discretization schemes used for external flows has been wider than for internal
ones, where, for example, most large turbulent channels have either been simulated using the
formulation in [16] or that in [26].

The inherent non-periodicity of boundary layers in the streamwise direction makes the use
of periodic boundary conditions and of spectral methods somewhat artificial, although work-
arounds have been implemented in [42, 2, 38]. It is generally preferable to use numerical schemes
that allow for the streamwise development of the layer [18, 30, 24, 44, 22].

Various formulations of the Navier-Stokes equation have been used. For example, a vorticity-
velocity formulation was chosen in [22, 30]. This avoids, or at least hides, the issues related to
pressure and mass conservation, but requires at least 50% more memory than other schemes.
The code described here uses a primitive-variables formulation, in which a fractional-step method
is used to solve for the pressure and to assure mass conservation. That method was introduced
in [6], and was first used for turbulent flow simulations in [15]. Although it is still an area of
investigation and of some controversy [8], most of the problems surrounding it [15] have now
been solved [28, 9, 26, 3], allowing it to maintain second-order temporal accuracy for the velocity
components.

Our code uses second-order staggered centred finite differences for the pressure correction sub-
step, and fourth-order-accurate staggered compact finite differences [25] for the advective terms.
A large number of boundary-layer simulations has been done using finite-differences schemes
[18, 30, 24, 44, 22]. Implementations using second-order central finite difference for all the
derivatives were used in [44, 24, 18]. Those schemes can be made to conserve momentum, en-
ergy and mass, but their relatively low resolution requires a lot of grid points to achieve a given
accuracy. High-order schemes, such as those used in [30, 22] require smaller grids, and ultimately
save time. Our choice of schemes with mixed consistency orders is discussed in section §3.2. A
critical comparison between high-order finite element methods, B-splines, and compact finite
differences can be found in [17]. All of them have their own advantages, including conserva-
tion properties, and different degrees of programming complexity. Our choice of fourth-order
compact finite differences on a staggered grid [13] does not conserve energy, but is known to be
robust if most of the energy-containing scales are resolved [25]. In fact, energy conservation is
only relevant if the resolution requirements for direct turbulence simulation are not met. Any
numerical scheme that is consistent, and formally stable, is stable in a well-resolved turbulence
simulation in which the flow is smooth at the scale of the grid. That implies resolving all the
scales larger than approximately the viscous Kolmogorov limit, which is also the requirement
for retaining reliable physics.

The organization of this report is as follows. The formulation of the Navier–Stokes problem is
presented in section 2, and the spatial and temporal discretization are discussed in section 3.
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Since we are interested in simulating separated flows, which are very inhomogeneous streamwise,
we retain the ability to use nonuniform grids in the streamwise direction, as well as perpendicular
to the wall. This, together with the desire to allow for general boundary conditions that do not
automatically guarantee global mass balance, leads us to re-examine the issue of global mass
conservation. This important question, together with the treatment of the pressure, is briefly
discussed in §3.3.

Section 4 contains the results of testing the code on several moderate-Reynolds-number boundary
layers, both with and without pressure gradients. Conclusions are summarized in section 5. An
appendix deals with certain numerical details used in the text.

2 Problem Formulation

The equations solved are the incompressible Navier-Stokes equations,

∇ · ~u = 0,

∂t~u +∇~u · ~u = −∇p +
1

Re
∇2~u. (1)

The streamwise, spanwise and wall-normal directions and velocities are given respectively by
x, z, y, and by u, w, v. The boundary conditions may vary, as the code should be capable of
simulating various different spatially developing flows with only minor changes.

A fractional step method [9, 28] is used to ensure mass conservation, and to efficiently solve for
the pressure. The main idea is to write (1) in semi-discrete form,

D~un+1 = 0,
~un+1 −∆t L~un+1 = ∆t

(−Gpn+1 −N~un
)
. (2)

The matrices D, G and L contain the finite-differences approximations to the divergence, gra-
dient, and linear implicit terms respectively. The operator N contains the nonlinear advective
terms, and whatever part of the viscous terms that is computed explicitly. This system can be
written in matrix form as [28],

[
A ∆tG
D 0

] (
~un+1

pn+1

)
=

(
rn

0

)
+

(
b.c.′s
b.c.′s

)
, (3)

where A = I −∆tL, and rn = −∆tN~un contains the explicit terms. Note that the boundary
conditions are imposed at this point, as indicated by the b.c.′s.

It was pointed out in [28] that an LU decomposition can be used to factorize the system in (3).
Before doing that, for reasons that are explained later, the equations are rewritten as

[
A ∆tG
D 0

](
~un+1

∆pn+1

)
=

(
rn
m

0

)
+

(
b.c.′s
b.c.′s

)
, (4)
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where rn
m = rn −∆tGpn, and ∆pn+1 = pn+1 − pn. The system is then factorized as

[
A 0
D −∆tDA−1G

](
~u∗

∆pn+1

)
=

(
rn
m

0

)
+

(
b.c.′s
b.c.′s

)
, (5)

[
I ∆tA−1G
0 I

](
~un+1

∆pn+1

)
=

(
~u∗

∆pn+1

)
. (6)

This is exact, and could be solved without further modification, but it is only computationally
efficient if the time integration is fully explicit, in which case A = I. When implicit time
integration is used, A−1 is a full matrix, and obtaining the solution becomes expensive. This
can be avoided by substituting the full inverse of A by its lowest order approximation, A−1 = I,
where the neglected terms are O(∆t). This results in,

[
A 0
D −∆tDG

](
~u∗

∆pn+1

)
=

(
rn
m

0

)
+

(
b.c.′s
b.c.′s

)
, (7)

[
I ∆tG
0 I

](
~un+1

∆pn+1

)
=

(
~u∗

∆pn+1

)
. (8)

The reason for using ∆pn+1 in (4), instead of pn+1, can now be discussed. The error made
by neglecting the viscous contribution to A−1 is ∆t L∆pn+1, which is of order O(∆t2) because
∆pn+1 ∼ O(∆t). If pn+1 had been used instead, as in (3), the resulting scheme would have been
only first-order accurate. The order of the scheme is thus increased by one by using (4).

The advantage of this matrix interpretation of the fractional-step method is that boundary
conditions are imposed before the LU decomposition is applied to (4). In other words, matrices
like A, D, etc. do not include the discrete boundary equations anymore. The pressure correction
∆pn+1 is solved from the discretized equation −∆tDG, and it is impossible, and unnecessary, to
impose boundary conditions on the pressure if velocity boundary conditions have already been
used when computing the divergence in (3). In chronological order the following is done

A~u∗ = rn
m + b.c.′s, (9)

∆tDG∆pn+1 = D~u∗ − b.c.′s, (10)
~un+1 = ~u∗ −∆tG∆pn+1, (11)
pn+1 = ∆pn+1 + pn. (12)

Up to this point the equations are given as if Euler time integration was used. Instead a Runge-
Kutta scheme is applied. A popular time-stepping scheme for fractional-step methods is

(I − βl∆t L) ~ul+1
∗ = − (αl + βl) Gpl − γlNul − ζlNul−1 + αl∆t Lul + b.c.′s, (13)

(αl + βl)∆tDG∆pl+1 = D~ul+1
∗ − b.c.′s, (14)

~ul+1 = ~ul+1
∗ − (αl + βl)∆tG∆pl+1, (15)

pl+1 = ∆pl+1 + pl, (16)

where l = n + k/3, and k = [0, 3]. The coefficients are given in [41] as,

ζ1 = 8/15, ζ2 = 5/12, ζ3 = 3/4,
γ1 = 0, γ2 = −17/60, γ3 = −5/12,
α1 = 4/15, α2 = 1/15, α3 = 1/6,
β1 = 4/15, β2 = 1/15, β3 = 1/6.

(17)
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It remains to be determined whether all the viscous terms need to be integrated implicitly, which
complicates the computation, or whether some of them could be treated explicitly. Previous
studies suggest that the latter might be possible [1].

Historically, the viscous terms in all three directions have been treated implicitly because an
explicit stable simulation requires that

∆t < min
(

α∆x2

ν
,

α∆z2

ν
,

α∆y2

ν
;

β∆x

max |u| ,
β∆z

max |w| ,
β∆y

max |v|
)

, (18)

where α and β are constants that depend on the largest eigenvalues of the first- and second-
derivative operators, and ∆x,∆y, ∆z are the grid sizes. In boundary-layer flows, the advective
limit is frequently set by ∆x and by the free-stream velocity U∞, while the transverse velocities
are lower. One can then approximate (18) by,

∆t < min
(

β∆x

U∞
;

α∆z2

ν
,

α∆y2

ν
,

α∆x2

ν

)
, (19)

because the transverse convective time-step restrictions are not important. Note that this is not
always the case, specially in separated and in free-shear flows, where the transverse velocities
may be of order U∞. This however does not invalidate the following analysis, since it just
tightens the convective time limitation.

The factors ∆x2, ∆y2, and ∆z2 of the viscous limit seem to lead to a severe time-step restriction.
To see whether that is the case, we now compare the convective and viscous time step limitations.
For the convective limit to dominate, it is sufficient that

β∆x

U∞
≤ α

ν
min

(
∆x2, ∆y2, ∆z2

)
. (20)

If this inequality is satisfied, the viscous terms can be treated explicitly. After multiplying both
sides by u2

τ/(νβ), the inequality becomes

uτ

U∞
∆x+ ≤ α

β
min

(
∆x+2

, ∆y+2
, ∆z+2

)
, (21)

where ∆x+ = uτ∆x/ν is expressed in ‘wall units’, defined in terms of the shear stress at the
wall, u2

τ , and of the kinematic viscosity ν. This adimensionalization is often the right one for
wall-bounded turbulent flows, and grids for those cases are usually chosen of the order of [16],

∆x+ ≈ 8, ∆z+ ≈ 4, ∆y+ ∼ 0.3. (22)

The relations uτ/U∞ ≈ 1/20 ¿ 1, and α/β ∼ 1, indicate that the viscous time-step limit is only
severe in the y-direction. That is therefore the only direction treated implicitly in our code,
while the viscous terms in the x and z-direction are done explicitly.

3 The spatial discretization

The sketch in figure 1 gives detailed information about the positions of the different variables in
the numerical domain. The derivatives in the x and y-directions are calculated using compact
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ui−1/2,j−1/2,k ui+1/2,j−1/2,k

vi+1/2,j−1/2,k

vi+1/2,j+1/2,k

pi,j,kpi,j,k

wi+1/2,j−1/2,k

Figure 1: Location of the flow variables in the computational grid. Note that the grid is not staggered
in the z direction, so that all the variables are in the same Fourier mode or collocation point.

finite-difference schemes of fourth-order accuracy, while the derivatives in the z direction are
calculated in Fourier space. The x and y derivatives are obtained for non-uniform grids, and
can be written in a general form as,

αI
j f̄j−1 + f̄j + βI

j f̄j+1 = aI
jfj−1/2 + bI

jfj+1/2, (23)

αD
j f

′
j−1/2 + f

′
j+1/2 + βD

j f
′
j+3/2 = aD

j f̄j + bD
j f̄j+1, (24)

αV
j f

′′
j−1/2 + f

′′
j+1/2 + βV

j f
′′
j+3/2 = aV

j fj−1/2 + cV
j fj+1/2 + bV

j fj+3/2, (25)

where f
′
and f

′′
are the first and second derivatives of f , and f̄ is its interpolated value at some

intermediate point. For uniform grids, the coefficients in (23–25) are given in reference [25]. The
coefficients for nonuniform grids are obtained using Taylor expansions to ensure maximum order
of accuracy, and can be found in [31]. It is important to note that, on a staggered non-uniform
grid, the coefficients are not the same for u and v. On the other hand, the coefficients for the
first derivative and for the interpolation in the x-direction of w are equal to the ones for v.
Similarly, the coefficients for the first derivative and for the interpolation of u and w in the y
direction are the same. So are the coefficients of the second derivatives of v and w in the y
direction, and those of u and w along x.

3.1 Fourth-order schemes and the Poisson matrix

Various ways of constructing the Poisson matrix DG were tested during the development of the
code. The most obvious choice is to use the same compact finite-differences schemes as for the
advective derivatives. In that case the divergence is calculated using

AD~u ′ = BD~u, (26)
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and the pressure gradient is calculated using

AGp′ = BGp, (27)

where AG, AD, BD, BG contain the compact finite difference operators. The discretized Poisson
equation then becomes

A−1
D BDA−1

G BGp = A−1
D BD~u ⇒ BDA−1

G BGp = BD~u. (28)

The matrix BDA−1
G BG is full, and discretizing DG in this manner is prohibitively expensive.

Note that this problem has similitudes with the fractional step method described in (4). The
only efficient solution is to require that A−1

G should not be a full matrix.

This led to the next solution to be tried, which was to combine a compact finite difference
scheme for the divergence, and an explicit one for the gradient. The divergence was calculated
as in (26), while for the gradient we let AG = I. This was implemented using a multigrid
solver that is described in detail in [31]. Although the solver worked reasonably well, the results
were unsatisfactory, and the code had a tendency to blow-up at the boundaries during start-up.
This was probably due to the lack of energy conservation, which cannot be guaranteed once the
differentiation schemes for the nonlinear terms and for the pressure are different. However, since
it will be seen below that the Poisson substep is not the limiting one for the accuracy of the
code, this option was discarded without further investigation.

The next solution was therefore to let AG = AD = I, so that both differentiation schemes
were explicit and comparable. Within this choice, both second- or fourth-order stencils for the
derivatives were considered.

Both options have disadvantages when compared with compact finite differences. In the case of
fourth-order explicit derivatives, resolution is lost, besides paying the fairly high price of wider
stencils. In second-order schemes, both consistency and resolution are lost. In our code, the
decision was to use second-order stencils for the pressure, essentially because it turns out that,
for reasonable resolutions, the dominant error comes from the first derivatives of the advective
terms. This is discussed in detail in section §3.2.

The divergence of the velocity is thus calculated as

D~̂ui,j,kz =
ûi+1/2,j,kz

− ûi−1/2,j,kz

∆x
+

v̂i,j+1/2,kz
− v̂i,j−1/2,kz

∆y
+ ikzŵi,j,kz , (29)

where kz is the spanwise wavenumber and the carat is used to indicate that the variables are in
spectral space along the z-direction. The pressure gradient is

Gxp̂i−1/2,j,kz
=

p̂i,j,kz − p̂i−1,j,kz

∆x
, etc., and Gz p̂i,j,kz = ikz p̂i,j,kz . (30)

The resulting Poisson operator is tridiagonal in the first two directions, and is expensive to solve
directly. Two solution schemes have been implemented.

The first one is a direct method, consisting in expanding D~̂u
∗

and p̂ as cosine series in the x
direction [15]. The variables are already in spectral space along z, and the matrix reduces to a
set of systems of the type

(∂yy −K2)p̂ = D~̂u
∗
, (31)
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where K is some modified wavenumber. Those systems can easily be treated by a tridiagonal
matrix solver. An important disadvantage of this method is its inability to treat correctly non-
periodic schemes higher than second order. The reason is basically that the spectral cosine
expansion of the divergence assumes that the derivatives at both ends vanish, and, if that is
not true, it incurs in second-order errors. Another way of expressing the same idea is that
high-order schemes in non-periodic domains need boundary stencils. Those have in general a
different modified wavenumber than the interior scheme, and no unique modified wavenumber
can be used in (31). A second disadvantage is that only grids that are uniform along x can be
accommodated by the Fourier expansion.

The second method is a multigrid solver that can be used for arbitrary Cartesian grids, and that
could, in principle, be adapted to derivatives of any order. It has only been implemented for
the second-order pair (29–30). There is no previous Fourier expansion of the divergence, except
along z, and the numerical equation to be solved is

(∂xx + ∂yy − k2
z)p̂ = D~̂u

∗
. (32)

The solver was designed using a V-cycle, applying line-Gauss iteration in the y direction. Around
ten V-cycles are needed to converge to round-off precision. In every cycle the full matrix is
iterated twice; once for the down-stroke and a second time for the upstroke. The multigrid was
developed at an early stage of the code development process, and it proved to be slower than
the Fourier decomposition method.

A crude operation count suggests that this was not solely the effect of poor coding, although it
is true that the publicly available Fourier transforms used for comparison are usually very well
written. It was found that the publicly available multigrid codes did not fit our needs. Our
multigrid was coded from scratch, and was abandoned fairly early for the cosine method. It
is conceivable that it could be recoded to be more efficient, and it may prove necessary to do
so in the future, since it remains the only solver able to cope with non-uniform grids in the x
direction. All the results presented below were obtained with a second-order Poisson matrix,
using cosine expansions.

3.2 Discretization errors

The errors of finite-differences approximations have to be discussed both in terms of consistency,
i.e, their behaviour when k̃ = kh ¿ 1, and of resolution, when k̃ = O(1). Here we use k for a
generic dimensional wavenumber, and h for the grid spacing. We have seen above that our code
uses fourth-order finite differences for the advective terms, but only second-order ones for the
pressure correction. This is difficult to justify at the consistency level, but becomes reasonable
when the resolution limit is considered. The argument is similar to the one used in [41] to justify
the use of a three-step Runge–Kutta, even if the formal accuracy is limited to second order by
the fractional-step splitting. The magnitude of the errors for the advection schemes increases
faster in the resolution limit than those for the pressure correction step, and balancing the errors
for k̃ ≈ O(π/2) requires a higher-order formula for the former than for the later.

This is clear in figure 2, which shows the relative errors of both second-order FD and fourth-
order CFD schemes as functions of the spatial wavenumber k̃, compared with those of the
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Figure 2: Relative error due to the spatial discretization, versus the numerical wavenumber. ,
second-order first derivative; , fourth-order compact first derivative; , second-order pressure
projection. For details, see appendix A. The circles are the temporal discretization error of a three-step
Runge-Kutta adjusted to CFL =

√
3 at the grid spacing. The vertical dashed line is k̃ = π/2.

second-order pressure correction. The details of the error estimation can be found in appendix
A. If we for example take k̃ = π/2 as the design point for the code, and require that the errors
of both substeps should be comparable, the figure implies that the order of the operators for the
advection terms should be higher than those used for the pressure correction. Choosing such a
design point implies that the grid spacing along the directions using finite differences should be
2 or 3 times finer than the one along spectral directions, since the latter are essentially accurate
up to k̃ = π. The expected discretization errors would then be of the order of a few percent.
Using a higher-order scheme for the pressure substep would of course make it more accurate,
but the overall performance of the code would be limited by the errors in the advective step,
unless a much finer grid was chosen for it.

Figure 2 also includes the relative temporal error to be expected from a three-step Runga-Kutta
for which the time step has been adjusted to the stability limit at the grid resolution. The error
for a given wavenumber decreases as k̃3, and is comparable to the spatial errors at the previously
discussed design point.

3.3 Pressure, mass conservation and boundary conditions

We discuss in this section the relation between the computation of the pressure, the conservation
of mass, and boundary conditions. The latter can be imposed either in the velocity equation (13)
or in the pressure equation (14), but generally not in both. We have found in the literature no
example in which the pressure is enforced directly. The desired pressure distribution is usually
obtained by prescribing the velocities at the boundary [2, 24]. However, while that is relatively
easy to do when the desired boundary conditions are static, it becomes more complicated when
they are allowed to change in time, such as in control applications involving arbitrary mass

8



injection. In those cases, for example, there is no automatic guarantee that the sum of all the
mass fluxes across the boundary vanishes at all times, as should be the case for incompressible
flow.

Simulations generally try to avoid these problems. In [24], for example, a pressure gradient was
imposed by a distribution of transpiration velocities with approximately zero net mass flux, and
in [44] mass conservation was ensured by unspecified adjustments to the velocities at the exit
plane of the numerical domain.

In many of those cases, it would have been more convenient to impose the desired pressure
directly, but, although the newer treatments of the fractional step method [28, 9] provide a
mechanism to do so through the boundary conditions in equation (14), the problem is far from
trivial and has received little attention. Following this unfortunate tradition, we only deal in
this section with the velocity boundary conditions used for the test cases discussed later.

The background of the problem is the separation into two parts of the fractional-step method.
The advective step (13) creates a velocity field, u∗, which is not solenoidal and on which we
impose boundary conditions that we would like to be those of the final velocity. The pressure
correction step (15) attempts to enforce continuity without changing those boundary velocities.
That is impossible in general, and recipes have been devised to modify the conditions on u∗

so that the final boundary velocities are close to the desired ones [15]. The improvement that
they afford is comparable to that of the formulation in terms of the pressure increment, and
both techniques are not usually applied together. Even if they were, the boundary corrections
proposed up to now only modify the tangential boundary velocities, and assume that the normal
ones are not changed by (15). This is formally equivalent to requiring that the pressure satisfies

∂(∆p)
∂n

= 0, (33)

at the domain boundary ∂Ω, where n is the outer normal. The problem is that the Poisson
operator with this boundary condition is singular, because it is invariant to the addition of a
constant pressure, and that the discretized version DG usually inherits both that invariance and
the singularity. Singular operators have two properties. Their solutions are not unique, and the
inhomogeneous problem can only be solved for some particular class of right-hand sides. The
first problem is easily solved, for example by arbitrarily fixing the pressure at one point. The
second one requires that the divergence of u∗ satisfies a compatibility condition that is essentially
equivalent to global mass conservation. In the continuum case the Poisson problem is,

∇2(∆p) = ∇ · u∗. (34)

Integrating over the domain Ω, and applying Gauss’ theorem, leads to
∫

Ω
∇2(∆p) dΩ =

∫

∂Ω
∂n(∆p) d∂Ω =

∫

Ω
∇ · u∗ dΩ =

∫

∂Ω
un d∂Ω = 0. (35)

The discrete equivalent is

ψT DG∆pn+1 = ψT Du∗ = φT u∗ = 0, (36)

where the T superscript denotes transposition, ψ is the null vector of the DG operator, and
φ = DT ψ. The three equations in (36) correspond to the last three equalities in (35).
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Physically, ψ is the set of weights for each grid point in the volume integral
∫

dΩ, while φ is
the set of weights in the boundary integral of the fluxes. The latter is typically non-zero only
for points near or at the boundary. For a second-order discretization in a uniform grid, ψ is
unity everywhere, but for non-uniform grids, or for more complicated operators, it has to be
obtained from the solution of (DG)T ψ = 0. Similarly, in the simple second-order uniform case,
the boundary vector φ is unity for the normal velocities at the boundary, and vanishes otherwise.

Equation (36) provides a tool for generating the compatible boundary conditions that have to
be satisfied by u∗ before it is used in the pressure equation (14). In open systems, such as
boundary layers, one usually knows the velocity over part of the boundary, and tries to estimate
it over the rest. In a typical example, one prescribes the velocity at the inflow and at the lateral
boundaries, and estimates the outflow using some advective boundary condition designed to
minimize numerical reflections. This first guess of the outflow would be, for example,

∂t~u
∗ = −Uc∂x~u

∗, at x = Lx, (37)

with some upwinded discretization for ∂x. Such outflow conditions may not guarantee continuity,
and have to be corrected. Assume that we decide to modify our outflow plane by some small
uniform increment. In our code, this is applied over the whole outflow line of the kz = 0 Fourier
mode of the u component. This means that, for this mode,

∂tu
∗∗
0 = −Uc∂xu∗0 + α, at x = Lx. (38)

In discrete terms
u∗∗0 = u∗0 + α1s, (39)

where 1s is one in the last column, and zero elsewhere. Other wall-normal distributions for
the outflow correction can be trivially accommodated. Introducing (39) in (36), we obtain the
magnitude of the required correction,

α = −ψT Du∗0
ψT D1s

= −φT u∗0
φT1s

. (40)

Note that the denominator in this equation is a number that only needs to be computed once
for each simulation. Other components do not contribute to continuity at the outflow, and the
Poisson operator for the higher Fourier modes is not singular.

This outflow correction could be interpreted as the decomposition of the pressure ∆p into a part
due to u∗, which does not satisfy the Neumann condition at the exit, and a second component,
due to α(I −∆t L)−11s, which corrects the boundary. This component is a real physical effect,
and corresponds to the pressure gradient needed to evacuate through the downstream boundary
the extra fluid injected by the unbalanced inflows elsewhere. It is the principal limitation of
velocity boundary conditions, which are effectively equivalent to solving the boundary layer
inside a channel of finite height, although with an upper free-slip wall. They are therefore
not subject to viscous effects at the upper boundary, but they suffer from the same blocking
problems as wind tunnels of limited height.

It is important to consider at which moment to apply the outflow correction. Of the two
expressions in equation (40), the first one appears to depend on the whole u∗0 field, but the
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second one shows that it is essentially a property of the boundary. If we choose to use the
first expression, the correction can only be applied after the evolution step (13), because u∗0 is
unknown until then. On the other hand, the boundary conditions are known a priori, and the
correction can be applied before (13). The latter is preferable, because it guarantees that all the
boundary conditions are satisfied after the time step. Otherwise, the extra pressure introduces
spurious slip velocities of O(α∆t) at the boundaries. Those velocities are potentially O(∆t) if
the boundary conditions change discontinuously, but, in practice, boundary conditions usually
evolve smoothly in time, α = O(∆t), and the slip velocities are of the same quadratic order as
those generated by the rest of the method.

In the particular case in which the Poisson equation is solved by cosine expansions, the problem
is further simplified, because a lot of the work can be done analytically. In that case, the only
singular equation is (31) with kz = kx = 0, which reduces to

∂yyp̂00 = ∂yv̂00 +
û0(Lx, y)− û0(0, y)

Lx
, (41)

where p̂00 is the mean value of p̂0, taken over x. Note that the second part of the right-hand
side is actually the kx = 0 discrete Fourier mode of Dxû0, and that (41) is only true if the
divergence is computed using the second-order formula (29). Higher-order formulas give rise to
slightly more complicated boundary terms, but we have seen that cosine expansions should not
be used for them.

It is tempting to integrate this equation once,

∂yp̂00 = v̂00(y)− v̂00(0) + L−1
x

∫ y

0
[û0(Lx, y)− û0(0, y)] dy, (42)

to reduce the influence of v̂00 to the boundaries, and to require that the right-hand side should
vanish at y = Ly, but this has to done consistently with the numerical operators. This case
provides a simple example of the theory just developed, which can be solved analytically and
used directly in the code. Assume that the divergence and gradient operators are those (29–30),
and that the vertical grid is the one in figure 3. Introduce the notation hj = yj+1 − yj . The
divergence and gradient operators become,

Djv =
vj+1 − vj

hj
, (43)

Gjp = 2
pj − pj−1

hj + hj−1
. (44)

11



The Laplacian is

Ljp =
2pj+1

hj(hj+1 + hj)
− 2pj(hj+1 + 2hj + hj−1)

hj(hj+1 + hj)(hj + hj−1)
+

2pj−1

hj(hj + hj−1)
, (45)

for j = 2 . . . N − 1, and

L1p =
2(p2 − p1)
h1(h2 + h1)

, LNp =
2(pN−1 − pN )

hN (hN + hN−1)
. (46)

The index ranges for the different operators are given in the caption of figure 3.

The null vector ψ satisfies the recursion relation ψT L = 0,

ψj−1

hj−1

1
hj + hj−1

− ψj

hj

hj+1 + 2hj + hj−1

(hj+1 + hj)(hj + hj−1)
+

ψj+1

hj+1

1
hj+1 + hj

= 0 (47)

which is solved by ψj = hj , j = 1 . . . N . For the boundary weights, φT = ψT D, we obtain

φ1 = −1, φN+1 = 1, and φj = 0 otherwise. (48)

The orthogonality condition for the right-hand side of (41) is then

C ≡ v̂00; N+1 − v̂00; 1 + L−1
x

N∑

j=1

hj [û0(Lx)j − û0(0)j ] = 0, (49)

which has an obvious integral interpretation. As in the general case, we can now choose which
boundary condition to change. If we for example decide to adjust the outflow by a constant
increment α, we obtain that C +αL−1

x

∑
hj = 0. The general theory thus recovers the intuitive

result that the integral of all the boundary normal velocities should vanish, although it gives
some information on how to integrate in y that is not immediately obvious. In more general
cases, intuition is not always enough, but the general procedure can still be applied, at least
numerically. The boundary vector, for example, determines which are the natural boundary
conditions to impose for the normal velocities, which in higher-order schemes usually involve
more than the boundary point itself.

3.4 Parallelization of the code

Parallelization is required to allow the code to simulate turbulent boundary layers at high
Reynolds numbers. Our code is designed for large distributed-memory machines, using the MPI
message passing library.

Two approaches can be followed. The first one is to develop distributed matrix solvers or Fourier
transforms. The second one is the method used for example in [14], and described in [12], in
which the database is transposed between serially processing each coordinate direction.

The comparative advantages of both approaches were analysed early in the development of par-
allel computing. For example, the different implementations of the fast Fourier transform, and
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their application to pseudospectral methods, were examined by [7, 27]. Both concluded that the
operation and communication counts for the distributed and transpose methods are asymptot-
ically similar, and that the choice depends on the particular architecture of the machine being
considered. A good example is the comparative study in [43] of identical pseudospectral simula-
tions in two similar machines, one a hypercube and the other with mesh internode connectivity.
The code used a transpose method for the FFT, originally optimized for the hypercube, and the
performance degraded substantially in the supposedly faster mesh machine. The degradation
persisted even after the transpose had been optimized for the mesh. Communication networks
have improved since then, while local memory hierarchies have become more complicated, and
the transpose method is nowadays usually preferred. The MPI parallel multidimensional trans-
forms of the fftw library, for example, use the transpose method.

The transpose approach has the advantage of being easy to code and of keeping latency to a
minimum. Suppose that the equations are discretized on nx×ny×nz points, and that the parallel
calculation is done on np processors. The transpose method first partitions the data across the
z-direction over the processors available. At this point every processor contains arrays of size
nx×ny × (nz/np). Each processor contains a number of full x− y planes, and the derivatives in
the x and y directions can be calculated as if we were working in a serial processor. The Fourier
transforms along z cannot be done locally at this point. They are made possible by transposing
the data to a partition across x, which means that every processor now contains arrays of size
(nx/np) × ny × nz. At this point, operations along z can be done locally, but it is impossible
to calculate the x-derivatives, due to the global nature of the compact finite differences and of
the cosine transforms. It is clear that large amounts of data are sent, stressing the necessity of
a fast communication network.

For the number of grid points typically expected in our simulations (108 − 1010 Mpoints), and
the number of nodes available (100–1000), each node is able to accommodate at least one grid
plane, so that only two transposes per variable are needed per time substep. The choice of
which directions to transpose is important. In boundary layers, the longest dimensions are
typically x and z, so that slicing across them allows the largest number of nodes to be used.
Slicing in x− z planes would actually be slightly more convenient, since the two FFT directions
would be in-node, and parallel algorithms with reasonable communication counts are available
for matrix computations [23], but that choice would have limited the number of nodes to the
order of 200–500 before a new distributed direction had to be included. Moreover, many of
the parallel matrix algorithms lose their advantage when only one plane is allocated to each
processor. As a consequence our code switches between z−y and x−y slices. In the latter, each
processor contains only the real or the imaginary part of a complex Fourier mode, which need
to be switched at some point between adjacent processors. This one-to-one communication is
however much faster than the all-to-all communication involved in the transposition.

The parallel performance of the code depends on the particular machine, and on the node
count. While, for example, the communication load is of the order of 15% in our 128-node
departmental Xeon cluster, it can reach 45% in 512 nodes of the Barcelona supercomputing
centre. The difference reflects in part the balance of processor and communication speeds in
both machines, but also software differences such as the availability in the former, but not in
the latter, of asynchronous transfers running concurrently with local processor instructions.
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4 Test cases

The code was tested on two sets of cases. The first one is a zero-pressure-gradient (ZPG)
boundary layer with a turbulent inlet, intended to test the inflow conditions and the basic
performance of the code.

The second one consists of three different adverse-pressure-gradient boundary layers with sep-
aration. The inflows are laminar, and the pressure gradient separates the layers, which later
transition and reattach. In the three cases the pressure gradient remains adverse until the end
of the simulation box, except for a short adaptation region at the outlet for numerical purposes.
The pressure gradients are however different, and so are their effects. While the reattached layer
with the weakest gradient is not very different from the ZPG case, those with the strongest ones
tend to separate again, and would have probably separated in a longer box.

Both sets of results are compared with published experimental and numerical data.

4.1 Zero Pressure Gradient

This case was designed to span Reynolds numbers in the neighbourhood of Reθ = 700, for which
there are several previous numerical and experimental cases.

The turbulent inflow is generated from an implementation of the method in [20], in which the
instantaneous flow field in a reference plane, x = xref , is copied at each time step to the inlet
at xin, after some re-scaling to account for the growth of the layer in the intervening space.
The simulation was initialized using a pre-stored flow field from the simulation in [40], but this
reference was abandoned after the initial wash-out. After that moment, the simulation was fully
self-contained.

The main choices of this method are the location of the reference plane, and the scaling used to
estimate the boundary layer thickness and the friction velocity at the inflow. In our case we use
as the scaling length for the outer flow the Clauser-Rotta thickness

∆ =
δ∗U∞

uτ
, (50)

where δ∗ is the displacement thickness, and uτ is the friction velocity. Our goal is to achieve
a given inflow Reynolds number, Reθ,0 = U∞θ0/ν, given the measured Reθ,ref , where θ is the
momentum thickness. The parameters needed for rescaling are the boundary layer thickness at
the inflow, ∆0, and the friction velocity at that point. From the ratio of the Reynolds numbers
we compute θ0, and, from it, ∆0, given the measured ∆ref , and assuming as a first approximation
that θ is proportional to ∆. Finally, following [20], the inflow friction velocity is estimated as

uτ,0 = uτ,ref

(
Reθ,ref

Reθ,0

)1/8

. (51)

The rest of the boundary conditions are straightforward. The free stream velocity is fixed (to
U∞ = 1) at the inlet plane. The vorticity and the vertical velocity are made to vanish at
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Figure 4: Reynolds number development for the zero-pressure-gradient test case. The two vertical lines
labelled BC1 and BC2 mark the locations of the two reference planes used to compute the turbulent inlet
condition in two different runs. The two results are plotted as dashed (BC1) and solid lines (BC2) for
Reθ, barely distinguishable. The two short vertical lines are the limits of the ‘useful’ numerical range.

the upper boundary, and the resulting mass imbalance is accommodated by an extra streamwise
pressure gradient, as explained in the previous section. As a result, the boundary layer is slightly
accelerated, with

β =
δ∗

u2
τ

∂P

∂x
≈ −0.04. (52)

This gradient is within the range of those found in many laboratory experiments considered
as nominally ZPG. The Reynolds number, Reθ, varies from around 600 to 950, but only the
range 660–900 can be considered to be relatively unaffected by the inflow and outflow boundary
conditions (figure 4). The box size is Lx×Ly ×Lz ≈ (185× 38× 38)θend, where the momentum
thickness is measured at the ‘effective’ exit section where Reθ = 905. This corresponds to
roughly 19× 4× 4 times the boundary layer thickness at the effective outflow.

The simulation requires nx×ny×nz = 1282×258×384 collocation points, or roughly 120 Mpoints.
It uses about 20 CPU-minutes per time step, to be divided by the number of processors. It
ran in several parallel machines, from 32 to 128 processors, with reasonably linear scaling.
The time stepping was run at a constant CFL = 0.6, which is limited by the longitudinal
velocity at the free stream. This implies about nx/CFL ≈ 2000 time steps per wash-out time,
Tw = Lx/U∞. The statistics presented below were compiled over 20,000 time steps, which
represent ten washouts. For this particular simulation, this is equivalent to roughly the same
number of eddy-turnover times, Te = δend/uτ .

The streamwise numerical resolution is ∆x+ ≈ 6.3. In the wall-normal direction ∆y+ changes
from 0.7 at the wall to about 5 at the edge of the boundary layer. In terms of the local
Kolmogorov viscous scale, η, the grid never exceeds ∆y ≈ 2.5η. In the spanwise direction,
∆z+ ≈ 6.5 per Fourier mode, or about 4 in terms of collocation points. Those values are
comparable to the ones used in spectral simulations of channel flow, even after taking into
account the reduced resolution of the finite differences.

The evolution of the Reynolds number of the boundary layer is shown in figure 4. Two cases
were run, with identical parameters but with different locations of the reference plane for the
inflow condition, xref/θ0 = 32 (BC1), and xref/θ0 = 64 (BC2), where θ0 is measured at the
inflow.

There are only a few differences between the two cases, for which snapshots of longitudinal
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Figure 5: Instantaneous fields of the streamwise velocity. (a) On a longitudinal (x, y) plane, BC1. (b)
Same for BC2. (c) On a transverse (z, y) plane, Reθ = 800. (d) On a wall-parallel plane, y+ = 15.
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planes of the streamwise field are shown in figures 5(a) and 5(b). There is in BC1 a noticeable
streamwise periodicity in the flow field, with a wavelength of the order of the distance between
the reference and inflow planes. This is probably the result of a weak feedback instability caused
by the inflow condition as it travels to the reference plane, and is typical of many delay equations.
If that were the case, it would be difficult to avoid, and it could only be weakened by moving
the reference plane far enough from the inflow to allow for the phase of the velocity to decohere.
In fact, the observed periodicity is much weaker in the case BC2, and figure 5 suggests that it
would be essentially absent if xref had been chosen beyond roughly 100θ0.

Some comments may be in order at this point on our implementation of the rescaling method in
[20]. In the original paper, which was intended to feed an LES, there are two distinct simulations.
Flow A is an auxiliary DNS code that runs a short initial stretch of the boundary layer, and
whose only purpose is to provide the reference plane to be rescaled. One of its intermediate
planes is then filtered as needed, and fed to the inflow of the LES code B. In our case, in which
both codes are DNSes, there is no need for different codes. Flow A can be considered to be
the part of the box contained between x0 and xref , and the plane being fed to flow B could be
any of the planes in that sub-box. There is nothing around xref to make that location special,
and to require it to be discarded. It is just a location in which the flow is being observed. As
such it could be expected that, even if the initial part of the box may be unphysical, that effect
should appear in our simulation as an adaptation region for the inflow condition. In particular,
we observe in our case that the pressure fluctuations near the inlet are too high, most probably
because the rescaled plane does not satisfy continuity.

On the other hand, we found no problem in maintaining the flow. Such problems have been
reported by several authors [11, 19], who have proposed remedies. In those cases, the trouble
seems to be associated with the choice of the field used to initialize the simulation, which did
not have the right Reynolds stresses. In our case, we found no such problems after initializing
the upstream part of our box with a pre-stored field of the simulation in [40]. We also found
helpful to use, during the first flow-through, pre-stored mean velocity profiles for the reference
plane, and to keep after that a fixed mean velocity profile at the inflow.

Transverse and wall-parallel planes of the velocity field in BC2 are shown in figures 5(c) and 5(d),
and they have all the characteristics of healthy low-Reynolds-number wall-bounded turbulence.

Mean and fluctuating velocity profiles are shown in figure 6, compared with other simulations,
and with experiments at comparable Reynolds numbers. They generally agree, although the
scatter among experiments and within simulations is considerable. This seems to be a property
of low-Reynolds-number boundary layers, which preserve some memory of transition or of the
tripping process. Our simulations are essentially tripped by the inflow condition, and that
tripping is different from those in other cases. The experiments in [10] were specifically designed
to test this effect. They were tripped in three different ways around Reθ = 500, and they are
therefore roughly comparable to our simulations. The conclusion was that the effects of tripping
were noticeable at Reθ = 700, but essentially absent for Reθ = 1000. This is broadly consistent
with figures 5(ab), where the effect of the inflow disappears beyond x/θ0 = 150 (Reθ ≈ 800).

Figure 7 summarizes the friction factors of these and of other experiments, and supports the same
conclusion. Below Reθ ≈ 1000, the data are widely scattered, including our simulations, and
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Figure 6: (a) Mean streamwise velocity. (b) Longitudinal fluctuation intensities. Reθ ≈ 700. ,
present simulation, BC1; , BC2; , Ref. [40] at Reθ = 670; • , Ref. [29]; N , Ref. [10].

500 1000 5000
20
22
24
26

Reθ

U
∞+

Figure 7: Friction coefficient, given as U+
∞ = (2/cf )1/2, as a function of Reθ. Symbols as in figure 6,

except that Ref. [40] is here H .

they only collapse to a single curve above that value. The general conclusion is that an interval
of at least about 100−150θ0 is needed before the effect of the inflow conditions is approximately
forgotten. A recent survey in [5] of the streamwise development in boundary layer experiments
concludes that tripping effects persist in the lowest-order statistics for ∆Reθ ≈ 200, which
is roughly consistent with our previous criterion. Outer-flow quantities can take considerably
longer to equilibrate.

4.2 Adverse Pressure Gradient

Boundary layers subject to an adverse pressure gradient (APG) are a more stringent test for a
code than ZPG cases, in part because they deviate more strongly from conditions of parallel flow,
but mostly because they generate stronger fluctuations away from the wall. This complicates
both the choice of the grid resolution and of the outflow conditions. In fact, when running
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nx ny nz Lx/δ∗ Ly/δ∗ Lz/δ∗ β = δ∗∂xP/u2
τ

APG1 ¨ 769 256 1024 29 3 17 50− 100
APG2 ¥ 769 256 512 27 4 9 60− 100
APG3 • 769 256 512 68 10 21 8

Table 1: Parameters for the test cases with adverse pressure gradients.

Figure 8: Simulation APG2. The representation is an isosurface of spanwise vorticity, coloured by
the distance to the wall. Note the separation in the first third of the box, and the reattachment upon
transition.

APG cases with the present code, it proved necessary to include near the outflow a short buffer
region of higher viscosity and of favourable pressure gradient. That was not required in the ZPG
case. Imposing the desired pressure gradient also presents problems, specially in the presence of
separation, because the rapid growth of the layer interacts strongly with the mean stream.

We discuss here three simulations, at relatively low Reynolds numbers, which were undertaken
in the context of turbomachinery flow. In all the cases the flow separates while still laminar.
It then transitions within the separated bubble, and, as a consequence, reattaches. Preliminary
results have been reported in [32, 33, 34, 35, 36], and will be discussed in detail elsewhere. A
general view of the vorticity field of one of the simulations is shown in figure 8. Here we are only
interested in the ability of the code to simulate turbulent boundary layers, and we will therefore
centre on the short APG region that develops after reattachment.

The basic numerical parameters of the simulations are summarized in table 1. In all cases
the flow is forced by a constant suction velocity at the top of the numerical box, intended to
generate a uniform deceleration of the free stream. The limitations of this boundary condition
are evident from figure 9(a), which displays the mean streamwise velocity near the top of the
boundary layer. All the cases have a plateau above the separation bubble. This is a physical
effect, present in real flows, but it complicates the control of the simulation. For example, the
main difference between the simulations APG1 and APG2 is the height of the simulation box,
which proved to be too low in the first case. The suction velocity in the second case was chosen
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Figure 9: Adverse-pressure-gradient simulations. (a) Mean streamwise velocity above the boundary
layer. (b) Evolution of the Reynolds number. Symbols as in table 1. Solid lines denote attached regions,
and dashed ones are separated.

with the intention of matching the velocity distribution of the first one, but it is clear from the
figure that this was only imperfectly achieved. Imposing the pressure gradient directly at the
upper numerical boundary has similar problems, unless the box is very tall. The only way to
obtain a given outer potential flow would probably be to iterate either the suction velocity or
the pressure distribution to match them to the outer solution at some particular height. Note
that this difficulty is shared by laboratory experiments.

A further ambiguity of the present cases concerns transition. Spectral codes, such as the present
one in the spanwise direction, do not break the initial symmetries, and do not therefore develop
three-dimensionality unless seeded. In the present cases, which were intended to match an
existing experiment, a steady three-dimensional perturbation was added to the inflow laminar
boundary layer, with a maximum r.m.s. amplitude u′/U∞ ≈ 0.006. This is enough to force
transition and reattachment reasonably early in the separation bubble, and provides us with
the desired APG attached flows. The evolution of Reθ is given in figure 9(b). It grows rapidly
through separation, and reaches values at the exit that are somewhat higher than those of the
ZPG case considered in the previous section.

Note the effect of the outflow boundary in both figures 9(ab), which extends roughly over the
last 15% of the box. In the following, we will concentrate on the attached APG layer towards the
end of the box, discarding in all cases the final 15%. The friction coefficients over those regions
are given in figure 10(a). For the purpose of the present comparison, we arbitrarily choose to
consider as useful only the segment downstream of the point in which cf first reaches 80% of its
maximum value. In the following we will only discuss results in this region, with the abscissae
referred to the point of reattachment, and normalized with the momentum thickness at that
point. The limits are marked in figure 10(a).

The pressure gradients in the free stream are given in figures 10(bc), normalized both in outer
units,

β =
δ∗

u2
τ

∂P

∂x
, (53)
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Figure 10: (a) Friction coefficient over the reattached regions of the APG simulations. The symbols,
and solid lines, mark the limits of the segments considered in the following as useful. (b) Normalized
pressure gradients for the simulations, measured over the useful regions defined in the text. Outer units.
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Figure 11: Evolution of the mean velocity profile in the reattached region. The layer progresses down-
stream from red to blue. The dashed line is U+ = log(y+)/0.4 + 5. (a) APG2. (b) APG3.
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Figure 12: (a) Mean velocity profile in defect form, scaled as in [45]. (b) R.m.s. fluctuations of the
streamwise velocity. Solid lines are present simulations. In (a) only the profile at the end of the useful
range is included, to avoid clutter. ◦ , APG boundary layer from [37]. Reθ = 40, 000 − 53, 000, β = 20.
As before, (a) also includes the station Reθ = 44, 000; M , Recovering ZPG boundary layer from [39].
Reθ = 2− 12× 103. (x− xatt)/θatt ≈ 30− 70. The dashed line in (a) is the reference ZPG layer in [40].
Only y+ > 60 is plotted in all cases.

and in inner ones,

β+ =
ν

u3
τ

∂P

∂x
. (54)

The first normalization measures the effect of the pressure gradient on the outer flow, while
the second one measures its influence on the viscous layers. The figures suggest that, while
APG3 is likely to be affected by the pressure gradient only away from the wall, both APG1
and APG2 should be affected everywhere. It is clear from the figures that these two latter
cases have roughly similar parameters, and from now on we will only use APG2, since we have
mentioned that APG1 had a marginally low numerical box. It is obvious from figures 10(bc)
that none of the reattached layers is long enough to satisfy the criterion discussed in the previous
section to reach equilibrium. Figures 11 show the evolution of the velocity profiles in the two
cases. Both reach some semblance of equilibrium of the outer wake component towards the
end of the simulation, but in none of the two does the logarithmic layer reach anything close
to an equilibrium behaviour. It should however be noted that the Reynolds numbers are too
low to develop a healthy logarithmic layer, and that [4] have suggested that APG layers reach
equilibrium faster than ZPG ones.

It was also suggested in [4] that, when the mean velocity defect is properly scaled, all the APG
boundary layer should quickly collapse to a universal form. Testing that conclusion is beyond
the scope of the present report, but our profiles are compared in that way to other boundary
layers in figure 12(a). Our profiles are plotted in defect form at the end of their useful range,
scaled with

UZS = U∞
δ∗

δ
, (55)

as suggested in [45]. That scaling forces all the curves in figure 12 to have unit area, but its
main utility is that, if the profiles collapse, UZS is the characteristic velocity difference for the
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boundary layer outside the near-wall region. For example, if we consider the outer layer as a free
shear flow, its characteristic velocity gradient would be UZS/δ. Our profiles are compared in this
way to the APG boundary layer in [37], which has a comparable value of β, although a much
higher Reynolds number, and to the ZPG in [39], which is recovering from separation behind
a backwards facing ramp. The latter is an interesting experiment, because it spans Reynolds
numbers of the same order as our simulations, and because it should help in differentiating the
effect of the recovery from that of an equilibrium APG. It is seen in the figure that the present
simulations match the recovering layer better, specially near the free stream, although all the
cases are far from the reference ZPG profile.

A more revealing comparison is that of the fluctuation intensities, which are shown in figure
12(b). In APG boundary layers, as opposed to ZPG ones, the peak fluctuation intensity moves
away from the wall into the middle of the outer flow, and resembles the fluctuation profiles
found in free-shear flows. The scaling of these profiles is still controversial, but [21] have recently
reported that UZS collapses the fluctuations best within a given experiment. They however find
that different experiments collapse to different profiles, and suggest that no universal behaviour
can be expected. This seems to be the case in figure 12(b). Each of the four experiments
or simulations collapse to a different curve, and all that can be said is that at least all the
peaks of the fluctuations profiles are at roughly the same location. This figure also supports the
conclusion from the mean velocities that our simulations are not equilibrium APG boundary
layers, and that they are actually relaxing from separation. Given their recent history, and their
short fetch, that is reasonable. It is also clear from this figure that the fluctuation level in the
free stream is unacceptably high. Since that was not the case in the ZPG layer in figure 6(b),
the reason is probably the insufficient height of the computational box, which was much taller
in the ZPG case.

5 Conclusions

A second-order-accurate code has been developed for the simulation of spatially-developing
boundary layers, with resolution properties comparable to those of fourth-order compact finite
differences. This code has been tested by simulating both a zero-pressure-gradient turbulent
boundary layer at moderate Reynolds numbers Reθ = 650−900, and laminar separation bubbles
that transition to turbulence and reattach. In the latter cases, the Reynolds numbers of the
reattached turbulent APG boundary layers reach Reθ ≈ 1500.

The ZPG simulation agrees well with previous experimental and numerical results at similar
Reynolds numbers. Most of the observed differences can be attributed to residual effects of the
tripping, which in this case is done by the inflow boundary condition. Similar effects are found
in experiments at these Reynolds numbers, and the simulations are within the experimental
scatter. A criterion was derived for the minimum required development length, 150θ0.

The APG cases were created by a uniform suction over the whole upper boundary of the nu-
merical domain. This generated a roughly uniform gradient, and the reattachment was entirely
due to transition. No favourable gradient was applied, except for a short buffer region at the
outflow, for numerical reasons. Two cases were run, with respectively strong and weak pressure
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gradients. Since the emphasis here is on the behaviour of the code in turbulent flows, only
the results in the reattached regions have been compared with experiments. In both cases the
reattached layers are too short to reach equilibrium, but the results agree qualitatively with
the few available experiments, resembling most the recovery region of boundary layers as they
reattach behind obstacles.

The code was run in several distributed-memory machines, with fairly linear scaling in the range
of 32 to 300 processors. Typical total times per time step were of the order of 15 CPU-minutes
for grids of 100 Mpoints.

It is concluded that the code is ready for large-scale simulations of boundary layers of moderate
Reynolds numbers, which are now under preparation. Two areas that need some work are the
oscillations generated by the turbulent inflow, and an upper-wall boundary condition that limits
the pressure oscillations in the free stream. In both cases the problem can be controlled by
sufficiently large grids, but cheaper solutions are under consideration.
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A Approximation errors

Consider the spectral response of the finite difference schemes used in the code, and assume that
the grid is uniform and, when required, isotropic in two dimensions. The dispersion relation of
the staggered, compact, fourth-order first derivative, when applied to fj = exp(ik̃j), is

hf ′j/fj = F
(1)
4 = i

4 cos(k̃/2)

3 + cos(k̃)

24 sin(k̃/2)

11 + cos(k̃)
, (56)

where the second factor corresponds to the derivative itself, and the first one to the required
interpolation of the staggered variables. This may be compared with the standard second-order
formula, for which

F
(1)
2 = i sin(k̃). (57)

The performance of these formulas can be quantified by comparing their relative errors

ε(1) =
|F − ik̃|
|k̃|

. (58)

Examining the performance of the pressure-correction operation cannot be done in one dimen-
sion, where continuity is degenerate. Consider a two-dimensional equilateral Cartesian grid, and
define a wave vector with components k̃1 and k̃2. If we define FGi and FDi as the dispersion
relations of the numerical approximations to the gradient and divergence operators along the
coordinate i, the projection operation

~f = ~f∗ −∇∇−2
(
∇ · ~f∗

)
, (59)

has the numerical counterpart
(

f1

f2

)
=

(
f∗1
f∗2

)
− P̂

(
f∗1
f∗2

)
, (60)
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where

P̂ =
1

FG1FD1 + FG2FD2

(
FG1FD1 FG1FD2

FG2FD1 FG2FD2

)
. (61)

The analytic equivalent is

P =
1

k̃1k̃1 + k̃2k̃2

(
k̃1k̃1 k̃1k̃2

k̃2k̃1 k̃2k̃2

)
. (62)

In the staggered second-order scheme, both FD and FG are 2i sin(k̃/2), but the properties
mentioned below do not depend on this equality.

It is easily shown that the eigenvalues of both (61) and (62) are 0 and 1. Their L2 norms (the
spectral radii) are therefore unity. This shows that, except for boundary effects that are not
contemplated in the spectral analysis, the pressure projection step can never increase the L2

norm of the flow velocity. The kinetic energy can therefore at most be conserved, and it usually
decreases. This step is unconditionally stable.

The operations P and P̂ are both projections, although on slightly different planes. A rigorous
estimate of the relative error is impossible without some knowledge of the properties of the
initial point f∗, but a useful measure is

εP = ‖P̂ − P‖2, (63)

where ‖ ‖2 is the L2 norm, since we know that ‖P‖2 = 1.

Figure 2 in section 3.2 plots ε
(1)
2 and ε

(1)
4 versus k̃, and εP versus ‖k̃‖2.
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