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The behaviour of the velocity and pressure fluctuations in the logarithmic and outer
layers of turbulent flows is analysed using spectral information and probability
density functions from channel simulations at Reτ � 2000. Comparisons are made
with experimental data at higher Reynolds numbers. It is found, in agreement with
previous investigations, that the intensity profiles of the streamwise and spanwise
velocity components have logarithmic ranges that are traced to the widening spectral
range of scales as the wall is approached. The same is true for the pressure, both
theoretically and observationally, but not for the normal velocity or for the tangential
stress cospectrum, although even those two quantities have structures with lengths of
the order of several hundred times the wall distance. Because the logarithmic range
grows longer as the Reynolds number increases, variables which are ‘attached’ in this
sense scale in the buffer layer in mixed units. These results give strong support to the
attached-eddy scenario proposed by Townsend (1976), but they are not linked to any
particular eddy model. The scaling of the outer modes is also examined. The intensity
of the streamwise velocity at fixed y/h increases with the Reynolds number. This is
traced to the large-scale modes, and to an increased intensity of the ejections but not
of the sweeps. Several differences are found between the outer structures of different
flows. The outer modes of the spanwise and wall-normal velocities in boundary layers
are stronger than in internal flows, and their streamwise velocities penetrate closer to
the wall. As a consequence, their logarithmic layers are thinner, and some of their
logarithmic slopes are different. The channel statistics are available electronically at
http://torroja.dmt.upm.es/ftp/channels/.

1. Introduction
Although the behaviour of turbulence in the buffer layer of wall-bounded flows has

been exhaustively studied in the last decade, the logarithmic and outer layers have
been addressed less often. They were nevertheless the parts of the flow for which
a theory was first proposed. The best-known prediction, and the one that has been
discussed most, is the logarithmic profile of the mean velocity in the overlap layer
between the inner and outer flow regions. We will not address that question here at
all. A summary of its early history is given in the book by Schlichting (1968), and a
flavour of the current controversies surrounding it can be found in Zagarola, Perry &
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Smits (1997), Barenblatt, Chorin & Prostokishin (2000), or Wosnik, Castillo & George
(2000).

The first goal of this paper is to examine the evidence for logarithmic profiles of the
fluctuating turbulent quantities in the overlap layer. Such profiles were first predicted
by Townsend (1976, § 5.7–5.8), and the argument has been especially developed by
the Melbourne group within a particular model of ‘hairpin’ eddies (Perry, Henbest &
Chong 1986; Perry & Li 1990). One of the reasons why they are interesting is because
any quantity with such a profile cannot satisfy the other well-known prediction of the
classical theory, which is that the friction velocity uτ is a uniform velocity scale across
the flow. If we define wall units in terms of uτ and of the fluid viscosity ν, and denote
by a + superscript any variable expressed in them, the overlap layer extends from a
lower limit that scales in wall units, to an outer one that scales with the flow thickness
h. Any quantity that behaves like log y, where y is the distance to the wall, increases
across that range by an amount proportional to log h+ ≡ log Reτ . Therefore, there
can not be a scale that is independent of the Reynolds number and that applies at
the same time to its inner and to its outer values.

While Townsend’s argument has most often been discussed in terms of the hairpin
model, it was originally independent of those details. In this paper we examine
the information that can be obtained from the kinematics of the flow without any
particular dynamical model in mind. For example, we will be interested in whether
the predicted logarithmic profiles are universal across different flows and Reynolds
numbers. The dynamics themselves require further work, and are left for future
publications.

A second goal of the paper is to inquire about the universality of the scaling of the
fluctuations above the logarithmic layer. Townsend’s argument says nothing against
the classical uτ scaling at wall distances that are fixed fractions of the flow thickness,
but there is increasing evidence that that part of the flow is not universal either. That
evidence will be discussed and, as far as possible, interpreted.

We use mostly data from recent simulations of turbulent channels, with emphasis
on their spectra and on quantities, such as the pressure, which are difficult to obtain
otherwise. To alleviate the Reynolds-number limitation of the simulations, we put
them whenever possible in the context of higher-Reynolds-number experiments.

The paper is organized as follows. The numerical simulations are described in § 2.
Our interpretation of the classical spectral theory of the logarithmic layer, and the
nomenclature used in the paper, are presented in § 3. The velocity fluctuations are
discussed in § 4. The pressure fluctuations are analysed in § 5, and § 6 concludes.

2. The numerical and experimental data
Most of the detailed discussion in this paper is based on the turbulent channel

simulations of del Álamo & Jiménez (2003), del Álamo et al. (2004) and Hoyas &
Jiménez (2006). Their parameters are summarized in table 1. The numerical codes
integrate the Navier–Stokes equations in the form of evolution problems for the wall-
normal vorticity ωy and for the Laplacian of the wall-normal velocity ∇2v, as in Kim,
Moin & Moser (1987). The spatial discretization uses de-aliased Fourier expansions
in the wall-parallel planes. The two lowest Reynolds numbers use Chebyschev
polynomials in the wall-normal coordinate, and the highest one uses seven-point
compact finite differences. The characteristics of the different simulations with respect
to the large scales were documented in the original publications. Their resolution
properties regarding the smallest scales were discussed by del Álamo et al. (2006).
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Case Line Reτ Lx/h Lz/h �x+ �z+ Ny NF uτT /h

L550 547 8π 4π 13 6.7 257 149 22
L950 934 8π 3π 11 5.7 385 74 12
L2000 2003 8π 3π 12 6.1 633 226 11

Table 1. Parameters of the simulations. Lx and Lz are the periodic streamwise and spanwise
dimensions of the numerical box, and h is the channel half-width. �x and �z are the resolutions
in terms of Fourier modes. Ny is the number of wall-normal collocation points. NF is the
number of fields used to accumulate statistics, and T is the time spanned by those fields.

Because of minor bugs discovered in L550 and L950 after their original publication,
their statistics have been recomputed by rerunning each of the stored fields for a few
hundred time steps with a clean code. The occasion was used to extend the run of
L550, for which relatively few fields had been stored, by several extra eddy turnovers,
as well as to compute the budgets of the Reynolds-stress tensor for the three cases
(Hoyas & Jiménez 2008). The difference between the new and the older statistics
was found to be negligible except below y+ ≈ 1, which was the location of the most
important bug. The statistics of L2000 were, as far as we know, bug-free.

We use x, z and u, w, respectively, for the streamwise and spanwise coordinates
and velocity components. The kinematic pressure p incorporates the constant fluid
density, which is also left out of the definition of the Reynolds stresses. The flow
thickness h is the half-width for channels, the radius for pipes, and the 99% thickness
for boundary layers. Primed quantities refer to root-mean-squared intensities of the
fluctuations. Otherwise, capital letters refer to mean quantities, and lower-case ones
to fluctuations. The brackets 〈 〉 represent averaging over homogeneous directions,
usually over wall-parallel planes and time.

In presenting spectral data, the wavenumbers in the two wall-parallel directions are
kx and kz, and the corresponding wavelengths are λ=2π/k. The premultiplied spectral
energy densities, φ, are defined in terms of the one- or two-dimensional spectra, E, as
φ∗ = kxE∗(kx) or kxkzE∗(kx, kz), where the asterisk stands for any two flow fields, such
as uv or pp. Whether one- or two-dimensional quantities are implied will always be
clear from the context.

Even if, to our knowledge, the Reynolds numbers of our simulations are among
the highest available, they are relatively low to allow any decoupling that may exist
between the outer and the inner layers, or to ensure the existence of a logarithmic
layer. On the other hand, their advantage is that they span a relatively wide range
of Reynolds numbers using uniform numerical methods in comparable grids and
computational domains. They are therefore well adapted to study trends.

We have supplemented them whenever possible with higher-Reynolds-number
experiments, but, since high-Reynolds-number experimental channels are rare, and
since it is unclear whether the outer layers of different flows can be assumed to
be similar, we always use in the figures different symbols for boundary layers (�),
pipes (�), and channels (�). All the data used here are available from the respective
authors, although some of them may be difficult to find in electronic form. The note
at the end of some references refers to their case numbers in the electronic data
compilation by AGARD (1998). The data originating from our group are available
at http://torroja.dmt.upm.es/ftp/channels/.

A word should be said about statistical uncertainty. Error estimates were not
available for most experimental data, but our channels are compiled over several
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hundred short numerical runs, and the final statistical errors can be estimated from
the scatter among the individual statistics, and from how they evolve in time. The
details can be found in the Appendix to Hoyas & Jiménez (2008), and the standard
deviations for all the one-point statistics are in the web page above. They are typically
well below 1%. The uncertainties of other quantities are harder to define. For example,
in the spectra discussed in figure 2, or in the probability density functions (p.d.f.s)
in figure 7, both of which are essentially histograms, the uncertainty depends on
the size of the averaging bins being considered. The spectra, for example, have their
largest uncertainties for the longest and widest scales, which represent large structures
with long lifetimes. Applying the procedure above, it is found that the worse relative
scatter over spectral boxes defined by wavelengths spaced by a factor of two has a
standard deviation of the order of ±10%. It is generally below ±5%, and becomes
much smaller when either of the wavelengths is small with respect to the channel
width. The p.d.f.s in figure 7 are compiled using approximately 109 points at each
wall distance, so that the outermost 10−4 isolines in figure 7(b) represent about 105

points. In all cases our data are plotted without smoothing, so that the uncertainties
can be roughly estimated from the smoothness of the lines.

3. The classical theory
In this section we review the classical arguments on the behaviour of the turbulent

fluctuations in the overlap layer, partly as a reference, but also to define the
nomenclature used in the rest of the paper. Much of the section is adapted from
chapter 5 of the book by Townsend (1976).

The minimal condition for the existence of an overlap layer is that there exists a
region too far from the wall for viscosity to be important, but close enough to it for
the total tangential stress not to be very different from its value u2

τ at the wall. The
viscous stresses are negligible in such a layer, and the averaged tangential Reynolds
stress is −〈uv〉. The only ‘possible’ velocity scale is then uτ .

From the point of view of this paper, an eddy is defined as a logarithmically spaced
band of wall-parallel wavelengths, such as between λ0/2 and λ0, with its associated
wall-normal distribution. The latter provides a wall-normal location and dimension
for the eddy, such as the centre of gravity and the radius of inertia of the wall-normal
distribution of the velocity magnitude. In principle, an eddy refers to a single flow
variable, but it is often possible to identify overlapping structures of the three velocity
components as forming part of the ‘same’ eddy.

What Townsend observed was that turbulent eddies centred at a distance y from
the wall should behave differently depending on whether their sizes are larger or
smaller than y. ‘Detached’ eddies whose wall-normal dimensions are smaller than
y feel the presence of the wall only indirectly (e.g. through the local shear of the
mean profile) and therefore behave more or less as in free shear flows. They tend
to be roughly isotropic and to form classical Kolmogorov (1941) energy cascades.
On the general argument that the energy spectrum of a turbulent flow decreases
with increasing wavenumber, the strongest detached eddies should be those with sizes
roughly equal to y. For variables such as the wall-normal velocity, those ‘maximal’
detached eddies are also the largest ones, because of the impermeability condition.
Wall-parallel velocities, on the other hand, are not constrained in this way, and can
have much larger lateral dimensions. Those ‘attached’ eddies are not isotropic, and,
since they do not contain v, they cannot be ‘active’ near the wall in the sense of
carrying tangential Reynolds stresses.
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The argument for logarithmic profiles of the intensities was also made by Townsend
(1976, pp. 150–154) in his original formulation of the attached-eddy model, and
has been incorporated in most later models (Perry et al. 1986; Perry & Li 1990;
Kunkel & Marusic 2006). It is weaker than that for a uniform velocity scale. The
idea is that all eddies are active somewhere, so that the only attached eddies are
the maximal detached ones. At a given wall distance, eddies with wall-parallel sizes
λ 	 y are wall-parallel sections of larger eddies whose active central parts are located
at yλ =O(λ). They are only inactive where their wall-normal velocities are blocked
by the wall, y 
 yλ. Their velocities away from the wall therefore scale with uτ ,
and their wall-parallel components presumably retain the same scaling. The energy
in the spectral band yλ/2 � λ<yλ is then O(u2

τ ), and since such eddies exist for all
y < yλ = O(λ) < h, integration of the spectrum between those limits results in a
squared intensity proportional to log(h/y).

This still implies that the velocity scale for the fluctuations at a fixed y/h is uτ ,
but when such inactive variables are measured at a fixed y+, where y/h = Reτ

−1y+,
their squared intensities should be proportional u2

τ log Reτ . For example, that should
be true in the buffer layer.

The last conclusion has been tested by several groups over the last decade.
Convincing evidence that u′+ increases in the buffer layer with the Reynolds
number was first provided by DeGraaff & Eaton (2000). They proposed for u′2

an empirical ‘mixed’ scaling with uτUc, where Uc is the free-stream velocity. Since
U+

c ∼ log Reτ + C, the mixed scaling agrees at very high Reynolds numbers with the
logarithmic dependence derived above, although the good agreement at the Reynolds
numbers of the experiments may be partly coincidental. A discussion of the buffer-
layer spectra of the present channels and of selected experimental results can be found
in Jiménez, del Álamo & Flores (2004) and Hoyas & Jiménez (2006), who showed
explicitly that the wavevectors limiting the spectra separate from each other as the
Reynolds number increases.

In fact, the spectral argument implies that the intensities in the buffer layer should
be controlled by the size disparity between the largest structures in the outer region
and the smallest ones near the wall, rather than by Reτ . This is confirmed by
preliminary results by Iwamoto et al. (2006). The width Λz of the largest outer scales
differs between boundary layers, Poiseuille, and Couette flows, and they have shown
that the near-wall intensities at moderate Reynolds numbers correlate better with Λ+

z

than with Reτ .

4. Velocity fluctuations
4.1. Attached and detached variables in the logarithmic layer

Before getting into the detailed consideration of the fluctuation profiles, we need
to address three questions. The first one is whether the Reynolds numbers of
our simulations are high enough to have useful logarithmic layers. The second is
whether different types of flows are similar enough above the buffer layer for useful
comparisons to be made, and the last one is which variables support attached eddies,
and which ones do not.

The answer to the first question is in part a matter of definition. It was shown in
the original publications that the simulations have approximately logarithmic mean
velocity profiles, specially in the cases of L950 and L2000, but a better test for our
purposes is whether there is a range of wall distances in which the length scales
increase linearly with y. Figure 1(a–c) shows premultiplied streamwise spectra of u as
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Figure 1. (a–c) Normalized premultiplied spectral densities of the streamwise velocity, φuu/u
′2,

versus the streamwise wavelength λx = 2π/kx and y/h. (a) Numerical channel L2000, (b)
boundary layer at Reτ = 1950, and (c) at Reτ = 7100 (Hites 1997). (d–f ) Normalized spectral
densities in L2000 of (d) the spanwise velocity, φww/w′2, (e) the wall-normal velocity, φvv/v

′2,
and (f ) the shear stress, φuv/〈uv〉. The dashed horizontal lines are in all cases y+ = 100 and
y/h =0.2, and the dashed diagonal is λx = 12y. The line isocontours in (a–c) are 0.08 (0.04) 0.16;
the shaded area is within the isocontour 0.20. The isocontours in (d–f ) are 0.10 (0.05) 0.25.
The closed circles mark the maxima of the premultiplied spectra at each height.

functions of the streamwise wavelength and of y. That component was chosen in part
because it is the one for which most experimental data are available, but also because
it is a good example of an ‘attached’ variable. To approach the second question,
case L2000 is compared in the figure with two experimental boundary layers, one at
a similar Reynolds number, and another at the highest Reynolds number that we
could find. The three figures include the location of the maxima of the premultiplied
spectra, as well as a linear trend line. It is clear from the figure that channels have
a longer linear scaling region than boundary layers, extending over half a decade for
this particular variable in L2000. Note that the two boundary layers in figure 1(b, c)
have similar spectra, even if their Reynolds numbers are very different, while the two
low-Reynolds-number flows in figure 1(a, b) have very different spectra, even if their
Reynolds numbers are very similar. This underscores the difficulty of comparing even
the logarithmic layers of different flows in any but rough terms.

In fact, figure 1(b, c) shows that, as already noted by Hites (1997) and by Kunkel
(2003), the logarithmic region of boundary layers is contaminated by outer modes at
all Reynolds numbers, and that it is difficult to identify a region in which the location
of their spectral peaks grows linearly with y. If boundary layers have a logarithmic
layer in the sense used here, those figures suggest that it only extends up to y/h ≈ 0.05,
while a looser limit of y/h � 0.2 can be used for channels. Note that both limits are
lower than those derived elsewhere from the analysis of the mean velocity profiles,
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Figure 2. Premultiplied two-dimensional spectra for (a) φuu, (b) φvv , and (c) φww , as functions
of λx/h and λz/h, at several wall distances in the overlap layer. The spectra are normalized
with the local tangential stress, −〈uv〉 = u2

τ (1 − y/h). Case L2000. , y/h = 0.1; ,
y/h = 0.15; , y/h =0.2; , y/h = 0.3. The two contours in each case are 0.125 and
0.625 times the common maximum to the four planes. The dashed diagonal is λx = λz.

y/h = 0.15 for boundary layers (Österlund et al. 2000), and y/h = 0.45 for channels
(Jiménez & Moser 2007).

It is important to understand that the length scale defined by the spectral maxima
in figure 1 is not the integral correlation length. A feature of all the spectra in figure
1(a–c) is the presence, from the top of the flow to very near the wall, of eddies with
substantial energy at very long wavelengths. The spectrum for the other wall-parallel
component, w, is shown in figure 1(d). Although less clearly than in φuu, it also has
an attached long-wavelength component over the whole flow thickness. What the
spectral maximum measures in those cases is the scale of the shorter edge of the
energy-containing spectrum, which could be interpreted as the long-wavelength end
of the detached isotropic cascade.

Figures 1(e) and 1(f ) show the premultiplied spectrum of v and the cospectrum of
the tangential Reynolds stress. The maxima of φvv are roughly at the same scales as
those of φww , and those of −φuv are roughly as in φuu, but both spectra lack most
of the energy that the attached variables have in the longer scales. Both φvv and
φuv represent the maximal detached eddies mentioned above, and the spectral lengths
used here are their streamwise dimensions.

The differences between attached and detached variables, as well as some of the
possible complications, are shown in more detail in figure 2 by the evolution with y

of the two-dimensional spectra of the three velocity components. Generally speaking,
eddies move to longer and wider wavelengths as they separate from the wall, but they
may do so in two different ways. For the detached φvv in figure 2(b) the spectra have
roughly uniform sizes, and their centres ‘travel’ to larger wavelengths as y increases.
For the attached cases in figures 2(a) and 2(c) the longest and widest wavelengths
have energy across the whole flow. Their long-wavelength limits are approximately
independent of the wall distance, and only their short-wavelength edges move to
larger scales away from the wall.

Note that variables, such as φuu and φww , that appear similar from their one-
dimensional spectra, are actually quite different in the (λx, λz) plane. For example,
the φuu spectra are aligned along axes λ2

z = yλx , and migrate parallel to themselves
as y increases. They can be interpreted as intersections of the different y planes

with long conical eddies tangent to the wall (del Álamo et al. 2004, 2006). On
the other hand, the φww and φvv spectra are essentially ‘equilateral’ at all heights,
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λx ≈ λz ≈ 3y, suggesting that they form part of a more isotropic common transverse-
velocity structure. However, while the φvv spectra collapse approximately in terms of
λ/y, and consequently ‘travel’ with y in figure 2(b), the long- and wide-wavelength
ends of φww scale with h, at least in our range of Reynolds numbers. The figure
suggests that the attached character of w is due more to the width of its structures
than to their length. Most of φww is involved in 〈vw〉 structures, even if it is attached
to the wall, but its widest parts do not carry Reynolds stresses because they do not
involve u. The exception is the long-wavelength tail seen in figure 2(c) near λz = h.
Since there is very little v in that spectral range, that part of φww has to correspond
to inactive inactive 〈uw〉 eddies.

The overall picture is one of ‘short’ active eddies that carry both u and v. Very wide
or very long structures still carry some v, although not enough to create appreciable
tangential stress, but their spanwise or streamwise velocity components, respectively,
can still be relatively strong, because continuity requires that w ∼ λzv/y or u ∼ λxv/y.

Although it is not shown explicitly by the representation in figure 2, the intensities
in the cores of the spectra at different heights collapse much better when normalized
with the local Reynolds stress −〈uv〉 than with u2

τ , suggesting that at least part of the
dynamics of the active scales is local to the wall distance of their centres.

Note finally that our use of ‘attached’ and ‘detached’ is slightly different from
that of other groups (e.g. Perry et al. 1986), who would label as ‘attached’ any eddy
whose dimensions are proportional to y. From the point of view of energy-containing
eddies, the difference is mostly whether the ‘maximal’ detached eddies are considered
as attached or not. Our eddy classes are designed to differentiate spectra whose
bandwidths stay constant from those in which they change as a function of y. The
fluctuation intensities of our detached variables may remain approximately constant
as the wall is approached, but the attached ones have to increase, because their spectra
grow longer. A better nomenclature for our two classes could perhaps be ‘anchored’
and ‘floating’, since we require the former to be large enough to have substantial
energy at the wall, but we have preferred to adapt the classical terminology for our
purpose.

4.2. The intensity profiles

The profiles of the squared intensities for the three velocity components in our
simulations are presented in figure 3, scaled with u2

τ . The abscissae of the two upper
plots are linear, and those of the bottom ones are logarithmic. None of the profiles
scales well in the buffer layer within our range of Reynolds numbers, but their
behaviours elsewhere are different. Except for a slight drift in the outer layer, the
wall-normal component in figure 3(b) appears to be following a roughly linear profile
that extrapolates to a finite limit of order unity at the wall. The buffer layer would be
infinitely thin in the limit of infinite Reynolds number, and the figure suggests that
v′2 would tend almost everywhere to a non-singular profile.

The spanwise component also drifts slightly far from the wall, but it has a ‘hook’
near the wall that cannot be easily extrapolated to a finite limit at y =0. We saw in
the previous section that w is an attached variable that should have a logarithmic
intensity profile. Figure 3(d) confirms that the near-wall hook is logarithmic, extending
from the buffer layer to y/h ≈ 0.3. Since the limit of a logarithm is singular at
y = 0, this implies that the maximum value of w′ would grow without bound as
the Reynolds number increases. Note that the v′2 profiles in figure 3(d) have broad
maxima, instead of logarithmic layers.
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Figure 3. (a, c) Mean-squared profiles of the u fluctuations, for the three numerical channels
in table 1. The lines with symbols in (c) are fluctuations with λx < 6h and λz < h, above

y+ = 50. (b, d) The upper set of curves is w′2, and the lower one is v′2. The fluctuations
are scaled with uτ , and the lines are as in table 1. The thick dashed lines in the two lower

semilogarithmic plots are u′2 = − 1.15 log(y/h) + 2.5 in (c), and w′2 = − 0.5 log(y/h) + 0.8
in (d).

The most complex profiles are those of u′2, which do not scale well with u2
τ either

near or far from the wall. We saw in § 3 that φuu is attached, and that u′2 should have
a logarithmic profile in the overlap layer. That is harder to spot in figure 4(c) than
in w′2, because the profiles are contaminated with the peaks caused by the streaks of
the buffer layer. We have added to figure 3(c) a possible fit to the logarithmic slope
of the fluctuations The agreement is only moderate, but the Reynolds numbers are
low, even in case L2000. Perry et al. (1986) suggested a slightly different fit for the
u′2 profiles in pipes, and noted that there should be a viscous correction that is not
negligible in the lower logarithmic layer. That correction acts in the right direction to
improve the fit for the profiles in figure 3(c), but it cannot account for the continuous
drift of the additive constant of the logarithmic law.

To check the validity over a wider range of Reynolds numbers of the trends
just mentioned, figure 4 compares our intensity profiles with a variety of other
experimental and numerical data. The streamwise velocity fluctuations in figure 4(a)
agree reasonably well with the trend line in figure 3(c), although it is also clear in this
case that the additive constant is Reynolds-number-dependent. Figure 4(b) displays
the behaviour of u′2 at y/h= 0.3 as a function of Reτ , and shows that the drift is not
a viscous correction. Viscous effects at such distances from the wall are negligible for
all the cases in the figure.

Most of the drift and of the poor logarithmic fit of this velocity component is
actually due to the very long and wide eddies found in u. The lines with symbols in
figure 3(c) are intensities computed after subtracting all the large modes identified
as ‘global’ in del Álamo et al. (2004). The results collapse much better than the full
fluctuations, and they also follow a much better logarithm.
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(b, d , f ) Mean-squared fluctuations at y/h = 0.3, from various sources. �, channels; �, pipes;
�, boundary layers. The closed circles are the present simulations. (a, b) u′2. (c, d) w′2. (e, f ) v′2.
The dashed straight lines in (a) and (c) are as in figure 3. The shaded patch in (c) is the range
of values given by Fernholz & Finley (1996) for boundary layers in the range Reτ = 900–19000.

The other four panels in figure 4 collect information for the transverse velocity
components, v and w. As expected from the theoretical arguments, w′2 has a
logarithmic range below y/h ≈ 0.3, although the slope of the logarithm in our channels
is different from the boundary layers. That is true both for the high-Reynolds-number
cases of Fernholz & Finley (1996) and for the intermediate-Reynolds-number case
from Smith (1994). Another boundary layer described by Perry & Li (1990) at
Reτ =3700, not included in the figure, has a logarithmic slope for w′2 which is closer
to those of the boundary layers than to the channels in figure 4(c). The same is true
for the highest Reynolds number in the boundary layer simulations of Spalart (1988),
whose Reτ is comparable to that of case L550.
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Inspection of the profiles suggests that the problem is not so much with the
logarithmic range itself as with a bulge in the boundary layers that raises the upper
end of the logarithmic profiles. The bulge is absent in our channels, but the only
higher-Reynolds-number internal flow for which we have data (Comte-Bellot 1965)
also has a weak bulge. Its magnitude can be quantified by the value of w′2 at a fixed
y/h, which is given in figure 4(d). Comte-Bellot (1965) channels look consistent with
ours at the lower Reynolds numbers, and with the boundary layers at the higher ones.
This suggests that there are two different effects acting on the bulge. It is present in
any flow if the Reynolds number is high enough, but only for external flows at low
Reynolds numbers.

A clearer difference between boundary layers and internal flows is the distribution
of v′. The profiles are given in figure 4(e), and show no logarithmic range, as suggested
both by the theory and by figure 3. The values at y/h = 0.3 are in figure 4(f ). There
is no apparent Reynolds-number drift in pipes and channels, but there is one in
the boundary layers. The difference is even clearer in the location of the maximum
value of v′, which is achieved at y/h ≈ 0.2 in the boundary layers, and at the edge
of the buffer layer in the channels. Figure 49 of Fernholz & Finley (1996) shows
a uniform logarithmic growth of the outer v′ maximum for boundary layers in the
range Reθ = 400 to 6 × 105, and Jiménez (2004) also found a different behaviour of
the maximum v′ over rough walls in internal and external flows. One the referees has
called our attention to an analysis of hot-wire performance by DeGraaff & Eaton
(2000) that may explain the drift in v′ as an experimental artifact, but their analysis
applies equally well to internal and external flows, and cannot explain the differences
observed in the figure. The data from that group are included in figures 4(e) and 4(f ),
and are consistent with other experiments.

It is tempting to associate the outer maximum of v′ with the outer bulge of w′,
especially since both variables have similar wall-parallel dimensions. If that were
the case, they would represent a structure in the transverse plane, essentially a
large streamwise vortex, that forms in boundary layers but not in internal flows at
moderate Reynolds number. Apparently, that structure, or perhaps a hierarchy of
such structures, reaches deep enough into the flow to modify the logarithmic layer,
and could perhaps be associated with the differences between the spectra of boundary
layers and channels in figure 1. Unfortunately, the issue can only be resolved either
by new simulations of boundary layers at higher Reynolds numbers, or by similar
new experiments in pipes or channels.

4.3. ‘Sterile’ eddies and the fluctuations of the outer layer

Besides the possible differences among the logarithmic layers of different flows, the
most interesting result up to now is the drift of the outer values in figure 4(b, d , f ),
since we saw in § 3 that the classical theory predicts that the intensities at fixed y/h

should scale with uτ .
The evidence for a drift in v′ and w′ is limited, because the experimental data for

those variables are scarce, and figure 4(d , f ) could perhaps be discounted as evidence
of experimental noise, but the evidence for the Reτ -dependence of u′ at y/h = 0.3
in figure 4(b) is more persuasive. Similar plots compiled at other wall distances in
the range y/h=0.1–0.5 produce similar results. A spectral analysis of that range

was performed by del Álamo et al. (2004), who concluded that the only possible
explanation was that the ‘global’ modes with λx/h � 6 scale differently than the
shorter ones. That is consistent with the collapse of the intensity profiles in figure 3(c)
once those modes are removed. He further concluded that the global modes scale
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with U 2
c , instead of with u2

τ , which is conceivable because they are correlated across

the whole channel height. That would result in an additive term in u′2 proportional
to U 2

c , on top of the regular one proportional to u2
τ . This is different from the mixed

scaling also tentatively proposed by DeGraaff & Eaton (2000) for this part of the
flow, but del Álamo et al. (2004) showed that it is essentially impossible to distinguish
empirically between the two behaviours within the range of experimentally accessible
Reynolds numbers. In fact, plots like the one in figure 4(b) should be treated with
care. If that figure had been drawn for u′, instead of for u′2, it would display an
equally good logarithmic trend within the experimental scatter.

It should be mentioned at this point that Morrison et al. (2004) have proposed that
the trend in figure 4(b) is a low-Reynolds-number effect. Their data for the Princeton
superpipe are included in the compilations in figures 4(a) and 4(b), and they level
off beyond Reτ ≈ 3000. The isolated triangle at Reτ ≈ 6 × 104 in figure 4(a) belongs
to this data set, and there is at least another point beyond Reτ = 105 with roughly
the same intensity. The data are very scattered, but Morrison’s interpretation would
become more plausible if one could disregard the two channels from Comte-Bellot
(1965), which are the two highest circles at Reτ ≈ 104 in figure 4(b). The mean velocity
profiles of those channels do not agree with the results of later experiments, and
they could perhaps be interpreted as meaning that her estimation of uτ was slightly
low. Without those two points, the high-Reynolds-number end of figure 4(b) could

very well be levelling at u′2+ ≈ 3.2. The outer-layer profiles in figure 4(a) also appear
to converge to some universal shape for high Reynolds numbers, although again
scattered.

With this caveat in mind, we can discuss the theoretical possibilities for such
growth of the outer fluctuations. The question can be reduced to whether there are
‘sterile’ eddies that are inactive everywhere, or whose fraction of the tangential
Reynolds stress is negligible for the overall momentum balance. Any velocity
fluctuation carrying a large fraction of the tangential Reynolds stress is almost
sure to scale with uτ , essentially because that is how uτ is defined, and the argument
for a uniform uτ scaling rests on the assumption that all the eddies are active
somewhere.

That is a reasonable assumption, because the source of the turbulent energy that
creates the eddies is the Reynolds stress, but it is possible that some eddies may
only be active for a short time during their formation, and spend much of their
later lives as slowly decaying sterile objects. If that were the case, their velocities
would be unconstrained by the classical argument, and could scale arbitrarily. For
example, one could imagine that structures of u are born as active eddies, but that
their v component decays soon afterwards. They would then remain for some time
contributing to u′2, but not to 〈uv〉, while new active structures would have to be
created to satisfy the momentum balance. The new structures would also contribute
to u′2, and the total streamwise intensity would be determined by the decay rate of
the sterile structures, rather than by the tangential stress. The same argument would
apply to the inactive parts of active eddies if they could be assumed to decouple from
their original cores.

The obvious location for possible sterile eddies are the very long global modes
mentioned above. The structures of v cannot be very long or very wide, because they
are blocked by the wall, and since v is needed to generate the Reynolds stress, the
φuv cospectrum could be shorter than φuu. The scaling of any u structure longer than
the cospectrum would be unconstrained.
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Figure 5. (a) Two-dimensional spectra versus the wavelengths. Case L2000 at y/h = 0.15.
, φuu; , φvv; , −φuv . Contours are 0.125 times the maximum for each spectrum.

(b) Two-dimensional cospectra φuv/〈uv〉, versus the wavelengths normalized with the wall
distance. Case L2000. , y/h = 0.05; , y/h = 0.1; , y/h = 0.15; , y/h = 0.2.
The two contours in each spectrum are 0.125 and 0.625 times the global maximum over the
four cases. The steeper dashed diagonal in both figures is λx = λz, and the lower dashed line is

λ2
z = yλx (del Álamo et al. 2004).

A problem with this argument is that the cospectra are experimentally known to be
very long, even close to the wall. This is seen in figure 5(a), which shows that both φuu

and φuv in the logarithmic layer reach the end of the computational box, Lx/h= 8π.
Guala, Hommema & Adrian (2006) have shown that the very long scales, defined by
them in a pipe as λx � 8h, carry both a substantial percentage of the energy and of
the tangential Reynolds stress, and Balakumar & Adrian (2007) have done the same
for channels and for boundary layers.

The question of the length of the cospectrum can, however, be answered with some
assurance. At the Reynolds numbers of the computational channels, the cores of the
cospectra scale well both with the total tangential stress, 〈uv〉 ≈ − u2

τ (1 − y/h), and
with λ/y. This is shown in figure 5(b), which presents four two-dimensional cospectra
of L2000 in the range y/h= 0.05 (y+=100) to y/h =0.2. The agreement of the highest
isocontours is very good, showing that the size of the cospectrum scales with y. If,
for example, it scaled with h, it would show clearly over this factor of four in wall
distance. The lower isocontours lengthen slightly for short wavelengths, but these are
the structures of the quasi-isotropic Kolmogorov energy cascade, and they contain
very little tangential stress. The long-wavelength ends of the lower isocontours also
drift in the figure proportionally to h, but that limit is the length of the computational
box, which we have seen to be too short to settle this particular question.

Figures 6(a) and 6(b) collect φvv and φuv from several high-Reynolds-number flows,
including the atmospheric boundary layer (ABL). This allows us to use a wide range
of y/h while staying above the buffer layer, and to distinguish scalings with y from
those with h. If we take the depth of the ABL to be h ≈ 200 m, the figure spans
a factor of about 30 in y/h. Under those circumstances, the collapse of both φvv

and φuv is extremely good, although both quantities reach surprising lengths. The
v structures are centred around λx ≈ 2y, but they still have substantial energy at
λx/y =100. The φuv cospectra centre at λx ≈ 20y, but they decay faster, and extend
only slightly beyond φvv . For the 1 m level of the ABLs in figure 5(b–d), the longest
limits of both quantities are λx ≈ h, but they would be λx ≈ 20h for y/h ≈ 0.1. These
are very long structures, but they are nevertheless multiples of y, and they could
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Figure 6. One-dimensional premultiplied spectra of (a) wall-normal velocity versus λx/y, (b)
cospectrum −φuv versus λx/y, (c) streamwise velocity versus λx/y, (d) streamwise velocity
versus λx/h, in the logarithmic layers of experimental and atmospheric flows. The spectra are
normalized to unit maxima, because of the uncertainty in the actual Reynolds stresses. �,
ABL, y = 1 m, uτ = 0.65 m s−1, h = 200 m (Hoxey & Richards 1992); �, same case y =10 m;
�, ABL, y = 1.7 m, uτ = 0.24 m s−1, h = 200 m (Antonia & Pearson 1999); , boundary
layer, y/h = 0.14, Reτ = 7000 (Carlier 2001); , pipe, y/h = 0.12, Reτ = 2100 (Lawn 1971);
�, channel L2000, y/h =0.1. Both ABLs are fully rough.

be made shorter than any of the O(h) structures in the φuu spectra in figure 1 by
letting y/h be small enough at sufficiently high Reτ . In that limit, there will always
be u structures long enough to be inactive. The φuu spectra of the flows in figures
6(a) and 6(b) are given in figure 6(c), and they are all too long to close within the
available range of wavelengths. All the u structures to the right of λx/y ≈ 100 can be
considered as essentially inactive.

Figure 6(d) shows φuu against the wavelengths scaled with the boundary layer
thickness. At least at these distances from the wall, the longest scales are of the
order of 20 − 40h, which agrees with the absolute maximum lengths found by del
Álamo et al. (2004) at somewhat lower Reynolds numbers. It is also consistent with
the spectra in figure 1. We are not aware of tangential-stress cospectra in the outer
layer at really high Reynolds numbers, but if we take figures 1(f ) or 6(b) as guides,
the longest cospectra peak at λx ≈ 2h near the top of the logarithmic layer, and are
essentially zero beyond λx ≈ 20h at all heights. There is therefore a range of φuu that
is globally inactive, and whose intensity is not required to scale with uτ . As we have
already mentioned, del Álamo et al. (2004) found that those modes scale best with
the centreline velocity, U 2

c , suggesting that the growing trend of u′ away from the wall
would extend indefinitely at high Reynolds numbers.
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Figure 7. (a) Probability density functions of the streamwise velocity, normalized with the
centreline velocity. Case L2000. From left to right, y+ = 6, 14, 40, 100; y/h = 0.1, 0.3, 0.5, 0.7,
1. (b) Probability density functions of the streamwise velocity fluctuations with respect to the
local mode, in wall units, as a function of the wall distance above y+ =70. Data from the
numerical channels. Lines as in table 1. The contours are logarithmically spaced by factors of
10, from 10−1.

4.4. The probability density functions

Further information on the behaviour of the velocity fluctuations is obtained from
their probability density functions (p.d.f.s). It is known that the skewness coefficient of
the streamwise velocity changes sign from positive near the wall to negative above the
buffer layer (Nakagawa & Nezu 1977). In fact, the third-order moment of u changes
sign above the buffer layer, and levels around 〈u3〉+ ≈ − 1.5 until it rises again near
the top of the flow (Fernholz & Finley 1996). The p.d.f.s responsible for those changes
are shown for case L2000 in figure 7(a). It is interesting that even within the viscous
sublayer (y+ = 6) there are velocity incursions which are of the order of the centreline
velocity, and that in the core of the buffer layer (y+ = 40) the velocity can exceed
Uc. The p.d.f.s in the logarithmic range (y+ = 40–200) are roughly symmetric in this
particular case, but above that level they become skewed in the opposite direction,
as their high-velocity tail becomes limited by the maximum instantaneous velocity in
the channel (≈1.2Uc). It is interesting that, while the high velocities reach very near
the wall, the lowest velocities away from the wall are more moderate.

The evolution with the Reynolds number is shown in figure 7(b), where the p.d.f.s
of the three numerical channels are shown normalized with uτ , and centred around
their local modal values. The mode is a better reference than the mean, because it
represents the most probable velocity and is not affected by the behaviour of the
probability tails. What the figure shows is that, for a fixed y/h, the high-velocity
tail of the p.d.f. remains essentially independent of the Reynolds number, while the
low-velocity tail gets wider with increasing Reτ . The simplest interpretation is that the
flow at a given height collects fluid from all over the channel. The difference between
the velocity at a given y/h and the maximum velocity at the centreline is independent
of the Reynolds number, because so is the velocity defect. The flow has no way of
widening its high-velocity probability tail. On the other hand, the velocity difference
with the wall increases roughly as log Reτ . As the Reynolds number increases, the
flow has a deeper reservoir from which to draw low-velocity fluid, its low-velocity tail
widens, and u′ increases.
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Figure 8. (a) Mean-squared pressure fluctuations at the wall as a function of Reτ , from
various sources. �, channels; �, pipes; �, boundary layers. The closed circles are the present
simulations. (b) Fluctuation profiles. Lines as in table 1. Lines without symbols are the full
pressure. �, fast pressure; �, slow pressure.

5. Pressure fluctuations
Pressure fluctuations are of special interest because there is little experimental

information on them. On a dimensional basis, pressure should scale with u2
τ , but

the pressure fluctuations at the wall increase strongly with the Reynolds number.
The compilation in figure 8(a), taken mostly from Hu, Morley & Sandham (2006),
shows a roughly logarithmic increase of p′2+

w in the range Reτ =100–4000, although
again with some scatter. Pressure is also special in that fluctuations cannot be defined
unambiguously for an incompressible flow. The equations of motion are insensitive
to a spatially uniform, temporally variable additive pressure, which would, however,
appear as part of the fluctuations. It is usually possible to refer measurements to
some point defined as a constant, but the definition varies among experiments, and
complicates comparisons. It may not be a coincidence, for example, that the lowest
fluctuations in figure 8(a) correspond to a pipe in which the experimenters took special
care to remove low-frequency components and spurious vibrations (Lauchle & Daniels
1987).

The ambiguity is specially serious in internal flows, because they are driven by
a pressure gradient that has to be subtracted before fluctuations can be defined.
Otherwise, spatial averages would be very different from temporal ones, and even
the latter may be contaminated by low-frequency oscillations due, for example, to
variations in the flow rate. We have adopted for our numerical channels the convention
of neglecting the instantaneous uniform pressure gradient used to maintain a constant
mass flux. Even in our large computational boxes, that gradient varies slightly with
time, and taking it into account would have formally led to infinite fluctuations.

These ambiguities raise the question of whether pressure fluctuations are really
important, or whether we should just worry about the statistics of the pressure
gradient, which is the quantity in the equations of motions. In fact, although the
Navier–Stokes equations contain only pressure gradients, they are equations for
accelerations, while the variables of interest are usually velocities. The latter are
integrals of the former, and the relevant quantities are the pressure differences, which
are the integrals of the gradients. Pressure is relevant in spite of the ambiguity of
its mean value for the same reason that velocities are relevant in spite of Galilean
invariance. A trivial example is the averaged wall-normal momentum equation for a
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Figure 9. Spectral density functions for the pressure fluctuations in case L2000. (a) As a
function of λx/y and λz/y. , y/h =0.1; , y/h =0.15; , y/h =0.2; ,
y/h = 0.3. The two contours in each spectrum are φpp/〈uv〉2 = 0.125 and 0.625 times the
common maximum of the four cases. (b) As a function of λx/h and y/h. Contours are
φpp/p′2 = 0.03 (0.09) 0.3. The dashed horizontal limits, diagonal and closed circles, are as in
figure 1.

parallel shear flow, whose useful form is

〈p〉 + 〈v2〉 = constant, (5.1)

even if what the Navier–Stokes equations state is that the mean wall-normal pressure
gradient is equal to the mean wall-normal acceleration.

The logarithmic behaviour of the pressure fluctuations across the logarithmic layer
of our channels is displayed in figure 8(b), and extends from the centre of the channel
to y+ ≈ 40. The ‘fast’ and ‘slow’ components given separately in figure 8(b) are defined
in Kim (1989), and they are of interest because they tend to be modelled separately by
the RANS community. Briefly, they refer to different terms on the right-hand side of
the Poisson equation used to compute the pressure fluctuations. For a incompressible
flow,

∇2p = −2∂iUj∂jui − ∂iuj∂jui ≡ R. (5.2)

The first term on the right-hand side is linear in the fluctuations, and gives rise to
the ‘fast’ component. The second one is fully nonlinear, and is the origin of the ‘slow’
term. Both pressures are comparable everywhere in figure 8(b). They scale as well
as the full pressure in the outer region, and as badly in the buffer layer, and they
both have equally good logarithmic ranges. In wall-bounded flows, (5.2) is usually
integrated with homogeneous Neumann boundary conditions at the wall, while the
real boundary conditions have a non-zero viscous contribution. The difference is the
‘Stokes’ pressure (Kim 1989), but in the channels it is negligible everywhere at these
Reynolds numbers. For the rest of this section we will only concern ourselves with
the total pressure fluctuations.

The pressure spectra are given in figure 9. They are closer to λx = λz than
other quantities discussed in this paper, corresponding to features that are roughly
‘equilateral’ in the wall-parallel plane. Their peaks in the logarithmic layer are located
roughly at the same location as those for φww . Their long-wavelength limits scale with
h, but pressure lacks the tail associated with 〈uw〉 structures in φww . It is interesting
that, once again, the magnitude of the central peak scales much better with the local
Reynolds stress than with uτ . Note that 〈uv〉2 varies in this case by 60 % among the
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different planes in figure 9(a), and that any scaling error would show immediately in
the figure.

Although that scaling does not extend much beyond the logarithmic region, it
suggests that, although it is generally considered to be a global quantity because it
can be derived as the solution of an elliptic equation such as (5.2), the pressure eddies
near the spectral peak are fairly local to each wall distance. That agrees with the
analysis of its governing equation. If we denote by p̂(kx, kz) the Fourier transform of
p, and use a similar notation for other variables, we can write the solution to (5.2) in
terms of its right-hand side R, and of a Green’s function G, as

p̂(y) =

∫ 2h

0

R̂(y ′) G(y, y ′) dy ′, (5.3)

where G is a tent-like combination of exp(±y ′/λ), centred at y, and λ2 = λ2
x + λ2

z .
Since it is clear from figure 9 that the interesting spectral range is λx ≈ λz, we will use
in the following λ and k = 2π/λ as interchangeable with any of the wavelengths or
wavenumbers. The pressure spectrum can be written as

〈|p̂|2〉(y) =

∫ 2h

0

∫ 2h

0

CRR(y ′, y ′′) G(y, y ′)G(y, y ′′) dy ′ dy ′′, (5.4)

where CRR(y ′, y ′′) is the correlation of R̂ at two wall distances, and G(y, y ′)G(y, y ′′) is
a two-dimensional Green’s function. The number of samples in our simulations is not
enough to compute CRR with a reasonable signal-to-noise ratio, but two conclusions
from the limited results at hand are that the width in y ′ of CRR is approximately
10−20η at all wavelengths, where η is the Kolmogorov viscous scale, and that the
spectrum, φRR = k2CRR(y, y), is at roughly the same wavelengths as the vorticities.
Since R is a combination of velocity gradients, both observations make sense.

There are two interesting limits to (5.4). For λ � h and y/h = O(1), the two-
dimensional Green’s function has width λ, and G2(y, y) ≈ λ2. The integrand of (5.4)
is non-zero over an area O(λη) in the neighbourhood of y ′ = y ′′ = y, and the integral
can be manipulated into

φpp(y; kx, kz) ≈ k2〈|p̂|2〉 ≈ λ3η φRR(y), (5.5)

which is consistent with the local nature of pressure at small wavelengths.
On the other hand, when λ 	 h the two-dimensional Green’s function is essentially

constant, equal to G2(y ′, y ′′) ≈ λ4/h2 everywhere. The integrand in (5.4) is still
concentrated in a narrow band y ′′ = y ′ ± O(η), but the integral now extends over
all y ′. It follows that

φpp(y; kx, kz) ≈ λ4η

h2

∫ 2h

0

φRR(y ′) dy ′, (5.6)

whose main message is that φpp is independent of y for large wavelengths.
The behaviour with the wall distance of the one-dimensional pressure spectra is

given in figure 9(b). As should be expected from the previous discussion, there is
a central core whose wavelength increases linearly with y, and a long-wavelength
component that reaches a constant wavelength at all wall distances. In the same
way as in our discussion of φuu and φww , this justifies the logarithmic profile of the
fluctuations.

It is interesting that the pressure is a relatively ‘short’ quantity, whose spectrum
does not extend much beyond λx ≈ 5h, even if (5.6) suggests that it should increase
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with λ. The velocity gradients, and therefore the right-hand side R, reside at lengths
of the order of η and have very little energy at large scales, but when the λ4 weighting
introduced by the Laplacian is taken into account, it turns out that most of the
weight should be in the upper right-hand corner of the wavelength plane. However,
even if the effective spectrum is most intense there, the wall-normal structure of
the correlation function is such that its contribution to the pressure cancels upon
convolution, apparently fortuitously. A moment of reflection shows that the reason is
that these wide and long vorticity structures are vortex sheets that, contrary to vortex
filaments, are parallel flows in which the accelerations are automatically zero. They
therefore do not produce pressure fluctuations. Long vortex filaments, with lengths
of the order of several channel widths and thickness of the order of the Kolmogorov
scale, would create localized small-scale pressure fluctuations, but the spectra of R

and of the vorticities show that there are not enough of them in the flow to contribute
appreciably to the pressure. Note that, because of the lack of very large scales, which
are the ones for which the velocity has been shown to scale anomalously, the pressure
fluctuations away from the wall scale very well with u2

τ .

6. Summary and conclusions
We have reviewed the behaviour of the velocity and pressure fluctuations in the

logarithmic and outer layers of turbulent wall-bounded flows, using mostly data from
numerical simulations of turbulent channels with Reτ � 2000, but also experimental
and atmospheric data at comparable or higher Reynolds numbers. Our results include
the fluctuation intensity profiles, their decomposition in terms of spectral energy
densities, and the velocity probability density functions.

As expected from previous experimental evidence, and as initially proposed by
Townsend (1976), the intensities of the two wall-parallel velocity components have
logarithmic profiles that extend across the logarithmic layer of the mean velocity.
This implies that their fluctuations in the buffer layer increase with log(Reτ ) when
expressed in wall units, which is approximately the same as the mixed scaling
proposed by DeGraaff & Eaton (2000). Both components have spectra that are
anchored to the wall, and that become longer and wider as they approach it. Their
long-wavelength limits scale with h at essentially all wall distances. The streamwise
velocity spectra are aligned along λ2

z ≈ yλx , which can be interpreted as representing
conical velocity structures. The spectra of the spanwise velocity, φww , are closer
to λx ≈ λz ≈ 3y, which are the dimensions of the velocity ejections identified by

del Álamo et al. (2004).
The spectra of v are detached, in the sense that, although their maxima are

located at the same wavelengths as the cores of φww , they have no large-scale
component at the wall. Consequently, the v′2 profile has no logarithmic range.
However, the φvv structures are surprisingly long, λx/y = O(100), corresponding to
several flow thicknesses at the top of the logarithmic layer. The same is true of the
tangential Reynolds stress cospectrum, φuv which, however, also scales ultimately
with λx ∼ y.

The spectra of w are shorter than those of u but, at the Reynolds numbers of
our simulations, they have a weak tail at the same long wavelengths as φuu. There
are few experimental data for this tail at higher Reynolds numbers, but continuity
requires that it should be there. Since the spectra of the wall-normal velocity are
centred at λx ≈ y, with very little energy at λx = O(h), the only velocity component
that can compensate for ∂xu is w. Hutchins & Marusic (2007) have identified the long
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u structures as meandering jets of essentially infinite length, where the streamwise
wavelength corresponds to the meanders. The long φww component would correspond
to the meandering motion.

Pressure has wall-attached spectra, and a very well-developed logarithmic range in
the fluctuation profile. As such, its fluctuations at the wall increase strongly as log Reτ .
This wall-attached character can be derived theoretically from the form of the Green’s
function of the pressure Poisson equation. It provides a justification for the origin
of the attached velocity eddies, since Bradshaw (1967) observed that the pressure
perturbations reaching the wall should create tangential velocity perturbations at
similar scales. The maximum length of the pressure spectrum is shorter than any
of the attached velocity components, λx � 5h, with no fluctuations due to the
very long scales of u and w. We have given arguments for why that should be
so, based on the geometry of the large-scale velocity structures. Note that, while
all these results are strongly supportive of the attached-eddy scenario of Townsend
(1976), most of them are independent of any specific model for the geometry of the
eddies.

Another interesting observation is that most of the spectra in the logarithmic
layer scale better with the local Reynolds stress 〈uv〉 than with the friction velocity,
suggesting that an important part of the dynamics of that region is local to each wall
distance. This agrees with numerical evidence that perturbing the dynamics of the
wall leaves the structures of the logarithmic and outer regions unaffected (Flores &
Jiménez 2006; Flores, Jiménez & del Álamo 2007).

Above the logarithmic layer, the intensity of the streamwise velocity fluctuations at
fixed y/h increases with the Reynolds number, at least in the range Reτ ≈ 5000 for
which experimental data are available from more than one source. In the simulations,
the drift disappears when the very large scales are removed, suggesting that they
are the ones responsible for it. We have argued that those eddies that do not carry
Reynolds stresses are not constrained to scale with uτ by the usual arguments. The
probability density function of the velocity suggests that the increase of u′ is due to
stronger low-velocity ejections coming from the wall, rather than to stronger sweeps,
in agreement with previous evidence that the intensity of the large eddies scales with
the centreline velocity.

The situation for the transverse velocity components is more confused, specially
because substantial differences were found between the present channels and the
experimental boundary layers used for comparisons at higher Reynolds numbers. For
example, we saw in figure 1 that the outer φuu structures penetrate much closer to
the wall in boundary layers than in channels, suggesting that the effective logarithmic
layer in the former is thinner (y/h � 0.05) than in the latter (y/h � 0.2). Note,
however, that figure 1 compares spatial spectra for the simulation with temporal ones
for the experiments, and that the Taylor approximation may give misleading results
for very long wavelengths.

There are outer φvv and φww structures in boundary layers that are not present in
pipes and channels, and similar outer-layer structures seem to exist in both internal
and external flows at high Reynolds numbers. The intensities of those structures do
not scale with uτ , and they are responsible for the failure of the classical scaling
of v′ and w′ in the outer layer. They penetrate close to the wall, and seem to be
responsible for the differences between the logarithmic slopes of the w′2 profiles in
boundary layers and channels. The resolution of these ambiguities would require
either new simulations of boundary layers at higher Reynolds numbers, or similar
new experiments in pipes or channels.
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