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Director de Tesis

Javier Jiménez
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Politécnica de Madrid). The calculations for the numerical experiments of this thesis
have been performed in several machines, including our clusters in the department,
the super-computer Mare Nostrum at the BSC (Barcelona), the clusters in CIEMAT

iii



Acknowledgements

(Madrid) and in CEPBA (UPC, Barcelona). I must acknowledge the computational
time they all donated. Most of the storage and post-processing of the database has
been done in the servers of the department. The data of the largest simulation are
mirrored in the servers of the Port d’Informació Cient́ıfica (PIC, Barcelona), who
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TRA2006-08226, and by the Spanish Ministry of Education (Ministerio de Edu-

cación y Ciencia), through a four-year FPI scholarship. This financial support has
allowed for a short summer visit to the Center for Turbulence Research in Standford,
directed by Prof. Parviz Moin.

iv



Nomenclature

(·)′ Root mean square, or quadratic average, of (·).

(·)∗ Complex conjugate of (·).

(·)+ Variable in wall units, normalized using uτ and ν.

(·) Ensemble average in the homogeneous directions.

ϕ̂ Coefficients of the Fourier expansion of ϕ.

r = (rx, ry, rz) Coordinate system centered at the cluster and scaled with its wall-
normal size.

xc = (xc, yc, zc) Center of the Cartesian box that circumscribes the cluster.

xu = (xu, yu, zu) Centroid of the streamwise kinetic energy distribution in the linear
model.

xv = (xv, yv, zv) Centroid of the wall-normal kinetic energy distribution in the linear
model.

〈u〉 = (〈u〉 , 〈v〉 , 〈w〉 ) Average velocity fluctuations conditioned to attached clus-
ters.

〈u〉L = (〈u〉L, 〈v〉L, 〈w〉L) Time averaged velocity fluctuations field for the linear
model.

A Intercept constant in the log law over smooth walls.

B Intercept constant in the log law for rough-walled flows when the wall distance
is normalized with the roughness length scale.

C Intercept constant in the log law for rough-walled flows when the wall distance
is in wall units.

Crs Correlation coefficient between the Fourier velocity components r̂ and ŝ.

D Discriminant of the velocity gradient tensor.

Eu One dimensional energy spectrum.
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Fc Ratio of Reynolds stress averaged in the region occupied by attached clusters
to total Reynolds stress.

Fe Ratio of Reynolds stress averaged in the region free of attached clusters to
total Reynolds stress.

Fuv Structure function, or ratio between the tangential Reynolds stresses and the
product of the root mean square of the velocities.

Huu Correlation height of the streamwise velocity.

Kx Streamwise wavenumber of the velocity disturbances at the wall.

Kz Spanwise wavenumber of the velocity disturbances at the wall.

L Distance to the entrance of the pipe.

Lǫ Integral length scale.

Lx Streamwise periodicity of the computational domain.

Ly Size of the numerical domain in the wall-normal direction.

Lz Spanwise periodicity of the computational domain.

NC Total number of extracted clusters.

Nx Number of points used in the streamwise direction for the numerical solution
of the linear model.

Ny Number of points used in the wall-normal direction for the numerical solution
of the linear model.

Nz Number of points used in the spanwise direction for the numerical solution
of the linear model.

Natt Total number of attached clusters.

P0 Mean value of the pressure.

Q Second invariant of the velocity gradient tensor.

Qu Instantaneous streamwise energy in the linear model.

Qv Instantaneous wall-normal energy in the linear model.

Q0 Initial energy in the linear model.

Qvw Instantaneous cross-flow energy in the linear model.

R Pipe radius.
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Re Reynolds number.

Reλ Microscale Reynolds number.

Reτ Friction Reynolds number, also known as Kármán number.

Sk Set of characteristic lengthscales that characterize a rough surface.

Tl Integral time of the wall-normal energy in the linear model.

Tv Integral time of the wall-normal velocity in turbulent channels.

Tmax Time to maximum growth.

U Mean velocity in the streamwise direction.

Ub Bulk velocity.

Uc Mean streamwise velocity at the centerline.

Ue Characteristic mean velocity difference experienced by an eddy.

Uw Mean streamwise velocity fluctuations inside low-velocity cones.

Vr Relative volume occupied by vortex clusters.

Vw Mean wall-normal velocity fluctuations inside low-velocity cones.

W Mean velocity in the spanwise direction.

α Threshold of the clusters identification criterion.

αc Percolation threshold of the clusters identification criterion.

β Fraction of the Reynolds stresses included in νT .

χ Self-similar variable for the streamwise coordinate.

∆c Difference between the phase velocity and the mean velocity profile.

∆U Roughness function.

∆x Streamwise resolution of the mesh after dealiasing.

δx Streamwise separation.

∆yc Wall-normal resolution of the mesh at the center of the channel.

∆yw Wall-normal resolution of the mesh at the wall.

∆z Spanwise resolution of the mesh after dealiasing.
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δz Spanwise separation.

δ Boundary layer thickness.

∆x Streamwise length of the Cartesian box that circumscribes the cluster.

∆y Wall-normal length of the Cartesian box that circumscribes the cluster.

δy Wall-normal shift or error-in-origin over a rough wall.

∆z Spanwise length of the Cartesian box that circumscribes the cluster.

ℓ Characteristic size of a turbulent eddy.

η Self-similar variable for the wall-normal coordinate.

ηk Kolmogorov length scale.

Λx Streamwise wavelength of the velocity disturbances at the wall.

Λz Spanwise wavelength of the velocity disturbances at the wall.

κ Kármán constant.

λx Streamwise wavelength.

λz Spanwise wavelength.

ν Kinematic viscosity.

νT Turbulent eddy viscosity.

νW Extra additive constant that introduces the effect of wall roughness in νT .

ωx Streamwise vorticity.

ωy Spanwise vorticity.

ωz Wall-normal vorticity.

Φ Wall-normal turbulent energy flux.

φrr Premultiplied spectral energy density of the velocity component r.

Π Turbulent energy production.

ψ Transverse stream function, v = ψz and w = −ψy.

ρ Density.

ρrs Correlation coefficient between the velocity components r and s.
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τ Normalized time, using the initial size of the burst and the friction velocity.

τw Shear stress at the wall.

ω̃x Streamwise vorticity in self-similar form.

ε Turbulent energy dissipation.

ζ Self-similar variable for the spanwise coordinate.

c Phase velocity.

eu Wall-normal distribution of streamwise velocity energy.

evw Wall-normal distribution of cross-flow velocity energy.

h Channel half-height.

hR Height of the roughness sublayer.

k Height of the roughness elements.

k1 Wavenumber in the direction of the velocity.

kx Wavenumber in the streamwise direction.

kz Wavenumber in the spanwise direction.

lx Characteristic dimension of an eddy in the streamwise direction.

ly Characteristic dimension of an eddy in the wall-normal direction.

lz Characteristic dimension of an eddy in the spanwise direction.

na Density of attached clusters per unit wall-parallel area.

nd Density of detached clusters per unit wall-parallel area.

pc Characteristic rapid pressure fluctuations of an eddy.

pV Probability density function of the minimum and maximum heights of a clus-
ter.

p∆ Joint probability density function of the logarithm of the sizes of the clusters.

q Energy in the streamwise velocity at wavelengths 6h < λx < 24h and λz > h.

tℓ Characteristic turnover time of a turbulent eddy.

tν Viscous time scale.

tc Characteristic time of an eddy.
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ũ Streamwise velocity in self-similar form.

u Streamwise velocity fluctuation.

u′

F
2 Streamwise kinetic energy contained in the Fourier modes associated to the

wall disturbances.

uℓ Characteristic velocity of a turbulent eddy.

uτ Friction velocity.

uB Average velocity fluctuations around the wall velocity disturbances.

uk Kolmogorov velocity scale.

v Wall-normal velocity fluctuation.

vc Characteristic wall-normal velocity of an eddy.

w Spanwise velocity fluctuation.

wc Characteristic spanwise velocity of an eddy.

x Streamwise coordinate.

ỹ Wall-normal coordinate adjusted with δy.

y Wall-normal coordinate.

y0 Wall-distance of the center of the initial burst for the linear model.

ymax Maximum wall-distance of a cluster.

ymin Minimum wall-distance of a cluster.

z Spanwise coordinate.
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Abstract

The objective of this thesis is the analysis of the dynamics of the outer region
of wall-bounded flows, focusing on the interaction between the inner- and outer-
layers. The primary tool used in the present study is a set of Direct Numerical
Simulations (DNS) of turbulent channels with friction Reynolds number Reτ ≈ 630.
In those simulations, the standard non-slip and impermeability boundary conditions
are substituted by prescribed velocity disturbances that destroy the near-wall energy
cycle characteristic smooth-walled flows. In this sense, the present DNSes can be
understood as a simulation of a turbulent flow consisting on a core region without
a near-wall region. The profiles of the mean velocity and of the velocity fluctuation
intensity show similar effects as those reported on rough-walled flows, and our wall-
forcing corresponds to equivalent sand roughness in the fully rough regime.

The changes on the flow structure imposed by the wall forcing are essentially
limited to the roughness sublayer; a layer near the wall whose height is proportional
to a length scale defined in terms of the additional Reynolds stresses. The spectral
distribution of energy in this layer is dominated by the wavenumber of the velocity
disturbances and by its harmonics. Outside of it, only the largest scales of the flow
are modified by the wall forcing. They are the global modes identified in previous
works, corresponding to structures highly correlated from the wall to the center of
the channel. Our results indicate that their intensity does not scale with the friction
velocity, nor with the centerline velocity. However, a velocity scale proporional to
uτ log(Reτ ) is able to collapse of the velocity fluctuations of several wall-bounded
turbulent flows over a wide range of Reynolds numbers and surface roughness.

Similar conclusions are drawn from the analysis of the coherent structures of vor-
ticity that populate the logarithmic and outer regions of the wall-disturbed cases.
The attached clusters have the same properties over smooth and rough walls, and in
both cases they make important contributions to the Reynolds stress in the logarith-
mic and outer regions. In average, the attached clusters are statistically associated
with wall-normal velocity bursts and cone-shaped streaks of low-momentum fluid.
Our results indicate that the global modes are connected to the part of these streaks
that have sizes comparable to the flow thickness. They are very coherent motions,
where the wall-normal and streamwise velocity components are tightly coupled.

The final part of this thesis puts together all those observations into a linear
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Abstract

model that explains the generation of the cone-shaped low-speed streaks of the loga-
rithmic region by bursts of wall-normal velocity. The results of the linear simulations
show that localized bursts generate elongated upstream u-streaks that agree well
with the velocity fields conditioned to attached clusters, but where the downstream
wakes observed in real turbulent flows are absent. The absence of the downstream
part of the low-momentum cones suggests that the cones are the cause, rather than
the effect, of the bursts. It is hypothesized that the burst are generated by some
instability of the local velocity profile, in analogy with the near-wall cycle. However,
while the near-wall cycle is autonomous, the effect of the outer region has to be in-
cluded in the model in order to generate strong enough streaks. This suggests that
the causality assumed in most models of wall-bounded turbulence could be reversed,
and that the outer region may be critical for the dynamics of the logarithmic layer.

xii



Resumen

El objetivo de esta tesis es el análisis de las interacciones entre la zona de la
pared y la zona exterior en flujos turbulentos. Se trata de un problema con gran in-
terés tecnológico, puesto que estas interacciones son importantes para la predicción
y el control de la separación en perfiles aerodinámicos en aeronaves y turborreac-
tores, la pérdida de presión en sistemas de tubeŕıas, la dispersión de contaminantes
en la atmósfera o el efecto de la topograf́ıa en la capa ĺımite atmosférica. La tur-
bulencia también es un problema muy interesante desde un punto de vista pura-
mente matemático, pues ofrece uno de los paradigmas de sistema dinámico no lineal
intŕınsecamente disipativo: incluso cuando la viscosidad tiende a cero, la disipación
tiende a una constante.

La investigación de la turbulencia de pared ha realizado importantes avances
durante las últimas décadas, y se puede afirmar sin duda alguna que nuestro co-
nocimiento de la estructura y dinámica de la zona cercana a la pared es bastante
completo. Sin embargo, existe una cierta controversia acerca del papel que juega
esta zona en la dinámica del resto del flujo. Para analizar esta cuestión, en esta tesis
se han desarrollado una serie de Simulaciones Numéricas Directas (DNS) de canales
turbulentos con perturbaciones de velocidad en las paredes. Estas perturbaciones
cambian por completo la estructura de la turbulencia en la zona cercana a la pared,
permitiendo evaluar su influencia en la zona exterior del flujo.

En esta tesis consideraremos siempre flujos homogéneos en las direcciones pa-
ralelas a las paredes, x y z, con un gradiente de presión medio actuando en la
dirección longitudinal x. La velocidad media en esa dirección es U , mientras que
las componentes de las fluctuaciones de velocidad en x y z son u y w. La dirección
perpendicular a la pared es y, con origen en una de las paredes, y su correspondiente
componente de la velocidad es v. Las velocidades medias en las direcciones y y z son
cero. Las componentes de la vorticidad son ωx, ωy y ωz. La velocidad de fricción es
uτ , definida a partir de la cortadura en la pared. Las variables adimensionalizadas
con la velocidad de fricción y la viscosidad ν están en unidades de pared, y se indican
con un supeŕındice +.
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Resumen

La teoŕıa clásica

La teoŕıa clásica para la turbulencia de pared puede encontrarse en distintas
monograf́ıas, como por ejemplo Tennekes & Lumley (1972), Townsend (1976) o
Schlichting (1979). Esta teoŕıa se desarrolla a partir de los trabajos de Prandtl
(1904, 1914), en los que se demuestra que la viscosidad siempre es importante en
una capa delgada cercana a la pared. De esta forma, la presencia de paredes sólidas
en el flujo impone dos escalas de longitud. En primer lugar tenemos la escala de
longitud de la zona exterior, que para el caso de canales turbulentos es la semi-
altura del canal, h (para otras geometŕıas canónicas esta longitud es R o δ, como se
observa en la figura 1.1). En segundo lugar, la escala de longitud relevante cerca de
la pared es la escala de longitud viscosa, ν/uτ , donde uτ es la velocidad de fricción.
La enerǵıa se introduce en el flujo a través del gradiente de presión medio, que actúa
sobre escalas del orden h, mientras que la disipación turbulenta tiene lugar en escalas
del orden de ν/uτ . De esta forma, estas dos escalas de longitud actúan como las
escalas integrales y disipativas de la cascada de enerǵıa de la teoŕıa de Kolmogorov
(1941), aunque en este caso la presencia de la pared las segrega en el espacio.

El análisis dimensional de la ecuación de cantidad de movimiento para la veloci-
dad media muestra que los flujos turbulentos de pared puede separarse en distintas
zonas. En primer lugar tenemos una zona de la pared o región interior, donde la
velocidad media sólo depende de la velocidad de fricción uτ y de la escala de longi-
tud ν/uτ . Esta ley, que aparece en la ecuación (1.11), recibe el nombre de ley de la

pared.

Como ya hemos mencionado, en este momento disponemos de una descripción
bastante completa de la estructura y la dinámica de la turbulencia en la zona cercana
a la pared, y+ . 100. Las estructuras de velocidad caracteŕısticas de esta zona del
flujo son estŕıas o bandas de u > 0 y u < 0, alargadas en la dirección x y con
anchuras t́ıpicas del orden de z+ ≈ 100 (Kim et al., 1971). Asociados a estas
estŕıas aparecen varios torbellinos orientados en la dirección del flujo (Robinson,
1991b; Jiménez & Moin, 1991). Las estŕıas y los torbellinos se relacionan en un
ciclo autónomo de enerǵıa, que no necesita ser asistido por la zona exterior del flujo
(Jiménez & Pinelli, 1999). Los torbellinos generan las estŕıas al interaccionar con
el perfil de velocidad medio (Blackwelder & Eckelmann, 1979), alejando de la pared
fluido con baja cantidad de movimiento y acercando a la pared fluido con velocidad
alta. El ciclo se cierra con una inestabilidad varicosa de las estŕıas, que genera
nuevos torbellinos que son orientados en la dirección x por el gradiente de velocidad
medio (Schoppa & Hussain, 2002; Kawahara et al., 2003).

Por otro lado tenemos la zona exterior, donde el análisis dimensional indica
que la diferencia entre la velocidad media y la velocidad máxima sólo depende de la
velocidad de fricción uτ y del espesor del flujo h. Esta ley, que aparece en la ecuación
(1.13), recibe el nombre de ley de defecto de velocidad (von Kármán, 1930). Entre la
zona exterior y la zona cercana a la pared aparece la zona de intermedia o de solape.
En ella son válidas tanto la ley de la pared como la ley de defecto de velocidad,
lo que implica que la velocidad media en esta zona vaŕıa como el logaritmo de la

xiv



distancia a la pared (von Kármán, 1930; Millikan, 1939). Esta ley aparece expresada
en (1.15), y es la causa de que la zona de solape también reciba el nombre de zona

logaŕıtmica.

En principio, la pared segrega las estructuras turbulentas del flujo: las estruc-
turas pequeñas pueden residir cerca de la pared, mientras que las estructuras grandes
son forzadas a residir en la zona exterior. La zona de la pared también es la zona
más activa del flujo, generando más del 35% de la enerǵıa turbulenta del flujo en un
volumen que corresponde al 17% del total. Esto es debido a que tanto el gradiente
de velocidad como los esfuerzos de Reynolds son mayores en la zona de la pared que
en el resto del flujo. Parte de esta enerǵıa turbulenta se disipa localmente, pero el
resto es transportado a la zona exterior por un flujo de enerǵıa constante a través de
la zona logaŕıtmica. Esta cascada de enerǵıa adicional recibe en nombre de cascada

de enerǵıa inversa, y aparece superpuesta a la cascada de Kolmogorov local.

Mientras que disponemos de una descripción bastante completa de la cinemática
y la dinámica de la zona de la pared, nuestro conocimiento de las zonas exterior y
de solape es casi exclusivamente cinemático. Sabemos que en la zona de solape se
generan estructuras de velocidad longitudinal muy alargadas, cuya densidad espec-
tral de enerǵıa vaŕıa como el inverso del número de onda (Perry et al., 1986). La
zona exterior también está poblada por estructuras de velocidad longitudinal muy
alargadas (Townsend, 1958; Grant, 1958; Kovasznay et al., 1970; Perry & Abell,
1975; Brown & Thomas, 1977; Perry et al., 1986; Kim & Adrian, 1999). Estas es-
tructuras reciben el nombre de modos globales, ya que muestran correlaciones muy
elevadas desde la zona exterior hasta la pared (Bullock et al., 1978; del Álamo &
Jiménez, 2003). La densidad espectral de enerǵıa de la componente longitudinal
del flujo también esta bastante bien caracterizada (del Álamo et al., 2004). En la
zona logaŕıtmica la enerǵıa se concentra en longitudes de onda a lo largo de la linea
λxy ∼ λ2

z, que se satura en λz ∼ h para dar lugar a los modos globales. Sin embargo,
pese a disponer de una descripción cinemática aproximada de las zonas logaŕıtmica
y exterior, aún no se ha descrito un modelo dinámico satisfactorio.

Es importante tener en cuenta que la teoŕıa clásica para la turbulencia de pared
predice que las estructuras de las zonas logaŕıtmica y exterior son independientes de
la naturaleza de la pared, en particular de su rugosidad. Perry & Abell (1977) fueron
los primeros en publicar estos argumentos bajo el nombre de hipótesis de Townsend,
puesto que es una extensión del concepto de similitud de pared de Townsend. De
acuerdo con estos autores, la rugosidad solamente afecta a una capa delgada, la
subcapa rugosa. Por encima de ella, los movimientos a números de Reynolds altos
son independientes de la rugosidad de la pared y de la viscosidad, excepto por el
papel que juegan en determinar la velocidad en la parte superior de la zona de pared.
Esto implica que, aparte del efecto de la rugosidad en el perfil medio, no debeŕıan
de observarse otras diferencias entre flujos sobre paredes lisas o rugosas.

De esta forma, los argumentos dimensionales que proporcionan el perfil de ve-
locidad medio sobre paredes lisas cambian poco cuando se aplican a paredes rugosas.
El análisis de la subcapa rugosa indica que la velocidad media tiene que depender
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de la velocidad de fricción, de la escala viscosa y de una serie de parámetros que
caractericen completamente la rugosidad, como se muestra en la ecuación (1.17).
Los argumentos que proporcionan la ley de defecto de velocidad en la zona exterior
también son aplicables a paredes rugosas, siempre que la longitud caracteŕıstica de
la rugosidad k sea mucho menor que el espesor del flujo, k/h ≪ 1. La ley logaŕıtmica
se obtienen de forma análoga al caso de paredes liso, excepto por el hecho de que la
constante A en (1.15) pasa a depender de los parámetros que definen la rugosidad,
como puede comprobarse en la ecuación (1.18). De esta forma, el efecto de la rugosi-
dad en el perfil medio es un defecto constante de velocidad en las zonas logaŕıtmica
y exterior, ∆U , que depende de los parámetros que definen la rugosidad.

En los flujos turbulentos sobre paredes rugosas se identifican normalmente tres
reǵımenes, en función de la dependencia de ∆U con el número de Reynolds de la
rugosidad, k+ = kuτ/ν. Cuando la longitud caracteŕıstica de la rugosidad k es
inferior a la escala de longitud viscosa (k+ . 5) tenemos que ∆U ≈ 0. En este caso,
el efecto de la rugosidad es despreciable y se dice que el flujo es hidráulicamente
liso. Cuando el número de Reynolds de la rugosidad k+ es muy grande estamos
ante rugosidad completamente desarrollada. Este régimen se caracteriza porque el
coeficiente de fricción se hace independiente del número de Reynolds y ∆U+ ∝
log(k+). Para valores intermedios de k+ estamos en el régimen transicional. Los
valores que delimitan estos tres reǵımenes dependen de la forma y densidad de los
elementos rugosos, aunque para rugosidad de arena (obtenida pegando granos de
arena de un tamaño uniforme a una superficie lisa, como en Nikuradse, 1932)) los
ĺımites comúnmente aceptados son k+

s = 5 y k+
s = 70.

Canales turbulentos con perturbaciones de velocidad en las
paredes.

La teoŕıa clásica de la turbulencia de pared, en concreto la hipótesis de Townsend,
ha sido cuestionada durante las ultimas décadas. Krogstad et al. (1992) midieron en
capas limites turbulentas sobre una pared en la que se hab́ıan pegado una serie de
barras transversalmente al flujo. Sus mediciones muestran que en la zona exterior,
las fluctuaciones de v son más intensas sobre paredes rugosas que sobre paredes lisas.
Esto sugiere que la rugosidad es capaz de modificar las estructuras turbulentas que
contribuyen a los esfuerzos de Reynolds en la zona exterior. En un art́ıculo posterior,
Krogstad & Antonia (1994) relacionaron estos cambios con un acortamiento de la
función de correlación de la componente longitudinal de la velocidad. Finalmente,
en Krogstad & Antonia (1999) se obtuvieron resultados similares para una rugosidad
distinta. Además, mostraron que los esfuerzos de Reynolds asociados a eventos con
u > 0 y v < 0 era mayores sobre paredes rugosas que sobre paredes lisas, produciendo
diferencias en la distribución espectral de enerǵıa de v y de uv.

Otros estudios en canales turbulentos, como Djenidi et al. (1994) o Poggi et al.

(2003) también muestran resultados consistentes con Krogstad et al. (1992) y en con-
tra de la hipótesis de semejanza de Townsend. Finalmente, simulaciones numéricas
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en canales turbulentos con elementos rugosos grandes (k/h ≈ 0.1− 0.2) en una sola
pared (Bhaganagar & Kim, 2003; Leonardi et al., 2003; Orlandi et al., 2003) también
muestran cambios en la estructura de la turbulencia en la zona exterior. Sin em-
bargo, en en estas simulaciones no está claro si las diferencias en la zona exterior se
deben la asimetŕıa del canal o al efecto directo de la rugosidad en el flujo (Hanjalić
& Launder, 1972).

También podemos encontrar en la literatura distintos trabajos que muestran
resultados consistentes con la hipótesis de Townsend, tanto en canales como en
capas ĺımites. Los art́ıculos de Keirsbulck et al. (2002), Flack et al. (2005), Bakken
et al. (2005) o Ashafarian et al. (2004) son algunos ejemplos. En los art́ıculos de
Raupach et al. (1991) y Jiménez (2004) pueden encontrarse más referencias.

Dentro de esta controversia acerca de la hipótesis de Townsend, en esta tesis se
han realizado una serie de simulaciones numéricas directas (DNS) de canales turbu-
lentos con números de Reynolds del orden de Reτ = uτh/ν ∼ 600. En estas simula-
ciones, las condiciones de contorno habituales para paredes lisas (impermeabilidad y
no deslizamiento) han sido sustituidas por una serie fluctuaciones de velocidad fijas,
asociadas a un número de onda dado, con el objetivo de perturbar la dinámica de la
zona cercana a la pared. Después de una serie de simulaciones preliminares con el
objetivo de seleccionar el forzado más adecuado, en esta tesis se presentan resulta-
dos correspondientes a tres forzados distintos. Los dos primeros son forzados donde
u = −v 6= 0 en la pared, mientras que se mantiene w = 0. El tercer forzado se aplica
a las tres componentes de la velocidad, manteniendo u = −v y desfasando media
longitud de onda el forzado en w. De esta forma, estos tres forzados proporcionan
esfuerzos tangenciales de Reynolds negativos en la dirección del flujo, mientras que
los esfuerzos tangenciales transversales son cero en media.

Los principales parámetros de estas simulaciones están recogidos en la tabla
2.1. Se han realizado cuatro simulaciones con perturbaciones en las paredes. Las
tres primeras, correspondientes a los tres forzados descritos en el párrafo anterior,
tienen unos periodos en las direcciones x y z (o dominio computacional, Lx × Lz =
4πh×2πh) insuficientes para capturar las estructuras mas largas de la zona exterior,
los modos globales. Por este motivo, se ha realizado una simulación en un dominio
computacional mayor para el forzado intermedio (Lx × Lz = 8πh × 4πh). La tabla
2.1 también incluye los parámetros del caso de referencia con paredes lisas, un DNS
de un canal turbulento con Reτ = 550 realizado por del Álamo et al. (2004) en un
dominio computacional grande.

Cuando comparamos los perfiles de velocidad de los casos con paredes pertur-
badas con el caso de referencia (ver figura 2.1) observamos que su comportamiento
es cualitativamente similar al observado en flujos sobre paredes rugosas. Aparece
un defecto de velocidad constante ∆U en las zonas de solape y exterior, mientras
que el perfil de velocidades de los distintos casos colapsa en una sola ĺınea cuando
lo expresamos en forma de defecto, U+ − U+

c (Uc es la velocidad en el centro del
canal). Por lo tanto, se han caracterizado los DNS de canales turbulentos con pare-
des perturbadas como flujos sobre paredes rugosas. Se ha definido una rugosidad
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equivalente de arena ks, y se ha modificado la coordenada normal a la pared con
un desplazamiento en el origen δy. Este tipo de ajustes son habituales en flujos
sobre paredes rugosas, donde la definición de un origen de coordenadas para y en la
superficie rugosa no es inmediata (ver Thom, 1971; Jackson, 1981).

En la tabla 2.1 aparecen resumidos los valores de los parámetros que caracteri-
zan a los casos con perturbaciones en la pared como flujos sobre paredes rugosas.
Podemos comprobar que dos de los forzados proporcionan valores de k+

s que corres-
ponden al régimen de rugosidad completamente desarrollada, mientras que el forzado
restante corresponde al régimen transicional.

El análisis de los perfiles de fluctuaciones turbulentas de u y ωx (figuras 2.2a
y b) muestra que, debido al efecto directo de las perturbaciones en las paredes, el
ciclo autónomo de enerǵıa caracteŕıstico de la zona de la pared no está presente en
los casos con rugosidad completamente desarrollada. En estos casos, las estŕıas de
la zona de la pared se acortan, y los torbellinos asociados a estas estŕıas pierden
intensidad. El cociente entre la producción de enerǵıa turbulenta y la disipación
también muestra la desaparición de la actividad del ciclo de la pared (figura 2.2c),
y de hecho el flujo de enerǵıa en la zona cercana a la pared también se ve reducido
por el efecto de las perturbaciones en la pared (figura 2.2d). Sin embargo, pese a
los importantes cambios que las perturbaciones provocan en la zona cercana a la
pared, las fluctuaciones turbulentas en la zona exterior son iguales en los casos lisos
y rugosos (figura 2.3).

Las velocidades de advección de la componente de la vorticidad en la dirección
normal a la pared, ωy, tampoco se ven afectadas por la rugosidad en la zona exterior
del flujo (figura 2.4), aparte del defecto de velocidad constante impuesto por la
rugosidad en la velocidad media del flujo. En el ĺımite de estructuras muy alargadas,
esta componente de la vorticidad se corresponde aproximadamente con la velocidad
longitudinal. Por este motivo, la velocidad de advección de ωy puede interpretarse
como un indicador de primer orden de la dinámica de las estructuras de velocidad
muy alargadas de las zonas logaŕıtmica y exterior.

Se ha prestado especial interés al análisis del flujo alrededor de las zonas de
succión y soplado impuestas por el forzado en las paredes. Los campos instantáneos
de velocidad muestran zonas localizadas donde la velocidad longitudinal total es
negativa y el flujo está separado. Para poder analizar cuantitativamente esta parte
del flujo se han calculado los campos de velocidad media alrededor de la unidad
mı́nima del forzado, uB(x, y, z). Estos campos son periódicos en x y z, con longitudes
de onda máximas iguales a la longitud de onda del forzado, y solo contienen una zona
de succión y una de soplado. El análisis de estos campos medios nos han permitido
observar que las perturbaciones introducidas en la pared decaen exponencialmente
con la distancia normalizada con la longitud de onda del forzado (ver ecuación 2.5
y figura 2.6a). El análisis de los espectros de enerǵıa filtrados a los números de
onda del forzado y sus armónicos muestra que las fluctuaciones asociadas al forzado
dominan al resto de fluctuaciones turbulentas en la subcapa rugosa. El espesor de
esta subcapa escala con una distancia definida a partir de la distribución de esfuerzos
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de Reynolds (uBvB) (ver ecuación 2.6 y figura 2.6b).

A continuación, la recuperación de las fluctuaciones de velocidad fuera de la
subcapa rugosa es analizada en detalle, utilizando la densidad espectral de enerǵıa
φuu y los coeficientes de correlación ρuu y ρvv. La comparación entre los espectros de
los casos lisos y rugosos (figura 2.7) muestra que una vez nos encontramos fuera de
la subcapa rugosa, las diferencias entre las distintas simulaciones son mı́nimas. Las
mismas conclusiones se pueden sacar de las correlaciones de u y de v, que se muestran
en la figura 2.8. En esta última figura se puede observar que para separaciones largas
(δx > 10y0) las funciones de correlación del caso liso y rugoso difieren. De hecho,
el espectro de u que aparece en la figura 2.7(a) muestra diferencias similares para
longitudes de onda en el rango λx > 6h y λz > h.

El análisis de ρuu muestra que estas longitudes de onda corresponden a los modos
globales, previamente identificados sobre paredes lisas por Bullock et al. (1978) y del
Álamo & Jiménez (2003). La altura de correlación, definida como la integral doble
del coeficiente de correlación desde la pared al centro del canal (ver ecuación 2.9),
indica una correlación muy alta entre la pared y el centro del canal. La intensidad
de estos modos en unidades de pared es menor en los casos rugosos que en el liso,
debido al efecto del forzado en el perfil de velocidad medio. Es importante tener en
cuenta que la rugosidad sólo afecta a la intensidad de estos modos, mientras que su
forma permanece igual (ver figura 2.10).

Del Álamo et al. (2004) propusieron que la intensidad de estos modos escalaba
con la velocidad en el centro del canal. De esta forma, las fluctuaciones de u a
una altura y/h dada crećıan linealmente con U2

c . La figura 2.11 muestra los datos
de las simulaciones con perturbaciones de velocidad en las paredes, aśı como datos
de una selección de canales y tubos turbulentos a distintos números de Reynolds y
rugosidades. Podemos observar como la escala de velocidad U2

c no colapsa los datos
sobre paredes rugosas. Sin embargo, la escala de velocidad uτ log Reτ parece ser
capaz de unificar los resultados de paredes lisas y régimen transicionalmente rugoso
en una única curva. Es sorprendente que, al menos para Reτ moderados, las fluctua-
ciones de u de los casos con rugosidad completamente desarrollada también parecen
mostrar una dependencia lineal con uτ log Reτ . En principio, podŕıa argumentarse
que los datos de Bakken et al. (2005) muestran una saturación para (u′2)+ ≈ 3. Sin
embargo, se necesitan datos con números de Reynolds más altos en el régimen de
rugosidad completamente desarrollada para poder sacar conclusiones firmes.

La organización de los racimos de torbellinos en la zona ex-
terior de canales con perturbaciones en las paredes

Después de analizar la estructura de la velocidad en los canales turbulentos con
perturbaciones en la pared, hemos volcado nuestra atención en el efecto que las per-
turbaciones tienen en los torbellinos de la zona exterior. El interés de estas estruc-
turas está motivado porque, según una serie de modelos teóricos (Perry & Chong,
1982; Perry et al., 1986; Townsend, 1976), las interacciones entre las zonas de la
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pared y exterior están dominadas por torbellinos que comunican ambas zonas. Estos
torbellinos suelen tener forma de Λ o de herradura, y están inclinados en la dirección
del flujo. Aunque inicialmente estas teoŕıas estaban desarrolladas para estructuras
de velocidad promediadas, la identificación en flujos turbulentos con números de
Reynolds bajos de torbellinos con forma de Λ o de herradura (Robinson, 1991b;
Blackburn et al., 1996; Chong et al., 1998; Adrian et al., 2000; Ganapathisubramani
et al., 2003) favoreció el renacimiento de estas teoŕıas, pero aplicadas a estructuras
instantáneas del flujo.

Especialmente relevante es el art́ıculo de Adrian et al. (2000), en el que se pre-
senta un modelo para la turbulencia de pared basado en paquetes de torbellinos
de herradura que crecen desde la zona de la pared. Los torbellinos que forman
cada paquete trabajan cooperativamente para generar las rampas de baja veloci-
dad observadas por Meinhart & Adrian (1995). Estos paquetes se regeneran por un
mecanismo no-lineal (Zhou et al., 1999), y crecen de forma auto-semejante en un pro-
ceso complejo que incluye la auto-inducción de los propios torbellinos de herradura
y las uniones entre torbellinos vecinos (Tomkins & Adrian, 2003).

Este modelo es distinto del propuesto por del Álamo et al. (2006), en el que los
torbellinos aparecen en estructuras (racimos, según la notación de estos autores)
mucho mas complejas que las propuestas por Adrian et al. (2000). En un trabajo
anterior, Tanahashi et al. (2004) ya hab́ıan observado racimos de torbellinos simi-
lares a los observados por del Álamo et al. (2006). El campo de velocidad medio
condicionado a estos objetos muestra una estela de baja velocidad con forma de
cono, que se extiende aguas abajo. En la posición del racimo de torbellinos aparece
un torbellino con forma de Λ con una eyección entre sus patas. La propuesta de
del Álamo et al. (2006) es que los racimos son marcadores de erupciones de fluido
desde las capas inferiores del flujo, y son estas erupciones las que forman las estelas
de baja velocidad. Según sus estimaciones, los tiempos de vida asociados a esas
erupciones son cortos, por lo que resulta complicado que sean originadas cerca de la
pared.

Es importante tener en cuenta que el modelo propuesto por Adrian et al. (2000) es
dif́ıcil de reconciliar con la teoŕıa clásica, y en concreto con la hipótesis de Townsend.
Puesto que los torbellinos de herradura se generan en la pared, debeŕıa ser posi-
ble cambiar la estructura de la turbulencia en la zona exterior modificando las
propiedades de los torbellinos cuando se generan. Los canales con perturbaciones
en las paredes desarrollados en esta tesis son candidatos excepcionales para analizar
estas cuestiones, debido a los profundos cambios que el forzado impone en la zona
cercana a la pared.

En esta tesis, hemos aplicado los criterios de identificación de torbellinos de-
sarrollados por del Álamo et al. (2006) a nuestra base de datos de canales con pertur-
baciones en las paredes. Puesto que la presencia del forzado cambia las propiedades
de conectividad de los torbellinos en la subcapa rugosa, y puesto que nuestro interés
se centra en las erupciones de velocidad que marcan estos torbellinos, el método
desarrollado por del Álamo et al. (2006) ha sido modificado para analizar sólo la
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zona del flujo por encima de 50 unidades de pared.

Los racimos extráıdos de los canales con perturbaciones en las paredes se separan
de forma natural en dos familias (ver figura 3.1b), igual que sobre paredes lisas. Por
una lado, la función de de densidad de probabilidad de las distancias máximas y
mı́nimas de los puntos que forman cada racimo pV (ymin, ymax), muestra una familia de
racimos que están ligados a las paredes, con puntos por debajo de y+ = 50. El resto
de pV aparece distribuido en una franja con ymax − ymin uniforme, correspondiente
a racimos desligados, que no llegan hasta las paredes.

Los racimos desligados son estructuras disipativas, tanto sobre paredes lisas como
sobre las paredes con perturbaciones. Su tamaño es proporcional a la escala de
Kolmogorov, y sus tamaños coinciden razonablemente bien con la densidad espectral
de enstrof́ıa (ver figura 3.3). Su forma y densidad recuerda a la de los gusanos de la
turbulencia isótropa, identificados por Jiménez & Wray (1998), y no depende de los
detalles de la pared.

La familia de racimos ligados es en principio más interesante. Puesto que se
trata de estructuras que llegan a la pared, se podŕıa esperar que la modificación de
la condición de contorno pudiera cambiar su dinámica. Sin embargo, los resultados
que se presentan en las figuras 3.4, 3.5, 3.6 y 3.7 muestran que este no es el caso.
Independientemente de los detalles de la pared, los racimos de torbellinos ligados
suficientemente grandes exhiben una distribución de tamaños auto-semejante, con
longitudes y anchuras proporcionales a sus alturas (ver ecuación 3.2 y figura 3.4).
Igual que en el caso de pared lisa, se trata de estructuras con esfuerzos de Reynolds
más intensos que la media (ver figura 3.5). La densidad de racimos ligados tampoco
vaŕıan con el forzado en la pared, como indica la figura 3.6, y el efecto del umbral
de detección α es igual en los casos lisos y rugosos.

El único efecto de la pared en estos objetos parece estar en su forma, que es
ligeramente menos alargada en la dirección longitudinal en las cercańıas de la pared,
como se observa en la figura 3.7(a). Sin embargo, estas diferencias no están asocia-
das al efecto directo de las perturbaciones sobre los racimos, sino al cambio en el
gradiente de velocidad medio en la subcapa rugosa.

El hecho de que las propiedades de los racimos ligados sean independientes de
los detalles de la pared, sugiere que estos objetos se crean con tamaños similares a
los observados, o que se olvidan rápidamente de sus oŕıgenes. En principio, estas dos
explicaciones no son necesariamente excluyentes. Mientras que los tiempos de vida
de los racimos ligados presentados en del Álamo et al. (2006) respaldan la primera
explicación, los resultados del modelo lineal que se describe en el último caṕıtulo
de esta tesis sugieren que, en media, la evolución de las eyecciones asociadas a los
racimos ligados se hace auto-semejante en tiempos muy cortos.

Los campos de velocidad condicionados a racimos ligados śı muestran diferencias
significativas, aunque la estructura del campo fluido medio que rodea a los racimos
es similar: una estela de baja velocidad que se extiende fundamentalmente aguas
abajo del racimo, abriéndose con forma de cono, y flanqueada por dos zonas de alta
velocidad (ver figura 3.8). Sin embargo, la parte de la estela de baja velocidad que
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se extiende aguas arriba del racimo es más corta en los casos con perturbaciones que
en el caso de paredes lisas (ver figuras 3.8 y 3.9). De nuevo, este acortamiento de
la estructura de velocidad en la subcapa rugosa no se debe al efecto directo de las
perturbaciones, sino a la modificación del gradiente de velocidad.

El otro efecto interesante es la menor intensidad de las estelas para el caso
rugoso en la zona lejos aguas abajo del racimo, medida como la velocidad media en
el interior de la estela (ver figura 3.11). Debido al bajo número de Reynolds de las
simulaciones presentadas en esta tesis, las estelas alcanzan alturas comparables a la
altura del canal relativamente cerca del racimo. Esta zona saturada de la estela se
corresponde con los modos globales mencionados anteriormente. Ya hemos visto que
su intensidad es ligeramente menor en los casos con rugosidad que en los casos con
paredes lisas. Los campos de velocidad condicionados a racimos muestran que las
componentes de velocidad longitudinal y normal a la pared están muy correladas,
confirmando la relación entre los modos globales y la parte de las estelas de baja
velocidad con anchuras del orden del espesor del flujo.

Modelo lineal para la zona logaŕıtmica

En el último caṕıtulo de esta tesis intentamos sintetizar las conclusiones obtenidas
en los caṕıtulos anteriores en un modelo sencillo que explique la dinámica de las es-
tructuras de la zona logaŕıtmica. Nuestro parecer es que los modelos existentes hasta
el momento están incompletos, ya que, como hemos visto en el caṕıtulo anterior, no
son capaces de explicar todas las observaciones.

En primer lugar, tenemos el modelo de paquetes de torbellinos de herradura
propuesto por Adrian et al. (2000). El inconveniente principal de este modelo es
la propagación y crecimiento auto-semejante de los paquetes en el seno de un flujo
turbulento. Las evidencias de un proceso de regeneración de los paquetes fueron
obtenidas por Zhou et al. (1999) en un flujo laminar con viscosidad molecular, y es
discutible que ese proceso puede extrapolarse a un flujo turbulento real. Además,
incluso en ese entorno tan favorable, los paquetes de torbellinos de herradura no
se propagan demasiado en la dirección normal a la pared. Finalmente, aunque no
menos importante, no es sencillo imaginar un torbellino con forma de herradura,
con un diámetro proporcional a la escala de Kolmogorov, extendiéndose a lo largo
de toda la zona logaŕıtmica de un flujo turbulento con un número de Reynolds alto
sin perder su coherencia espacial durante tiempos largos.

En segundo lugar, tenemos el modelo de racimos, erupciones y rampas pro-
puesto por del Álamo et al. (2006). Este modelo se basa en estructuras que son
intŕınsecamente turbulentas, y que sólo se parecen a un torbellino de herradura
cuando se realiza algún tipo de promedio. Además, el elemento dinámicamente
relevante en este modelo no es el racimo de torbellinos, sino la erupción que está
marcando. Sin embargo, en este modelo no esta claro como se produce la alineación
de los racimos/erupciones para formar las estelas de baja velocidad, ni si las estelas
son la causa o el efecto de las erupciones.
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Es importante tener en cuenta que ambos modelos son equivalentes desde el
punto de vista cinemático, y que las diferencias entre ellos se reducen fundamen-
talmente a cuestiones dinámicas: ¿Vienen estas estructuras de la pared? ¿Qué
coherencia temporal tienen? ¿Quién origina a quien?

Para aclarar estas cuestiones, planteamos un problema sencillo: la generación
de estelas de baja velocidad a partir de una versión idealizada de una erupción,
utilizando las ecuaciones de Navier-Stokes linealizadas. El uso de las ecuaciones
linealizadas se justifica con el análisis de los órdenes de magnitud de los términos de
la ecuación de cantidad de movimiento. El tiempo asociado a la cortadura media
es mucho más corto que el tiempo de giro de las estructuras ligadas a la pared de
la zona logaŕıtmica, por lo que su dinámica es esencialmente lineal. Además, el
hecho de que se trate de estructuras alargadas, con longitudes caracteŕısticas en la
dirección del flujo mayores que en las direcciones transversales, permite una serie
de simplificaciones adicionales (ver ecuaciones 4.3–4.5). Finalmente, el efecto de
las interacciones no lineales de la estructura consigo misma y con la turbulencia del
ambiente se introduce en el modelo como una viscosidad turbulenta, que básicamente
limita el crecimiento máximo de la estructura. Es importante tener en cuenta que
la introducción de la viscosidad turbulenta en las ecuaciones implica que, en vez de
modelar la evolución de una estructura instantánea del flujo, el problema que nos
planteamos es la dinámica de una estructura media.

Cuando consideramos las ecuaciones linealizadas en una zona logaŕıtmica ideal
con viscosidad turbulenta, la ausencia de una escala de longitud fija nos permite
expresar la ecuación de cantidad de movimiento y de la continuidad en forma auto-
semejante (ver ecuaciones 4.6–4.8). La solución crece linealmente con el tiempo en
el plano transversal a la dirección media del flujo, debido al efecto de la viscosidad
turbulenta lineal. En la dirección del flujo, la solución se estira bajo el efecto del
gradiente de velocidad medio, que vaŕıa como el inverso de la distancia a la pared.

Estos comportamientos cualitativos también se observan en las soluciones nu-
méricas del modelo lineal. En ellas se resuelven las ecuaciones linealizadas (4.3)-
(4.5) en la zona de la pared de un flujo turbulento con un número de Reynolds
virtualmente infinito (Reτ = 109). El dominio computacional empleado es periódico
en la dirección transversal al flujo, y está truncado en la dirección normal a una altura
suficientemente grande como para no influir en las estructuras que se desarrollan en
el flujo. Como condición inicial empleamos una versión idealizada de las estructuras
de velocidad condicionadas a racimos ligados que presentamos en el caṕıtulo 3:
un par de torbellinos longitudinales, ligados a la pared, generando una zona de v
positiva 3 veces más larga que alta y 1.5 veces más ancha que alta. De esta forma,
la condición inicial sólo depende de un parámetro, la distancia a la pared del centro
de ese par de torbellinos, y0. Simulaciones preliminares mostraron que la forma
particular de la condición inicial no era determinante en la estructura de la solución,
que tend́ıa a una evolución auto-semejante tras en un tiempo del orden del tiempo
de giro caracteŕıstico de la condición inicial.

Hemos considerado distintos tamaños de la erupción inicial en las simulaciones
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lineales, con y+
0 igual a 25, 50, 100, 200 y 400. En todos estos casos, la evolución del

sistema es cualitativamente similar. En el instante inicial toda la enerǵıa está en las
componentes de velocidad v y w. Sin embargo, la enerǵıa en estas componentes decae
en más de un orden de magnitud durante el primer giro de la erupción. Mientras
la viscosidad turbulenta disipa la erupción, levanta flujo lento de la zona de la
pared, generando una estructura de baja velocidad longitudinal. La enerǵıa de esta
estructura de u crece hasta alcanzar un máximo, para después decaer a un ritmo
ligeramente inferior al de v y w: cuando la enerǵıa en v y w se ha reducido por un
factor de 102, la componente de velocidad u aún contienen entre un 10 y un 30% de
la enerǵıa inicial (ver figura 4.1).

Las enerǵıas máximas obtenidas en el proceso dependen del porcentaje (β) de
los esfuerzos de Reynolds que se modelan con la viscosidad turbulenta. En la figura
4.1(b) podemos comprobar que pasar de β = 1.0 (turbulento) a β = 0.0 (laminar)
implica un aumento en la amplificación de enerǵıa en más de un orden de magnitud
para todos los valores de y0 contemplados en este estudio. Además, mientras que
β > 0, las erupciones más pequeñas tienen amplificaciones mayores. Cuando β = 0,
la amplificación es directamente proporcional al tamaño de la erupción. Este cambio
de comportamiento está relacionado con el hecho de que los tiempos que necesita
la viscosidad molecular para disipar la erupción son aproximadamente un orden de
magnitud mayores que los que necesita la viscosidad turbulenta (ver figura 4.2a).
Además, la aparición de una escala de longitud asociada a la viscosidad en el caso
β = 0 rompe la auto-semejanza de las ecuaciones, produciendo un cambio bastante
brusco en la dependencia con y0 de los tiempos asociados a amplificación máxima
cuando pasamos de β > 0 a β = 0. Cuando comparamos los tiempos integrales
asociados a las soluciones del modelo lineal para distintos β con los tiempos integrales
asociados a las estructuras de v de flujos turbulentos reales comprobamos que el
comportamiento del modelo lineal es correcto (ver figura 4.2b) cuando β = 0.6.

Los resultados del modelo lineal arrojan serias dudas sobre la aplicación de re-
sultados obtenidos en flujos laminares a flujos turbulentos. En concreto, los tiempos
de vida para β = 0 son mucho más largos y escalan de forma distinta que los tiem-
pos para β > 0. Por ejemplo, las simulaciones lineales de Suponitsky et al. (2005)
indican crecimientos máximos en tiempos del orden de 2.5y0/uτ , frente a t . y0/uτ

en nuestras simulaciones. En Zhou & Adrian (1995) se indica que torbellinos de
herradura con y+

0 ∼ 50 se disipan en t+ ∼ 500, lo que corresponde a t ∼ 10y0/uτ .
Finalmente, en Zhou et al. (1999), se indica que el tiempo en el que se genera el
torbellino de herradura secundario es t ∼ 2y0/uτ , mientras que nuestros resultados
indican que ese torbellino ya habŕıa perdido del orden del 70% de su enerǵıa si
β = 0.3 (90% si β = 0.6), posiblemente impidiendo el proceso de regeneración.

La figura 4.3 muestra que la evolución del sistema se vuelve auto-semejante
rápidamente si la erupción inicial es suficientemente grande como para vivir en la
zona logaŕıtmica. También podemos observar que en ese proceso de crecimiento
autosemejante, el centro de la estructura se desplaza en la dirección normal a la
pared con una velocidad del orden de uτ . Sin embargo, debido al corto tiempo de
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vida de las erupciones, estas apenas consiguen doblar su tamaño inicial antes de ser
disipadas por la turbulencia del entorno.

Las estructuras de u generadas en el modelo lineal son consistentes con las estelas
observadas aguas arriba de los racimos ligados en flujos turbulentos. Sin embargo,
la estela que se observa aguas abajo en flujos turbulentos reales no está presente
en el modelo lineal. Esté es posiblemente el resultado más interesante del modelo
lineal, puesto que implica que la erupción sólo es causa de la estela aguas arriba, y
sugiriere que la estela aguas abajo es la causa de la erupción.

Todos estos resultados también se obtienen cuando resolvemos las ecuaciones
lineales para el perfil de velocidad obtenido un los DNS con perturbaciones en las
paredes. Cuando la erupción inicial es suficientemente grande, los resultados para
pared rugosa tienden a los obtenidos para paredes lisas (figura 4.7), y los campos
de velocidad asociados a racimos turbulentos en el caso rugoso concuerdan con los
obtenidos del modelo lineal (ver figura 4.8).

Finalmente, también hemos analizado el efecto que la erupción media tiene en
el perfil de velocidad local, para evaluar el origen de las erupciones. Los resultados
mostrados en las figuras 4.9 y 4.10 sugieren que para deformar de forma apreciable
en perfil de velocidad media necesitamos la contribución de la zona exterior. La
disminución de la viscosidad turbulenta en esta zona permite el desarrollo de es-
tructuras de u mas intensas, que podŕıan ser el origen de las erupciones de la zona
logaŕıtmica.

Conclusiones y trabajo futuro

En esta tesis se ha estudiado la naturaleza de las interacciones entre la zona de la
pared y la zona exterior, y su papel en la dinámica de la turbulencia de pared. Para
abordar este estudio se ha desarrollado una base de datos de simulaciones numéricas
directas de canales turbulentos con números de Reynolds moderados, Reτ ≈ 600.
Las condiciones de contorno en las paredes de estas simulaciones han sido sustituidas
por una distribución periódica de velocidades caracterizada por un único armónico.
El efecto de estas perturbaciones es interrumpir el ciclo de enerǵıa caracteŕıstico de
los flujos turbulentos sobre paredes lisas, cambiando completamente la naturaleza
de la zona de la pared en estas simulaciones. Esto las convierte en una valiosa
herramienta para analizar el efecto de la pared en la zona exterior.

El análisis de estas simulaciones indica que la hipótesis de Townsend es esen-
cialmente válida. En la subcapa rugosa, el flujo está dominado por el forzado de
la pared y sus armónicos. Sin embargo, por encima de esta subcapa rugosa la es-
tructura de la turbulencia es independiente de la naturaleza de la pared. Hay que
tener una cierta precaución al extender esta afirmación a las estructuras más largas
del flujo. Nuestras simulaciones muestran que los modos globales identificados so-
bre paredes lisas, que están correlados desde la zona exterior hasta la zona de la
pared, también están presentes en flujos sobre paredes rugosas. Su forma no se ve
afectada por los detalles de la pared, aunque su intensidad śı se ve afectada por
los cambios que la rugosidad impone en el perfil de velocidad medio. Utilizando
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datos experimentales de flujos turbulentos en canales y tubos, con paredes lisas y
rugosas, hemos comprobado que la escala de velocidad para esos modos es aproxi-
madamente uτ log Reτ . Esta escala de velocidad funciona para los casos en régimen
hidráulicamente liso y transicionalmente rugoso. Sorprendentemente, los casos ru-
gosos completamente desarrollados también parecen seguir ese escalado, aunque se
necesitan datos a números de Reynolds mayores para determinar si, tal y como
predice la teoŕıa clásica, su intensidad deja de depender del número de Reynolds.

Las estructuras coherentes de vorticidad de la zona exterior tampoco se ven
modificadas por el forzado en las paredes. Tanto los racimos de torbellinos ligados a
la pared como los desligados tienen las mismas propiedades estad́ısticas en los casos
lisos y rugosos. En particular, los racimos ligados son marcadores de erupciones de
velocidad normal a la pared, que tienen un papel importante en la dinámica de las
zonas de solape y exterior. Los campos de velocidad asociados a estas erupciones
son estelas de baja velocidad con forma cónica, que dan lugar a los modos globales
cuando su altura es comparable al espesor del flujo. Tampoco la rugosidad es capaz
de modificar estas estelas, salvo por el acortamiento de la parte de esta estela que
se desarrolla aguas arriba del racimo, en la zona cercana a la pared.

El modelo lineal presentado en el último caṕıtulo de esta tesis permite explicar
este fenómeno. De acuerdo con el análisis de los ordenes de magnitud de los términos
de las ecuaciones de Navier-Stokes, el tiempo de giro de las erupciones marcadas por
los racimos ligados es mucho mayor que el tiempo de deformación asociado al gra-
diente de velocidad media, por lo que el proceso de generación de las zonas de baja
velocidad observadas en flujos turbulentos sobre paredes lisas y rugosas es esencial-
mente lineal. Las simulaciones lineales muestran que las erupciones son capaces de
generar estelas de baja velocidad aguas arriba, y la forma y tamaño de estas estelas
corresponde con las observadas aguas arriba de los racimos de torbellinos ligados,
en paredes lisas y rugosas.

Sin embargo, el modelo lineal no explica como se generan las estelas aguas abajo
de los racimos. De hecho, las observaciones sugieren que las erupciones son el efecto,
más que la causa, de la estela aguas abajo. Además, cuando en el modelo lineal se
introduce el efecto de la zona exterior, las estructuras resultantes son notablemente
más energéticas. Esto es debido a la disminución de la viscosidad turbulenta en la
zona exterior, lo que permite un tiempo de vida mayor para las erupciones de la zona
exterior y las correspondientes rampas. Aunque deberá ser comprobado en investi-
gaciones posteriores, lo que sugieren los resultados presentados en esta tesis es que la
relación de causalidad normalmente asociada a los flujos de pared puede ser errónea.
En vez de tener una zona logaŕıtmica gobernada por las estructuras que vienen de
la pared o por un ciclo autónomo, nuestra propuesta es que la zona logaŕıtmica es
relativamente pasiva, subordinada a las estructuras de la zona exterior.

Como trabajo futuro se propone el estudio de la cascada de enerǵıa en la zona
logaŕıtmica, y el análisis de la estabilidad de estructuras de velocidad instantáneas
caracteŕısticas de la zona logaŕıtmica. Desde un punto de vista más aplicado, una
posibilidad que merece ser estudiada es la aplicación de las condiciones de contorno
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desarrolladas en esta tesis para emular el efecto de rugosidad real en geometŕıas
complejas.
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Chapter 1

Introduction

The problem studied in this thesis pertains to the subject of turbulence in incom-
pressible fluids. The simplest explanation of the term turbulence is usually given in
oppossition to laminar. It is commonly observed in daily situations that slow flows
are well organized (laminar flow). However, when the velocity (or the length scale)
increases, the flow becomes disorganized and chaotic, and the velocity and the pres-
sure fluctuate rapidly both in time and space. In the latter case, the flow has become
turbulent.

Turbulent flows are very common both in industry and in nature. For instance,
they are of critical importance in processes such as the mixing of oxygen and fuel in
modern combustion engines, the pressure drag in pipeline systems, the dispersion
of contaminants in the atmospheric boundary layers or the formation of clouds. In
addition to its practical importance, turbulence is considered as one of the modern
paradigms of complexity, since it is a multiscale and dissipative problem with non-
linear interactions. The research in turbulence has made important advances during
the past century, but there are still some open questions related to the underlying
physical mechanisms.

The present thesis is concerned with incompressible turbulent flows in the pres-
ence of solid walls, namely wall-bounded turbulence. The phenomenology found in
turbulent flows is much broader than that, including homogeneous turbulence, tur-
bulent convection of heat and particles or the problem of shock-waves/turbulence
interaction. A general approach to the problem of turbulence can be found in sev-
eral monographs, like Tennekes & Lumley (1972), Hinze (1975), Townsend (1976),
Frisch (1995), Lesieur (1997) and Jiménez (2000).

1.1. Historical remarks

The notion of turbulence is very old. In fact, the term turbolenza was a Latin
word used to describe crowds. Gonzalo de Berceo used it in the XIII century to
describe the weather, and later in the XVI century, Leonardo da Vinci used it to
describe the disordered motion of water. However, the scientific study of turbulence
began 300 years later, with the pioneering work of Hägen (1854) and Darcy (1857).
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1. Introduction

They independently analyzed the pressure drop in pipes and found that it had
a quadratic component independent of the viscosity. They associated that extra
component to the disordered motion of the fluid. Their results showed one of the
most important properties of turbulence; even in the limit of negligible viscosity the
dissipation remains constant, implying that the velocity gradient tends to infinity
and the flow apparently becomes singular. In other words, turbulence is a dissipative
system, and precisely this property distinguishes turbulence from other non-linear
systems.

After the experiments by Hägen and Darcy, Boussinesq (1877) published a pa-
per distinguishing between two different regimes, smooth and tumultuous. He also
introduced some important features of the turbulent regime, like its enhanced dis-
sipation and the need for a statistical description of the velocity. Later, Reynolds
(1883) clarified the transition between the two regimes. He introduced dye in a
water pipe and observed how the flow became disordered. He characterized the
transition with the non-dimensional number that now bears his name, the Reynolds
number Re = UbL/ν, where Ub is the bulk velocity, L is the distance to the entrance
of the pipe and ν is the kinematic viscosity. In a later paper (Reynolds, 1894), he
decomposed for the first time the flow in its mean and fluctuating part, introducing
the “Reynolds stress” and the “closure problem”. The simplest models for solving
that problem were based on the analogy with the kinetic theory of gases, leading to
the mixing length models (Taylor, 1921; Prandtl, 1925; von Kármán, 1930).

Roughly at the same time, Richardson (1920) proposed a multiscale description
of turbulence. He postulated that the energy introduced in the turbulent flow gen-
erates large scale structures or eddies. These eddies break into smaller eddies due
to some kind of instability. The process is repeated several times until the eddies
are small enough for the viscosity to dissipate them. Richardson’s ideas were fur-
ther developed by Kolmogorov twenty years later into what is known nowadays as
the energy cascade, which is probably the most important landmark in turbuelence
research. Before that, some other important advances were made. In 1935, Taylor
introduced the concept of isotropic turbulence, a turbulent flow where all flow sta-
tistical variables are independent of translation, rotation and reflexion of the axes
of reference. Its importance resides in that it is the simplest form of turbulence that
can be considered relevant for more realistic turbulent flows. Later, von Kármán &
Howarth (1938) derived the equation that describes the transfer of energy between
different wavelengths, the Kármán-Howarth’s equation. This equation was used to
derive the Kolmogorov’s theory described in the next section.

The Kolmogorov’s theory

The Kolmogorov’s theory of the energy cascade emerges from the ideas postulated
by Richardson (1920). We will focus here on the energy distribution predicted by
that theory, which has been one of its most successful predictions.

Consider an isotropic and homogeneous turbulent flow, in which the energy is
injected in large scale eddies. The hypothesis of the energy cascade is that each of
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these eddies, with a characteristic length ℓ and a characteristic velocity uℓ, breaks
into smaller eddies (say, of size ℓ/2) in times of the order of their turnover time,
tℓ = ℓ/uℓ. The process is repeated until the Reynolds number of the eddy is small
enough for the viscosity to become important and dissipate energy. The energy per
unit mass transferred in the process is u2

ℓ/tℓ = u3
ℓ/ℓ, and if we assume that the

cascade is in equilibrium, the energy transfer rate at any scale must be equal to
the total dissipation ε. Under these conditions, we can estimate the characteristic
velocity of a size-ℓ eddy,

ε =
u3

ℓ

ℓ
→ uℓ ∼ (εℓ)1/3. (1.1)

The cascade process is forced at the large scales by an energy input mechanism,
which is usually characterized by the integral length scale of the velocity fluctua-
tions, Lǫ, defined as the integral of the velocity correlation coefficient (Batchelor,
1953, page 47). We can also define a characteristic velocity for the large scales uL,
substituting the integral length scale in (1.1),

ε =
u3

L

Lε

→ uL = (εLǫ)
1/3 (1.2)

At smaller scales, the cascade process takes place without energy dissipation as far
as the turnover time of the eddy tℓ is shorter than the time that viscosity needs to
damp it, tν = ℓ2/ν. The Kolmogorov scale ηk is defined as the length scale for which
tℓ = tν , resulting in

ηk

uk

=
η2

k

ν
→ ηk =

(
ν3

ε

)1/4

. (1.3)

At this scale, the break up of the eddy takes place with energy dissipation, and
because of this the range of scales ℓ ∼ O(ηk) is called the dissipative range. The
range of scales where the eddies break up inviscidly (Lǫ ≫ ℓ ≫ ηk) is called the
inertial range.

The concept of energy cascade allowed Kolmogorov to obtain the scaling of spec-
tra of the velocity fluctuations in the inertial range, Eu(k1) ∼ ε2/3k

−5/3
1 , where

k1 = 1/ℓ is the wavenumber in the direction of the velocity component u. This ex-
pression was a well known empirical law observed in turbulent flows, that remained
unexplained until the work of Kolmogorov. Later, Onsager (1945) used the concept
of energy cascade to show why the dissipation of turbulent flows does not tend to
zero when ν → 0, solving the paradox raised by Hägen and Darcy. The idea is that
according to (1.1), the velocity gradient is uℓ/ℓ ∼ (ε/ℓ2)1/3, increasing as we move
to smaller scales in the inertial range. However, at the Kolmogorov scale where
dissipation takes place, the velocity gradient is uk/ηk = (ε/ν)1/2, and the volume
integral of the turbulent energy dissipation

1

V ol

∫

V ol

ν(∇u)2dx ∼ ν

(
uk

ηk

)2

= ε, (1.4)
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becomes independent of the viscosity ν, consistently with the experiments of Hägen
and Darcy.

One of the most interesting aspects of the Kolmogorov’s energy cascade is that,
if it exists, it should be universal, common to all turbulent flows. The energy input
mechanisms in real flows differ and so do the large scale structures that appear in the
flow. However, as the energy is transfered towards smaller eddies, their characteristic
time scales decrease. The small scales of the inertial range are too small and to fast
to see the spatial and temporal variability of the large (non-universal) scales, and
their evolution is controlled by the local value of the energy dissipation. These scales
could be universal, since they are always in local equilibrium with the larger ones,
as assumed in (1.1). The universality of the Kolmogorov’s cascade is behind one the
most usual techniques to simulate turbulent flows, namely Large Eddy Simulation
(LES), which will be described in §1.3.

Finally, it is important to bear in mind that the Kolmogorov’s energy cascade is
not a deductive theory, since it is based on a set of hypothesis. A rigorous theory
leading from the Navier-Stokes equations to the energy cascade process described
above is yet to be developed. In fact, Batchelor & Townsend (1949) showed that
some of the hypothesis used by Kolmogorov were not exact. In particular, the
arguments of the energy cascade assume that probability functions of the velocity
are independent of the scale. The experimental measurements of spatial velocity
correlations by Batchelor & Townsend showed that the probability of extreme events
was higher as the distance was decreased. This phenomenon receives the name of
intermittency, and it was included in the modified cascade theory presented by
Kolmogorov (1962) and Oboukhov (1962). An important fraction of the research in
turbulence in the past century has been devoted to the analysis and description of
this phenomenon (for an account of the different approaches check Frisch, 1995).

1.2. Wall-bounded turbulence

In most practical applications, turbulent flows are bounded by solid walls, mak-
ing the study of wall-bounded turbulence of great importance. Because of that,
wall-bounded turbulence has been investigated since the 1900’s. However, some
important aspects of it are not yet fully understood.

Wall-bounded turbulence is more complicated than free turbulence since the
presence of walls imposes constraints that are absent in the latter. The most obvi-
ous ones are the non-slip and impermeability boundary conditions for the velocity,
which introduce inhomogeneity in the flow. In order to avoid the extra complexity
introduced by the geometry of the walls, the present thesis only considers the canon-
ical wall-bounded flows (channels, pipes and boundary layers), which are sketched
in figure 1.1. The flow is driven by a pressure gradient in the streamwise direction x,
resulting in a mean velocity U which in principle depends only on the wall-normal
coordinate y. Note that in the case of boundary layers, U also depends on x. The
spanwise coordinate is z, which for pipe-flows is the arc length z = rθ. The velocity
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(a) (b) (c)

Figure 1.1: Sketch of the geometry of the canonical wall-bounded flows. (a) Pipe. (b)
Channel. (c) Boundary layer.

fluctuation with respect to the mean flow is u = (u, v, w). The flow thickness is de-
fined by the pipe radius R, the channel half height h or the boundary layer thickness
δ. They are the characteristic length scales of the outer region of these flows, and
they will be considered roughly equivalent. The spanwise direction is homogeneous
in the three canonical flows, while the streamwise direction is homogeneous only in
pipes and channels.

The classical theory for wall-bounded turbulent flows can be found in many text
books, like Tennekes & Lumley (1972), Townsend (1976) or Schlichting (1979). It
derives from the work of Prandtl, who extended his boundary layer theory (Prandtl,
1904) to turbulent flows over smooth walls. He showed that even for high Reynolds
numbers, the viscosity is always important in a thin layer near the wall, and therefore
turbulent flows over smooth walls never become fully turbulent. Furthermore, this
viscous layer imposes two different length scales in the flow: the viscous length scale
in the inner region , and the flow thickness h in the rest of the flow, the so-called
outer region. These two length scales are analogous to the integral and dissipative
scales of Kolmogorov’s theory, but here the energy cascade is not only separated in
scales, but also in space.

Consider the flow in a smooth-walled channel. The analysis of the boundary
layer or the pipe cases is similar. The momentum equation for the mean velocity
reads

∂yuv = −ρ−1∂xP + ν∂yyU, (1.5)

∂yv2 = −ρ−1∂yP, (1.6)

0 = −ρ−1∂zP, (1.7)

where (·) denotes ensemble averaging over the homogeneous directions.
We can integrate (1.6) and (1.7) to obtain

ρ−1P + v2 = ρ−1P0(x). (1.8)
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We will assume that P0(x) is linear, so that the mean pressure gradient ∂xP driving
the flow in (1.5) is constant.

Substituting the mean pressure gradient in (1.5), we can integrate the total shear
in the flow,

−uv + ν∂yU = yρ−1∂xP0 + τw. (1.9)

taking into account that the viscous friction at the wall, τw, has to balance the mean
pressure gradient. Then, since the flow is statistically symmetric with respect to the
center of the channel, (1.9) at y = h gives ρ−1∂xP0 = −τw/h, and the total shear
stress can be expressed as

−uv + ν∂yU = τw(1 − y/h). (1.10)

When the friction Reynolds number Reτ = τ
1/2
w h/ν is large, the viscous shear stress

ν∂yU is negligible in most of the flow, and the friction velocity uτ = τ
1/2
w is the

velocity scale of the Reynolds stress.
Normalizing (1.10) with the friction velocity uτ and the viscous length scale ν/uτ ,

we obtain that when Reτ ≫ 1, the only suitable form of the mean velocity profile
in the inner region of a smooth-walled flow is

U+ = f(y+). (1.11)

The + superscript indicates variables normalized in wall-units, using the reference
velocity uτ and the reference length ν/uτ . Equation (1.11) is usually called the law

of the wall (Prandtl, 1925), and was supported by early measurements by Nikuradse
(1932). Later on, Reichardt (1951) extended the measurements to points very close
to the wall, and found that for y+ . 5 the tangential Reynolds stress was zero and
the mean velocity profile was linear,

U+ = y+. (1.12)

Figure 1.2(a) shows in blue the mean velocity profiles obtained in different turbulent
channels, both numerical and experimental. We can observe that the data support
both (1.11) and (1.12). It is customary to refer to the region below y+ . 5 as the
viscous sublayer, while the region between 10 ≤ y+ ≤ 100 is usually called the buffer

or the near-wall region.
In the outer region the viscous shear stresses are negligible and the dimensional

analysis shows that the mean velocity has the form

U+ − U+
max = F

(y

h

)
. (1.13)

Note that, since a constant translation velocity does not affect the dynamics of the
motion, the maximum velocity of the flow Umax appears in (1.13). This equation
was obtained by von Kármán (1930), who applied his similarity hypothesis and the
mixing length concept of Taylor and Prandtl to the Reynolds averaged equations in
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Figure 1.2: Mean velocity profiles of numerical and experimental wall bounded flows,
with Reτ = 500 − 5000. (a) Inner scaling, using ν/uτ and uτ . (b) Outer scaling, using
h and uτ . Blue symbols correspond to experimental channel flows, from Bakken et al.

(2005), Niederschulte et al. (1990) and Wei & Willmarth (1989). Blue lines correspond
to numerical channel flows, from del Álamo et al. (2004) and Hoyas & Jiménez (2006).
Red symbols correspond to experimental pipe flows, from Perry et al. (1986) and Perry &
Abell (1977). The black, dashed lines in (a) correspond to (1.12) and (1.15).

a rectangular channel. Neglecting the effect of molecular viscosity, he computed a
mean velocity profile that was only dependent on the maximum velocity, the wall
distance, the channel half-height and the friction velocity. This result is known as
the velocity defect law. Figure 1.2(b) shows the goodness of this law. Note that,
since F (y/h) in (1.13) depends on the geometry of the flow, the data from pipes and
channels collapse into two different curves in 1.2(b).

Equation (1.13) is valid in the outer region, where y/h ∼ O(1). In the near-wall
region, where y/h is very small, the molecular viscosity becomes important and the
expression above has to be replaced with the law of the wall (1.11). In the overlap
region where y+ → ∞ and y/h → 0, both (1.11) and (1.13) are valid. Since these
two expressions do not have any common independent variables, the matching in
the overlap region is only possible if

y

uτ

∂yU = y+ df

dy+
=

y

h

dF

dy/h
= κ−1, (1.14)

which can be integrated to

U+ =
1

κ
log(y+) + A. (1.15)

Because the mean velocity profile varies as the logarithm of the wall distance, the
overlap region is also called the logarithmic region. The characteristic length scale
of the flow is the wall distance y, since h is too large (y ≪ h) and ν/uτ is too
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small (y+ ≫ 1). The constant κ in (1.15) is known as the von Kármán’s constant,
since Theodore von Kármán was one of the first to obtain (1.15) using similarity
arguments (von Kármán, 1930). In principle, κ should be universal, although the
reported values for it vary from 0.35 to 0.42. The classical value of the intercept
constant is A ≈ 5, although again its value is slightly different in channels, boundary
layers and pipes. The good agreement of numerical and experimental data with
(1.15) can be observed in figure 1.2(a).

The process described here to obtain (1.15) is called asymptotic matching, and
was first described by Millikan (1939). Townsend (1976) gave a different argument
to derive the logarithmic velocity law, based on the concept of equilibrium layer

(Townsend, 1961). He considered a region of the flow close to the wall, with a small
thickness when compared to h, so that the variation of the Reynolds stress was
small compared with the shear at the wall and the transport of energy by the mean
flow was negligible. In that case, he showed that the turbulent energy production
and dissipation are in approximate balance, leading to a logarithmic mean velocity
profile. Another interesting observation was that the characteristic length scale
increased linearly across the region of constant Reynolds stress. That was interpreted
by Townsend as an indication of that the energy containing eddies of the flow in
that region were attached to the wall, with heights and widths proportional to the
distances of their centers to the wall, in agreement with the model proposed by
Theodorsen (1952).

It is important to keep in mind that the logarithmic velocity law of the classical
theory is a first order approximation to the mean velocity profile in the logarithmic
region. Indeed, the use of uτ as a velocity scale for the outer region may not be
justified, especially in the case of boundary layers, where the shear stresses tend
to zero in the outer limit. Indeed, the literature about wall-bounded turbulence
offers some alternatives. For instance, Oberlack (1997) proposed a scaling for the
logarithmic region which was equivalent to use no scale for the velocity, leading to
an exponential law for the mean velocity. Also, George & Castillo (1997) proposed
Umax as a velocity scale, which leads to power laws.

Flow structure and dynamics over smooth walls

As described in the previous paragraphs, we can distinguish three regions in the
turbulent flow over a solid wall: the buffer region, the outer region, and the logarith-
mic region between them. The presence of the wall segregates the flow structures
through them, so that smaller eddies reside closer to the wall than larger eddies.
The analogy with the Kolmogorov’s energy cascade suggests that the outer region
corresponds to the integral scales, the buffer region corresponds to the dissipative
range, and the logarithmic region corresponds to the inertial range. However, this
analogy is not complete. The buffer region is the most active part of the flow, gen-
erating more than 35% of the total turbulent energy of the channel when it only
represents 17% of the total volume. Note that both the Reynolds stresses and the
mean velocity gradient are larger in the buffer region than in the outer region. Part
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1.2. Wall-bounded turbulence

of the energy generated in the buffer region is dissipated locally, but the rest is ex-
ported to the outer region by a constant energy flux through the logarithmic region.
This additional energy cascade is known as the inverse energy cascade, and appears
superimposed to the local Kolmogorov’s energy cascade in wall-bounded turbulent
flows.

The dynamics of the buffer region below y+ ≈ 100 became largely understood in
the last decade. The local Reynolds numbers in the buffer region are relatively low,
and even if the flow is not laminar, it is at least smooth. This region is dominated
by the well-documented near-wall streaks (Kim et al., 1971) and quasi-streamwise
vortices (Robinson, 1991b; Jiménez & Moin, 1991). The former ones are long, sin-
uous strips of alternating low and high momentum fluid. Their average spanwise
separation is z+ ≈ 100, and their length is x+ ≈ O(103). The quasi-streamwise
vortices are staggered between the high and low velocity streaks, with a longitudi-
nal spacing about x+ ≈ 400. Both, streaks and vortices, interact with the mean
shear through a non-linear cycle that does not need the assistance of the outer re-
gion (Jiménez & Pinelli, 1999). In that cycle, the vortices generate the streaks by
stirring the mean velocity profile (Blackwelder & Eckelmann, 1979), while an in-
stability of the streaks generate new vortices (Schoppa & Hussain, 2002; Kawahara
et al., 2003). Recently Jiménez et al. (2005) have connected that cycle to nonlinear
three-dimensional solutions of the Navier-Stokes equations in incompressible Cou-
ette (Nagata, 1990; Waleffe, 2003) and Poiselle flows (Toh & Itano, 2001; Waleffe,
2001), as well as with the autonomous channel simulations of Jiménez & Pinelli
(1999) and Jiménez & Simens (2001).

The logarithmic and outer regions are less understood than the buffer region.
Townsend (1976) argued that the equilibrium layer concept (Townsend, 1961) im-
plies that the aspects of the turbulent motion related with the turbulent energy
production and dissipation only depend on the velocity scale uτ and the length
scale y. This statement does not apply to the inactive motions (Bradshaw, 1967;
Townsend, 1976), that do not contribute to the Reynolds stresses. Another impor-
tant observation is that the flow structures of the logarithmic and outer regions
are constrained by the wall in the y direction, but not in the wall-parallel direc-
tions, resulting in the development of elongated structures. These structures do not
participate in the isotropic, local Kolmogorov’s energy cascade, but they carry an
appreciable fraction of the Reynolds stresses, and participate in the inverse energy
cascade mentioned above.

It is possible to estimate the one-dimensional energy spectra of the streamwise
velocity fluctuations due to large structures in the logarithmic region. According to
the wall similarity concept, the one-dimensional energy spectrum can only depend on
u2

τ , the wavenumber kx, and the wall-normal distance y, which is the characteristic
length scale of the logarithmic region. However, since we are considering elongated
structures, we have that kxy ≫ 1, and the only dimensionally-correct expression for
the one-dimensional energy spectra is

Euu(kx) ∼ u2
τk

−1
x , (1.16)
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1. Introduction

which was carefully documented by Perry et al. (1986).
The outer region may also be described using wall similarity arguments, although

the effect of the flow geometry should be taken into account. Therefore, in principle
all flow statistics in the outer region should depend on uτ and h. However, it is
known that the flow structures of the outer region are quite large, with streamwise
lengths several times longer than the flow thickness (Townsend, 1958; Grant, 1958;
Kovasznay et al., 1970; Perry & Abell, 1975; Brown & Thomas, 1977; Perry et al.,
1986; Kim & Adrian, 1999). Bullock et al. (1978) found that these velocity struc-
tures are highly correlated across the whole flow thickness, from the outer region
to the wall, and termed them global modes. Because of that, it is possible that the
velocity scale for those large scale motions is different from the friction velocity.
Several propositions have been made in the same direction, such as the mixed scal-

ing proposed by de Graaff & Eaton (2000), or the scaling for the global modes with
Umax, as proposed by del Álamo et al. (2004).

1.2.1. Turbulent flows over rough walls

Using the logarithmic velocity profile derived from equation (1.15), Prandtl
(1935) obtained his universal drag coefficient law for smooth pipes. This law is
supported by several experiments, as shown in Schlichting (1979). However, it fails
to reproduce the behavior of the experiments of Hägen (1854) and Darcy (1857),
where the wall friction becomes independent of the Reynolds number. The answer
to this disagreement is that the pipes used by Hägen and Darcy were somewhat
rough, so that the drag forces over the roughness elements overcome the viscous
friction as the Reynolds number increased. This behavior only shows up in fully

turbulent flows, and wall-bounded turbulence over smooth walls is never fully tur-
bulent: there is always a thin layer near the wall were the local Reynolds number
is y+ = yuτ/ν ≈ O(1), and the flow is essentially laminar. This difference between
smooth- and rough-walled flows is intrinsically interesting and justifies the study of
rough walls beyond their practical applications.

The classical theory for turbulent flows over rough walls is based on the wall
similarity concept of Townsend, that was extended by (Perry & Abell, 1977) to
conform what they called the Townsend’s hypothesis. It states that the roughness
elements only affect a thin layer above them, the roughness sublayer. Above it, the
turbulent motions at sufficiently high Reynolds number are independent of the wall
roughness and of viscosity, except for the role of the roughness sublayer in setting
the mean velocity at its upper limit (Perry & Abell, 1977; Raupach et al., 1991).
This implies that, apart from the effect of the roughness on the mean velocity, no
other differences between smooth- and rough-walled flows should be encountered in
the overlap and outer regions.

The effect of the wall roughness on the mean velocity profile is well described
in classical text books, like Townsend (1976) or Schlichting (1979). Indeed, the
arguments presented in the previous pages for smooth-walled turbulent flows change
slightly in the case of flows over rough walls. In the region close to the roughness

10



1.2. Wall-bounded turbulence

elements, the characteristic length scales of the flow are the viscous length scale
ν/uτ , the height of the roughness elements k, and all the additional length scales
Sk needed to completely characterize the roughness. Typically, Sk includes the
lateral aspect ratios of the roughness elements, and some measure of the density of
the roughness elements. The rough-walled version of the law of the wall (1.11) is
therefore

U+ = f(y+, k+; Sk). (1.17)

The arguments leading to the velocity defect law (1.13) are also valid in rough-
walled flows, provided that the characteristic size of the roughness elements is small
compared with the flow thickness, k/h ≪ 1. In that case, the arguments leading
to the logarithmic law also apply, but the intercept constant changes to include the
influence of k+ and Sk,

U+ =
1

κ
log(y+) + C(k+; Sk). (1.18)

It is customary to express C(k+; Sk) emphasizing the departure of U+ from the
smooth-walled value, using the roughness function ∆U ,

U+ =
1

κ
log(y+) + A − ∆U+(k+; Sk), (1.19)

where A is the same intercept constant as used for smooth walls in (1.15). In the
limit k+ → 0, ∆U = 0 and C = A.

It is also possible to use k instead of ν/uτ as characteristic length scale, resulting
in

U+ =
1

κ
log

(y

k

)
+ B(k+; Sk), (1.20)

where B is a function of the roughness. When the roughness Reynolds number k+ is
sufficiently high, the influence of the viscous length scale can be neglected in (1.17)
and (1.20), and the value of B becomes independent of k+. Under those conditions,
the flow is termed fully rough.

The first direct proof of this behavior was reported by Nikuradse (1933), who
measured the mean velocity profiles in pipe flows over several sand roughnesses at
different Reynolds numbers. He prepared his rough surfaces by gluing carefully
filtered sand, so that each of the rough surfaces used by Nikuradse could be charac-
terized by a single length scale ks, corresponding to the size of the grains. He found
that the measured mean velocity profiles could be expressed as

U+ =
1

κ
log

(
y

ks

)
+ 8.5. (1.21)

This equation has been used as a definition of the equivalent sand roughness ks,
defined for a given roughness as the height of the sand roughness that gives the
same B as the given roughness (Schlichting, 1979). In terms of the equivalent sand
roughness, a flow can be considered fully rough for k+

s & 80.
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Note that (1.19), (1.20) and (1.21) are equivalent expressions, where the effect of
the roughness is measured by a different parameter. They can be related to obtain

∆U+(k+; Sk) = A − B(k+; Sk) − 1

κ
log(k+) = A − 8.5 +

1

κ
log(k+

s ). (1.22)

For the fully rough regime, B is constant, and therefore we have that ∆U+ ∝
log(k+). Equation (1.22) shows that ks is only a convenient way of characterizing
the drag increment due to the roughness, and may not have any special significance
in the dynamics of the flow.

Finally, it is interesting to note that for the usual values of A, k+
s . 4 leads to

negative values of ∆U+, indicating that moderately rough surfaces may be able to
reduce drag (Tani, 1988; Sirovich & Karlsson, 1997; Bechert et al., 2000). However,
in most of the cases, this limit only indicates the hydraulically smooth regime, in
which the effect of the roughness is negligible and the surface can be considered
smooth.

Finally, in the same way as the mean velocity profile in the logarithmic and outer
regions of turbulent flows over rough and smooth walls are essentially the same, the
classical theory predicts that the kinematics and dynamics of these regions should
be very similar. Earlier spectral measurements by Perry & Abell (1977) supported
these ideas, as well as the measurements performed later by Perry et al. (1986),
Ligrani & Moffat (1986) and Perry et al. (1987).

k-type and d-type roughness

It is important to clarify that the behavior described above corresponds to the k-
type roughness, according to the nomenclature of Perry et al. (1969). These authors
found that when the roughness consists on narrow spanwise cavities, the roughness
function ∆U no longer depends on the characteristic size of the roughness k, but
on the thickness of the flow h. This type of roughness, which they termed d-type
roughness, never reaches the fully rough regime described before. One of the most
appealing characteristics of the d-type roughness is that it should generate a flow
with a single length scale valid everywhere, and therefore it should be essentially a
pure core flow without logarithmic or buffer regions.

However, the existence of this kind of roughness is subject to some uncertainties,
and indeed Jiménez (2004) points out that the evidences for d-type behavior are not
conclusive. First, in the experiments of Perry et al. (1969), the roughness elements
were quite large, with a height to boundary layer thickness ratio k/h ∼ 10−20. Also,
the physical mechanism by which the flow thickness becomes the only length scale is
not clear. It has been argued that the flow in the groves is isolated from the rest of
the flow, with strong spanwise vortices anchored in the groves. Those vortices break
when an intense event coming from the outer region reaches the wall, resulting in
intense bursts. Note that while this mechanism explains why the roughness elements
length scale does not enter in the roughness function, it does not explain why the
flow thickness does.
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1.3. Techniques employed in the study of wall-

turbulence

Due to the complexity of the mathematical analysis of the Navier-Stokes equa-
tions, the advances in the understanding of the turbulent motion strongly rely on
empirical data. Nowadays, two different sources of empirical data are used; exper-
iments and numerical simulations. In both cases, the analysis of the data requires
the use of statistical tools, and most of the classical text books on turbulence have
a chapter devoted to them, as in Batchelor (1953), Tennekes & Lumley (1972),
Townsend (1976) or Frisch (1995). Common statistical tools used in the study of
turbulence include probability density functions, correlation functions and power
density spectra. More specific tools are also found in the literature, like the proper
orthogonal decomposition or POD (Bakewell & Lumley, 1967), the quadrant analy-
sis (Wallace et al., 1972; Willmarth & Lu, 1972) or the linear stochastic estimation
or LSE (Adrian & Moin, 1988).

Experimental techniques broadly used nowadays include hot wire anemometry,
Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (PIV). While
the first two only provide the velocity components at a single point, modern im-
plementations of PIV are able to measure three velocity components on a plane
or even the three velocity components in a certain volume. The most important
advantage of the experiments is their ability to reach higher Reynolds numbers,
which also turns out to be their biggest handicap: as the Reynolds number grows,
the Kolmogorov scale becomes smaller, and designing experiments able to capture
all the scales of the flow is not a trivial task. Experimental techniques will not be
used in the present thesis, but comparison with experiments will be presented when
possible.

Numerical simulations are also a valuable tool in the analysis of turbulence. They
not only provide a complete access to the fluid variables and their derivatives in the
whole computational domain, but they also allow the simulation of non-physical
configurations: we can filter regions of the flow, damp a certain range of scales,
eliminate terms in the Navier-Stokes equations or modify the boundary conditions.
These non-physical simulations can be used to investigate the dynamics of a certain
region of the flow (Jiménez & Moin, 1991; Jiménez & Pinelli, 1999), test causality
relationship between flow structures (Jiménez et al., 2004) or simplify the simulation
of complex geometries, such as porous walls Jiménez et al. (2001b) or riblets Jiménez
(1994).

A brief survey presenting the most common approaches to the numerical simu-
lation of turbulent flows follows.

Direct Numerical Simulation

There are in principle three different approaches to the problem of the numerical
integration of the Navier-Stokes equations, depending on the level of detail of the
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results. The most expensive option (in terms of computational cost) is to integrate
directly the full Navier-Stokes equations, resolving all the scales from the integral
scale to the dissipative range. This approach is known as Direct Numerical Simula-
tion (DNS). A recent review of the role of DNS as a research tool can be found in
Moin & Mahesh (1998), which also include some interesting examples of what they
term novel DNSes (configurations of turbulent flows that can not be studied with
experiments), synergies between experiments and simulations and a review of the
contribution of DNS to the understanding of the structure of the turbulent boundary
layer.

The spatial resolution (∆x) of a DNS is of the order of the Kolmogorov scale,

∆x

Lǫ

∼ ηk

Lǫ

=

(
uLLǫ

ν

)−3/4

= Re
−3/4
L . (1.23)

For historical reasons, (1.23) is usually expressed in terms of the microscale Reynolds
number, which is defined as

Reλ = (15ReL)1/2, (1.24)

so that ∆x/Lǫ ∼ Re
−3/2
λ . Typical values of the microscale Reynolds number vary

from 10 to 103. At Reλ ≈ 30 we can begin to speak about turbulence, and fully
turbulent flows require Reλ & 100. The wake of a walking person has Reλ ≈ 500,
typical industrial flows are in the range Reλ ≈ 100 − 1000, and the turbulence in
the boundary layer of a commercial airplane has Reλ ≈ 300. Finally, the highest
Reynolds numbers measured in the atmosphere are around Reλ ∼ 104.

We can see from these figures how expensive DNSes are. The number of grid
points required to resolve a cube of size O(L3

ǫ) increases as Re
9/2
λ . Taking into

account that the total time needed to have enough statistics is of the order of a
few turnover times of the larger structures, O(Lǫ/uL), and that the time step of
the simulation is of the order of ∆x/uL, we have that the number of time steps

is proportional to Re
3/2
λ . Overall, the number of operations required by a DNS is

proportional to Re3
λ, resulting in O(1012) operations even for the moderate Reynolds

number of Reλ ≈ 100.
The first DNSes of wall-bounded turbulence were performed in the 1980’s by

Kim et al. (1987) and Spalart (1988). Those simulations had O(106) points and
low Reynolds numbers. The increase in the computational power of modern super-
computers have made possible DNSes with O(1010) points and Reynolds numbers
comparable to experiments, like the recent simulations by Kaneda & Ishihara (2006)
and Hoyas & Jiménez (2006).

Reynolds Averaged Navier-Stokes equations.

The most convenient option in terms of computational cost is to solve the
Reynolds Averaged Navier-Stokes equations (Reynolds, 1894), also known as RANS
equations. However, the Reynolds stresses in those equations are unknown and some
model is needed to close the problem. It is possible to write evolution equations for
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these terms, but the new equations then include triple products, which again need to
be modeled. The simplest models are based on the concept of eddy viscosity (Boussi-
nesq, 1877), which evolved into the mixing length concept developed in 1920’s by
Taylor, Prandtl and von Kármán. More elaborated models are also available, like
the popular k − ε model.

The resolution requirements for RANS computations are minimal, since the grid
only needs to be adjusted to the geometry of the flow. Also, since the fluctuating
velocity components are included in the model, in most of the cases solving the
RANS equations consists only on computing a steady solution.

RANS methods are seldom used in research applications because they require a
previous knowledge about the flow in order to adjust the parameters of the model.
However, they are a valuable tool in industrial applications, where the critical issue
is to obtain a good approximation to the mean flow in times of the order of minutes.

More details about RANS models can be found in several books, like Launder &
Spalding (1992), Wilcox (1993) or Pope (2000).

Large Eddy Simulation

Between DNS and RANS we find Large Eddy Simulations (LES), where the
dissipative range of scales is modeled making use of the universality of the smallest,
isotropic scales (Kolmogorov, 1941).

The formal derivation LES models is based on the application of a smoothing
kernel to the Navier-Stokes equations. The shear stresses are then expressed as the
sum of two components, the shear stresses of the filtered velocities and the subgrid

shear stresses, which have to be modeled. One of the most extended models is the
Smagorinski model (1963). It is essentially an extension of the eddy viscosity idea
of RANS: the subgrid shear stresses are assumed to be proportional and parallel to
the filtered rate-of-strain tensor. Recent surveys about LES, filters and models can
be found in Sagaut (2005).

The computational cost of an LES is independent of the Reynolds number, since
the smallest scale that has to be resolved is a fraction of the integral scale. This
is true for flows without walls, or when the flow is separated. In those cases the
performance of LES is quite good.

However, wall-bounded turbulence is less suited to LES than free turbulence.
The presence of walls increases the anisotropy, worsening the ability of the models
to represent the dynamics of the small scales. Also, in the near-wall region the
energy containing scales and the dissipative scales coincide, irrespectively of the
Reynolds number of the flow. In this situation, the performance of LES decreases,
and the use of special wall models is required. Another option is to cluster grid
points in the vicinity of the wall to resolve the wall-normal direction as in DNS. The
disadvantage is that the cost of the simulation increases as Re

3/2
λ instead of being

independent of the Reynolds number.
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1.4. Aims

As described in §1.2, the classical theory for the structure of turbulence in the
logarithmic and outer regions is based on the hypothesis that far enough from the
wall, the turbulent motion at sufficiently high Reynolds number is independent of
the roughness and of the viscosity, except for their effect in setting the velocity
scale uτ , the additive constant in (1.15) and the boundary layer thickness. This
implies that, apart from the effect of the wall-roughness on the mean velocity, no
other differences between smooth- and rough-walled flows should be observed. These
ideas were supported by early experiments by Perry & Abell (1977) and by Ligrani
& Moffat (1986).

However, this theory has been challenged during the last decade, and is still a
subject of discussion (see the review by Jiménez, 2004). Krogstad et al. (1992) and
Krogstad & Antonia (1994, 1999) found important departures from the smooth-
wall behavior in the outer region of a boundary layer for two different rough walls.
Similar results were published by Leonardi et al. (2003), Bhaganagar & Kim (2003)
and Orlandi et al. (2003) in non-symmetric channels with roughness elements only
in one wall.

Another challenge to the classical theory comes from conceptual and predic-
tive models based on coherent structures (see the review by Robinson, 1991a).
Theoretical models based on Townsend’s (1976) attached-eddy concept incorporate
inner-outer interactions by considering hierarchies of vortex loops that are seeded
in the near-wall region and grow by sequences of mergers, as proposed by Head &
Bandyopadhyay (1981) and Perry & Chong (1982). These ideas have been broadly
supported by subsequent laboratory experiments and low-Reynolds-number numeri-
cal simulations (Robinson, 1991b; Blackburn et al., 1996; Chong et al., 1998; Adrian
et al., 2000; Christensen & Adrian, 2001; Ganapathisubramani et al., 2003; Tomkins
& Adrian, 2003; Tanahashi et al., 2004). These theoretical models imply that it
should be possible to modify the structure of the whole outer region by changing
the characteristics of the hairpins near the wall.

The present thesis aims to shed some light on these issues. DNSes of a turbulent
channel flow with a moderate Reynolds number are performed, where the standard
non-slip and impermeability boundary conditions are replaced by prescribed velocity
disturbances, that mimic the effect of wall-roughness. The results from these sim-
ulations will contribute to the understanding of the role of the inner region in the
dynamics of the outer region by clarifying the nature of the inner-outer interactions
in turbulent channels.

Another objective that is attempted in the present thesis is the development
a simple model capable of explaining these interactions. Very recent results (del
Álamo et al., 2006; del Álamo & Jiménez, 2006) suggest that at least in a statistical
sense the dynamics of the logarithmic layer are linear, a possibility that is explored
in detail in the last chapter.
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1.5. Contents

The present thesis is structured in three chapters. The first chapter is devoted
to the description and characterization of the three DNS of turbulent channels with
wall-boundary disturbances that have been developed and run during the first two
years of the PhD. This chapter also contains a discussion of the results, a comparison
with DNS data of a turbulent channel with smooth walls at a comparable Reynolds
number and with experiments on rough-walled pipes and channels. The contents
of this chapter have been published in the Journal of Fluid Mechanics, under the
title “Effect of wall-boundary disturbances on turbulent channel flows”, volume 566,
pages 357-376, with J. Jiménez as coauthor.

In the second chapter, the coherent structures over the disturbed walls are com-
pared with those found over smooth walls, using the techniques developed by del
Álamo et al. (2006). Part of the contents of this chapter have been published in
the Journal of Fluid Mechanics, under the title “Vorticity organization in the outer
layer of turbulent channels with disturbed walls”, volume 591, pages 145-154, with
J. Jiménez and J. C. del Álamo as coauthors.

Finally, the third chapter proposes a description of the dynamics of the logarith-
mic and outer layers in terms of a linear model, based on the results presented in
the previous chapters and on the numerical solution of the linearized Navier-Stokes
equations with a turbulent eddy viscosity.
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Chapter 2

DNS of turbulent channel with wall

disturbances 1

2.1. Introduction

As has been described in the introduction, the classical theory for wall-bounded
turbulent flows can be condensed into the Townsend’s hypothesis. It essentially
states that the flow in the logarithmic and outer regions does not depend on the wall
details, except for the role of the wall in setting the mean velocity at the beginning
of the logarithmic region. Turbulent flows over rough-walls are exceptionally well-
suited to analyze this statement, since the roughness elements drastically modify
the near-wall region. Therefore, any effect of the wall on the outer region should be
clearly observable in a rough-walled flow.

As reported in §1.2, early measurements in rough-walled boundary layers and
pipe flows gave support to the Townsend’s hypothesis (Perry & Abell, 1977; Perry
et al., 1986; Ligrani & Moffat, 1986; Perry et al., 1987). However, as pointed out
in the recent review by Jiménez (2004), this theory has been challenged during
the past decades. The most important challenge comes from the experiments of
Krogstad et al. (1992) in a boundary layer over a mesh-screen wall. The comparison
with the results obtained in a smooth-walled boundary layer reveals that the wall-
normal velocity fluctuations are enhanced across the whole thickness of the flow in
the rough case, indicating that the active scales are modified everywhere. In a later
paper, Krogstad & Antonia (1994) report that these modifications are associated to
changes in the streamwise correlation length of all the velocity components, around
twice shorter for the structures over rough walls than for those over smooth walls.

Krogstad & Antonia (1999) extend the results obtained with the mesh-screen,
comparing the smooth-walled case with a boundary layer over a wall roughened with
circular rods. This new rough surface also produces modifications in the velocity
fluctuations in the outer region, which are accompanied by differences in the Q2 and
Q4 quadrant contributions to the Reynolds stresses, with increased sweep events in

1Part of the contents of this chapter have been published in the Journal of Fluid Mechanics,
volume 566, pages 357-376, with Javier Jiménez as coauthor.
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2. Wall disturbance effects on turbulent channels

the rough-walled cases. The comparison of the spectra from the rough-walled cases
with the smooth-walled ones shows differences for the v-spectrum and for the uv-
cospectrum, while the u-spectrum compares well.

Similar results are published by Djenidi et al. (1994) over a d-type roughness in
a boundary layer. They conclude that the effects of the surface condition are not
confined to the inner region of the flow. The experiments of Poggi et al. (2003)
in turbulent channels indicate that the roughness decreases the levels of anisotropy
and intermittency in the inner region. They suggest that the changes in the inner
region modify the flow in such a way that the effects of the roughness should also be
present in the core region. Simulations in non-symmetric channels, with roughness
elements only in one wall, also show important departures from the smooth wall
behavior that extends up to the center of the channel (Bhaganagar & Kim, 2003;
Leonardi et al., 2003; Orlandi et al., 2003), although it is unclear whether this is
caused by the roughness or by the asymmetry of the mean profile.

On the other hand, other experiments over rough-walled boundary layers show
excellent agreement with smooth-walled data in the outer region. Keirsbulck et al.

(2002) show velocity fluctuations profiles collapsing with smooth-walled data in the
outer region, although the wall-normal velocity is affected by the roughness up to
40% of the boundary layer thickness. The turbulent production and dissipation
profiles are quite similar all across the layer, while the wall-normal energy flux is
very different between the rough and the smooth cases. Flack et al. (2005) report
Reynolds stresses, quadrant analysis and velocity triple products collapsing with
the smooth-walled data within the experimental uncertainty, for rough-walled flows
with δ ≫ ks.

A recent study in turbulent channels by Bakken et al. (2005), using their own
experimental data and the DNS results of Ashafarian et al. (2004), supports the idea
that the wall-roughness modifies the velocity fluctuations profiles only within the
roughness sublayer, although some uncertainty exists about further effects within
the outer region. The authors speculate that turbulent channels over rough walls
satisfy the similarity hypothesis of Townsend but that the same may not be true for
boundary layers.

The numerical experiments presented in this chapter aim to clarify how the outer
turbulent flow is modified by the near-wall region. To that end, we present a set of
DNSes of turbulent channels, in which the impermeability and non-slip boundary
conditions are substituted by prescribed velocity perturbations. These simulations
can be understood from two different points of view. First, the perturbations at the
wall drastically alter the near-wall region (see §2.3), precluding the development of
the near-wall energy cycle characteristic of smooth walls. Since this is expected to
happen in rough-walled turbulent flows, the present DNSes can be understood as
turbulent channels with artificial roughness. On the other hand, we have already
mentioned in §1.3 that the simulation of turbulence offers the possibility of studying
non-physical flow configurations. In particular, the above mentioned near-wall cycle
was described by Jiménez & Pinelli (1999) using an autonomous channel in which the
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2.1. Numerical Experiments

outer region was removed by an explicit filtering. From this second perspective, the
present DNSes can be understood as a study of a core region without the structures
of the smooth wall, complementary to the autonomous channel.

The present chapter is organized as follows. The numerical setup and the bound-
ary conditions are presented in §2.2. The effect of this artificial roughness on the
rest of the flow is discussed in §2.3 using one-point statistics. The flow around the
disturbances is characterized in §2.4, and the spectral analysis of the outer flow is
conducted in §2.5, emphasizing the effect of the wall disturbances on the largest
scales of the outer region. Conclusions are offered in §2.6.

2.2. Numerical Experiments

The present direct numerical simulation integrates the Navier Stokes equations
in the form of two evolution equations for the wall-normal vorticity ωy and for the
Laplacian of the wall-normal velocity ∇2v. The time integration is performed using
a third-order Runge-Kutta with implicit viscous terms, as in Kim et al. (1987). The
spatial discretization is pseudo spectral, with dealiased Fourier expansions for the
streamwise (x) and spanwise (z) directions, and a compact finite differences scheme
in the wall-normal direction (y). The periodicities of the computational box in the
wall-parallel directions are Lx and Lz, while h is the half height of the channel. The
mean velocities in the streamwise and spanwise directions are U and W , while the
corresponding velocity fluctuations are u and w. The mean value of the wall-normal
velocity is zero.

The numerical scheme for the first derivative in the y-direction is 4th-order
spectral-like compact finite differences scheme (Lele, 1992), based on a five-point
stencil on a uniform mesh, which is analytically mapped to the actual stretched
mesh of the simulation. The coefficients of the scheme are computed using two
consistency conditions, and two extra conditions provided by the minimization of
the L2 norm of the difference between the eigenvalues iα and iα̃ of the exact and
discretized derivatives, in the range 0 < α∆x < π. The resulting scheme has quite
good resolution properties; the standard five-point 8th-order compact finite differ-
ences scheme resolves up to 61% of the numerical wavenumbers with less than 1%
of error, while the modified scheme resolves up to 74% with the same accuracy.

For the two points closest to the wall we use compact finite differences schemes
with three-point stencils. A 3rd-order scheme with a non-centered stencil is used in
the point at the wall, and the next one uses a standard 4th-order centered scheme. It
was found that improving the order of the scheme at the wall above the order of the
scheme at the center of the channel led to numerical instabilities, in agreement with
the results of Kwok et al. (2001). These authors also show that boundary schemes
one order lower than the interior scheme are adequate to ensure global convergence
consistent with the order of the interior scheme.

For reasons of numerical efficiency, the scheme for the second derivative, required
to solve the Helmholtz equation for the viscous terms, is directly computed in the
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2. Wall disturbance effects on turbulent channels

stretched mesh, and only the consistency conditions are used to compute the coef-
ficients of the scheme. As for the first derivative, a five-point stencil is used, with
non-centered stencils at the walls. The resulting scheme has 6th-order accuracy.

The non-slip and impermeability boundary conditions for the velocity at the walls
are replaced by prescribed zero-mean-value perturbation velocities. These velocities
are characterized by the amplitudes and by the streamwise and spanwise wavelengths
(Λx and Λz) of the single Fourier mode being forced. When only the wall-normal
velocity component is disturbed, a fairly small effect on the flow is achieved. The
roughness function corresponding to a wall-normal velocity disturbance of v′+

w =
(v2

w)+ = 0.72 is ∆U+ = 4.6, where the prime denotes the root mean square, the
subindex w denotes variables evaluated at the wall, y = 0, and the overline denotes
averaging in time and in the wall-parallel directions. When the streamwise and the
wall-normal velocities are forced coherently so that the Reynolds stresses component
(uv)w 6= 0, a much stronger effect on the flow is obtained. For instance, u′+

w = −v′+
w =

0.83 leads to ∆U+ = 8.7. Hence, three distinct forcings have been used, all having
(uv)w 6= 0 and (uw)w = (vw)w = 0. The first two have u′

w 6= 0, v′

w 6= 0, w′

w = 0 and
will generally be represented in the figures with open symbols. The third forcing
has u′

w = v′

w = w′

w 6= 0, and will be represented with solid symbols. In this case, ww

is shifted in x by Λx/2 with respect to uw and vw, so that (uw)w = (vw)w = 0. As
a consequence, the imposed velocity disturbances are non-symmetric and the flow
just upstream of vw > 0 goes left, while the flow downstream goes right.

These boundary conditions are quite different from those proposed by Orlandi
et al. (2003), where an instantaneous velocity plane extracted from a full DNS
simulation was used as boundary condition at one wall of the perturbed DNS. The
advantages of the present approach are essentially a more complete control of the
boundary condition and an easier parameterization of the artificial roughness. Both
walls are forced in our case to obtain a symmetric configuration with a well-defined
center, where the turbulent structures can be compared to those extracted from
smooth-walled channels.

2.3. One-point statistics

The parameters of our numerical experiments are presented in table 2.1. Two
different box sizes are used, upper case letters denote big boxes, Lx×Lz = 8πh×4πh,
and lower case letters denote smaller ones, Lx × Lz = 4πh × 2πh. The cheaper
small-box cases are performed to investigate the effects that different intensities and
wavelengths of the forcing impose on the O(y) active scales of the outer flow. It is
shown by del Álamo et al. (2004) that DNSes with these box lengths are able to
accurately represent most of the active scales of the turbulence, but do not contain
the very large scales of the flow. Therefore, a large-box simulation R2 is used
to study the effects of the mid-intensity forcing on these scales. The results from
these four wall-disturbed simulations are compared to a DNS of a smooth-walled
turbulent channel in a large box performed by del Álamo & Jiménez (2003), which
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2.3. One-point statistics

Reτ Lx/h ∆x+ ∆y+
c ∆y+

w u′+
w v′+

w (ω′
x)+w Λ+

x ∆U+ δ+
y k+

s k+ h/k Λx/k

r1 556 4π 10.2 7.0 0.8 0.94 1.13 1.19 71 7.1 -2.6 67 6.9 81 10.3
r2 631 4π 11.6 8.0 0.9 0.83 0.83 1.12 220 8.7 -11.2 128 15.5 41 14.2
r3 674 4π 12.4 8.6 1.0 0.67 0.67 1.03 529 9.6 -20.7 207 24.4 28 21.7
R2 632 8π 11.6 8.0 0.9 0.83 0.83 1.12 221 8.7 -11.7 129 15.5 41 14.2
S0 547 8π 13.4 6.7 ≪ 1 0 0 0.26

Table 2.1: Numerical simulation parameters. Reτ = uτh/ν is the friction Reynolds
number. Lx and Lz = Lx/2 are the streamwise and spanwise lengths of the computational
box. The mesh resolution after dealiasing is ∆x, ∆z = ∆x/2. The wall-normal mesh
resolution is ∆yc at the center of the channel and ∆yw at the wall. u′

w and v′w are the
wall forcing intensities, (ωx)′w is the streamwise vorticity intensity at the wall, Λx and
Λz = Λx/2 are the streamwise and spanwise wavelengths of the forcing. ∆U and δy

are the roughness function and the wall-normal shift, obtained from a logarithmic law
adjustment. ks is the equivalent sand roughness and k is a characteristic length of the
forcing, defined in §2.4.

is also included in table 2.1 as case S0. This numerical experiment has a friction
Reynolds number similar to that of the forced cases.

The definition of the origin of the wall-normal coordinate in rough-walled flows
requires some care, due to the nature of the rough wall. Several methods have been
proposed. Thom (1971) and Jackson (1981) show that a reasonable choice is the
mean momentum absorption plane, obtained as the centroid of the drag profile on
the roughness. Other methods are based in the adjustment of the mean velocity
profile to a logarithmic law (see the review by Raupach et al., 1991).

In the present simulations the method proposed by Thom (1971) and Jackson
(1981) to estimate the position of the wall is not applicable, and both the wall-
normal shift δ+

y and the roughness function ∆U+ are obtained by a least square
fit of the mean velocity profile to the logarithmic law (1.19) in the region between
y+ = 50 and y = 0.2h. The exact value of the Kármán constant used for the fitting
produces variations in ∆U+, which are of about 15% when κ is varied in the range
0.38− 0.42. The position of the wall also varies with κ, but in all cases δ+

y ≈ O(10).
The values presented in table 2.1 are obtained for κ = 0.41 and A = 5.2. The
equivalent sand roughness k+

s of the disturbed cases corresponds to the fully rough
regime, except for r1 which may be classified as transitional. All the computed δ+

y

are small compared with k+
s and with Reτ . A new wall-normal coordinate

ỹ = y + δy (1 − y/h) (2.1)

is defined to expand the numerical wall-normal coordinate y from the interval [0, 2h]
to [δy, 2h− δy]. It is interesting to note that δy is negative for all cases, which means
that the effective wall (ỹ = 0) is above the plane at which the disturbances are
introduced (y = 0). In the smooth case S0 we have ỹ = y.

The mean streamwise velocity profiles are presented in figure 2.1(a) expressed in
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Figure 2.1: (a) Mean streamwise velocity. (b) Streamwise velocity defect law, Uc =
U(y = h). , S0; △, r1; ▽, r2; ◦, R2; ¥, r3.

wall units, and in velocity defect form in figure 2.1(b). Both figures are consistent
with previous results obtained over rough walls in experiments (Bakken et al., 2005;
Poggi et al., 2003) and in numerical simulations (Ashafarian et al., 2004; Leonardi
et al., 2003; Orlandi et al., 2003). Only small deviations from the smooth-walled
velocity defect law are observed in figure 2.1(b). Similar differences were observed by
del Álamo et al. (2004) when comparing smooth channels with different box sizes.
They suggested that their discrepancies could be related to contributions from large
scales to the mean flow, an argument that may also be valid for the present results.

Although not obvious from the figure, ∂U/∂y at the wall in case r1 is roughly
zero, which indicates that the mean flow above the disturbances is separated, with
∂U+/∂y+|w = −0.07 and min(U+) = −0.01. This is due to the high value of
vw employed in this case. Similar locally separated flows are found by Jiménez
et al. (2001b) in porous channels when the porosity coefficient exceeded a certain
threshold.

For the case r3 a secondary flow (not shown) is observed in the spanwise direc-
tion, with W (y) < 0.1U(y) everywhere, a maximum value of |W+| = 0.3 at y+ = 40,
and zero mass flux when integrated across the full height of the channel.

The u′ profile in the wall region is presented in figure 2.2(a). The intensity of the
near-wall peak decreases as the roughness function increases, and the same is true
for the off-wall peak of the streamwise vorticity intensity ω′

x in figure 2.2(b). In both
cases, the attenuation of the peak is due to the shortening of the spectra, which will
be discussed in §2.5. The maximum value of ω′+

x is always at y = 0. In the smooth
case this is due to the interaction of the wall with the transverse velocities created
by the quasi-streamwise vortices (Kim et al., 1987). In the disturbed cases, that
component is probably also present, but a much larger contribution comes from the
forcing itself (compare the values of ω′

x|w given in table 2.1). The off-wall peaks
of u′ and ω′

x are indicators for the near-wall streaks and for the quasi-streamwise
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Figure 2.2: Near-wall behavior. (a) Intensities of the streamwise velocity fluctuations
and, (b) of the streamwise vorticity. (c) Ratio of turbulent energy production to dissi-
pation. (d) Turbulent energy flux, defined in (2.2). , S0; △, r1; ▽, r2; ◦, R2; ¥,
r3.

vortices. In smooth channels those structures are involved in the self sustaining
near-wall energy cycle described by Jiménez & Pinelli (1999), which is responsible
at the present Reτ for roughly 35% of the total energy production in the channel.
The damping of those peaks in figures 2.2(a) and 2.2(b) suggests that the cycle is
perturbed in case r1, strongly perturbed in r2 and R2, and effectively destroyed in
r3.

These changes are also reflected in the ratio of the turbulent energy production
(Π) to dissipation (ε), shown in figure 2.2(c). In the smooth-walled case there
is a production peak at ỹ+ ∼ 20, and a slightly dissipative layer in 40 < ỹ+ <
100. As the roughness function increases, this peak decreases and the dissipative
region disappears. There is a new peak of Π/ε just above the wall which is due
to the additional Reynolds stress introduced by the forcing, and which has been
highlighted in the figure with a dashed line. In the case R2 both peaks form the
two ends of a plateau, but for r3 the new peak dominates and the old one has
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2. Wall disturbance effects on turbulent channels

essentially disappeared. In all cases the dissipation at the wall is much larger than
the production, and the wall acts a net energy sink.

Figure 2.2(d) presents the energy flux Φ, computed by evaluating each term in

Φ =
1

2
(u2

i v) + (vp) − ν

2

∂2

∂y2
(u2

i ), (2.2)

where the subindex implies a summation for all the velocity components, and p is the
pressure fluctuation. In smooth-walled flows, part of the energy produced around
ỹ+ ∼ 20 is exported towards the center of the channel (Φ > 0), to be dissipated
by the background turbulence, while the rest is exported towards the wall (Φ < 0),
where viscosity takes care of it. The maximum of Φ near ỹ+ = 40 is compensated by
the extra dissipation shown in figure 2.2(c) at that level. On the disturbed cases, the
energy also flows both towards the center and towards the wall, but the maximum
at ỹ+ = 40 progressively disappears, together with the dissipative layer.

The energy structure in the near-wall layer looks different in the smooth and
in the disturbed cases, and it is clear that in the latter the canonical cycle of the
smooth-walled channel has been severely perturbed. It is therefore significant that
far from the wall all the variables tend to their smooth values. The comparison
is extended to the whole channel in figure 2.3. Except near the wall, all the cases
agree.

Specially significant is the energy flux. There is in all cases a region where
Π/ε ≈ 1, which suggests the formation of an equilibrium overlap layer. That is
a local property of the turbulence at that wall distance, consistent with the usual
arguments for a logarithmic law. Those arguments only require that Φ should be
constant across that region, but they say nothing about its actual value. In order
to investigate whether this value is fixed by the wall, by the outer region or by the
log layer itself, we can compare Φ for flows with comparable Reynolds numbers but
different wall regions (smooth and rough walls) or different outer regions (channels
and boundary layers). As Φ is not always available in experiments, we will also
use (u2v), which accounts for roughly one half of Φ in (2.2). The collapse shown in
figure 2.3(d) and the results reported by Bakken et al. (2005) in channels and Flack
et al. (2005) in boundary layers suggest that the energy flux in the overlap region
is not imposed by the wall. On the other hand, Jiménez & Simens (2000) report
that (u2v)+ collapses in the overlap region for turbulent channels and for boundary
layers. This evidence suggests that the level Φ+ ≈ 0.3 should be intrinsic to the log
layer, instead of dependent on its boundary conditions.

It is also interesting in figure 2.3(b) that the transverse intensities v′ and w′

increase near the wall as the roughness increases, even as ω′

x decreases. Examination
of their spectra shows that the extra energy is approximately isotropic in the wall-
parallel plane, and therefore unrelated to the usual vortices found over smooth walls.

The collapse of the velocity fluctuation intensities, of the ratio of production
to dissipation, and of the energy flux in the outer region agrees with most of the
literature comparing flows over smooth and rough walls, as already mentioned in
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Figure 2.3: Turbulent statistics in the outer region. (a) Intensity of the streamwise
velocity fluctuations and, (b) of the wall-normal and spanwise velocity fluctuations. (c)
Ratio of turbulent energy production to dissipation. (d) Turbulent energy flux, defined in
(2.2). , S0; △, r1; ▽, r2; ◦, R2; ¥, r3.

the introduction. It however disagrees with Krogstad et al. (1992), where the high
growth rate of the boundary layer thickness may introduce distortions in the wall-
normal mean velocity component. Orlandi et al. (2003) also find a different behavior
in channels with only one rough wall, but their mean profiles are asymmetric, and the
additional shear introduced by the difference in wall friction between the smooth
and the rough wall is not negligible at moderate Reynolds numbers. That extra
shear may modify the structures in the core region of the channel, as reported in
asymmetric channels by Hanjalić & Launder (1972).

As expected, the results from cases r2 and R2 are almost indistinguishable in
figures 2.2 and 2.3, and only R2 will be used from now on. The good agreement
between the two boxes confirms that the 4πh×2πh boxes contain most of the active
scales in the turbulent channel flow.

We can also analyze the effect of the wall on the advection velocity of the u
structures, which corresponds to that of ωy in the limit of infinitely elongated struc-
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Figure 2.4: Advection velocities in the outer region. ∆c+
ω computed for all wavenumbers,

plotted as a function of the wall distance (a) in wall units and (b) normalized with h. ,
S0; △, r1; ◦, R2; ¥, r3.

tures. The method used here to compute the advection velocity was previously used
by Jiménez et al. (2004), and is based on the equation verified by a simple wave,

Im(ϕ̂∗ · ∂tϕ̂) = −kx(ϕ̂
∗ · ϕ̂) c, (2.3)

where c is the phase velocity, ϕ̂ is the corresponding Fourier mode, kx is the stream-
wise wavenumber and the asterisk indicates complex conjugation. This equation
only works for a single Fourier mode. For larger sets of wavenumbers it can be
generalized by averaging the spectral quantities in both sides of (2.3), so that the
advection velocity of ωy is defined as

cω = −
Im〈ω̂∗

y · ∂tω̂y〉Ω
〈kx ω̂∗

y · ω̂y〉Ω
= U + ∆cω, (2.4)

where 〈〉Ω implies that the average is taken over all the wavenumbers in the Fourier
domain Ω. Note that the term ∆cω contains the non-linear advection and viscous
contributions, but not the mean velocity U . Therefore, ∆cω describes the interaction
of ωy with the mean flow, and is a first-order indicator of the dynamics.

The comparison of (2.4) with the more usual definitions of advection velocity
given by Willmarth & Woolridge (1962) and Wills (1964) is documented in del
Álamo & Jiménez (2008). Anyways, since the same definition is used here for both
the rough- and the smooth-walled simulations, the exact relationship of cω with
the classical definitions of advection velocity is not critical for the purposes of this
section.

Figure 2.4 presents the distribution of ∆c+
ω with respect to the wall distance,

computed over the whole wavenumber domain. Figure 2.4(a) shows that near the
wall the distribution of ∆c+

ω is very different in the four cases. The smooth-walled
channel has higher ∆c+

ω at the wall than the disturbed cases, due to its higher
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2.3. Box-filtered flow fields

∂U/∂y|w, and also because of the negative contribution to ∆c+
ω of all the structures

which are essentially attached to the wall forcing. The negative peak in S0 around
ỹ+ ≈ 30 is less prominent in R2 and r3, as a consequence of the interruption
of the near wall cycle in the later. In the transitional case r1 this peak remains
roughly unchanged, and the more intense negative peak below it is again due to the
structures attached to the wall forcing.

Despite the big differences observed near the wall, the disturbed cases tend to the
smooth-walled values when ỹ+ increases, and figure 2.4(b) shows that they compare
well for ỹ > 0.2h. This suggests that to a first approximation, the dynamics of the
outer region are not modified by the wall. This result is consistent with the advection
velocities of u computed by Sabot et al. (1977) in rough- and smooth-walled pipes,
using space-time correlations for the large streamwise separation limit.

2.4. Box-filtered flow fields

In §2.3 we have seen that the present forcing is able to strongly modify the near-
wall region of a smooth-walled channel, effectively destroying its self-sustaining cycle.
In fact, the flow just above the wall is complex, with locally separated regions (u < 0)
attached to the areas being blown (vw > 0), and high velocity gradients over the
regions under suction (vw < 0). We can observe an example of these instantaneous
separation bubbles in figure 2.5(a). Because of the observed inhomogeneity, plane-
averaged quantities are not adequate to study the flow features near the wall, while
figure 2.5(a) shows that instantaneous realizations are hard to comprehend. Hence,
we compute the averaged flow in boxes of size Λx×Λz/2×h containing a forcing cell,
which consists of a single blow and a single suction, as shown in figure 2.5(b). This
box averaging is performed using a Fourier filter that retains only those modes which
are conserved by the group of translations in physical space that keeps the forcing
invariant, but excluding the uniform (0, 0) mode. We denote with the subindex B
the variables averaged in this way.

Note that strict time averaging of the velocity fluctuations, without the homo-
geneity assumption, would lead us to a flow field composed of boxes like the one
shown in figure 2.5(b). This is true provided that the forcing does not develop
sub-harmonic perturbations before breaking in fully developed turbulence, which is
confirmed by the spectral analysis. Therefore, it is possible to derive an equation for
uB, by time averaging the Navier-Stokes equations for the velocity fluctuations. In
the resulting equations, and for wall distances y ∼ Λx and U ≫ uτ & uB, the con-
tribution from the mean velocity advection and the pressure gradient are dominant.
On the other hand, the advection due to uB and the Reynolds stresses produced
by the remaining velocity fluctuations are negligible. This leads to the linearized
Rayleigh equation, whose solution for y ∼ Λx decays as

uB ∼ exp(−
√

K2
x + K2

z y) = exp(−2π
√

5y/Λx), (2.5)

where Kx = 2π/Λx and Kz = 2π/Λz are the wavenumbers of the forcing. Note that,
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Figure 2.5: (a) Instantaneous and (b) averaged separation bubbles for case R2, identified
by isosurfaces of u = 0.
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Figure 2.6: Streamwise velocity fluctuations near the wall, (uB)′+ from box-averaged
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F from filtered spectra (symbols). (a) Wall distances normalized
with Λx. △, and , r1; ◦, and , R2; ¥, and , r3. The dotted straight line is
(2.5). (b) Wall distances normalized with k, defined in (2.6). △, r1; ◦, R2; ¥, r3; ,
S0 using the filter and the value of k calculated for r1. The dashed vertical line is ỹ = 6k.

as Λx = 2Λz in the present simulations, there is no difference in normalizing y with
Λx or (K2

x + K2
z )−1/2 in (2.5), except for a constant factor.

Figure 2.6(a) shows (uB)′+ as a function of the wall distance normalized with
the wavelength Λx of the forcing. Near the wall, (uB)′+ accounts for most of u′, but
it tends to zero as y increases. The ground level of (uB)′+ ≈ 10−3 for y > 0.6Λx is
consistent with the expected uncertainty due to the limited number of forcing cells
used for the statistics, which is 5×104−5×105 for the 150 available flow snapshots.
Nevertheless, the statistics are good enough to observe the predicted exponential
decay.

Similar exponential decays are also observed for the other two velocities and for
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2.4. Spectral analysis

all the components of the vorticity vector. However, the tangential Reynolds stress
〈uBvB〉 of the rough cases does not collapse either with y+, with y/Λx or with y/h.
Hence, we define a new length scale

k = −
∫ h

0

(uBvB)+ dy, (2.6)

that corresponds to the height at which the full tangential Reynolds stress u2
τ would

exert the same moment as the actual (uBvB) distribution. This definition is similar
to the method proposed by Thom (1971) and Jackson (1981) to calculate the origin
for y, defined as the position in which a uniform stress would exert the same moment
on the flow as the real rough wall. It is interesting that in the present cases k is
roughly equal to the maximum height of the separated flow regions of the box-
averaged fields (uB < 0), located above the areas being blown. The wavelength Λx

and k are not proportional, as can be observed in the last column of table 2.1. In
fact, k not only depends on Λx, but also on the other parameters of the forcing and
on the Reynolds number of the flow. However, if we assume that (2.5) applies for
the whole wall region with (uB)′w = −(vB)′w = uτ , and that uB and vB are in phase,
we can integrate (2.6) to get

Λx

k
≈ 2π

√
5 = 14. (2.7)

This crude estimate of k gives values which are of the same order as those in table
2.1.

Figure 2.6(a) also shows u′+
F , which is the square root of the sum of the filtered

spectra, where the filter is the one defined at the beginning of the section. Note
that u′

F
2 contains both (uB)′2 and the incoherent contribution of the velocity in the

forced modes. Therefore, u′

F agrees with (uB)′ near the wall, and decays with y/Λx

until the slope of u′

F changes. The wall distance at which the change occurs does
not scale with Λx, as can be observed in the symbols of figure 2.6(a). On the other
hand, when u′+

F is plotted as a function of y/k in figure 2.6(b), the change in the
slope takes place roughly at y ∼ 6k for the three rough cases. In the layer below 6k,
limited by the dashed line in the figure, the non-homogeneous contribution from the
forcing dominates the background-filtered turbulence, and thus it can be interpreted
as the roughness sublayer associated with the disturbed boundary condition. For
reference, figure 2.6(b) also includes the energy contained in case S0 computed with
the filter from case r1. The wall-normal distance is also normalized with the value
of k obtained for r1. The collapse of u′+

F from r1 and S0 supports that turbulence
is not affected by the boundary condition outside the roughness sublayer.

This roughness sublayer substitutes the buffer region of smooth walls, and it is
between it and the outer region where the overlap region is located, 6k < y < 0.2h.
In this region the tangential Reynolds stress is almost constant, and we can apply
the same arguments used for the logarithmic region of smooth-walled flows.
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2. Wall disturbance effects on turbulent channels

2.5. Spectral analysis

More details about the influence of the wall disturbances in the outer region can
be extracted from spectral analysis. Figure 2.7(a) shows the premultiplied spectral
energy density of the streamwise velocity fluctuations at ỹ/h = 0.5 for the disturbed
and for the smooth-walled cases. The collapse is excellent except for the longest
wavelengths, supporting the hypothesis that the effect of the wall-disturbances is
confined to the roughness sublayer. Even better collapse is found for the other two
velocity components, in which the large-scale modes contain less energy. The minor
differences found in the smallest scales are due to the different Reynolds numbers,
since this region of the spectrum collapses when the wavelengths are expressed in
wall units.

When we check the wall-normal distribution of φuu (figure 2.7b), we observe that
the situation presented in figure 2.7(a) holds for most of the channel, with good
agreement between the smooth and the rough cases for ỹ/h ≈ 0.2− 1. As expected,
strong differences are observed at wall distances corresponding to the buffer region
over smooth walls, with the streaks becoming shorter and eventually disappearing
as the roughness function increases. This is consistent with the discussion of figure
2.2. In the disturbed cases, the narrow peaks located at λx < h contain around
13% of the energy in the roughness sublayer, and correspond to the wavenumber
of the forcing and to its harmonics. The total energy contained in these modes is
u′

F
2, discussed in §2.4. The other two velocity components and the uv-cospectrum

(not shown) for the rough cases also agree with the smooth channel in the outer
region. The spectra presented in figure 2.7 are consistent with the agreement in the
outer region between the smooth- and rough-walled velocity fluctuation intensities
presented in figure 2.3.

These results contradict those reported by Krogstad et al. (1992), Krogstad &
Antonia (1994) and Krogstad & Antonia (1999) in boundary layers. In their exper-
iments, the roughness strongly affects the wall-normal velocity through the whole
layer, and the correlation lengths in the streamwise direction for u and v are twice
longer for the smooth-walled case than for the rough-walled one at all heights. Note
that, although the spectrum is the Fourier transform of the correlation, separation
and wavelengths have different meanings, and it is not possible to directly com-
pare spectra and correlations. Therefore, to check for the change in the correlation
lengths in the present simulations, figure 2.8 shows the correlation coefficients ρuu

and ρvv, which are defined as

ρrs(δx, δz, ỹ, ỹ0) =
r(x, ỹ, z, t) · s(x + δx, ỹ0, z + δz, t)

r′(ỹ)s′(ỹ0)
. (2.8)

In the above equation δx, δz are the separations in the homogeneous directions, ỹ, ỹ0

are the wall distances and r, s are the corresponding velocity fluctuations compo-
nents. The reference wall distance used in figures 2.8(a) and (b) is ỹ0 = 0.16h, the
same used in Krogstad & Antonia (1994). There are large differences in the wall re-
gion between S0 and R2, both in ρuu and in ρvv, located upstream from the reference
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Figure 2.7: Premultiplied spectral energy density of the streamwise velocity, φuu, nor-
malized with u2

τ . (a) At a fixed wall distance ỹ = 0.5h. The contours are 1/3 and 2/3
of the maximum of S0. (b) Wall-normal distribution of φuu, integrated for all spanwise
wavelengths. The contours are 1/8, 1/4 and 1/2 of the maximum of the smooth case.

, S0; △, r1; ◦, R2; ¥, r3.

location and at wall distances and streamwise separations that roughly corresponds
with the near-wall streaks. There are also smaller differences for ỹ > 0.2h, which are
clearer for the largest separations of ρuu. However, these differences do not account
for the large changes in the correlation length documented by Krogstad & Antonia
(1994), except in the wall region. When the reference height is ỹ0 = 0.5h (figure 2.8c
and d), the contours of the correlation coefficients for S0 and R2 coincide better,
although some differences are still observed for the longest separations.

In figure 2.8(b) we can observe that the blocking effect of the smooth wall on v
is relaxed for the rough-walled case, and the contours of ρvv in R2 get closer to the
wall than those in S0.

2.5.1. Global modes

The differences observed in figure 2.8(a) and (c) between S0 and R2 in the outer
region for long separations are consistent with those observed in the streamwise
velocity spectrum. Note that in figure 2.7(a) there is an energy peak for S0 for
λx > 10h at λz ∼ 2h, which is not visible in R2, suggesting that the very long scales
are affected by the wall disturbances. In fact, very large structures in turbulent
channels are known to be correlated from the wall up to the center of the channel,
as shown by Bullock et al. (1978) and by del Álamo & Jiménez (2003). It is therefore
not surprising that they are modified everywhere in response to changes at the wall.
The instantaneous realizations plotted in figure 2.9 confirm that similar large scale
streaks are present in the outer region of both the smooth- and the rough-walled
cases, and suggest that they are at least qualitatively similar.
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Figure 2.8: Correlation coefficients for zero spanwise separation. (a) and (c) show ρuu,
(b) and (d) show ρvv. The reference wall-distance is ỹ0 = 0.16h for (a) and (b), and
ỹ0 = 0.5h for (c) and (d). The contours corresponds to 0.1, 0.2, 0.3, 0.6, 0.9. , S0;

, R2.

In order to perform a quantitative analysis of the global modes over smooth and
rough walls, we define the correlation height Huu of the streamwise velocity,

H2
uu(λx, λz) =

∫ h

0

∫ h

0

Cuu(λx, λz, y, y0)dydy0, (2.9)

where the correlation coefficient Cuu between individual Fourier modes is the mod-
ulus of the Fourier transform of the spatial correlation ρuu defined in (2.8). The
correlation height of the four cases agree well in figure 2.10(a), in particular for
the two large boxes, S0 and R2. The global modes, defined as those for which
Huu > 0.75h, are roughly located in λx > 6h and λz > h.

In figure 2.10(b) we have represented the energies qS0 and qR2 contained in the
modes with streamwise wavelengths in the range 6h < λx < 24h and spanwise
wavelengths in the range λz > h. We do not include the energy of the two longest
wavelengths of the simulation to avoid effects coming from the long-wavelength
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(a)

(b)

Figure 2.9: Instantaneous isosurfaces u+ = 2 (blue) and u+ = −2 (gold). Flow is from
left to right. (a), S0. (b), R2.
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Figure 2.10: (a) Correlation height Huu, defined in (2.9). The contours correspond
to 1/2 and 3/4, increasing from left to right. The gray patch corresponds to 1/3 of the
maximum of the premultiplied streamwise velocity spectra of case S0, at ỹ = 0.5h. (b)
Energy contained in the global modes, 6h < λx < 24h and λz > h. (c) ∆c+

ω computed
for λz > h, defined in (2.4). The contours, from top to bottom correspond to ∆c+

ω =
−1, 0, 1. In these three figures , S0; △, r1; ◦, R2; ¥, r3. In (c), × is 1.15 q+

R2. (d)
Structure function Fuv, defined in (2.10), computed for 6h < λx < 24h and λz > h. ,
Reτ ≈ 2000 (Hoyas & Jiménez, 2006); , Reτ ≈ 950 (del Álamo et al., 2004); ,
Reτ ≈ 550 (S0); ◦, Reτ ≈ 630 (R2).

truncation of the spectra. For the same reason, only the cases in the long boxes
R2 and S0 are considered. In the figure, the energies normalized with u2

τ do not
collapse, and the small peak at ỹ ≈ 0.05h in q+

S0, which is related to contributions
from the near-wall streaks to the global modes, is not present in q+

R2. However, for
ỹ > 0.1h the shape of the global modes intensities is the same for S0 and R2, and
their differences can be accounted by a constant factor, q+

S0 ≈ 1.15q+
R2, as can be

observed in the extra line of figure 2.10(b).

The reason why the differences between q+
S0 and q+

R2 are not observed in the
streamwise velocity fluctuations presented in figure 2.3(a) is because their effect is
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2.5. Spectral analysis

weak for the present Reτ . The fraction of the total energy at each wall distance
carried by the global modes is less than 25% for the present Reynolds numbers.
Therefore, the difference shown in figure 2.10(b) corresponds to less than 4% of the
total energy.

Figure 2.10(c) shows the λx − y distribution of the advection velocities ∆c+
ω

defined in (2.4), averaged over those modes with λz > h. They compare well,
specially for the two cases computed on large boxes, suggesting that the dynamics
of the global modes are essentially the same over smooth and rough walls, even when
their intensity is not.

In figure 2.10(d) we see another indicator of that the differences observed in
the global modes over smooth and rough walls are caused by a difference in their
velocity scale rather than by a different structure or dynamics. This figure shows
the structure function

Fuv =
−Re(ûv̂∗)Ω√
(ûû∗)Ω (v̂v̂∗)Ω

, (2.10)

where the average (·)Ω stands for time averaging over the Fourier domain Ω, 6h <
λx < 24h and λz > h. Only data from long computational boxes are included in
the figure, as well as two extra numerical experiments of turbulent channels with
smooth walls at Reτ = 950 (del Álamo et al., 2004) and Reτ = 2000 (Hoyas &
Jiménez, 2006).

The profiles of Fuv from the disturbed and the smooth-walled cases compare well,
specially for S0 and R2 outside the wall region. The small differences observed are
more plausibly connected to Reynolds number effects. This collapse again supports
the idea that the wall does not modify the structure and the dynamics of the global
modes. Moreover, the high value of Fuv on most of the channel shows that u and
v are strongly correlated for long streamwise wavelengths. This implies that the
global modes are very efficient generating Reynolds stresses, which had already been
reported by del Álamo & Jiménez (2001) for smooth-walled turbulent channels.

According to del Álamo et al. (2004), the proper scale for the energy in the
global modes in turbulent flows over smooth walls is U2

c , because they are created
by stirring the mean velocity profile all across the channel height. However, figure
2.10(b) shows that this scaling fails for our disturbed case, because the ratio of the
energy in the global modes of S0 and R2 is much smaller than the actual ratio
of their centerline velocities. The same happens with the mixed scaling (uτUc) of
de Graaff & Eaton (2000).

This evidence opens two possibilities. Either the velocity scale of the global
modes depends on the roughness or it does not. Unfortunately, the present simu-
lations do not provide enough data to analyze this question directly. However, the
scaling of the global modes is also eventually felt in the intensity of the stream-
wise velocity fluctuations in the outer region as the Reynolds number increases, and
there are more experimental intensities than spectral data in the literature. Note
that rough-walled flows are very sensitive indicators for any anomalous scaling of
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Figure 2.11: (a) Streamwise velocity fluctuations at ỹ = 0.3h as a function of (U+
c )2.

(b) Difference between U+
c and the ad hoc velocity scale U+

∗ for rough-walled flows. (c)
Streamwise velocity fluctuations at ỹ = 0.3h as a function of (U+

GLO)2. Black symbols
denote smooth-walled flows, blue symbols denote transitionally rough flows, while red
symbols are used for fully rough flows with k+

s > 100. ◦, channels from Ashafarian et al.

(2004), Bakken et al. (2005) and Comte-Bellot (1965); △, pipes from Sabot et al. (1977),
Perry & Abell (1977) and Perry et al. (1986); ×, superpipe data from Morrison et al.

(2004); ▽, present channels, del Álamo et al. (2004) and Hoyas & Jiménez (2006). In (a),
, is (2.12). In (b), , is (2.13). In (c), , is (u′+)2 = 1.2+5.5×10−3 (U+

GLO)2.

the fluctuations, because their range of Uc is larger than in smooth-walled flows. We
will limit our selves to turbulent flows in channels and pipes, because the structure
of the global modes in the outer region of boundary layers might be different (Monty
et al., 2007).

Following del Álamo et al. (2004), the intensity of the streamwise velocity fluc-
tuations when ỹ/h & 0.2 should have the form

u′2 ∼ log2(h/ỹ)u2
τ + f(ỹ/h)U2

0 . (2.11)
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2.5. Spectral analysis

In this expression u′2 has two components, one coming from the active eddies, pro-
portional to u2

τ , and another one proportional to the square of the characteristic
velocity of the global modes, U0. The proposition of del Álamo et al. (2004) is that
U0 = Uc, a possibility that is explored in figure 2.11(a), where we have plotted (u′+)2

at a given wall distance, ỹ/h = 0.3, for several pipes and channels. The color of
the symbols indicate the flow regime: hidraulycally smooth (black), transitionally
rough (blue) of fully rough (red). We can see in the figure a relatively good collapse
of the smooth-walled data along the dotted line corresponding to the linear law

(u′+)2 = 0.94 + 3.7 × 10−3 (U+
c )2, (2.12)

which is a particular case of (2.11) with U0 = Uc, except for the single unexplained
data set from Morrison et al. (2004). As expected, the different rough-walled cases
do not collapse on the same law, and their streamwise velocity fluctuations intensities
are generally higher than those expected from their centerline velocities.

We therefore work backwards and define U∗ as the velocity scale that collapses
each rough-walled data point of figure 2.11(a) onto (2.12), and plot in figure 2.11(b)
the values of U+

∗
− U+

c as a function of the equivalent sand roughness. The data
collapse around the line

U+
∗
− U+

c = κ−1 log(k+
s ) + A+ − 8.5 = ∆U+. (2.13)

This suggests that UGLO = uτκ
−1 log(Reτ ) could be a better velocity scale for the

global modes than Uc. We test this scaling in figure 2.11(c), where we can observe
that the rough- and smooth-walled data now compare much better. Note that while
U∗ is computed ad hoc for each data point of figure 2.11(a), UGLO is computed a

priori for figure 2.11(c). Similar results are obtained for other wall distances in the
range ỹ/h > 0.2. Since for smooth-walled flows U+

c − U+
GLO is constant to a first

order approximation, using U0 = UGLO instead of U0 = Uc only introduces a small
square root correction to the law given by del Álamo et al. (2004). This correction is
not observable when comparing the collapse of smooth-walled data over the limited
range of Uc in figures 2.11(a) and 2.11(c).

The collapse of the rough-walled cases along the linear law plotted in figure
2.11(c) needs some discussion. According to the arguments presented in §1.2.1,
the turbulent structures of rough-walled flows in the fully rough regime should not
depend on the viscosity ν. On the other hand, this dependence is expected in
the transitionally rough regimes and in the smooth-walled cases, where viscosity
is always important near the wall. Note that only three data sets in figure 2.11
correspond to the fully rough regime: the pipe of Sabot et al. (1977) at (u′+)2 ∼ 4,
the experimental channels of Bakken et al. (2005) and cases R2 and r3. It could be
argued the channels of Bakken et al. (2005) show a leveling-off around (u′+)2 ∼ 3,
which would be consistent with the classical theory. Definitely, data over smooth
and rough walls at Reτ & 2 × 104 (U+

GLO
2 & 600) are needed to clarify the scaling

of the global modes.
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2. Wall disturbance effects on turbulent channels

The need of data at higher Reynolds numbers was already pointed out by del
Álamo et al. (2004), where it was found that in order to distinguish between U2

c

and uτUc as scales for the global modes, Reτ would have to be higher than 108.
However, the collapse of smooth- and rough-walled flows with UGLO as opposed
to Uc is unambiguous, because there are big differences between both quantities
in rough- and smooth-walled flows. All that can be said is that u′ does not scale
exclusively on uτ , and figures 2.11(a) and 2.11(c) provide strong evidence that the
other velocity scale is closer to UGLO than to Uc.

2.6. Conclusions

In the present chapter we have studied the effect of the boundary condition at
the wall on the outer region of turbulent channels. The non-slip and impermeability
boundary conditions that are natural to smooth walls have been replaced with single-
harmonic velocity disturbances with non-zero tangential Reynolds stresses at the
wall. Three different forcings have been explored, in order to analyze the effect of
the different parameters characterizing the perturbations.

We have shown that the main effect of the wall disturbances in the flow is to
modify the mean streamwise velocity gradient in the near-wall region, changing the
intercept constant of the logarithmic velocity profile. The disturbances also change
the structure of the smooth-walled buffer region, shortening the streaks and the
quasi-streamwise vortices. Consequently, the intensities of the streamwise veloc-
ity fluctuations and of the streamwise vorticity decrease. On the other hand, the
wall-normal and spanwise velocity fluctuations are enhanced by the disturbances in
the near-wall region. This increase is related to structures which are approximately
isotropic in the wall-parallel plane, and which contribute little to the streamwise vor-
ticity intensity. All these observations are caused by the disruption of the near-wall
energy cycle by the disturbances at the wall. The ratio of production to dissipation
and the energy flux shows not only that the disturbances interrupt the near-wall
energy cycle, but also that the Reynolds stresses imposed at the wall generates an
additional energy that is dissipated locally.

Since most of these changes are typically observed in turbulent flows over rough
walls, we can interpret the present boundary condition as a method for emulating the
effect of the roughness without having to deal with the details of the flow around
the roughness elements, as previously suggested by Jiménez (2004). Hence, we
have characterized the different wall forcings by their equivalent sand roughnesses.
Three of the cases correspond to the fully rough regime, while the remaining one is
transitional.

We have analyzed the flow over individual forcing cells by computing the averaged
flow field around a single disturbance. The characteristic length scale for the decay
of the velocity disturbances is the forcing wavelength, but the tangential Reynolds
stress has its own characteristic length scale, k. The height of the layer where the
intensity of the forcing and its harmonics prevails over the background turbulence
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is roughly 6k. This layer can be interpreted as a roughness sublayer, which plays in
rough-walled flows the same role as the buffer layer over smooth walls.

Special attention has been paid to the effect of our wall disturbances on the
outer flow. Using one-point statistics we have shown that the smooth wall values are
recovered in the disturbed cases when ỹ+ increases, and all across the outer region.
The spectral analysis and the advection velocities have shown that the structure and
the dynamics of the detached scales of the core region in the present simulations are
not affected by the perturbations imposed at the walls. This conclusion is coherent
with the idea that the detached eddies are controlled by the local mean shear, which
is only modified within the roughness sublayer. These ideas will be further analyzed
in §3.3 in the next chapter.

We have also seen that the structure of the largest scales of the flow is essentially
the same over the forced and over smooth walls. They are global modes, in the sense
that they are correlated all across the channel. In smooth-walled flows, del Álamo
et al. (2004) proposed that they scale with the centerline velocity Uc, and that there-
fore the square of the velocity fluctuations increase with U2

c for a given wall distance.
We have shown that this scaling does not work for rough-walled flows, and we have
proposed a new velocity scale proportional to uτκ

−1 log(Reτ ) for the global modes.
We have shown that the modified scaling collapses the streamwise velocity fluctu-
ations for smooth- and rough-walled cases, for a wide range of Reynolds numbers
and wall roughnesses, even if this collapse is not justified for the fully rough cases.

The results presented in this chapter suggests that the outer flow region is fairly
independent on the wall layer, even if the opposite is not true (del Álamo & Jiménez,
2003; Hoyas & Jiménez, 2006). The present results also suggest that even in rough-
walled boundary layers it could be expected that the detached eddies remain un-
changed, at least if the mean shear does. On the other hand, the effect of the
roughness in the largest scales of the outer region of turbulent boundary layers and
channels might be different. While the effect of the roughness on the global modes
is symmetric in channels, in boundary layers only the wall is modified, and the free
stream remains unchanged.
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Chapter 3

Vorticity organization in the outer

layer of turbulent channels with

disturbed walls 1

3.1. Introduction

We have seen in chapter 2 that the outer region of turbulent channel flows is
fairly independent of the details of the wall region. In the present chapter, we
extend the comparison between smooth- and rough-walled flows to the coherent
structures of vorticity found in the overlap and outer regions. The idea that inner-
outer interactions are due to vortex loops connecting the inner and outer layers of
turbulent wall flows is a recurrent argument in the literature of wall turbulence (see
the review by Robinson, 1991a). The analysis presented in this chapter is aimed to
clarify the details of that interaction.

The best-known theoretical models for those vortex loops are variations of the
vortex hierarchies proposed by Perry & Chong (1982) and Perry et al. (1986), loosely
based on Townsend’s (1976, pages 150–162) attached-eddy hypothesis. Although
those models were initially constructed from abstract eddies, with larger elements
emerging from smaller ones through unspecified processes, they eventually evolved
into collections of Λ-vortices growing from the wall. Such objects have been observed
in low-Reynolds-number numerical simulations (Robinson, 1991b; Blackburn et al.,
1996; Chong et al., 1998), and in experiments with relatively coarse resolutions
(Adrian et al., 2000; Ganapathisubramani et al., 2003).

Based on the identification of hairpin-vortex signatures in PIV measurements of
turbulent boundary layers, Adrian et al. (2000) proposed a model built on pack-
ets of hairpins that grow from the buffer region. The packets form due to a non-
linear mechanism called autogeneration (Zhou et al., 1999), with the hairpins in each
packet working cooperatively to generate the long low-momentum ramps observed
in their experiments (Meinhart & Adrian, 1995). Signatures of similar packets were

1Part of the contents of this chapter have been published in the Journal of Fluid Mechanics,
volume 591, pages 145-154, with Javier Jiménez and Juan C. del Álamo as coauthors.
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3. Vortex clusters over disturbed walls

observed in wall-parallel PIV measurements by Ganapathisubramani et al. (2003),
who showed that the elongated low-momentum regions associated with those sig-
natures were responsible for a large fraction of the Reynolds stresses. Using linear
stochastic estimation, Tomkins & Adrian (2003) concluded that the spanwise size
of the packets varies linearly with wall-distance, suggesting a self-similar growth in
an averaged sense. They proposed that this growth takes place by a combination of
self-induction, autogeneration and mergers. A recent revision of the state of the art
of the vortex packet paradigm can be found in Adrian (2007).

A different view is emerging from the work of del Álamo et al. (2006). They
extracted coherent structures of vorticity from DNSes of turbulent channels with
friction Reynolds numbers up to Reτ ≤ 1900, and observed that individual vortices
with diameters of the order of the Kolmogorov length scale appeared grouped in
clusters, similar to the vortex tangles reported by Tanahashi et al. (2004). In both
works, instantaneous realizations of the largest clusters revealed complex objects in
which few hairpin-like vortices could be identified. Note that this is not necessar-
ily inconsistent with the previous deterministic descriptions, which did not usually
include a statistical estimation of the frequency of hairpins with respect to other
structures. Del Álamo et al. (2006) showed that the clusters separate naturally
into wall-attached and wall-detached families, and the attached ones have sizes and
dimensions similar to the hairpin packets reported in Ganapathisubramani et al.

(2003) and Tomkins & Adrian (2003). The average velocity field conditioned to
these attached clusters consist of a Λ-vortex with a wall-normal velocity ejection
between its legs, and an cone-shaped low-momentum wake extending downstream
of the cluster.

Based on their observations, del Álamo et al. (2006) proposed a model in which
wall-normal velocity bursts2 were responsible for the formation of the low-momentum
wakes by pumping low-velocity fluid from the wall. They suggested that the higher
local dissipation within the burst leads to the percolation of the vortices inside it,
implying that the cluster is the consequence of the bursts, rather than their cause.
Estimations of the lifetimes of the bursts showed that they were of the order of their
eddy turn-over times, suggesting that the clusters could not grow from the wall to
their observed sizes, and had to be generated at all sizes and heights. Also, the
measured lengths of the conical wakes, and the available velocity difference across
the burst, indicated that several bursts had to be associated with a single wake, and
that they had to already have been generated in that configuration.

Note that the original hairpin model is hard to reconcile with the Townsend’s
hypothesis. If the structure of the logarithmic and outer regions is governed by
hairpins growing from the wall, it could be possible to change the properties of
these regions modifying the properties of young hairpins near the wall, as suggested
by Coceal et al. (2007). Their arguments contradict the results presented in chapter

2Note that the term burst is not used here to refer to the passing of a coherent structure over
a sensing element, but to refer the transient ejection of fluid in a region of the flow that evolves
coherently until it is dissipated (Kim et al., 1971).

44



3.1. Cluster identification methodology

Case Reτ Lx/h Lz/h ∆x+ ∆z+ ∆y+
c k+

s h+

R αc NC Natt

S0 547 8π 4π 13.4 6.7 6.7 – – 0.0024 1.9 × 106 1.4 × 105

R2 632 8π 4π 11.6 5.8 8.0 129 93 0.0046 2.3 × 106 1.7 × 105

r3 674 4π 2π 12.4 6.2 8.6 207 146 0.0034 1.0 × 106 0.8 × 105

Table 3.1: Parameters of our experiments. Lx and Lz are the streamwise and spanwise
dimensions of the domain and h is the channel half-height. ∆x and ∆z are the streamwise
and spanwise collocation resolutions. ∆yc is the wall-normal resolution at the center line.
In cases R2 and r3, ks is the equivalent sand roughness height and hR is the height of the
roughness sublayer, defined in 2.4. αc is the percolation threshold, NC is the number of
extracted clusters, and Natt is the number of those classified as wall-attached.

2, where we have shown that the structures of the outer region of turbulent channels
are rather insensitive to the details of the walls, except for the long wavelength limit
of the streamwise velocity spectrum. The latter are global modes, correlated across
the whole flow thickness, and they feel the effect of the wall trough the changes in
their characteristic velocity scale, nor through modifications of their dynamics.

In this chapter we analyze the effect of the wall on the coherent structures of
vorticity that populate the outer region, by comparing the vortex clusters extracted
from the DNSes of turbulent channels with smooth and rough walls presented in
chapter 2. The organization of the chapter is as follows. Section 3.2 describes the
vortex identification method. The geometrical properties and spatial distributions of
the wall-detached clusters are described in §3.3, while those of the attached clusters
are analyzed in §3.4. Finally, the conditionally averaged velocity fields are discussed
in §3.5, and section 3.6 concludes.

3.2. Cluster identification methodology

The DNSes described in chapter 2 are used here to analyze the effect of the wall
on the vortical structures populating the logarithmic and outer region of turbulent
channels. Only the cases R2, r3 and S0 will be used here. The case r1 has been
excluded from the analysis because it is transitionally rough. On the other hand,
R2 and r3 correspond to fully rough cases, where the near-wall energy cycle has
been effectively destroyed by the velocity disturbances imposed at the walls. The
reference smooth-walled turbulent channel is S0, with a friction Reynolds number
comparable to the wall-disturbed cases. An extensive list of the parameters of the
three simulations is presented in table 2.1, although table 3.1 recovers some of them
here in order to ease the reading of the chapter.

We employ the method described by del Álamo et al. (2006) to extract O(106)
vortex clusters from instantaneous flow realizations. A vortex cluster is defined as a
set of connected points where the discriminant D of the velocity gradient tensor is
larger than a certain fraction of its standard deviation D′ in the wall parallel plane,
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Figure 3.1: (a) Isolines of the relative volume Vr occupied by the points satisfying
the relation (3.1) as a function of the threshold α and of the wall distance. The levels
represented are, from left to right, Vr = 0.2, 0.04, 0.008. The gray strip covers the range
of variability of αc for the present experiments. (b) Volume distribution pV of the clusters
as a function of their minimum and maximum wall distances, ymin and ymax. The levels
contain 60 and 85% of the data. The vertical dotted line is y+

min = 50 and the diagonal
one is ymin = ymax. , S0. ◦, R2. ¥, r3.

D > αD′(y). (3.1)

Figure 3.1(a) shows the relative volume Vr occupied by the clusters as a function
of α, and of the wall distance. The three flows agree fairly well above the rough-
ness sublayer, y+ > 100 ≈ h+

R, but differ appreciably below that level, especially
for y+ ≤ 50. These discrepancies lead to different connectivities in the roughness
sublayer which affect all the wall-attached objects, including those reaching into
the logarithmic and outer layers. We therefore apply the cluster identification al-
gorithm to the truncated domain 50 < y+ < 2Reτ − 50 for the three flows in table
3.1, which allows us to compare consistently the clusters from the rough- and the
smooth-walled cases. The results obtained from full channels, and from channels
truncated at other wall distances, agree qualitatively with those presented here.

In our analysis, we use α = 0.0055 ≈ αc, where αc is the critical threshold below
which a cluster percolates throughout the truncated channel (see table 3.1). The
percolation thresholds from cases S0, R2 and r3 differ little from one another, taking
into account that α multiplies a sixth power of the vorticity. This is emphasised by
the narrowness of the gray bar representing the range of variability of αc in figure
3.1(a). The value of α used here is closer to the percolation threshold than that used
by del Álamo et al. (2006), because only when α ≈ αc does the vortex distribution
become independent of Reτ in the outer region. This allows us to compare the results
from S0, R2 and r3 despite their different Reynolds numbers. These arguments will
be clearer after §3.4.

Figure 3.1(b) shows isocontours of the distribution of volume occupied by the
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3.2. The geometry and distribution of the detached clusters

clusters as a function of the minimum and maximum wall distances of these objects,
pV (ymin, ymax). Similar to the smooth wall cases reported by del Álamo et al. (2006),
the shape of pV suggests that the population of clusters in rough-walled channels
may be divided into a wall-detached and a wall-attached family. The wall-detached
family is the wide inclined strip where the volume distribution is approximately
homogeneous, pV ≈ pV (ymax − ymin), and is formed by clusters that reside away
from the wall. The wall-attached family is the thin vertical strip formed by clusters
whose minimum wall distance coincides with the boundary of the truncated-height
channel, y+

min = 50. Two examples of clusters of the wall-attached family have been
highlighted from their background vorticity in figure 3.2. They are particularly large
examples of these objects, with a wall-normal height around 600ν/uτ , a streamwise
length around 2000ν/uτ and a spanwise width close to 1000ν/uτ .

Because the present definition of attached cluster is slightly different from that
used in del Álamo et al. (2006) (y+

min < 20), we classify as attached some objects
that they would have classified as detached. However, the differences are small,
especially for large clusters reaching the outer region. The analysis of pV (ymin, ymax)
in full channels (plotted in del Álamo et al., 2006) shows that 25% of the clusters
in S0 with y+

max = 100, and 10% of those with y+
max = 200, switch families between

the two definitions. These figures only represent 6% of the total cluster population.
Similar results are obtained for cases R2 and r3.

In the following sections, we analyze the wall-attached clusters over the disturbed
walls to evaluate the possibility of inner-outer interactions caused by vortex loops
emanating from the buffer layer. We focus on them because they are important for
the dynamics of the outer region, and because their wall-attached nature might cause
them to depend on the details of the wall. Before that, the detached clusters are
briefly analyzed in the next section. They will be shown to be essentially dissipative
eddies that are not affected by the wall.

3.3. The geometry and distribution of the detached

clusters

Figure 3.3(a) shows p.d.f.s of the logarithms of the wall-parallel sizes and wall
distances of the detached clusters in the present flows. The position and size of
a detached cluster are defined equal to those of its circumscribed Cartesian box,
and are denoted (xc, yc, zc) and (∆x, ∆y, ∆z) respectively. In the preparation of
the figure, those objects with ∆x < 12ηk(yc) or ∆y, ∆z < 9ηk(yc), where ηk is the
local Kolmogorov scale, have been rejected because their size is comparable to the
resolution of our simulations. The data show that the sizes of the detached clusters
are proportional to ηk(yc) and comparable to the enstrophy containing scales. The
latter are represented in figure 3.3(a) by the shaded contours, which are isolines of
the spectral enstrophy density from case S0. This result agrees with the scaling of
the detached clusters reported by del Álamo et al. (2006) for smooth channels and

47



3. Vortex clusters over disturbed walls

(a)

y

x

z

(b)

y

x

z

Figure 3.2: Isosurfaces of D = 0.0055D′, for cases S0 (a) and R2 (b). The attached
cluster is colored with the wall-normal distance, while the translucent objects are the
background structures surrounding it. The green surfaces at the bottom wall in (b) are
surfaces of u = 0, and represent the wall-disturbances. In both cases, the size of the
plotted domain is approximately (2000 × 600 × 1000)ν/uτ , and the mean flow goes from
right to left.
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Figure 3.3: (a) Joint p.d.f.s of the logarithm of the lengths of the detached clusters and
the wall distances of their centers, p∆(∆+

x , y+
c ), . The contours contain 40 and 90% of

the data. The shaded contours are the spectral enstrophy density from S0. The levels
represented are 1/2 and 3/4 of its maximum. We have used the correspondence λ ∼ ∆
and y ∼ yc to compare the p.d.f.s and the spectral density. The dashed lines show ∆+ =
20ηk(yc)

+ for the three channels, while the solid lines show the limit ∆+ = 12ηk(yc)
+. (b)

Density n+
d of detached clusters per unit wall-parallel area and unit height as a function

of y+
c . The vertical lines indicate y = hR for the rough-walled cases. The dashed line is

n+
d ∝ 1/y+

c . , S0. ◦, R2. ¥, r3.

indicates that these objects are not affected by the nature of the wall.

Likewise, the wall forcing does not influence the volume density of detached
clusters, which is denoted n+

d and has been plotted in figure 3.3(b). This magnitude
scales as n+

d ∼ 1/y+, in agreement with the properties of the vortices of isotropic
turbulence reported by Jiménez & Wray (1998). The radius of these vortices is of
the order of η and their length is of the order of the Taylor microscale λ, yielding
a volume V1 ∼ η2λ. In turbulent channels we have η+ ∼ (y+)1/4 and λ+ ∼ (y+)1/2,
so V1 increases with the wall distance as V +

1 ∼ y+. Assuming that the total volume
V + occupied by the detached vortices does not depend on y far from the wall, which
is supported by figure 3.1(b), we obtain n+

d ∼ V +/V +
1 ∼ 1/y+.

Finally, the behaviour of the densities of detached clusters in the roughness
sublayer (y+

c . 100 ∼ h+
R) is consistent with the results presented in figure 3.1(a),

with higher Vr and n+
d for case R2 than for cases r3 and S0.

3.4. The geometry and distribution of the attached

clusters

Figure 3.4(a) shows joint p.d.f.s of the streamwise and wall-normal sizes of the
attached clusters (∆x, ∆y), defined as in §3.3. In del Álamo et al. (2006), the
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Figure 3.4: Joint p.d.f.s of the logarithms of the wall-parallel sizes and wall-normal height
of the attached clusters. (a) p∆(∆+

x , ∆+
y ), the contours containing 40 and 94% of the data.

The shaded patches are contours of the premultiplied spectral density φvv(λx, y − ymin)
from case S0, while the dashed lines correspond φvv from case R2. We have plotted
the levels 1/4 and 1/2 times the maximum of φvv, using the correspondence λ ∼ ∆. (b)
p∆(∆+

x , ∆+
z ) for the tall attached clusters with y+

max > 100, the contours containing 40
and 90% of the data. The shaded contours come from the uv-coespectrum of case S0

y+ = 100, at 1/20 and 1/5 of its maximum. The shaded triangles show the wavelengths
of the wall forcing for cases R2 (△) and r3 (▽). In both panels, the straight solid line is
(3.2). , S0. ◦, R2. ¥, r3.

attached clusters had y+
min < 20, and it was assumed that ∆y = ymax − ymin was

roughly equal to ymax. Here, the actual minimum wall distance of the attached
clusters very likely lies below the truncation level, y+

min = 50. Since this cutoff can
be an appreciable fraction of the cluster height, ymax seems a better measure of that
height than ∆y. However, ∆y is used in the abscissae of figure 3.4(a) because the
length of the cluster ∆x is only measured above y+

min = 50.
In the preparation of the figure, clusters with vortex volumes smaller than 303

wall units have not been considered because their sizes are of the order of the simu-
lation grid. The results show that the distributions of sizes of the attached clusters
do not depend on the wall forcing, with the only exception of the clusters that are
fully contained in the roughness sublayer of channels R2 and r3 (∆+

y . 50). Even
in that case, the size of the clusters is not set by the wavelength of the forcing.
Similar results are obtained for p∆(∆+

z , ∆+
y ) (not shown) and in p∆(∆+

x , ∆+
z ), shown

in figure 3.4(b). In all of these distributions, the clusters from the three cases show
the self-similar scalings reported by del Álamo et al. (2006),

∆x ≈ 3∆y, and ∆x ≈ 2∆z. (3.2)

Figure 3.4(a) also includes the spectral energy density of v for S0 (shaded) and
R2 (dashed lines), as functions of y − ymin, showing the good agreement between
the rough- and the smooth-walled cases. Furthermore, the most energetic scales
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Figure 3.5: Averaged Reynolds stresses in the areas covered/not-covered by attached
clusters with y+

max > 100, as defined in (3.3). (a), α = 0.0055. (b), α = 0.022. Solid lines
correspond to Fc, while dashed lines corresponds to Fe. , S0. ◦, R2. ¥, r3.

coincide reasonably well with the cluster sizes, suggesting that the attached clusters
are associated to wall-normal velocity structures. Notice that this conclusion is not
invalidated by the imperfect agreement in figure 3.4(a), because the correspondence
between wall distance and cluster height is only approximate, and because sizes
are proportional but not equal to spectral wavelengths (Jiménez et al., 2004). The
relationship between the clusters and wall-normal velocity structures was already
pointed out in del Álamo et al. (2006).

Figure 3.4(b) also shows a fair agreement between the sizes of the largest attached
clusters and the energy containing scales of the uv-coespectrum, suggesting that
these objects contribute to the Reynolds stress and are hence active in Townsend’s
(1976) sense. Further analysis reveals that the largest clusters are actually “super-
active” both in rough and smooth channels. In order to quantify the intensity of
the Reynolds stress of the attached clusters, we define the ratios

Fc =
(uv)c

(uv)
, and Fe =

(uv)e

(uv)
, (3.3)

where (uv) are the total Reynolds stress, (uv)c are the Reynolds stresses averaged

in the area occupied by the boxes circumscribed to attached clusters, and (uv)e are
the Reynolds stress averaged in the remaining area.

Figure 3.5(a) shows Fc and Fe computed for clusters with y+
max > 100. We can

observe that in the logarithmic layer (uv)c is roughly 5% higher than (uv). However,
when in figure 3.5(b) the identification threshold α is increased to α = 0.022 (in order
to extract the most intense structures), Fc increases to 1.2 in the logarithmic layer,
confirming that the attached clusters are “superactive”. Of course, as α increases,
the volume occupied by the clusters diminishes (see figure 3.1a), and Fe approaches
unity.
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3. Vortex clusters over disturbed walls

Ganapathisubramani et al. (2003) also found that the Reynolds stress in low-
momentum regions matching hairpin packets were very strong, with instantaneous
values up to 40u2

τ . The contribution of these regions to the total Reynolds stresses
were about 25%, even when they only covered a 4.5% of the total area. In the
present case, the area covered by the boxes circumscribing attached clusters with
y+

max > 100 and α = 0.022 is roughly 35%, and they account for roughly 40% of the
total Reynolds stress of the channel in the logarithmic region. The differences in
the relative areas between the present work and Ganapathisubramani et al. (2003)
can be explained taking into account that, as reported by del Álamo et al. (2006),
the vortices forming the cluster are organized in surfaces or shells. Therefore, while
the latter authors measure the contributions from the low-momentum and strong
Reynolds stress regions, here we measure the contribution from the boxes that cir-
cumscribe the tall attached clusters, resulting in larger relative areas. Note that
the relative volumes reported in figure 3.1(a) show reasonable agreement with the
relative areas reported by Ganapathisubramani et al. (2003).

It is also interesting to check the effect of the wall forcing on the density of
attached clusters in the outer region. We have seen in figure 3.1(a) that the wall
disturbances in cases R2 and r3 drastically increase the relative area ocuppied by
vortical structures below y+ = 50, and it could be argued that if the attached
clusters are grown from these structures, they should be more frequent in the outer
region of the wall-disturbed cases. Figure 3.6(a) shows that this is not the case.
The figure shows the density of attached clusters per unit wall parallel area and
unit height, na, as a function of the cluster height, ymax. We have only considered
those clusters whose volume is larger than 30 cubic wall units. Consistent with
figure 3.4(a), the cluster densities from our three channels peak near y+

max = 100 and
agree fairly well. Del Álamo et al. (2006) reported that the decay of the density of
tall attached clusters in smooth channels is described by power laws n+

a ∝ (y+
max)

β,
where β depends on the identification threshold α. They noted that because the
lengths and widths of these objects are proportional to their heights, their influence
may reach the outer region even if their density decreases steeply with y. That
influence becomes independent of Reτ and only decays logarithmically with the wall
distance for β = −3, which is precisely the logarithmic slope of the dashed line that
fits the data from smooth and rough channels in figure 3.6(a).

Figure 3.6(b) illustrates this behavior by displaying the decay exponent of na

as a function of the identification threshold. For each case, β is determined by
computing a least squares linear fit to log(n+

a ) in the range 200 < y+
max < 500.

The results from smooth and rough channels agree well for all values of α except
past the percolation crisis, supporting the independence of the spatial distribution of
attached clusters from the nature of the wall. As reported by del Álamo et al. (2006),
the decay exponent increases as the clusters population growths with decreasing α,
but saturates around β = −3 when the percolation transition is reached.

Finally, the averaged shape of the attached clusters is neither modified by the
wall roughness. This is shown in figure 3.7, which presents p.d.f.s of the coordinates
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Figure 3.6: (a) Density n+
a of attached clusters per unit wall-parallel area and unit height

as a function of their height; the vertical lines indicate y = hR for the rough-walled cases.
, n+

a ∝ (∆+
y )−3. (b) Decay exponent β of na as a function α. The vertical lines are

95% confidence intervals for β. The lines are plotted to aid the eye only and the symbols
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Figure 3.7: P.d.f. of the relative positions of the vortex cores in the circumscribed boxes
of the attached clusters with y+

max > 100. The contours contain 20%, 50% and 80% of the
data. (a), (rx, ry) plane. (b), (rz, ry) plane. , S0. ◦, R2. ¥, r3.

of the points belonging to each cluster, with respect to the center, xc, zc, and
yc = ymax/2, of its circumscribed box. The scaled position vector in that reference
frame is defined as r = (x − xc)/yc. The results show that the p.d.f.s of (rx, ry)
depend little on the nature of the wall. The slight discrepancy observed for the outer
contour at |rx| ≈ 1 shows that the attached clusters are slightly more elongated in
the smooth-walled channel than in the rough-walled ones. The observed differences
disappear when larger clusters are considered, or when the channel is truncated at
y+

min = 100, which suggests that these differences are caused by the lower mean shear
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3. Vortex clusters over disturbed walls

near the rough walls, rather than by the direct effect of the wall disturbances. This
is confirmed because the p.d.f.s of (rz, ry) in figure 3.7(b), which are not affected by
the shear, agree perfectly for the smooth- and rough-walled cases.

The results presented in figures 3.4 and 3.7 indicate that the sizes and shapes
of the attached clusters are not affected by the nature of the wall. We have seen
that this is also true for other cluster properties, such as the fraction of Reynolds
stresses contained in their circumscribed boxes (see figure 3.5), or their volume
density per unit wall distance (see figure 3.6). Particularly interesting is the fact
that n+

a collapses even for attached cluster laying within the roughness sublayer, with
ymax . hR. All these results suggest that the attached clusters are either generated
away from the wall, or that they forget their origin soon after they are born. Note
that the two possibilities do not exclude each other. In fact, the lifetimes of the
wall-normal velocity reported by del Álamo et al. (2006) support the first, while the
analysis of the linear evolution of concentrated perturbations in a logarithmic layer
presented in chapter 4 supports the second.

3.5. The average velocity field conditioned to the

tall attached clusters

We mentioned in §3.1 that the conditionally averaged flow field in the neighbor-
hood of the attached clusters contains a Λ-vortex and a v-ejection. Del Álamo et al.

(2006) showed that, in smooth channels, it also anchors a conical low-u structure
that was too long to be contained within their averaging box, but that was at least
10 times longer than the conditioning cluster. In this section, we analyze the effect
of wall roughness on those structures. We have excluded data from r3, whose box
length is marginally too short for that purpose, even if its conditionally averaged
fields are in qualitative agreement with those shown below.

We define the average velocity fluctuations conditioned to a cluster set as

〈u〉(r) =
N∑

i

u(xc,i + yc,ir)y
3
c,i

/ N∑

i

y3
c,i, (3.4)

where the vector u contains the velocity fluctuations with respect to the mean flow,
and the subindex i refers of the i-th cluster of the set. As in del Álamo et al. (2006),
the weight factor y3

c,i ensures that (3.4) is an unbiased ensemble average, since the
probability of sampling a given structure is proportional to its volume. Figure 3.8
shows that the averaged velocity field around the cluster is the same reported by del
Álamo et al. (2006) over smooth walls at higher Reynolds numbers: a cone-shaped
low-momentum region (red) extending mostly downstream of the conditioning object
(black), flanked by a pair of counter rotating vortices (green) and high-momentun
regions (blue).

A more quantitative comparison is presented in figure 3.9, which shows 〈u〉(rz =
0) for tall attached clusters, defined here as those with y+

max > 200. The results from
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Figure 3.8: Visualization of the 〈u〉 for attached clusters with y+
max > 200. The blue

surface corresponds to 〈u〉+ = 0.2, and the red surface corresponds to 〈u〉+ = −0.02. The
black surface contains the %60 of the p.d.f. of the relative positions of the points of the
cluster. The green arrows show the cross-flow velocities at rx = 0 and rx = 10. (a), S0.
(b), R2.
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Figure 3.9: Quiver plot of the average fluctuating velocity field (〈u〉, 〈v〉) conditioned
to the presence of tall attached clusters (y+

max > 200). The data are taken at the plane
rz = 0. The contour lines are 〈u〉+ = −0.05,−0.1. The shaded contours contain 33 and
66% of the p.d.f. of the position of points inside the conditioning clusters. The dashed
lines have a slope of 8◦. (a) S, longest arrow 0.93uτ . (b) R1, longest arrow 0.81uτ .

the two cases are nearly identical. The main difference is that the upstream (left)
part of the wake is shorter for R2, probably due to the lower mean shear of this
flow below y+ ≈ 100.

The slope of the u-structures in figures 3.9(a) and 3.9(b) is approximately equal
to 8◦ for −2 < rx < 5. It decreases beyond rx ≈ 5, and the low-speed cones level off
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3. Vortex clusters over disturbed walls
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Figure 3.10: Snapshots of the surface u+ = −2 in cases (a) R2 and (b) S0, colored with
the wall distance (blue corresponds to the wall, red to the center of the channel). The
flow goes from left to right. The size of the plotted boxes is 8πh × 2πh × h. Two large
structures similar to the u < 0 cones in figure 3.9 have been manually highlighted in each
case, using a red dashed line.

to ry ≈ 1.5, and to a width rz ≈ ±1 for rx & 8. We can estimate the size of a typical,
tall attached cluster as the mean of the distribution pV (y+

min = 50, y+
max > 200), which

is y+
max ≈ 400. For this typical cluster, the saturation height and width of the low-u

wake in figure 3.9 would be approximately 500ν/uτ . Figure 3.8 shows that the low-u
wake is flanked by high-speed regions, resulting in an spanwise wavelength around
λ+

z ≈ 900.

This saturation is probably due to the limited Reynolds number of our simula-
tions, and it was not observed by del Álamo et al. (2006). They used a somewhat
higher threshold to identify vortices, a lower near-wall cutoff, and a higher Reynolds
number. As a consequence, their cluster population was dominated by smaller ob-
jects with respect to the channel height, and the leveling-off was not observed within
their averaging box. Note that the coordinates in figure 3.9 are scaled with the size
of the conditioning cluster.

In the present case, the leveling-off occurs at cross-stream dimensions of the
order of the channel half-width, which agree well with the spectral wavelengths of
the global modes identified in chapter 2. The length of the cylindrical sections in
figure 3.9 is about x/h ≈ 3−7, which corresponds to the shorter end of these global
modes. Del Álamo et al. (2004) had already concluded that the widest modes in the
spectra of u were determined by the saturation in the growth of the u-structures
when they reach diameters comparable to the channel height.
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The connection between figure 3.9 and the global modes is confirmed by instan-
taneous flow visualizations. Figure 3.10 shows a three-dimensional representation of
the surface u+ = −2 in sub-domains of S0 and R2. All the inspected realizations
were qualitatively similar to those shown here. In both panels, a large conical struc-
ture reminiscent of the averaged velocity fields in figure 3.9 has been highlighted.
Although the details of the highlighting are arbitrary in that both structures could
be continued into much longer roughly cylindrical streaks, the identification of the
initial conical part is in each case essentially unambiguous. The longer downstream
structures attached to these regions have lengths of the same order as the simulation
box, and recall the very long u-structures already shown in figure 2.9 of chapter 2.
Apart from the highlighted cones, a few more examples of cone-like structures of
different sizes can be found in the figure. However, it is important to bear in mind
that the association of clusters and cones is only strictly true in an averaged sense,
as discussed later in §4.4.3. Finally, figure 3.10 clearly illustrates the disruption of
the near-wall energy cycle in case R2: while the near-wall streaks are clearly visible
in case S0, they are substituted by a regular array of spots in case R2.

It was shown in §2.5.1 that the global modes are very efficient in generating
Reynolds stresses, because their wall-normal and spanwise velocity components are
highly correlated (see figure 2.10d). The same happens with the saturated part of
the cones shown in figure 3.9. We define the mean velocity fluctuations inside the
cones,

Uw(rx) = A−1
Ω

∫

Ω(rx)

〈u〉dA, and Vw(rx) = A−1
Ω

∫

Ω(rx)

〈v〉dA, (3.5)

where Ω(rx) is the region where 〈u〉+ < −0.05 at each streamwise location. These
velocities are shown in figure 3.11(a) for clusters with y+

max > 200. Both U+
w and

V +
w peak at the center of the cluster but the mean fluctuating velocities from case

R2 are somewhat weaker than those from case S0. This agrees with the results
shown in figure 2.10(b) in chapter 2, where the global modes in S0 were shown to
be slightly stronger than in R2.

Figure 3.11(b) shows that the ratio Uw/Vw agrees for S0 and R2, showing a
reasonable plateau in the range 5 < rx < 15. Note that Uw/Vw is a measure of
the efficiency of v in creating u-perturbations from the mean velocity profile, and
the level of the plateau is quite higher: for instance, the overall ratio of the r.m.s.
turbulent intensity in the outer layer is (u2)/(v2) ≈ 1.5 − 2 (the overline denotes
time and wall-parallel averaging). The level in figure 3.11(b) is of the same order as
the structure parameter for the Reynolds stresses −(u2)1/2/(uv)1/2 ≈ 4.5− 5, which
measures only the part of v correlated with u. It is also of the order of the ratio
between the energy spectrum of the streamwise velocity and the Reynolds-stress
cospectrum, which is −φuu/φuv ≈ 3 − 7 for wavelengths of the order of 5h × h,
outside the buffer layer. These figures are consistent with the interpretation of the
saturated parts of the structures in figure 3.9 as global modes. Other values of
the threshold in the definition of Ω(rx), and any reasonable range of sizes for the
attached clusters with y+

max > 100, lead to the same plateau as in figure 3.11(b).
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Figure 3.11: Mean velocity fluctuations inside the cone, Uw and Vw (see 3.5), for attached
clusters with y+

max > 200. (a) Velocities in wall units, solid lines correspond to −U+
w and

dashed lines corresponds to V +
w . (b) Ratio −Uw/Vw, the horizontal line is −Uw/Vw = 6.

, S0. ◦, R2.

3.6. Conclusions

In the present chapter we have investigated the properties of the vortex clusters
found in turbulent channels with rough walls at moderate Reynolds numbers. As in
the smooth-walled case, they separate into wall-attached and wall-detached families.
We have paid especial attention to those attached clusters that reach above the
roughness sublayer and into the outer region of the flow. They play an important
role on the dynamics of the turbulent outer layer (del Álamo et al., 2006), and
have many characteristics in common with the constitutive elements of a number of
models that represent that part of the flow by hierarchies of vortex loops emanating
from the wall (Perry & Chong, 1982; Perry & Marusic, 1995).

Our results indicate that the distribution of sizes and shapes of the attached clus-
ters are virtually the same in the smooth- and in the rough-walled cases. The sizes
of the clusters are proportional to their heights, indicating a self-similar distribution
of objects, consistent with the attached-eddy hypothesis of (Townsend, 1976, pages
150–162). The density of attached clusters in the outer region is not modified by the
wall-disturbances either. This result holds even if the relative volume occupied by
the identified vortices is larger in the roughness sublayer of the rough-walled cases
than in the near-wall region of the smooth-walled case.

The sizes of the attached clusters correspond to the energy containing scales of
the wall-normal velocity spectrum, consistently with the interpretation of del Álamo
et al. (2006) that in an averaged sense, the clusters are markers of wall-normal
velocity bursts. We have also shown that the attached clusters are “superactive”,
meaning that the Reynolds stresses averaged in the boxes containing the attached
clusters are larger than the average. This confirms that the attached clusters are
dynamically important structures in rough-walled flows, as they are in smooth-
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walled flows (del Álamo et al., 2006).
As in the smooth-walled cases, the attached clusters over disturbed walls are as-

sociated with cones of negative streamwise velocity fluctuations that extend down-
stream of the position of the cluster. The only appreciable effect of the wall in these
cones is found in their upstream part, which is shorter in the rough-walled cases
than in the smooth-walled ones. That part of the cones is immersed in the rough-
ness sublayer, and probably the shortening of the streamwise velocity structure is
connected with the lower mean shear of the rough-walled cases in this region.

These observations, together with the lifetimes obtained by del Álamo et al.

(2006) for the structures in channels at higher Reτ , suggest that either the attached
clusters are generated at all heights, or that they quickly become self-similar and
forget about their origin. The results presented here help to reconcile the attached-
eddy models with Townsend’s hypothesis that the outer layer is independent of the
wall details, in agreement with the results presented in chapter 2.

Finally, we have also shown that the cones level off when their widths and heights
become of the order of the channel half-height. These parts of the cones are the
global modes identified in chapter 2, and the analysis of their mean streamwise
and wall-normal velocity fluctuations show that their streamwise and wall-normal
velocity components are highly correlated, in agreement with the results of §2.5.1
and by del Álamo & Jiménez (2003).
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Chapter 4

Linear analysis of self-similar

structures in the turbulent

logarithmic region

4.1. Introduction

In the previous chapters we have seen that there is a clear connection between
the vortical structures populating the logarithmic and outer regions, and the very
large streamwise velocity structures reported in many experimental and numerical
works, like Hites (1997), Jiménez (1998), Kim & Adrian (1999), del Álamo et al.

(2004) and Hutchins et al. (2007). As discussed in §3.1, there are in principle two
different structural models that attempt to explain that connection. Both of them
are, for the moment, incomplete.

The most extended one is the hairpin packet paradigm, originally proposed by
Adrian et al. (2000), and based on the horseshoe vortex originally proposed by
Theodorsen (1952). According to this model, several hairpin vortices appear orga-
nized in packets, growing linearly from the wall into the outer region. The growth
of the packets involves several mechanisms, including self-induction, autogeneration
and mergers with other packets, as discussed in Tomkins & Adrian (2003). The low-
momentum regions are caused by the cooperatively work of all the hairpins within
the packet.

However, the origin and evolution of these hairpin packets remains elusive, spe-
cially regarding how they move away from the wall. Zhou et al. (1999) described an
autogeneration mechanism whereby a hairpin packet could be created from an initial
lambda vortex in a laminar channel with a turbulent mean profile. They however
neglected the background fluctuations of real turbulent flows. We will see in this
chapter that this effect might be able to alter significantly the process, shortening
the lifetimes and lowering the intensities of the vortices. Moreover, the hairpins in
the laminar simulations move only moderately away from the walls.

A less organized model is proposed by del Álamo et al. (2006). The characteristic
vortical structure in this case is a vortex cluster that shares many of the properties of
the large-scale eddies of the hairpin model. However, the clusters are bags of vortices
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4. Linear dynamics in the logarithmic layer

in which individual hairpins are difficult to identify. In average, the attached clusters
are associated with wall-normal velocity bursts, where the local dissipation is higher
than the average. Chapter 3 shows that these clusters/bursts are also present over
rough walls. The estimation of their lifetimes over smooth walls (del Álamo et al.,
2006), together with the results of chapter 3, suggest that they are generated at all
heights, or alternatively that the clusters form at the wall, but that they quickly
forget their origin and reach some local equilibrium with the outer layer. Either
way, the importance of the wall is diminished.

However, it is not clear in this model whether the bursts align with each other
to create the ramps, or whether the ramps should be considered as the original
structures that determine where the bursts form.

It is important to note that, from the kinematic point of view, the model proposed
by Adrian et al. (2000) (hairpin packet) and the one proposed by del Álamo et al.

(2006) (cluster) are statistically equivalent, and that they are both consistent with
the velocity statistics and spectra reported in wall-bounded turbulent flows. For
example, Marusic (2001) successfully used the hairpin packet model to reproduce
the second-order statistics of a turbulent boundary layer, while del Álamo et al.

(2006) showed that the educed clusters and wakes were representative enough of the
flow as a whole to explain the global statistics. Beyond that, the two models are not
dynamically equivalent. First, the hairpin vortex is thought to be the cause of the
ejection, while the cluster is the effect of the burst. Second, while the hairpin packet
model is based on structures that grow from the wall, the observations suggest that
the clusters are generated at all heights. Also, the hairpin packets are long-lived
structures with lifetimes much longer than their characteristic turn-over time (Zhou
et al., 1999), while the lifetimes of the bursts are much shorter. Finally, while the
clusters are intrinsically turbulent, complex objects, the hairpin is a laminar, simple
structure, which seems unlikely to extend to an important fraction of the logarithmic
region in a high-Reynolds-number wall-bounded turbulent flow.

The aim of the analysis presented in this chapter is to describe the evolution of a
wall-normal burst in a turbulent environment, investigating how it creates the elon-
gated low-momentum regions identified in the logarithmic and outer regions. The
interaction of the wall-normal velocity with the mean shear has long been recognized
to play an important role in the generation of large structures in the streamwise ve-
locity (Robinson, 1991a). Indeed, del Álamo et al. (2004) and del Álamo et al.

(2006) proposed that the bursts interact linearly with the mean velocity profile and
with the background turbulence to generate the very long wakes, or streaks, of low
streamwise velocity. This interaction was studied by del Álamo & Jiménez (2006)
through a temporal transient growth analysis of the Fourier transform of the lin-
earized Orr–Sommerfeld–Squires equations, showing good agreement between the
modes with maximum transient growth and the dominant scales of the energy spec-
trum. We study here the initial value problem, analyzing the evolution in space and
time of an initially localized disturbance, given by an idealized version of the aver-
age burst reported by del Álamo et al. (2006). The results presented in this chapter
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4.1. The linearized equations for elongated turbulent structures

complete the model proposed by del Álamo et al. (2006), offering new explanations
for the origin of the bursts, and highlighting the weak points of the hairpin packet
paradigm.

The present analysis shares some features with the published works describing
the dynamics of hairpin vortices, both numerically (Singer & Joslin, 1994; Zhou
et al., 1999; Suponitsky et al., 2005) and experimentally (Acarlar & Smith, 1987a,b;
Haidari & Smith, 1994). However, while the previous works describe the evolution
of individual hairpin-like vortices in a laminar flow, in the present work we deal
with the evolution of an averaged eddy in a turbulent environment. The chaotic
packet evolution described by Adrian & Liu (2002) is neither comparable with the
present approach. They introduced a 5% of white noise in their initial condition to
simulate the background turbulence. However, this noise was quickly removed by
the viscosity, with the subsequent laminar evolution of the (noisy) hairpin.

The chapter is organized as follows. Section 4.2 presents the linearized equations
in the limit of elongated structures in a turbulent environment, which are solved
using the numerical method described in §4.3. The main results for the linear model
are presented in §4.4, while the possible origin of the bursts is discussed in section
4.5. Finally, conclusions are presented in §4.6.

4.2. The linearized equations for elongated tur-

bulent structures

The linearized equations that describe the evolution of organized turbulent struc-
tures in an incompressible parallel flow are

∂tu + U∂xu + (v∂yU, 0, 0) = −ρ−1∇p + [νT (∂xx + ∂zz) + ∂y(νT ∂y)]u, (4.1)

and the continuity equation, where x = (x, y, z) are the streamwise, wall-normal
and spanwise coordinates, u = (u, v, w) is the corresponding velocity perturbation
vector, U(y) is the mean velocity, p is the rapid pressure (Kim, 1999), and ρ is the
constant density of the fluid. We have replaced the molecular viscosity ν with a
turbulent eddy viscosity νT (y), to incorporate the dissipative effect of the incoher-
ent background turbulence. Its magnitude is chosen, in principle, as that needed
to maintain the mean velocity profile, although some corrections will be introduced
later. This approximation, introduced by Reynolds & Hussain (1972), was success-
fully used by Jiménez et al. (2001b) and by del Álamo & Jiménez (2006) to analyze
the temporal stability of the large scales in turbulent channels.

The general idea behind equation (4.1) is that the dynamics of the large scales
in wall turbulence are well described by the rapid-distortion theory (RDT), which
assumes that the lifetimes of the structures are longer than the shear time, so that
the mean shear linearly distorts them before they can evolve (Jiménez, 1998). We
can show that this situation applies for the attached clusters/bursts. Consider an
attached eddy with height 2y whose characteristic velocity is the friction velocity
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4. Linear dynamics in the logarithmic layer

uτ . Its turn-over time is O(2y/uτ ), and its viscous time is O(y2/ν). Moreover,
if y is within the logarithmic layer, the shear time at the center of the eddy is
(∂yU)−1 ∼ O(κy/uτ ), much shorter than the viscous time, and about 5 times shorter
than the eddy turn-over time for the typical values of the Kármán constant, κ ≈ 0.4.

Therefore, we can assume that the dynamics of an attached eddy are approxi-
mately driven by the mean shear, and that the main role of its non-linear interactions
with itself and with the background turbulence is to limit its growth. This effect
is modeled here with the coarse eddy-viscosity approximation in (4.1), but it could
also be implemented by explicitly limiting the lifetime of the structures, as in Butler
& Farrel (1993). However, the latter approach requires a previous knowledge of the
temporal evolution of the solution, while the former only requires the knowledge of
the mean velocity profile.

We now proceed to the analysis of the orders of magnitude of the terms in (4.1).
We will consider velocity structures that are attached to the wall, meaning that their
size is of the order of their wall distance. We will also assume that the wall-normal
and spanwise sizes of these structures are of the same order (ly ∼ lz), from where
continuity yields characteristic velocities vc ∼ wc. The analysis of the terms of the
y-component of (4.1) shows that

lx
ly

∼ Ue

uτ

, tc ∼
ly
uτ

∼ y

uτ

, and pc ∼ ρuτvc, (4.2)

where lx is the length scale in the streamwise direction, tc and pc are the characteristic
time scale and rapid pressure fluctuations, and Ue is the mean velocity difference
between the top and the bottom of the eddy. If the eddy is tall enough to reach the
logarithmic layer (l+y > 100), we have that Ue/uτ & 10 and hence lx/ly & 10 ≫ 1.
Even if the eddy lies within the buffer layer, we still have lx/ly ∼ Ue/uτ & 5.
Therefore, we will consider uτ/Ue ∼ ly/lx as a small parameter, and we will simplify
equation (4.1) accordingly. The dissipation coming from streamwise derivatives is
O(ly/lx)

2 compared to the leading-order terms in (4.1), and is neglected. The ∂xp
term in the streamwise component of (4.1) can also be neglected because it is O(ly/lx)
relative to the remaining terms. This simplification implies that the pressure can
be obtained by solving a Laplace equation only in the cross-flow.

After these simplifications, we can write the following two equations for the
perturbations of the streamwise velocity u, and vorticity ωx,

∂tu + U∂xu + v∂yU = [νT ∂zz + ∂y(νT ∂y)] u, (4.3)

∂tωx + U∂xωx + ∂xw ∂yU = [νT ∂zz + ∂y(νT ∂y)] ωx + [ν ′

T ∂zz + ∂y(ν
′

T ∂y)] w, (4.4)

where ν ′

T (y) = ∂yνT (y). These two equations are completed with the continuity
equation

∂xu + ∂yv + ∂zw = 0, (4.5)

where in principle all the terms may be of the same order if the streamwise velocity
perturbation becomes much larger than the characteristic cross-flow perturbation.
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4.2. The linearized equations for elongated turbulent structures

4.2.1. Self-similar form of the linearized N-S equations

The Navier–Stokes equations only become invariant to scaling transformations
in the limit of infinite Reynolds number, and self-similarity is normally restricted
to that inviscid case. However, the turbulent eddy viscosity model used for the
logarithmic region does not introduce any fixed length-scale, opening the possibility
of invariance to scale transformations. Here we derive the self-similar form for the
linearized equations (4.3) and (4.4), but the introduction of the non-linear advection
terms (u∂x, v∂y and w∂z) results in similar expressions.

We consider an idealized logarithmic layer with ∂yU = uτ/(κy) and νT = κuτy.
In that case, (4.3) and (4.4) can be expressed in self-similar form using the velocity
ũ = u/u0, the rescaled streamwise vorticity ω̃x = tωxuτ/u0, and the coordinates

χ =
x − U(y0)t

uτ t
− 1

κ

[
log

(
uτ t

y0

)
− 1

]
, η =

y

uτ t
, and ζ =

z

uτ t
. (4.6)

Here y0 is an arbitrary wall distance that fixes the origin of the new streamwise
coordinate, and the free scale factor u0 appears due to the linearity of the equations.
The self-similar equations for ũ and ω̃x are

−(χ∂χ + η∂η + ζ∂ζ)ũ + κ−1
(
log(η)∂χũ + η−1ṽ

)
= κ (∂η(η∂η) + ∂ζ(η∂ζ)) ũ, (4.7)

−(χ∂χ + η∂η + ζ∂ζ)ω̃x + κ−1
(
log(η)∂χω̃x + η−1∂χw̃

)
=

κ (∂η(η∂η) + ∂ζ(η∂ζ)) ω̃x + κ (∂ηη + ∂ζζ) w̃. (4.8)

These equations suggest that a typical burst emanating from a wall distance y
within the logarithmic layer spreads linearly with time in the cross-stream directions,
and as t log t in the streamwise direction. The linear spreading in the cross-stream
directions is caused by the turbulent eddy viscosity, and is reflected in the scaling
of η and ζ in (4.6). The faster streamwise spreading comes from the effect of the
mean shear, and can be deduced from the time dependence of χ in (4.6). While
decaying and spreading, the burst stirs the mean profile and generates a streamwise
velocity streak which is larger and lives longer than the original burst. This process
is invariant to scale transformations, and it may therefore occur at all wall distances
in the logarithmic layer, provided that there is some mechanism that creates the
bursts. These ideas should not be restricted to the limit of elongated structures,
because the set of variables given in (4.6) can also be used to express (4.1) in self-
similar form. In fact, del Álamo et al. (2004), Hoyas & Jiménez (2006) and del
Álamo et al. (2006) provided evidence for self-similar kinematics in a wide range of
scales within the logarithmic region of turbulent channels up to Reτ = 2003.

The arguments presented above provide some theoretical support for models
based on self-similar hierarchies of eddies, such as the attached eddy theory of
Townsend (1976), or the hairpin forest model of Perry & Chong (1982). Those
models are essentially based on two assumptions: linearity (to use a superposition
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4. Linear dynamics in the logarithmic layer

of elementary solutions) and self-similarity (to relate these elementary solutions to
each other by a scale factor). We have shown at the beginning of §4.2 that the
linear approximation is appropriate for the structures of the logarithmic region of
wall-bounded flows. Equations (4.7)-(4.8) suggest that self-similarity is compatible
with the averaged structures of the logarithmic region.

From now on, we will put aside the self-similar formulation presented here, to
move to the numerical resolution of the linearized Navier–Stokes equations (4.3)-
(4.4) in a logarithmic layer with very large Reτ .

4.3. Numerical solution

In the present section we describe the numerical scheme developed to solve (4.3)-
(4.5) for the evolution of a wall-attached burst in the logarithmic region of a plane
channel flow with a virtually infinite Reynolds number Reτ = uτh/ν = 109. The
mean velocity and eddy viscosity profiles are prescribed using a modification of the
Cess’s (1958) formula for turbulent channels,

νT

ν
=

β

2

{
1 +

K2Re2
τ

9

[
2Y − Y 2

]2 [
3 − 4Y + 2Y 2

]2
[
1 − e(

−Y Reτ

A )
]2

}1/2

+
2 − β

2
,

(4.9)
where Y = y/h, and the molecular viscosity ν is already included. The parameter
β ∈ [0, 1] controls the fraction of the Reynolds stresses that is assumed to be gen-
erated by the background turbulence. The rest is assumed to come from the linear
superposition of eddies with sizes of the same order of magnitude as the structures
being computed. Note that this does not imply that a single burst has to generate
the full missing fraction (1 − β) of the Reynolds stress. The limit β = 1 recovers
the original formula proposed by Cess, while β = 0 would imply that νT = ν, and
that the background turbulence is completely neglected. The mean velocity profile is
always obtained from the full νT (β = 1), assuming that the total shear stress is inde-
pendent of y, as in the limit of Reτ → ∞. It then follows that ∂yU = uτ

2/νT (β = 1).
The constants A and K have been adjusted by a least square fit to the mean ve-
locity profile of the turbulent channel simulated by Hoyas & Jiménez (2006), with
Reτ = 2003.

The spatial discretization uses Fourier series in z and the same fourth-order,
spectral-like, compact finite differences presented in chapter 2 for the wall-normal
direction, y. Since the solution is smooth in the streamwise direction, we have
employed second-order finite differences with a staggered grid in this direction. The
time integration is performed with a third-order, semi-implicit Runge-Kutta scheme
of the family derived by Spalart et al. (1991). The reference system is advected
at the constant velocity U(y0), where y0 is the position of the center of the initial
wall-attached burst.

From the self-similar analysis presented in §4.2.1, we can expect the solution
of (4.3)-(4.5) to spread in space as time advances. For this reason, we use large
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4.3. Numerical solution

domains in the linear simulations, with Ly ×Lz/2 = 60y0×23y0. We use a stretched
mesh in the wall normal direction, to ensure that the wall-normal velocity gradient
is well captured by the compact finite differences. The resolution in z is fixed in all
the cases to ∆z = y0/6, so that the burst is initially described by 10 points.

Note that the spreading of the initial burst in the streamwise direction will be
higher than in y or z, since it is driven by the mean velocity gradient. Because of
this, the streamwise length of the computational box is increased in time following
the law Lx = 35y0 + 20uτ t, evaluated at discrete increments of ∆t = 5y0/uτ . The
number of points in x is kept constant when the length of the box is increased. The
expanded u and ωx fields are obtained by linear interpolation, padding with zeros
the new part of the domain. Since Lx is increased before the disturbance reaches
the x-boundaries, this procedure ensures that the solution is not affected by the
boundary conditions at the inlet and at the outlet, while avoiding the numerical
cost of tracking the whole evolution of the initial burst in a large domain with a
high resolution.

We use the standard non-slip and impermeability conditions for the velocity at
the wall, and u = ωx = 0 and ∂xu = ∂xωx = 0 respectively at the inlet and at the
outlet of the domain. Since the latter is necessarily truncated in the wall-normal
direction, we replace the boundary conditions at y → ∞ with

∂yĝ(Ly) = −kz ĝ(Ly), (4.10)

where ĝ stands for the spanwise Fourier mode of either u, v, w or ωx, and kz is the
corresponding spanwise wavenumber. This boundary condition is obtained from the
asymptotic form of (4.3)-(4.4) in the limit νT → ∞. In that case, the remaining
equation for u and ωx is a homogeneous Laplace equation, whose solutions are
ĝ ∼ e±kzy. Discarding the growing exponential, we obtain (4.10).

Finally, the initial condition considered here is a wall-normal burst associated to
a compact pair of counter rotating vortices. Its analytical expression is

ψ =
u0zy

2

y2
0

exp

(
− x2

4y2
0

− y2

y2
0

− z2

y2
0

)
, (4.11)

where u = (0, ψz,−ψy). This flow pattern resembles the characteristic wall-attached
eddy found by Moin & Moser (1989) in the proper orthogonal decomposition (POD)
of the velocity field from an Reτ = 180 turbulent channel. It is also similar to
the average transverse velocity field conditioned to the presence of wall-attached
vortex clusters found by del Álamo et al. (2006) in the logarithmic layer of turbulent
channels up to Reτ = 1900. A similar velocity structure was used in Zhou et al.

(1999) as initial condition, although in that case the structure had been extracted
from the application of the linear stochastic estimation method to the Reτ = 180
turbulent channel of Kim et al. (1987). In the present case, the length and width of
the initial burst in (4.11) are proportional to its wall distance, y0. We have chosen the
coefficients of (4.11) so that the streamwise and spanwise aspect ratios of the initial
burst, measured as the region where ωx < 0.1 max(|ωx|), are approximately equal to
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4. Linear dynamics in the logarithmic layer

3 and 1.5, in agreement with the experimental values reported by del Álamo et al.

(2006). Finally, due to the linearity of equations (4.3) and (4.4), the free velocity-
scale factor u0 appears explicitly in the expression of the initial condition, but it can
be discounted.

4.4. Results from the linear model

We present here results from our linear model for initial bursts at y+
0 = 25, 50,

100, 200, 400 for a virtually infinite Reynolds number (Reτ = 109) and different
values of β in (4.9). Since the problem is roughly self-similar, the resolution in the
wall-parallel planes has been kept proportional to y0, using Nx = Nz = 192 grid
points to discretize the numerical domain. The grid resolution and stretching in the
wall-normal direction has been kept constant in wall units, to guarantee the proper
resolution of the wall-normal derivatives in the buffer region. The number of points
used in the y-direction is Ny = 94, 130, 185, 274, 423 for the corresponding y+

0 given
at the beginning of the paragraph. The results of the linear simulation are relatively
independent of the initial position, shape and orientation of the vortices in (4.11),
consistent with the self-similar evolution of the burst described below.

4.4.1. Energy growth and lifetimes

The evolution of the initial condition (4.11) can be characterized by the stream-
wise and cross-flow kinetic energies,

Qu(t) =
1

2

∫

V

u2dV and Qvw(t) =
1

2

∫

V

(v2 + w2)dV, (4.12)

where V is the volume of the computational domain. These energies are shown in
figure 4.1(a), normalized with the total initial energy Q0 = Qvw(0) and computed
for β = 1. Consistent with the analysis in the previous section, the kinetic energies
of bursts emanating from different wall distances only depend on τ = tuτ/y0 for y0 in
the logarithmic region. Initially, all the energy of the bursts is contained in v and w,
but these cross-flow disturbances decay more than one order of magnitude during
their first turn-over time, τ ≈ 1. During this process they generate streamwise
velocity fluctuations through the lift-up term v ∂yU in (4.3). After the maximum
of Qu, both energies decrease, although the rate of decay of Qu is slower. Note
that when the burst has decayed to the level of Qvw/Q0 ≈ 10−2 (τ ≈ 2), between
10 − 30% of the initial energy still remains in the u-structure.

This behavior is similar to the transient growth of the Orr–Sommerfeld–Squires
modes in channels with turbulent profiles and eddy viscosities, which was computed
by del Álamo & Jiménez (2006). However, the energy amplifications in figure 4.1(a)
are smaller than those reported by del Álamo & Jiménez (2006) for logarithmic-layer
modes, because the initial condition employed here (4.11) excites all the eigenfunc-
tions of the Orr–Sommerfeld–Squires operator, instead of only the most amplified
ones.
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Figure 4.1: (a) Evolution of the streamwise energy Qu/Q0 ( ) and the cross-flow
energy Qvw/Q0 ( ) for β = 1.0. × , y+

0 = 25; 2 , y+
0 = 400. The closed circles

(•) correspond to Qvw/Q0 = 2700(3 + τ)−7.85. (b) Maximum of the streamwise energy,
max(Qu/Q0), as a function of y+

0 and β. Note that the abscissa is in logarithmic scale.
×, β = 0; 2, 0.3; ◦, 0.6; △, 1.0.

Figure 4.1(a) only shows cases with y+
0 = 25 and 400, but the evolution of

Qvw/Q0 for y+
0 > 50 closely matches the case with y+

0 = 400 shown in the figure.
The evolution of Qu/Q0 is qualitatively the same for all y0, although the peak values
of Qu, shown in figure 4.1(b), depend on the initial size of the burst. For β > 0,
the maximal amplifications decrease with the size of the burst, since ∂yU is higher
in the buffer layer than in the logarithmic region. Once y+

0 & 100 the bursts are
essentially embedded in the logarithmic region, and their peak streamwise energies
no longer depend on their sizes.

It is important to assess the influence of β on the velocity perturbations. This
parameter represents the fraction of the Reynolds stress that is modeled by the eddy
viscosity, as explained above. Figure 4.1(b) shows that max(Qu/Q0) increases by
more than one order of magnitude when β varies from 1.0 (△) to 0 (×), regardless
of y+

0 . Also, while β > 0 smaller bursts have higher max(Qu/Q0), but for β = 0
the peak values are roughly proportional to the size of the burst. These changes
have to be related to the time needed by νT to dissipate the initial burst, since
the parameter β does not appear explicitly in the lift-up term v∂yU . Figure 4.2(a)
shows the time needed to reach the peak of Qu/Q0, for different values of β and y0.
It is clear from the figure that Tmax ∝ y0/uτ for β > 0, while Tmax ∝ y2

0/ν when the
molecular viscosity is used (β = 0). The transition between the turbulent (β > 0)
and the laminar (β = 0) behavior is rather sharp, and even for the case β = 0.3, the
increase in Tmaxuτ/y0 when y+

0 varies from 25 to 400 is only a factor of 1.4.

The change on the time scale of the burst is related to the introduction of a fixed
length scale by the molecular viscosity, breaking the self-similarity of the governing
equations (see §4.2.1). Also, the molecular viscosity is much weaker than the tur-
bulent eddy viscosity, and a burst that would be quickly dissipated in short times
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Figure 4.2: (a) Scaling of the time to maximum growth, Tmax. The abscissa of the plot
is in a logarithmic scale. ×, β = 0; 2, 0.3; ◦, 0.6; △, 1.0. (b) Integral times for the linear
model and for turbulent channel flows. The circles correspond to T+

l for β = 0.6. The

lines correspond to T+
v for the turbulent channels of del Álamo et al. (2004), with the

correspondence y ∼ 2y0. , Reτ = 550. , 950. , 1880. The dotted straight
line has dT+/dy+

0 = 0.35.

by the small scale turbulence survives in the laminar flow for much longer times.
In order to compare the evolution of the burst of the liner model with those

present in real turbulent flows, we analyze the integral times of the wall-normal
velocity component. For the linear model we have

Tl =
1

Qv(0)

∫
∞

0

Qv(t)dt, (4.13)

where Qv is analogous to the Qu defined in (4.12). For the DNS channels we use
the definition of integral time given by Wills (1964),

Tv(y) =

∫∫
φvv(kx, kz,−ckx, y)dkxdkz∫∫∫
φvv(kx, kz, f, y)dkxdkzdf

, (4.14)

where φvv(kx, kz, f, y) is the wavenumber-frequency spectrum of the wall-normal
velocity component, kx and kz are the streamwise and spanwise wavenumbers, f is
the frequency and c is the phase velocity of each wave component. The integrals
in (4.14) are performed over the spectral bands y/2 < λx < 2h and y/4 < λz < h,
which correspond to the range of sizes of the wall-normal bursts. We have seen in
the previous chapter that the density of those bursts decreases faster than y−3, so
that a given wall-distance y, φvv is dominated by the contribution of eddies of height
y. Since the initial conditions of the linear simulations have a height approximately
equal to 2y0, we use the correspondence y ∼ 2y0 to compare Tv(y) with Tl(y0).

These integral times are presented in figure 4.2(b), for turbulent channels with
Reτ = 550 − 1880, and for the linear case with β = 0.6. We have selected that case
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4.4. Results from the linear model

because it is the one that matches best the slope of the turbulent cases, dT+/dy+
0 =

0.35. Guala et al. (2006) and Balakumar & Adrian (2007) showed that the fraction
of Reynolds stresses contained in structures with lx/ly . 5 in the logarithmic layer
of turbulent pipes, boundary layers and channels is about 30%. The selected value
β = 0.6 is reasonably close to that fraction, taking into account the crudeness of
the eddy viscosity approximation. Both T+

l and T+
v grow linearly with time, and

the differences in the origin of the curves are due to the different initial transients
of real turbulent bursts and those in the linear model. Although not included in
figure 4.2(b), the integral times of the linear case for other values of β > 0 are also
proportional to y+

0 , although with different slopes. For β = 0 we obtain T+
l ∝ (y+)2,

in agreement with figure 4.2(a).

The differences between the evolution of disturbances in laminar (β = 0) and in
turbulent (β > 0) environments cast doubts on the validity of the of extrapolating
laminar vortex dynamics to the turbulent logarithmic and outer regions. Other
works for laminar flows indicate time scales comparable to those shown in figure
4.2(a) for β = 0, which are longer and which scale differently than those reported
for β > 0 and for real turbulent flows. For instance, the times to maximum growth
reported by Suponitsky et al. (2005) for a uniform shear flow are TmaxΩ & 6, where Ω
is the mean shear and the Reynolds number is Re = Ωy2

0/ν = 40. If we assume that
Ω = uτ/κy, this would correspond to τmax & 2.5 for y+

0 = 16. Also, Zhou & Adrian
(1995) report that weak initial hairpins with sizes 2y+

0 ≈ 100 dissipate (without
generating new individuals) in t+ ≈ 500, corresponding to τ = t+/y+

0 ≈ 10. In a
later paper Zhou et al. (1999) report that increasing the initial amplitudes of those
hairpins leads to generation of secondary hairpins in times t+ ≈ 70 − 110, which
corresponds to τ ≈ 1.5−2. Had those hairpins been embedded in the weak turbulent
environment given by β = 0.3, their initial cross-flow energy would have decreased to
less than 30% of its initial value by that time (less than 10% for β = 0.6), probably
precluding their regeneration.

4.4.2. Self-similarity

As discussed in §4.2.1, the system (4.3)-(4.5) admits self-similar solutions, at
least within the logarithmic region. Self-similarity implies that there is no fixed
length or time scale, so that there are no natural scales for E and t. In that case,
any scaling transformation of the latter (τ → ξ = τ/τc) should result at most in a
scaling transformation of the former,

Q(τ) = S(τc)F (ξ), (4.15)

Since Q(τ) has to be independent of τc, differentiation results in

dS(τc)

dτc

F (ξ) =
S(τc)τ

τ 2
c

dF (ξ)

dξ
, (4.16)
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4. Linear dynamics in the logarithmic layer

which can be integrated to the power law

Q(τ)

S(τc)
∼ F (ξ) ∝

(
τ

τc

)−C

, (4.17)

where S(τc) and dS(τc)/dτc have been included in the constant C, and the minus
sign has been selected by convenience. A power law has been included in figure
4.1(a), and it describes reasonably well the evolution of the cross flow energy for
τ & 1, suggesting that the evolution of the burst becomes self-similar after that
time. The same result is obtained for Qu, although in that case the presence of
the energy production term, −uv∂yU , leads to a slightly lower absolute value of the
exponent. For β = 1 and y+

0 = 400 we have C = 6.7 for Qu/Q0 and C = 7.85 for
Qvw/Q0.

The self-similarity of the solution to (4.3)-(4.4) can also be verified by considering
the time evolution of the centroid of the v2 distribution,

xv = (xv, yv, 0) =

∫
xv2dV∫
v2dV

. (4.18)

The two cases with β > 0 and y+
0 = 400 presented in figure 4.3(a) show that

the evolution of yv/y0 becomes proportional to τ for τ & 1, consistent with the
self-similar variables defined in (4.6). The symbols in figure 4.3(a) indicate the
instant when Q/Q0 ≈ 10−2 and beyond which the burst or the streak has effectively
disappeared. The results for cases with y+

0 > 50 agree well with case y+
0 = 400.

Although not important from the dynamical point of view, even the case with y+
0 =

25 exhibits a yv/y0 ∝ τ when the bursts reach the logarithmic region (yv/y0 & 3 →
y+

v ≈ 75), suggesting that even small disturbances coming from the buffer layer
would become independent of the wall after long enough times. Note, however, that
the energy in those bursts would be negligible by that time.

The wall-normal migration velocity of the centroid varies little with y+
0 for y+

0 >
50, but it increases considerably with β. However, this increase is roughly balanced
by the decrease in the lifetimes, so that the size of the initial burst always increases
by a factor of about 2 before its cross-flow energy vanishes. As shown in figure
4.2(a), the lifetimes of the cases with β = 0 are proportional to y2

0/ν, and although
not shown in figure 4.3(a), the dotted line corresponding to β = 0 reaches yv/y0 ∼ 2
for τ ∼ 400.

Figure 4.3(a) also includes the evolution of yu/y0 for β = 0.6, defined analogously
to (4.18) but for the streamwise velocity. It can be observed that yu grows slower
than yv, remaining closer to the wall. This is because the mean shear is higher in
that region, and the amplification is correspondingly larger.

We define the wall-normal distribution of the energy,

eu(t, y) =

∫∫
u2dxdz and evw(t, y) =

∫∫
(v2 + w2)dxdz, (4.19)

where the volume integrals of (4.12) have been replaced by integrals over wall-
parallel planes. These energies are presented in figure 4.3(b), normalized with their
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Figure 4.3: (a) Time evolution of the wall-normal position of the centroids of the v2 and
u2 distributions, for different values of β’ and initial sizes of the bursts, ◦ is y+

0 = 25 and
△ is y+

0 = 400. , yv for β = 0.6; , yv for β = 1.0; , yu for β = 0.6; · · · · · · ,
yv for β = 1.0 and y+

0 = 400. (b) Evolution of the wall-normal distribution of energy,
normalized with its instantaneous value at y = yv, for y+

0 = 400. , evw; , eu.
The levels (from top to bottom) are (0.03, 0.125, 0.5, 2). The dotted line is y0/yv(τ).

instantaneous values at y = yv. The case shown in the figure is y+
0 = 400 with

β = 0.6, but the same results are obtained for y+
0 = 200 and y+

0 = 100, supporting
that the evolution of the burst is independent of its initial size. Self-similarity is
indicated by approximately horizontal iso-lines of evw for τ & 2 and of eu for τ & 1.
This suggests that the u-structures quickly forget about the initial disturbances
from which they originate, consistently with the estimations given in §4.2, and in
agreement with the results obtained by Suponitsky et al. (2005) in a laminar sheared
flow.

4.4.3. Velocity structure

Next, we analyze the structure of the velocity disturbances obtained from our
linear model. For this purpose we use the velocity field 〈u〉L, which is the time
average of u computed in the interval τ ∈ (0.1, 6) and expressed in the reference
frame r = (x−xv)/yv. Note that r is an experimental realization of the self-similar
variables defined in (4.6). Because of the approximate self-similarity of the solution,
〈u〉L resembles the instantaneous realizations of u for long enough times. Figure
4.4 compares 〈u〉L for y+

0 = 100 and β = 0.6, to the averaged velocity field 〈u〉
conditioned to a vortex cluster, as described in §3.5. The latter is computed by
averaging the velocity field around attached vortex clusters with maximal heights
in the range 100 < y+

max < 300, extracted from a turbulent channel with Reτ =
950. The averaged 〈u〉 is computed in the reference frame r = (x − xc)/yc, where
xc is the center of the box that circumscribes each attached cluster. The figure
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Figure 4.4: Structure of the velocity field around a burst. The line contours represent
the average velocity field from our linear calculation, 〈u〉L, for y+

0 = 100. The shaded
contours represent the average velocity field conditioned to attached vortex clusters (see
text for details). In both cases, the levels plotted are (0.15, 0.4, 0.75) times the maximum
wall-normal velocity. (a) Streamwise and (b) wall-normal components in the symmetry
plane, rz = 0. (c) Streamwise component in the plane rx = 0. The arrows represent
the cross-stream velocities from the linear model (right half of the plot, rz > 0) and the
turbulent channel (left half of the plot, rz < 0), both normalized with the maximum of the
wall-normal velocity component at rz = 0. (d) Vortex visualization using the Q-criterion
(Hunt et al., 1988). The plotted surface is Q = Qrms.

shows that the velocity structure of the linear model is approximately the same
observed in turbulent channels: a low-momentum region (figure 4.4a) generated by
a wall-normal ejection (figure 4.4b) flanked by a pair of hairpin-like quasi-streamwise
vortices (figures 4.4c and 4.4d). The same structure is obtained for other values of
β and y0.

The most obvious difference between our linear solution and the simulation data
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appears in the streamwise velocity downstream (to the right) of the burst in figure
4.4(a), where 〈u〉L ≈ 0 beyond rx ≈ 3 while 〈u〉 remains non-zero for the whole
length of the box used for the conditional averaging (rx = 20). This difference will
be discussed in detail below. Apart from that, other smaller differences are worth
noting. Figure 4.4(b) shows that 〈v〉L is located slightly upstream (to the left) of
〈v〉. The cross-flow visualization of the averaged streak presented in figure 4.4(c)
shows that the high-speed regions around rz ≈ ±1 are slightly stronger in our linear
model than in the turbulent channel. The same occurs for the wall-normal and
spanwise velocity components, represented in that figure by the arrows, especially
underneath the high-speed streaks. Note that the two halves of figure 4.4(c) do not
contain the same data. While the half with rz < 0 shows 〈v, w〉, the half with rz > 0
presents 〈v, w〉L. Although low-Reynolds number effects cannot be discarded, these
discrepancies may be caused by large-scale inhomogeneities in the turbulent eddy
viscosity sampled by the burst. Toh & Itano (2005) and Hutchins et al. (2007) have
reported that the turbulence intensity below high-momentum structures is higher
than average, leading to a locally-increased turbulent dissipation. Such non-linear
effect is absent from our model, which might lead to stronger high-velocity streaks
and transverse motions near the wall.

The absence of the downstream part of the u-structure of the linear model shown
in figure 4.4(a) was anticipated by del Álamo et al. (2006). They noted that the
velocity difference between the advection velocity of the burst and the upper part
of the logarithmic region was not large enough to generate the long, downstream
wakes within the observed lifetimes of the bursts. Based on those observations, they
proposed that several burst should be associated with a single wake, with larger
individuals in front of smaller ones. Unfortunately, instantaneous realizations of
the flow are not conclusive on that point, as can be observed in figures 4.5 and 4.6.
They show instantaneous realizations of the sizes of the boxes circumscribing clusters
that intersect several (x, y) and (x, z) planes, superimposed on streamwise velocity
fluctuations. Only the negative fluctuations are shown. The results correspond
to the clusters extracted from a Reτ = 950 turbulent channel by del Álamo et al.

(2006). We can observe in the figure similar ramps as those observed by Adrian et al.

(2000). However, a clear ordering from small to large clusters is not discernible
in the figures, and even the instantaneous relationship between clusters and low-
momentum structures is inconclusive. Note that there is no guarantee that all
the clusters in the visualizations are being observed at comparable moments of their
lifetimes, and hence their particular relationship with the low-momentum structures
is unknown.

Figures 4.5 and 4.6 reinforce the idea of that dynamics of the clusters/bursts and
low-momentum structures can not be described by model based on instantaneous
hairpins. A description of the dynamics in an averaged sense, like the one presented
in this chapter, seems more suitable.
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Figure 4.5: Instantaneous visualizations of the negative streamwise velocity fluctuations
in a (x, y) plane of a turbulent channel with Reτ = 950. White is u+ > 0 and blue
is u+ < −3. The boxes circumscribing the attached clusters with y+

max > 100 that are
intersected by the planes are presented in black.
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Figure 4.6: Instantaneous visualizations of the negative streamwise velocity fluctuations
at y+ = 150, for a turbulent channel with Reτ = 950. White is u+ > 0 and blue is
u+ < −3. The boxes circumscribing the attached clusters with y+

max > 100 are presented
in black.
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Figure 4.7: Comparison of linear model for smooth and rough walls. (a) Maximum of the
streamwise energy, max(Qu/Q0), and (b) time to maximum growth, Tmax, as a function
of y+

0 and β. Note that the abscissa is in logarithmic scale. , smooth-walled U and
νT . , rough-walled U and νT . 2, β = 0.3; ◦, 0.6; △, 1.0.

4.4.4. Linear model over rough walls

It is interesting to note that the proposed linear mechanisms can also be adapted
to rough-walled flows. Chapter 3 shows that the properties of the bursts/clusters
and of their associated velocity fields are not changed when prescribed harmonic
disturbances are applied at the walls, destroying the near-wall energy cycle. We
tested the effect of a rough-walled mean velocity profile in the linear model by
introducing in (4.9) an extra additive constant (νW ) that takes into account the
extra dissipation introduced by the roughness elements. The parameters A, K and
νW for these rough-walled linear cases were adjusted using a least squares fit to
the mean velocity profile of the rough-walled channel labeled R2 in chapter 2, with
Reτ = 632 and a equivalent sand roughness k+

s = 129. As in the smooth-walled case,
the mean velocity profile used for the linear simulation is obtained for Reτ = 109, and
the same computational domain and discretization used for the linear computations
with smooth walls is used to solve the rough-walled cases.

In the linear models run with the rough-walled turbulent eddy viscosity, the
increase of the dissipation and the reduction of mean velocity gradient near the
rough wall weaken the fluctuations of u. As a consequence, small bursts have lower
maximal amplifications than larger ones, opposite to the trend found over smooth
walls (see figure 4.7a). As the size of the burst increases, the effect of the roughness
layer decreases, and the case with y+

0 = 400 has roughly the same max(Qu/Q0) in the
smooth- and the rough-walled cases. Figure 4.7(b) shows that this changes on the
maximum amplification also modify the time to maximum amplification, although
the effect on Tmaxuτ/ν is smaller than in max(Qu/Q0). Note that the ordinate in
figure 4.7(a) varies by a factor of 60, while in figure 4.7(b) it only varies by a factor
of 5.
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4.4. Origin of the bursts

When we focus on the velocity structure developed by the burst, we observe
that the wake upstream (to the left) of the burst is shorter in the rough-walled
cases, as shown in figure 4.8(a). The effect is the same reported in the velocity field
conditioned to tall attached vortex clusters over rough walls in chapter 3. Figure
4.8 includes 〈u〉 for that case. The agreement between the velocity structure from
the rough-walled linear model with that extracted from the fully rough channel is
comparable to that observed for the smooth-walled cases, supporting that the linear
generation of u-streaks from v-bursts in the logarithmic region is independent of the
wall details.

Note that the linear model does not include any direct effect of the roughness
over the structures of the logarithmic region. This effect is in fact weak in the
wall-disturbed channels, as discussed in chapter 3. Jiménez (2004) estimates that,
provided that the height of the roughness elements is smaller than h/40, more than
one half of the logarithmic region is free from the direct effect of the roughness,
which is the situation simulated by the rough-walled linear model studied here.

4.5. Origin of the bursts

In the previous sections we have shown that elongated u-streaks in the loga-
rithmic region can be linearly generated from localized wall-normal velocity bursts.
There is ample evidence to support that such bursts, modeled here by a pair of
counter-rotating vortices, are frequent enough in wall turbulence to be statistically
significant. Similar structures appear in the proper orthogonal decomposition of
Moin & Moser (1989), and in the linear stochastic estimation of Moin et al. (1987)
in low Reynolds number channels, as well as in the conditionally averaged struc-
tures of del Álamo et al. (2006) in channels at Reτ = 550 − 1900. Among the most
representative properties of those bursts we can find their self-similar distribution
of sizes across the logarithmic region (del Álamo et al., 2006), and their relative
independence on the details of the wall (see chapter 3). These properties are well
captured by the present linear model.

It is worth noting that the u-streaks associated with the bursts have typical sizes
much larger than those of the buffer layers streaks. Apart from this, the linear
generation of streaks by the interaction of the bursts with the mean velocity profile
is analogous to the part of the near-wall energy cycle in which the interaction of
the quasi-streamwise vortices with the mean velocity profile give rise to near-wall
streaks (Jiménez & Pinelli, 1999).

On the other hand we have seen that the bursts do not live long enough to
explain the observations of del Álamo et al. (2006), and that the streaks that they
generate are shorter than those in the conditional statistics. In particular most
of the downstream wake, which is the most prominent feature of the conditionally
averaged flow fields, is missing from the linear model. This suggests that the bursts
have to be generated within the streaks to which they are associated, roughly aligned
initially in the streamwise direction, and roughly with their observed sizes.

79



4. Linear dynamics in the logarithmic layer
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Figure 4.8: Structure of the velocity field around a burst with a rough-walled mean
velocity profile. The line contours represent the average velocity field from our linear
calculation, 〈u〉L, for y+

0 = 100. The shaded contours represent the average velocity
field conditioned to attached vortex clusters with y+

max > 200, extracted from the rough-
walled channel presented in previous chapters, R2. In both cases, the levels plotted are
(0.15, 0.4, 0.75) times the maximum wall-normal velocity. (a) Streamwise and (b) wall-
normal components in the symmetry plane, rz = 0. (c) Streamwise component in the
plane rx = 0. The arrows represent the cross-stream velocities from the linear model
(right half of the plot, rz > 0) and the turbulent channel (left half of the plot, rz < 0),
both normalized with the maximum of the wall-normal velocity component at rz = 0.
(d) Vortex visualization using the Q-criterion (Hunt et al., 1988). The plotted surface is
Q = Qrms.
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4.5. Origin of the bursts

The main remaining question is how are the bursts generated. Taking into
account the similarities between u-structures in the present model and those involved
in the turbulent cycle of the buffer region, the instability of the streaks appears as
a reasonable candidate for the origin of the logarithmic-layer bursts. The results
coming out from the linear model are not suitable for a stability analysis, since
these streaks are averaged structures, rather than instantaneous ones. Hence, we
will limit ourselves here to discuss the realizability of several instability mechanisms,
using previous results for viscous models of the near-wall streaks.

The most likely sources of instability are the shear layers that surround the low-
velocity streak along its sides and top. The easiest to analyze is the top layer, which
is approximately two-dimensional and therefore unaffected by the presence of the
mean shear. Its instability criterion should be close to the presence of an inflection
point in the total velocity profile. The other candidates are the lateral shear layers,
whose instability is controlled by the balance between a spanwise inflection point and
the wall-normal shear. Schoppa & Hussain (2002) analyzed the normal-mode and
transient-growth stability of synthetic buffer-layer low-speed streaks. They showed
that they are unstable to normal modes whenever θ = tan−1(∂zu/∂yU) > 50◦,
and that even marginally stable streaks are capable of significant transient growth,
leading to solutions which are very similar to the least damped normal modes.

In order to trigger the lateral or the top shear layer instabilities, the streaks
have to be quite strong. However, the streaks obtained in the linear model are
somewhat weak, as anticipated by figure 4.1. We can directly check the effect of
the linear streaks on the mean velocity profile by assigning them initial amplitudes
of the order of those observed in real turbulent flows. Figure 4.9 shows the total
velocity and its gradient in the symmetry plane of the burst, for a linear bursts with
y+

0 = 400 and an initial maximum wall-normal velocity of v+ = 2. The time shown
in figure 4.9 is τ = 1, close to the maximum amplification. It is clear that the effect
of the linear streak on the mean velocity profile is weak, and the averaged structures
coming out of the linear model are barely able to satisfy the instability criteria
presented in the previous paragraphs. Note that, because of the self-similarity of
the bursts and streaks within the logarithmic layer, this observation also applies to
bursts of all sizes with the same initial intensity.

We also have to consider the possible effects of the outer region on the logarithmic
layer. Del Álamo & Jiménez (2006) showed that the maximum transient growth for
the modes reaching into the outer region is stronger than for those mostly contained
within the logarithmic layer. In fact, previous analysis of the stability properties
of wall-bounded flows had only been able to obtain outer unstable modes (But-
ler & Farrel, 1992; Reddy & Henningson, 1993). The initial conditions leading to
maximally growing modes usually consist of pairs of counter-rotating streamwise
vortices that generate u-structures when they interact with the mean shear. We
have tested the effect of the outer region by running the linear model for a burst
with y+

0 = 400 and β = 0.6, but using the U and νT profiles of turbulent channels
with finite Reynolds numbers (Reτ = 2000, 4000 and 8000). When compared with
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4. Linear dynamics in the logarithmic layer

(a) (b)

(c) (d)

Figure 4.9: Realizations of the total velocity (U + u) (a and b) and of the total velocity
gradient ∂y(U + u) (c and d) at τ = 1. (a) and (c), at rz = 0. The data comes from our
linear model for the infinite long logarithmic layer, with y+

0 = 400, β = 0.6. The maximum
wall-normal velocity of the initial burst is v+ = 2. The dotted line in (b) is θ = 50◦.

the previously discussed case of an infinitely long logarithmic layer, the cases with
a finite Reτ are qualitatively similar, but their peak energy amplification increases
as Reτ decreases. This is a consequence of the increase of the lifetimes of the bursts
as they emerge into the outer region, where the turbulent eddy viscosity levels off,
and eventually decreases. Figure 4.10 shows the instantaneous velocity field of the
channel with Reτ = 2000 at maximum amplification, and we can observe that its
effect on the mean velocity profile is larger than for the case of an infinite long
logarithmic region.

Note that this scenario reverses the direction of causality in wall-bounded tur-
bulence. Instead of having bursts generated at the wall and rising towards the outer
layer, the suggestion is that only large streaks reaching above the logarithmic layer
become unstable, and create what is necessarily a very large burst. The sweep cre-
ated by that ejection then generates, or perhaps triggers, the structures that are
observed near the wall. The origin of large streaks and bursts would then have
to be sought in a cycle similar to that in the buffer layer, but involving turbulent
structures spanning the whole flow. This would be consistent with the shape of the
streaks created by the linear model, which are only created below the center of the
burst (see figures 4.4 and 4.8). The logarithmic layer would then only have a passive
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4.5. Origin of the bursts

(a) (b)

(c) (d)

Figure 4.10: Realizations of the total velocity (U +u) (a and b) and of the total velocity
gradient ∂y(U + u) (c and d) at τ = 1. (a) and (c), at rz = 0. The data comes from our
linear model for a finite channel with Reτ = 2000, with y+

0 = 400, β = 0.6. The maximum
wall-normal velocity of the initial burst is v+ = 2. The dotted line in (b) is θ = 50◦.

role, similar to the forward energy cascade across the inertial range in isotropic tur-
bulence. Exploring that possibility in detail must be attempted in future work, but
it should be mentioned that similar top-down scenarios have been proposed from
the meteorological community (e.g. Hunt & Morrison, 2000).

From the results presented in figures 4.9 and 4.10 is not possible to decide which
of the shear layers (top or lateral) are more likely to become unstable in the u-
streaks of the logarithmic region. This is an important question, since it determines
the shape of the streaks. The dominant instability in the buffer layer is sinuous,
associated with the lateral shear layers (Schoppa & Hussain, 2002), and the typical
structures leading to bursting in that region are also known to be sinuous (Stretch,
1990; Jiménez & Moin, 1991). On the other hand, a Kelvin–Helmholtz instability of
the upper shear layer (Skote et al., 2002) generates varicose oscillations of the streak,
consistent with many observations in the logarithmic and outer regions, such as those
by Robinson (1991b), Blackburn et al. (1996), Chong et al. (1998), Adrian et al.

(2000), Ganapathisubramani et al. (2003) and del Álamo et al. (2006). It turns out
that the averaged velocity fields conditioned to a burst do switch character above the
buffer layer. Consider figure 4.11, which was obtained from the channel by del Álamo
et al. (2006) at Reτ = 950. When the conditioning clusters are restricted to the
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4. Linear dynamics in the logarithmic layer

(a)

(b)

Figure 4.11: Streamwise velocity conditioned to clusters extracted from a turbulent
channel with Reτ = 950 (del Álamo et al., 2006). (a) Sinuous mode, conditioning clusters
having minimum and maximum wall-distances of y+

min < 20 and y+
max ∈ (10, 50). (a)

Varicose mode, y+
min < 20 and y+

max ∈ (100, 200). The black contours correspond to
〈u〉 = 0.

buffer region (figure 4.11a), the averaged velocity 〈u〉 at ry = 0 exhibits positive and
negative patches alternating along the streamwise direction. This is the footprint
of a sinuous deformation, with the two possible orientations superimposed by the
statistics. When the clusters are restricted to the logarithmic region (figure 4.11b),
the positive patches are aligned along the streamwise direction, consistent with a
varicose deformation. Note that other interpretations of these figures are possible,
such as a change in the distance among consecutive clusters along the streak, which
would appear as a series of low-velocity spots in the wake of one cluster, but each of
which would actually be due to a different cluster. An even simpler interpretation
could be that the higher perturbation background in the logarithmic layer smears
the sinuous signature, which is simply not seen.

Even so, a change in the dominant instability mode for the streaks would be
consistent with the analysis of Kawahara et al. (2003), who computed the first two
terms of the asymptotic expansion of the most unstable eigenmodes of a corrugated
vorticity sheet near a wall, in terms of the wavenumber. The varicose and sinuous
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4.5. Conclusions

eigenvalues were equal to lowest order, but the first order correction was more un-
stable for the sinuous mode near the wall, and for the varicose one away from it.
The effect was small, but its possible relation with the above observations deserves
further investigation.

4.6. Conclusions

We have described a mechanism that generates streamwise velocity streaks in
the logarithmic region of wall-bounded turbulent flows, starting with a initial wall-
normal velocity ejection or burst with cross-stream dimensions of the order of its
wall-distance. The analysis of the orders of magnitude of the terms in the Navier–
Stokes equations shows that the dynamics of both the burst and the streak are
linear, except for the initial creation of the burst which is outside this simplified
model. The main role of the non-linear interaction with the background turbulence
is to limit the growth of the structures, and that effect has been introduced in
the linearized equations with a turbulent eddy viscosity. Therefore, the present
linear model describes the ensemble-averaged behavior of the eddies, rather than
the evolution of any particular realization.

Although the basic magnitude of the subgrid eddy viscosity has been taken from
that required to create the mean velocity profile, we have paid special attention to
the effect of the fraction of the mean tangential stress that is carried by it. For that
purpose, we have varied the fraction of the subgrid stress from a purely laminar case,
in which only the molecular viscosity is active, to a fully turbulent one in which
all the tangential stress is carried by the eddy viscosity. From comparisons with
experimental results, the optimum subgrid percentage has been found to be about
60%, which is in reasonable agreement with experimental spectral information. Note
that, in the laminar limit, our model would be essentially a linearized version of the
non-linear laminar simulations by Zhou et al. (1999).

We have performed numerical simulations of the linearized equations in logarith-
mic layers at virtually infinite Reτ , so that the effect of the outer flow is neglected.
We have shown that when the initial condition extends above the buffer region the
evolution of the system quickly becomes self-similar, until the turbulent eddy viscos-
ity dissipates the burst in times comparable to its turn-over time. In that process,
the v-bursts are barely able to double their initial sizes, independently of the fraction
of the Reynolds stresses modelled by the eddy viscosity. This is in agreement with
the simulations of Zhou et al. (1999), where the hairpins only increase their initial
heights by about a factor of two.

The interaction of the burst with the mean velocity gradient generates an elon-
gated low-velocity streak that lives longer and decays slower. This u-structure is
located mostly upstream and below the burst, where the mean velocity gradient is
largest. The overall structure agrees well with the upstream part of the wakes re-
ported by del Álamo et al. (2006), but the downstream part of the latter is absent
in the linear model. This, and the lack of any obvious mechanism that would allow
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4. Linear dynamics in the logarithmic layer

bursts created in the buffer layer to grow to the potentially infinitely-larger scales
of the logarithmic region, leads us to conclude that the bursts have to be created
within the streaks to which they are statistically associated, and that they have to be
created with roughly the same size at which they are observed. The same conclusion
was reached from order-of-magnitude considerations by del Álamo et al. (2006). On
the other hand, the agreement between the lifetimes computed from the model with
those in turbulent channels, and the correspondence between the upstream parts of
the velocity structures in both cases, suggest that the present linear model is a fair
representation of the evolution of the logarithmic-layer bursts.

These conclusions contradict those in Zhou et al. (1999). In the first place, the
large difference between the lifetimes implied by the present model and those of the
hairpins in their laminar simulations casts some doubts on the applicability of the
latter to a turbulent case. Our results suggest that the perturbations due to the
background turbulence would smear out any ejection before the nonlinearity has
time to regenerate the burst. Our conclusion is that the hairpin trains observed in
simulations and in experiments have to be a consequence, rather than the cause of
the streaks (del Álamo et al., 2006), and that they would therefore be essentially
passive.

In fact, preliminary stability considerations have suggested that the streaks cre-
ated within the logarithmic layer by the burst are too weak to create new bursts,
even when the intensity of the initial conditions is chosen to be strong enough as
to be likely unrealistic. In that sense, the present model does not provide a viable
explanation for the whole regeneration cycle of wall turbulence outside the buffer
layer, or for the origin of the bursts. We have shown evidence suggesting that there
may be a change in the dominant deformation mode of the streaks away from the
wall, with sinuous modes being more important in the buffer region, and varicose
ones in the logarithmic layer.

Finally, we have shown that the peak amplification increases when the outer
region is included in the model, by considering a finite Reτ . This is caused by
the lower eddy viscosity encountered by the streak as it reaches the upper edge
of the logarithmic layer. We have suggested that this might provide an answer to
the conundrum about the regeneration cycle away from the wall, which would reside
predominantly in the outer region, while the logarithmic layer would be subordinated
to it. There is, as far as we know, very little direct evidence for such an scenario,
which would reverse the flow of causality commonly assumed for wall-bounded flows,
but we have noted that similar proposals have been made from the meteorological
community.
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Chapter 5

Conclusions and future work

The present thesis tries to shed some light on the inner-outer interactions in
wall-bounded turbulence, and their role in the dynamics of the flow. The main tool
used to investigate these interactions is the set of DNSes presented in chapter 2. In
the simulations performed for this thesis, the standard non-slip and impermeability
boundary conditions that are natural to smooth walls have been replaced by a
single-harmonic velocity disturbance with non-zero tangential Reynolds stresses at
the walls. We have shown that the effect of these disturbances is to perturb, and
eventually destroy, the near-wall energy cycle characteristic of smooth-walled flows.
The wall is populated by a pattern of locally-separated regions that interact with the
flow above them. As a consequence, the near-wall streaks and the quasi-streamwise
vortices are shortened, while the wall-normal and spanwise velocity fluctuations are
enhanced in the buffer region. The Reynolds stresses are enhanced near the wall,
where the mean velocity gradient is reduced, resulting in a lower mean velocity at
the upper limit of the wall-region.

We have argued that these modifications are typically encountered in turbulent
flows over rough walls, and the present boundary conditions have been interpreted
as a means of simulating the effect of wall roughness without having to deal with
the details of the flow around the roughness elements. The characterization of the
present results in terms of their equivalent sand roughness have indicated that one
of the cases is transitionally rough, while the rest are in the fully rough regime. We
have also discussed that the present DNSes can be understood as simulations of a
core flow without a wall region, in the same sense that the autonomous channel in
Jiménez et al. (2004) is a wall region without a core region.

Two complementary approaches have been used to analyze the data obtained
from the wall-disturbed simulations. The first one is a spectral analysis, focused
on the energy distribution among the different scales (chapter 2) and the second
one is a statistical comparison of the coherent structures of vorticity in the outer
region of wall-disturbed and smooth-walled cases (chapter 3). Both analyses are
complementary and provide a complete description of the flow.
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5. Conclusions

The most important result obtained from the spectral analysis is that the changes
produced by the wall-roughness are limited to the roughness sublayer, defined in
terms of the additional Reynolds stresses introduced by the wall forcing. We have
seen that the flow within this roughness sublayer is dominated by the wavenumbers
of the forcing and its harmonics. However, the spectral distribution of energy above
it is essentially the same found above the near-wall region of smooth-walled turbulent
flows. This result supports Townsend’s hypothesis and the classical theory, which
had been recently challenged by several experiments and simulations, like those by
Krogstad et al. (1992); Djenidi et al. (1994); Krogstad & Antonia (1994, 1999);
Bhaganagar & Kim (2003); Leonardi et al. (2003); Orlandi et al. (2003); Poggi et al.

(2003). Our results are also in agreement with other experiments and simulations,
like Perry & Abell (1977); Perry et al. (1986); Ligrani & Moffat (1986); Perry et al.

(1987); Raupach et al. (1991); Keirsbulck et al. (2002); Ashafarian et al. (2004);
Bakken et al. (2005); Flack et al. (2005).

However, some care has to be taken when claiming the independence of the
outer region on the details of the wall. We have shown in §2.5.1 that the wall
forcing is indeed able to modify the intensity of the global modes, which are the
largest structures of the outer region, correlated across the whole flow thickness.
The results obtained in the wall-disturbed simulations show that the changes in
the intensity are not accompanied by changes in the shape of these modes, nor in
changes in the correlation of their wall-normal and streamwise components, nor in
their advection velocities. Due to the limited Reynolds numbers of our DNEes, we
have used data from experimental turbulent flows over smooth and rough surfaces
to show that the velocity scale of those global modes is proportional to uτ log(Reτ ).
This velocity scale collapses the intensity of the streamwise velocity fluctuations at
a fixed wall-normal distance for a wide range of Reynolds numbers, several values
of the roughness functions, and for two canonical geometries, channels and pipes. It
has been discussed that such a dependence on the viscosity in the outer region of
fully rough turbulent flows is surprising, and that maybe the fully rough cases with
the higher Reτ are leveling off. Unfortunately, the data are not conclusive on this
matter. All that can be said is that in the hydraulically smooth and transitionally
rough regimes, the velocity scale of the global modes seems to be proportional to
uτ log(Reτ ). Higher Reynolds numbers are needed to elucidate the reasons for that
dependence, and also to describe the behavior of the global modes in fully rough
flows.

The second approach used in this thesis is the study of the statistical proper-
ties of clusters of vortices, in comparison to the smooth-walled data of del Álamo
et al. (2006). We have seen that, similar to the smooth-walled case, the clusters
extracted from the rough-walled simulations naturally separate in two distinguished
families: wall-detached and wall-attached. The former are dissipative eddies, with
sizes proportional to the Kolmogorov scale. We have seen that they resemble the
worms found in isotropic turbulence by Jiménez & Wray (1998), and that they are
not modified in the outer region by the wall forcing. In the roughness sublayer, the
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density of detached clusters varies slightly with respect of that observed in the buffer
region of smooth-walled flows.

We have shown that, similar to what is observed over smooth walls (del Álamo
et al., 2004), the attached clusters in the rough-walled cases are statistically asso-
ciated to wall-normal velocity bursts, which are understood here as the transient
ejection of fluid in a region that evolves coherently until it decays (Kim et al., 1971).
Even when the attached nature of these objects might suggest that they should feel
the changes in the wall, we have concluded in §3.4 that this is not the case. The
distribution of sizes of the attached clusters over rough walls exhibit the same self-
similar behavior previously observed for smooth-walled flows at higher Reynolds
numbers, and the probability density function of their shapes is only marginally
dependent on the wall details. We have also seen that the density of attached clus-
ters collapses for the smooth- and rough-walled cases, independent of the threshold
used to identify them. We have presented the average velocity fields conditioned
to the attached clusters that reach outside the roughness sublayer, and we have
seen that they agree quite well with those obtained for smooth-walled flows: a Λ-
vortex with a wall-normal velocity ejection between its legs, and a long cone-shaped,
low-momentum structure that extends downstream of the conditioning object.

However, besides the independence of the attached clusters on the details of the
wall, we have seen that the low-momentum structures associated with them are
modified upstream and below the burst, in the roughness sublayer. We have argued
these modifications are connected to the changes in the mean velocity gradient,
rather than to the direct effect of the wall-disturbances. We have also seen that the
wakes are quite similar in their downstream end, independent of the nature of the
wall. We have shown that they can not be much wider that the flow thickness, and
we have been able to connect them with the global modes discussed in chapter 2.

In the final part of this thesis we have put together all these observations into a
simple linear model, that is able to explain the generation of the low-speed streaks
of the logarithmic region. By analyzing the orders of magnitude of the terms in the
Navier-Stokes equations, we have shown in §4.2 that the dynamics of the attached
bursts are essentially linear. The characteristic time associated to the mean shear
is shorter than their eddy turnover time, so the Rapid Distortion Theory can be
applied. The only role of the non-linear interactions of the eddy with the background
turbulence and with itself is to set a bound on the growth of the structure. This
effect is introduced into the linear model by the coarse approximation of the eddy
viscosity, which has been proved to work for elongated structures in Jiménez et al.

(2001a), Jiménez et al. (2004), and del Álamo & Jiménez (2006).

Therefore, we have performed several simulations of a logarithmic region gov-
erned by the linearized Navier-Stokes equations with a eddy viscosity model. The
Reynolds number in these simulations is virtually infinite, and the outer region is
absent. The initial condition for those simulations has been provided by an idealized
version of the bursts obtained in the conditional average of the attached clusters in
§3.5. We have allowed the variation of the percentage of the total Reynolds stresses
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accounted by the eddy viscosity model, in order to evaluate its effect on the linear
model. It is important to bear in mind that the use of the eddy viscosity implies
that the linearized equations describe the evolution of an ensemble-averaged eddy,
rather than the evolution of any particular one. As a consequence, the linear model
presented in chapter 4 gives us information about average lifetimes, mean propa-
gation in the wall-normal direction and average sizes and shapes of the resulting
velocity structure.

The results of the linear simulations have shown that a localized burst can gen-
erate linearly an elongated upstream u-streak. This streak reaches its maximum
intensity soon after the initial burst is dissipated by the background turbulence. By
that time, the evolution of the system is roughly self-similar, and the burst has only
been able to double its initial size in the process. We have shown that the lifetimes
and the time-averaged structure of the eddies of the linear model agree reasonably
well with those extracted from turbulent channels, suggesting that this mechanism
is statistically significant in real turbulent flows. We have also applied the linear
model to the mean velocity profile obtained for rough-walled flows, showing that it
is robust and that it operates similarly over smooth and rough walls.

We have also discussed the absence of the downstream part of the low-momentum
wakes in the streaks generated by the linear model. This may be one of the most
interesting outcomes from the linear simulations, since it suggests that the cones
are the cause rather than the effect of the bursts. However, we have estimated that
the linearly generated streaks of the logarithmic regions are too weak to change the
stability properties of the local mean velocity profile, and the limited wall-normal
growth of the bursts cast doubts on their capability of populating the logarithmic
region of a high-Reynolds number flow by growing from the buffer region, where the
amplification is higher.

It is interesting to note that, when the effect of the outer region is introduced in
the linear model, the reduction of the turbulent eddy viscosity above the logarithmic
region allows for larger growths and consequently larger deformations of the local
mean velocity. This observation may provide an answer to the conundrum about
the generation of wall-normal bursts within the logarithmic region. Our suggestion
is that the causality assumed in most models of wall-bounded turbulence may be
reversed, and that the outer region may be critical for the dynamics of the logarith-
mic layer. The latter would be essentially a passive layer, subordinated to the outer
region.

It has also been discussed in this thesis how the instantaneous association of
clusters/packets and log-layer streaks is not as simple as suggested by the hairpin
packet model of Adrian et al. (2000). The instantaneous visualizations of a turbulent
channel with Reτ = 947 have shown that the organization of small to large packets
within a low-velocity streak is not conclusive, and that indeed there are many clus-
ters that appear outside of the streaks. Also, the results of the linear model indicate
that the non-linear process proposed by Zhou et al. (1999) can be hardly extrapo-
lated from the laminar simulations to the real turbulent flows, since the eddies are
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dissipated by the background turbulence in shorter times than required by the au-
togeneration mechanism to produce new hairpins. Finally, the hairpin packet model
suggests that these structures growth from the wall. However, the comparison of
the attached clusters over smooth- and rough-walls suggests that the cluster/bursts
do not come from the wall, or alternatively that they forget quickly about their
origins. We have noted that these two options do not exclude each other. Indeed,
while the lifetimes reported in del Álamo et al. (2006) support the first, the results
of the linear analysis presented in chapter 4 support the second.

The conclusion of the present thesis is that the dynamics of the logarithmic and
outer regions of wall-bounded turbulence are driven by wall-normal velocity bursts
generated at all heights. In average, these bursts pump low-velocity fluid from the
wall into the outer region, generating the very large low-velocity structures com-
monly observed in numerical simulations and in experiments. The higher energy
production and dissipation within the bursts results in the percolation of the clus-
ters, which are essentially markers of the bursts. The low-momentum structures
generated by these bursts are located upstream and below them, since the velocity
difference between the center of the burst and the wall is always larger than that
available above the burst. The lifetimes of the bursts are short, and several burst of
different sizes appear associated, in an statistical sense, with a single low-momentum
region. The hypothesis, which needs further confirmation, is that the largest bursts
are born in the outer region and generate the low-momentum structures of the log-
arithmic region, which trigger an unspecified instability that produce new (smaller)
bursts.

The future research that may follow the present thesis is the analysis of the
cascade of the logarithmic layer. Our results suggest that this cascade is fairly
independent of the wall, and that it might be tightly coupled with the dynamics
of the outer region. These issues require further research. Also, the lineal model
presented here is only able to explain the average generation of streaks by wall-
normal bursts. The generation of the wall-normal bursts is not understood, and it
might need a model based on instantaneous eddies, rather than in averaged ones.

Finally, it is interesting to note that the relative independence of the outer region
on the details of the wall should allow the use of the present wall forcing to emulate
real k-type roughness in complex geometries. For this purpose, the parameters of the
forcing (wavelengths and intensities) will have to be tuned to provide the appropri-
ate wall friction and a decrease in the activity of the buffer region equivalent to that
of the real roughness. Other details of the direct effect of the wall-roughness on the
flow should not be important. Also, the possibility of reproducing the behavior ex-
pected for d-roughness triggering an instability of the outer region with the boundary
conditions deserves further investigation. The instability analysis of Jiménez et al.

(2001b) showed that the formation of spanwise rollers over porous walls was related
to an instability of the outer region, involving both Kelvin–Helmholtz instability and
a neutral inviscid shear waves of the mean velocity profile. A similar mechanism
could be present in d-type rough-walled flows, a possibility that should be explored
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in the future.
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