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ABSTRACT

A new simulation of the zero-pressure-gradient turbulent

boundary layer is discussed, in the range Reθ = 620− 2140.

It is first shown that the initial several hundred momentum

thicknesses have to be discarded due to contamination from

the synthetic turbulent inflow, and this is traced to the long

lifetimes of the largest eddies.

Beyond the inflow region, the results agree well with pre-

vious simulations and with experiments, and are compared

to those of turbulent channels in the same range of Reynolds

numbers. It is found that the transverse velocities and the

pressure fluctuations are stronger in boundary layers. The

reason is traced to the extra production in the wake region,

and, ultimately, to the irrotational intermittency in that part

of the flow.

INTRODUCTION AND NUMERICAL SCHEME

The purpose of this paper is to present a new simulation

of the zero-pressure-gradient turbulent boundary layer in the

range Reθ = 620 − 2140, and to compare the results to

those of turbulent channels in the same range of Reynolds

numbers.

The simulation uses a high-resolution code described in

Simens et al. (2009), based on compact finite differences in

the streamwise (x) and wall-normal (y) directions, and on

dealiased Fourier expansions along the span (z). The lon-

gitudinal pressure gradient is controlled by removing fluid

through the upper boundary, and is kept very close to zero.

Numerical parameters are given in table 1. The turbulent in-

flow is synthesised by Lund et al’s (1998) recycling method,

in which the incoming flow is synthesised using data from a

downstream reference plane xref . Its consequences are care-

fully investigated, and it is found that the influence of the

inflow extends over 300θ0, where θ0 is the momentum thick-

ness at the inlet. This is almost 25% of the total simulation

length and, together with a shorter contaminated region near

the outflow, reduces the range of useful Reynolds numbers

to Reθ = 1050 − 2050 (δ+

99
= 440 − 720).

The reason for this long inflow length can be seen

in figure 1(a), which displays the autocorrelation function

Cuu(x; x′) of a band of spanwise Fourier coefficients of the

streamwise velocity, as a function of x. Besides the pri-

mary peak at x = x′ ≈ 1100θ0, there is a secondary one at

x = x′−xref ≈ 150θ0. Lund’s method can be interpreted as

a physical experiment in which eddies at the reference plane

are approximately (except for rescaling) copied to a different

position in the boundary layer (the inflow), and allowed to
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Table 1: Parameters of the boundary layer simulation. Lx,

Ly and Lz are the box dimensions along the three axes. Nx,

Ny and Nz are the corresponding grid sizes, expressed for z

in terms of collocation points. The resolution is kept of the

order of 4 − 6 wall units in the wall-parallel directions, and

at least 1.5 Kolmogorov lengths in y.

Reθ (Lx, Ly, Lz)/θ0 Nx, Ny, Nz

620–2140 1190 × 64 × 195 6145 × 360 × 1536
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Figure 1: (a) Correlation Cuu(x; x′) of the streamwise ve-

locity, as a function of x. (b) Secondary peaks of Cuu,

for various positions of the primary correlation point x′.

, from a shorter test simulation; , from the fi-

nal one. For both simulations the displayed correlations are

only computed for a band of spanwise wavenumbers around

λz/δ99 = 1.7, at y/δ99 ≈ 0.4. The dashed vertical line in

(a) is the location of the inflow reference plane for the full

simulation. The one is (b) is for the test case.
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Figure 2: (a) Friction coefficient versus Reynolds number.

Open symbols are experiments in Erm and Joubert (1991);
�, experiments by deGraaff and Eaton (2000); ,

present simulation. (b) Peak value of the three velocity-

fluctuation intensities, normalised to a common level for the

purpose of presentation. , u′; , v′; , w′.

The dashed vertical lines are the limits of the ‘useful’ range.

evolve. The correlation between the reference and the inflow

planes is always large, because one is almost a copy of the

other. When the correlation is computed with respect to

some location downstream of the reference plane, it reflects,

besides the local structure of the eddies, the correspondence

between eddies that have been advected from the reference

and from the inflow planes. This is the origin of the sec-

ondary peak in Fig. 1(a), and its decay with x′ − xref is a

measure of the Lagrangian decorrelation time of the eddies

as they are advected by the mean velocity. Both the range of

spanwise wavenumbers in figure 1, and the y location of the

correlations, have been chosen to maximize the amplitude of

the secondary peak. It is interesting that they correspond

to spanwise wavelengths of the order of λz/δ99,ref ≈ 1.5,

which is somewhat wider than, but of the same order as, the

large-scale structures identified in this region of experimen-

tal boundary layers by Tomkins and Adrian (2005).

The decay of the secondary peak as it moves away from

the inflow is shown in figure 1(b) for a shorter test simu-

lation, and is exceedingly slow. In this case, the reference

plane is much closer to the inflow than in the final simulation,

and the secondary peak has decayed very little by the time

it reaches it. A secondary peak from the final simulation, in

which the correlation of the inflow with the reference plane

is presumably lower than in the test case, because of the

larger rescaling ratio, is still clearly visible at x/θ0 ≈ 160.

It is known that the decay of the space-time velocity cor-

relation in boundary layers is much slower when the two

points are at ‘optimum’ separations than when they are at

the same location, showing that the eddies stay coherent

while being advected for much longer distances than their

lengths (Favre et al. 1958). Figure 1(b) suggests that eddies

would stay coherent for 200− 300θ, which is consistent with

the lengths found for the persistence of the tripping influ-

ence in Erm and Joubert (1991). The physical reason for

this long inflow length is that the turnover time for a large

eddy of size O(δ99), with internal fluctuations of the order

of the friction velocity uτ , is δ99/uτ , during which time the

eddy is advected by about U∞δ99/uτ . The implied accom-

modation lengths, of order U+
∞δ99, are consistent with the

values found above.

The practical consequence from the point of view of

numerical inflow conditions is that the first few hundred

momentum thicknesses of a boundary layer are controlled

by the inflow, and that they cannot be used to investigate

the structure of turbulence. Better inflow fields may be use-

ful to create more realistic flows, which could for example be

used to investigate the effects of turbulence on some other

aspect of the flow, but when the physics of the turbulence

itself is what is being investigated, the first few hundred mo-

mentum thicknesses essentially reflect the hypotheses made

for the inflow conditions. Note that this is a problem of any

inflow, not only of the recycling method, and that the inflow

length estimated here would have to be added to any other

length contaminated by local numerical manipulations (e.g.,

fringes).

The effect of the inflow in our simulation is shown in

figure 2(a), which displays the development of the friction

coefficient of the simulation, 2/U+
∞

2
, as a function of Reθ .

It is compared with the experimental results of deGraaff and

Eaton (2000), and with those of Erm and Joubert (1991),

which cover roughly the same range of Reynolds numbers.

The latter are significant because they were designed to test

the effect of the tripping, which is probably comparable to

the effect of the numerical inflow. All their measurements

were repeated with three different tripping devices, which

are plotted in figure 2(a) using different symbols. The result

was that the effect of the trip survives up to Reθ ≈ 1500, and

only becomes small beyond that limit. It is seen in figure

2(a) that the same is true in our results, which initially di-

verge widely from the experiments, but eventually settle into

excellent agreement with them at about the same location

at which the experimental scatter begins to decrease.

Figure 2(b) presents the evolution of the maxima of the

three velocity fluctuations intensities, normalized to a com-

mon level for display purposes, and shows even more clearly

the effect of the inflow. Following the previous discussion,

and the results in these figures, the useful limits of the sim-

ulation are chosen to be the vertical dashed lines in figures

2(a) and 2(b), although the experimental tripping results

suggest that even the first half of that range may retain

some residual inflow effects.

BASIC STATISTICS

Figure 3 presents streamwise mean velocity and fluctu-

ation intensities near the centre of the computational do-

main. Also included are the closest available experimental

Reynolds numbers from Erm and Joubert (1991), and the

simulation by Spalart (1988) at a roughly similar Reynolds

number. The agreement is excellent, especially with the ex-

periments.

The figure also includes data from a turbulent channel

from del Álamo and Jiménez (2003), and the agreement is

reasonable, except for the well-known weaker wake compo-

nent of the mean velocity profile of the channel. It is unclear

how to match Reynolds numbers between boundary layers

and channels. Jiménez and Hoyas (2008) concluded that a

reasonable choice was to use δ99 for boundary layers, and

the half-width for channels. We will do the same here, and

we will loosely refer to both quantities as δ. For example, for

the boundary layer and channel simulations in figure 3(b),

the two Reynolds numbers are δ+

99
= 580 and δ+ = 550.

The agreement in figure 3 does not hold for the spanwise

velocities intensity in figure 4(a), or for the wall-normal ve-

locities (not shown). Neither does it hold for the pressure

fluctuations in figures 4(b-c), all of which are stronger in

the boundary layer than in the channel. This was already

noted by Jiménez and Hoyas (2008) on the basis of incom-

plete experimental data, and could perhaps be interpreted
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Figure 3: (a) Mean streamwise velocity. , present

simulation at Reθ = 1350; , simulation in Spalart

(1988) at Reθ = 1410. Open symbols are as in figure 2,

Reθ ≈ 1350. •, numerical channel from del Álamo and

Jiménez (2003), δ+ = 550; , log(y+)/0.41 + 5. (b)

Root-mean-squared streamwise velocity. Symbols as in (a),

but Reθ ≈ 1550 (δ+

99
≈ 580), both for Erm and Joubert

(1991) and for the present simulation.

as that the reference length for boundary layers should be

taken larger than δ99. However, the value needed to match

the transverse velocities and pressures near the wall is about

1.7δ99, which is rather large, and fails completely to match

the profiles above the logarithmic layer. This can be seen,

for example, in figure 4(a), where the shapes of the profiles

of the two types of flows are very different. Using 1.7δ99
as a reference length for the boundary layers also spoils the

agreement in figure 3. There is indeed no reason why the

same lengthscale should work for all the variables, or across

the whole flow. The boundary layer thickness is associated

with the outer flow, and the most reasonable interpretation

of the results just discussed is the obvious one that the outer

flows of boundary layers and channels are intrinsically dif-

ferent.

This raises the question of which is the nature of those

differences, and the reason for them.

INTERMITTENCY

The main difference between boundary layers and inter-

nal flows, such as channels, is the presence of an irrotational

free stream in the former, and the consequent formation of

an intermittent layer. Intermittency is used in this paper

in the original sense of the large-scale coexistence of irro-

tational and rotational fluid near the edge of the turbulent

region (see for example Kovasznay et al. 1970). In particular,

we will define the intermittency coefficient, γ, as the fraction

of time that the flow is rotational at a given distance from the

wall. This quantity was popular in the early days of bound-

ary layer research, and continues to be used extensively in
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Figure 4: (a) Spanwise velocity fluctuation intensity. (b)

Pressure fluctuation intensity. (c) Pressure fluctuation in-

tensity at the wall vs. Reynolds number. Solid lines (nu-

merics) and triangles (experiments) are boundary layers,

and dashed lines and circles are channels and pipes. Var-

ious sources. Experimental Reynolds numbers are up to

δ+

99
= 7000 in boundary layers, and up to δ+ = 3000 in

channels.

turbulence modelling, because the irrotational fluid influ-

ences strongly the flow behaviour. Note that, unfortunately,

the same name has later been used for the completely unre-

lated concept of ‘internal’ intermittency, which refers to the

occurrence of occasional large velocity gradients. The mea-

surement of intermittency was difficult in early laboratory

experiments because it required the arbitrary estimation,

from one-dimensional velocity signals, of whether the flow

was irregular enough to be considered turbulent. In sim-

ulations it can be made more precise, because the vorticity

magnitude |ω| can be computed, and irrotational flow can be

defined as those points at which the vorticity vanishes. In-

stantaneous fields of the total vorticity of the boundary layer

show irrotational fluid patches that extend well inside the

turbulent region. If the probability density function (p.d.f.)

of |ω| is computed as a function of the wall distance, as in fig-

ure 5(a), those patches appear as a delta function at |ω| = 0,

and the probability contained in it is 1 − γ. The results are

plotted in figure 5(b), compared with older experimental val-
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Figure 5: (a) Probability density functions of the vorticity

magnitude in the boundary layer, Reθ = 1550, showing the

development of the irrotational delta at |ω| ≈ 0. ,

y/δ99 = 0.44; , 0.59; , 0.88; , 1.31. The

dashed vertical line is the limit used to define irrotational

flow, slightly larger than a single histogram bin. (b) Inter-

mittency factor. The solid line is the present simulation. ◦,

from experimental velocity measurements, Reθ = 3000 (Ko-

vasznay et al. 1970); △, from temperature measurements,

Reθ = 1100 − 4800 (Murlis et al. 1982).
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Figure 6: Conditional statistics from present simulation

(Reθ = 1550). , unconditional average; ◦, irrota-

tional; , rotational. (a) Mean streamwise velocity;

the chaindotted line is log(y+)/0.41 + 5.2. (b) Mean pres-

sure.

ues. The agreement is excellent, considering the differences

in Reynolds numbers and in identification techniques, and

shows that the irrotational fractions begins to be substantial

above y ≈ δ99/2. It dominates the flow for y & δ99.

The effect of the intermittency on the mean flow quan-

tities can be studied by means of two-dimensional p.d.f.s of

the different variables with |ω|, which allow us to compute

statistics conditioned to potential or rotational fluid. An

example is given in figure 6(a) which shows that the mean

velocity is much higher in the potential regions than in the

rotational one. This makes sense, because the potential flow

has to come from the free stream and, in the absence of

turbulence, can only be slowed down by large-scale pressure

gradients.

The high velocity of the irrotational regions is interest-

ing, because it provides a plausible explanation for why the

high-speed ‘wake’ component of the outer flow is stronger in

boundary layers than in internal flows, which are not inter-

mittent. In fact, it is easy to construct plausible arguments

for why intermittency should create steeper velocity profiles.

Consider a rough model in which the eddy viscosity is de-

termined by the properties of the turbulence, such as the

friction velocity and the size δ of the largest eddies, and

vanishes in the irrotational part. The tangential Reynolds

stress, which is fixed by the global momentum balance, has

to be carried by the turbulent fraction γ, so that the velocity

gradient in the turbulent regions has to increase by 1/γ. By

itself, this would not change the mean velocity gradient, be-

cause it only contributes to a fraction γ of the overall mean

velocity gradient. But there is also some velocity gradient in

the irrotational part, as seen in figure 6(a), and the result is a

net increase of the overall gradient over its non-intermittent

value,

∂yUinter = γγ−1∂yUnon−inter + (1 − γ) ∂yUpot. (1)

As we have already mentioned, the only possible interac-

tion between turbulent and irrotational fluid, and therefore

the only way to create irrotational velocity gradients, is

through the pressure. Its conditional averages are shown

in figure 6(b). The pressure in the potential flow is higher

than in the free stream, while that in the rotational one is

lower, and one could think of the incoming fast potential

flow as pushing into the slower rotational fluid ahead of it,

while pulling from the one behind. Closer inspection of the

conditional p.d.f.s of the pressure reveals that the interaction

is more complicated (figure 7a). The cores of the rotational

and irrotational distributions are very similar, and the rea-

son for the lower mean pressure in the turbulent regions is

that the potential p.d.f.s lack the strong negative tail char-

acteristic of turbulent distributions, usually associated with

the vortex cores. The positive pressure associated with irro-

tational strain behaves almost identically in both regimes.

It is interesting that the pressure fluctuation profiles in

figure 4(b) are roughly parallel in the boundary layers and

in the channels, and that their offset is due mostly to the

faster rise of the fluctuations across the intermittent layer of

the boundary layer. Pressure is a global quantity, especially

when due to spatially extended sources (Jiménez and Hoyas

2008), and it is tempting to identify the extra pressure fluc-

tuations as coming from the intermittent layer. It is seen in

figure 7(b) that the difference between boundary layers and

channels is also due to a weaker low-pressure tail in the lat-

ter. This suggests that at least part of the vorticity in the

boundary layer is organised into structures that are large

enough for their effect to be felt across the whole flow thick-

ness. It is again tempting to relate those structures to the
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Figure 7: Conditional p.d.f.s of the pressure as a function

of the wall distance. (a) , potential flow; ,

rotational. Boundary layer at δ+

99
= 580. (b) Unconditional

pressure p.d.f. , boundary layer; , channel at

δ+ = 550.

interfacial ramps and bulges mentioned by several authors,

and to speculate that they create stronger pressure fluctu-

ations in the boundary layer because they are interspersed

with the irrotational patches, but their true nature is still

uncertain, and continues to be the subject of investigation.

Other p.d.f.s, such as those of the velocities, differ too little

from those in channels at these Reynolds numbers to draw

useful conclusions.

ENERGY BALANCES

The previous discussion can be put in terms of en-

ergy fluxes, giving some extra insight into the dynamics

involved. The production of the streamwise velocity fluc-

tuations Puu = τxy∂yU , where τxy is the Reynolds shear

stress, is given in figure 8(a). It is compared with the same

quantity from the δ+ = 550 channel (Hoyas and Jiménez

2008). This is, of course, the full energy production term,

part of which gets redistributed to the transverse velocities

by the pressure term Πuu = u∂xp, which is also given in

the figure. Note that the energy budgets have been pre-

multiplied by y to emphasize their behaviours in the outer

layers.

It is clear that both the production and the pressure term

are larger in the boundary layer than in the channel, which

helps to explains why the pressure and the transverse veloc-

ities are also stronger. Since pressure preserves continuity, it

is not surprising that a by-product of its role in homogenis-

ing the differences between the streamwise velocities of the

turbulent and potential regions should be to enhance the

transverse fluctuations.

The two factors in the energy production are shown in-

dependently in figures 8(b) and 8(c). They show that the

main reason for the larger production in the boundary layers

is the steeper velocity gradient, which is the same thing as
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Figure 8: Energy budgets for the streamwise velocity fluctu-

ations. , present boundary layer, δ+

99
= 580; ,

channel, δ+ = 550. (a) Lines without symbols are the pro-

duction, τxy∂yU , and those with symbols are the pressure-

redistribution term towards the two other velocity compo-

nents. Note that the curves are premultiplied by y, to

emphasize the outer part. (b) Shear Reynolds stress (c)

Premultiplied mean velocity gradient.

the wake.

CONCLUSIONS

We have presented a new direct simulation of the zero-

pressure gradient boundary layer with a useful range Reθ ≈

1000 − 2000. After a long inflow region, caused by the

slow evolution of the largest eddies, the results are in excel-

lent agreement with older simulations and with experiments.

When they are compared with turbulent channels at simi-

lar Reynolds numbers, it is found that even the low order

statistics of boundary layers and channels differ consider-

ably, including in some cases the values within the buffer

layer.

In general the pressure and the transverse velocity fluc-

tuations are stronger in boundary layers than in channels,

while the streamwise fluctuation intensities are roughly sim-

ilar for both cases. The differences between the two flows

are traced to an excess of production of the streamwise tur-

bulent energy in the outer part of the boundary layer, which

is about 50% stronger than in the same region of channels.

This is mostly associated with the stronger mean velocity

gradient in the boundary layers, which is a reflection of the

stronger wake component of their velocity profiles.
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We have shown that the root of the stronger wake is the

intermittent irruption of potential flow in the outer part of

the boundary layer, which is absent in the channel. The

incoming irrotational flow, lacking the ability to effectively

mix momentum, retains the faster velocity of the free stream

relatively deep into the boundary layer. The extra velocity

gradient in the wake generates a more active production of

turbulent energy, most of which is distributed to the trans-

verse components by the pressure-strain term. This is the

reason for the stronger pressure fluctuations, and, since they

extend to the wall, also explains the observed differences in

the transverse velocities.

The differences between the statistics of boundary lay-

ers and internal flows are also found in experiments at

higher Reynolds numbers (Jiménez and Hoyas 2008), al-

though quantities such as the pressure fluctuations and the

energy budgets are not available for them. These results sug-

gest that caution should be exercised when using data from

different flows to document, for example, Reynolds number

effects in shear turbulence.
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