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Abstract. The temporal evolution of vortex clusters in a turbulent channel at Reτ = 950 is

studied using DNS sequences with temporal separations among fields short enough for individual

structures to be tracked. From the geometric intersection of structures in consecutive fields, we

build temporal connection graphs of all the vortex clusters, and, from their properties, define

main and secondary branches for each evolution. It is found that the average lifetime of the

clusters within a branch is proportional to the cube root of their maximum volumes, and that

they move approximately with the local mean velocity. Especial attention is paid to their wall-

normal displacement. It is found that their probability of moving away from the wall is only

slightly higher than that of moving towards it, and that this behaviour is independent of the wall

distance at which the branch is initially created. Finally, direct and inverse physical cascades

are defined, associated with the splits and mergers between structures. It is found that the

direct cascade predominates, but that both directions are roughly comparable.

1. Introduction

The efforts to describe wall-bounded turbulent flows in terms of coherent motions date at least
to the experiments in Kim et al. (1971). Those structures have played an important role in the
understanding of turbulence organization and its dynamics. Data from individual snapshots of
direct numerical simulations (DNS) allow us to study the three-dimensional statistical properties
of those objects, but their dynamics can only be fully understood by tracking them in time.
Although the temporal evolution has already been studied for small structures at moderate
Reynolds numbers (e.g., Robinson, 1991), a temporal analysis of three-dimensional structures
spanning from the smallest to the largest scales across the logarithmic layer has yet to be
performed.

Different models involving coherent structures have been proposed to represent the
organization of wall-bounded turbulent flows. Using PIV measurements, Adrian et al. (2000)
conceived a model built on packets of hairpins that grow from the wall, in which the hairpins
work cooperatively to generate low-momentum ramps. A different view was presented by del
Álamo et al. (2006), who extracted coherent vortical structures from DNSes and proposed a
less organized scenario. Although the two models are fairly similar kinematically, they have
important dynamical differences, mostly regarding the relevance of the interactions with the
wall. Another open question is whether the cascade proposed by Kolmogorov (1941), is not
only a conceptual way of organizing the flow, but an actual physical process undergone by the
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Figure 1. (a) Upper part; sketch of a graph with three branches, one merger and one split.
Bottom part; sketch of the vortex clusters which are represented in the previous graph. (b)
( ), average lifetime of the evolutions, T , as a function of the maximum volume, V , attained
by the branch, ( ), T ∝ V 1/3.

coherent structures. The most interesting problems lie in the logarithmic region, which is the
seat of cascades of vorticity, energy, and momentum. To answer those questions, we develop in
the present paper a method to track coherent structures in time, and use it to characterize the
temporal evolutions of vortex clusters in a turbulent channel where both the Reynolds number
is high enough to include a non-trivial range of length scales, and the domain is sufficiently long
and wide to contain at least some of the largest structures.

The numerical experiments and the method employed to track the clusters are described in
section 2. The statistical properties of the evolutions are presented in section 3, and conclusions
are offered in section 4.

2. Numerical experiments and tracking method

The data are obtained from a DNS of a turbulent channel at Reτ = 950 over 10 eddy turnovers,
long enough compared with the lifetimes of the coherent structures not to interfere with their
description. Snapshots are stored every ∆t+ ≃ 1.1, to ensure that the structures can be properly
tracked in time, resulting in around 104 flow fields. The + superscript denotes wall units, defined
in terms of the friction velocity and of the kinematic viscosity. To make the problem tractable,
the streamwise and spanwise dimensions of the channel are kept small, Lx/h = π, Lz/h = π/2,
where h is the channel half-width. Flores & Jiménez (2010) showed that this box is large
enough to capture the physics of the logarithmic layer. The structures tracked are the vortex
clusters defined by del Álamo et al. (2006) in terms of the discriminant of the velocity gradient.
They are self-similar objects in their three characteristic lengths, with sizes that span from the
Kolmogorov scale, η, to the channel half-width, so that structures in the logarithmic layer are
included. Geometrically, they are ’sponges of strings’ with a thickness of the order of 7η, but
without a clearly defined shape (Jiménez, 2012). The average velocity field conditioned to the
presence of a vortex cluster is an ejection flanked by a pair of counter-rotating vortices, and a
low-velocity streak spreading downstream.

Vortex clusters are tracked in time by looking at the volume of the intersections between
structures in consecutive flow fields. Those temporal connections are used to build a graph
in which each snapshot of a cluster is a node, and their connections are edges. A cluster is
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considered to evolve without merging or splitting when it has exactly one backward and one
forward connection. Clusters with more that one backward connection are considered to have
formed by merging of previously-existing ones, and those with several forward connections are
said to split. Mergers and splits are interpreted as cascade processes, suggesting that it is better
to organize the flow history into coherent branches than to deal with the full evolution graph.
As a consequence, branches are the units of our study. A graph with three branches, one merger
and one split, is sketched in figure 1(a). The criteria used to organize the graph in branches are
based on the parameter w = ∆V/Vi, where ∆V is the volume difference between two connecting
clusters and Vi is the volume of their intersection. Note that w is not associated with the nodes
of the graph, but with the edges. When a node is backward-connected with more than one
node, or when two or more nodes are backward-connected with the same node, the algorithm
continues the branch with the lowest w. The rest of the branches involved in the process are
considered to either end or be newly created at that instant, depending on the case. The physical
interpretation of those criteria is that the algorithm tries to continue the branch containing the
largest cluster.

3. Results

Since the properties of the vortex clusters are known for all times, once the tracking process has
been done we can focus on any one of their features, and study the statistics of its temporal
evolution. As it could be expected, the average lifetime, T , of a branch increases with its
maximum volume, V , i.e. the volume of the biggest vortex cluster that belongs to the branch.
Figure 1(b) shows that T ∝ V 1/3, where V 1/3 can be interpreted as a characteristic length scale
of the structure. Circumscribing each vortex cluster within a box, and looking at the evolution
of its centre, we can estimate the velocity at which the clusters move in the channel. The
results show that the centres of the clusters are basically advected with the local mean profile
in the streamwise direction, whereas the spanwise and wall-normal velocities are of the order of
the friction velocity. We also study the tendency of the centres of the vortex clusters to move
towards or away from the wall by looking at their initial and final wall distances. Figure 2(a)
shows that the clusters in each branch move up or down by at most ∼ 100 wall units during
their lifetime, with a slightly higher probability of moving away from the wall. That behaviour
is independent of the wall distance at which the cluster is initially created. In particular, there
is little evidence that most branches originate near the wall and move into the outer layers.

One of the most interesting things that can be sought is whether or not there is a cascade,
not only as a way to conceptualise the flow, but as an actual physical process in which coherent
structures merge and split. The volume of a branch can change either smoothly, when the clusters
are not merging or splitting, or through sudden changes. The processes of merging and splitting
can be thought as a direct (when splitting) or an inverse (when merging) cascade. Figure 2(b)
shows the fraction of smooth growth and decay as a function of the maximum volume attained by
a branch, and it can be observed that there is a minimum volume ∼ (15η)3 above which mergers
and splits begin to be important. Although the curves for the direct and the inverse cascades
are not identical, it is intriguing how similar they are, recalling the ‘backscatter’ observations of
Piomelli et al. (1991) and others. Figure 2(c) shows the probability density functions (p.d.f.s)
of the times when mergers or splits take place during the life of a branch, and reveals that
splits have a flat distribution, while mergers are more probable at the beginning of the life. In
order to study those processes in more detail, figure 2(d) shows the p.d.f.s of the fraction of
volume gained or lost when merging or splitting. Two different regions can be identified: the
first one represents fractions of volume that are of the order of the characteristic size of the
cluster involved, and follows a uniform distribution with very little differences between merging
and splitting. We can call this region ‘inertial’. The second region represents volume fractions
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Figure 2. (a) P.d.f. of the wall-normal distance of the clusters at the end of the evolutions,
yf , as a function of the wall-normal distance at their initial creation, yi. Contours are 50% and
98% of the data. The dashed line is yf = yi. (b) P.d.f. of when mergers ( ) and splits
( ) take place during the life of a branch, t, normalized with its lifetime T . (c) Fraction of
smooth growth ( ) and decay ( ) as a function of the maximum volume attained by the
branch, V . Vs and Vt are the smooth and total change of volume. The vertical dashed line is
V ≃ (15η)3. The value 1− Vs/Vt represents the fraction of direct or inverse cascade. (d) P.d.f.
of the fraction of volume, fV , gained ( ) or lost ( ) when merging or splitting. The
vertical dashed line is fV = 0.1.

that are small compared with the volume of the cluster, and, for them, there are slightly more
splits than mergers. Those pieces are of the order of the (Kolmogorov) thickness of the cluster
and they can be called ’viscous’. They are the only clearly irreversible aspect that can we have
been able to isolate from the branch histories.

4. Conclusions

We have characterized the temporal evolutions of vortex clusters in a turbulent channel with
Reτ = 950, using data from a DNS with temporal separations among fields short enough for
individual structures to be tracked. We have developed a method to track the vortex clusters
in time, based on the geometric intersection of structures in consecutive fields, and we have
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built temporal connection graphs, and classified them into interconnected branches. Although
this method is applied here to track vortex clusters, it can be employed with any other type of
coherent structures.

By analysing the features of the branches, it is found that their lifetimes are proportional to
the cube root of the maximum volume attained by them, and that they are basically advected by
the local mean profile in the streamwise direction. Looking at the wall-normal displacement of
the clusters, it is found that their probability of moving away from the wall is only slightly higher
than that of moving towards it, and that this behaviour is independent of the wall distance at
their inception. This suggests that the wall plays a relatively minor role in the dynamics of
these coherent motions. Finally, physical direct and inverse cascades are defined by looking at
the splits and mergers between structures. The process of merging is interpreted as an inverse
cascade, whereas splitting can be interpreted as a direct one. It is found that vortex clusters
whose characteristic lengths are above approximately 15η undergo simultaneous direct and an
inverse cascades, but merging tends to be more common towards the beginning of the evolution
of each branch. Even if the direct cascade predominates over the inverse one, it is surprising
how similar both cascades are.

This research was supported in part by CICYT, under grant TRA2009-11498, and by
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del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2006 Self-similar vortex
clusters in the logarithmic region. J. Fluid Mech. 561, 329–358.
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