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Abstract. A direct simulation of an incompressible zero-pressure-gradient turbulent boundary

layer over a flat plate is performed in Re✓ = 1100 � 6650 (Re⌧ ⇡ 2025), matching the range

of the available numerical channels. The logarithmic region and the separation of scales are

clearly observed. Proper turbulent inflow conditions, key in boundary layers, are generated by

an auxiliary simulation at lower resolution and Reynolds number. Results are in agreement

with existing numerical and experimental data sets.

1. Introduction

Turbulent boundary layers are subjects of intensive research because of their technological
importance. High-quality direct simulations have recently become possible for wall-bounded
flows, mainly channels, featuring an appreciable logarithmic layer. Their role is essential to
understand the kinematics and dynamics of the turbulent structures. Turbulent boundary
layer Reynolds numbers have increased more slowly than in channels, because the streamwise
inhomogeneity is harder to compute, and because of the difficulty of prescribing correct inflow
conditions. Simulations have appeared in the past few years at Reynolds numbers up to
Re

✓

= 2100 in [Simens, Jiménez, Hoyas & Mizuno, 2009; Jiménez, Hoyas, Simens & Mizuno,
2010], and Re

✓

= 4060 in [Schlatter & Örlü, 2010]. They show differences with respect to
channels, which are also seen in experiments, but lack a good representation of the logarithmic
layer. Therefore, the purpose of the present simulation is to extend the Reynolds number range to
Re

✓

⇡ 6500 (Re
⌧

= 2000), comparable to the largest available simulations of numerical channels.

2. Methods

The boundary layer is simulated in a parallelepiped over a flat plate with periodic boundary
conditions spanwise and non-periodic in streamwise direction. The turbulent inflow is generated
using the method in [Lund, Wu & Squires, 1998], in which the velocities from a reference
downstream plane are used to create the incoming turbulence. The effect is equivalent to the trip
used in experiments [Simens, Jiménez, Hoyas & Mizuno, 2009], in that the flow must recover from
an unrealistic condition to converge to an asymptotic state. The proper scale to measure the
length required for that recovery is the distance, L

to

= U+
1�, by which eddies are advected during
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a turnover time �/u
⌧

, where � is the boundary-layer thickness, u
⌧

is the local friction velocity
and U1 is the free-stream velocity. The effective dimensionless length of the computational box
can then be defined as x̃ =

R
x

0 dx/(�U+
1). It was found in [Simens, Jiménez, Hoyas & Mizuno,

2009] that the accommodation length for most flow scales is at least x̃ = 1. That remains true
for the all but the largest fluctuations, but experiments during the present simulation convinced
us that some properties of the mean profile, especially the shape factor, do not converge until
x̃ ⇡ 4. Unfortunately, the ratio �

to

/� increases with the Reynolds number, because u
⌧

decreases,
and simulations become increasingly expensive. For example, table 1 includes two of the cases
run for this simulations. The first one, BLI , spans Re

✓

= 2580 � 6340 in a box approximately
twice longer (50�) than those used in channels, but its mean profile has not reached equilibrium
by the end of the box, eL

x

⇡ 2.57.

Table 1. Parameters of the turbulent boundary layers cases considered. L
x

, L
y

and L
z

are the
box dimensions. The momentum thickness ✓ is taken at the middle of the box. eL

x

is the effective
dimensionless computational box length. N

x

, N
y

andN
z

are the grid sizes.

Case Re
✓

(L
x

, L
y

, L
z

)/✓ eL
x

�x+,�y+,�z+ N
x

, N
y

, N
z

BLI 2580-6340 534⇥ 30⇥ 67 2.57 6.10⇥ 0.30⇥ 4.15 16385⇥ 711⇥ 4096

BLII

1 1100-2970 481⇥ 47⇥ 191 2.61 13.00⇥ 0.32⇥ 7.28 3585⇥ 315⇥ 2560

BLII

2 2780-6650 547⇥ 29⇥ 84 2.68 7.00⇥ 0.32⇥ 4.07 15361⇥ 535⇥ 4096

Since only the largest scales appeared to be involved, the problem was solved using an auxiliary
lower-resolution simulation, BLII

1 , run in synchrony with the high-resolution main layer. That
auxiliary boundary layer uses the rescaling technique to generate its inflow, and is used to feed
the inflow of the main simulation, BLII

2 , from a plane near the end of BLII

1 at x̃ ⇡ 2.39. The
lower resolution of BLII

1 is justified because its main purpose is to allow the large scales to reach
equilibrium. Only a moderate under-resolution is required. Even a linear factor of 2 reduces
the computational cost of the auxiliary simulation to about 10% of the main one. In fact, the
fluctuation profiles of the auxiliary simulation appear essentially correct, and the intermediate
spectrum of figure 3(a) belongs to that case. Note that, since BLII

2 does not use a rescaling
technique, its accommodation length is very short, and most of its domain can be considered
valid.

3. Results

The preliminary statistics presented here are collected over a period of Tu
⌧

/� = 3 eddy turnovers,
measured at the middle of the domain of BLII

2 . This simulation is still in production stage, and
17 eddy turnovers are expected to be collected.

Figure 1(a)-(b) shows the friction coefficient c
f

= 2/U+2
1 and the shape factor H = �⇤/✓ as

a function of Re
✓

compared with available experimental [De Graaff & Eaton, 2000; Osterlund,
Johansson, Nagib & Hites, 2000; Purtell, Klebanoff & Buckley, 1981; Erm & Joubert, 1991]
and numerical data sets [Schlatter & Örlü, 2010; Simens, Jiménez, Hoyas & Mizuno, 2009].
The present simulation covers a fairly large extent of Reynolds numbers, Re

✓

= 1100 � 6650,
approximately equivalent to channels in the range Re

⌧

= 440 � 2025 as shown in figure 2(e).
Tripping techniques are commonly used to trigger turbulence, either in experiments or numerical
simulations, and as a consequence, accommodation lengths of O(x̃) are needed. This can be seen
in the integral parameters c

f

and H. Experiments in [Erm & Joubert, 1991] were tripped at
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low Reynolds number by wire, grid and pins, resulting in high scatter up to about Re
✓

⇡ 1500.
Numerical simulations in [Simens, Jiménez, Hoyas & Mizuno, 2009], as well as the present one,
show the effect of tripping by means of the rescaling technique, resulting in a high c

f

and low
H. These deviated values last up to distances of x̃ between three and four, to finally settle in
agreement with the rest of experimental and numerical data sets. This effect is especially severe
at high Reynolds numbers, in which the accommodation length can be as long as the entire
numerical domain or the experimental analysis region.

Figure 1. Friction coefficient (a) and shape factor (b) versus Re
✓

number. Symbols are
experiments by [De Graaff & Eaton, 2000], }; by [Purtell, Klebanoff & Buckley, 1981], � ;
[Erm & Joubert, 1991], 4; and [Osterlund, Johansson, Nagib & Hites, 2000], • ; and numerical
simulations by [Schlatter & Örlü, 2010], ut. Lines are for the present simulation BLII

1 , and
BLII

2 , ; and for [Simens, Jiménez, Hoyas & Mizuno, 2009],

In the present simulation, the purpose of the auxiliary BLII

1 is to provide realistic inlet
conditions for BLII

2 , as already discussed. By the end of BLII

1 , i.e. at the beginning of BLII

2 ,
the large structures have covered about x̃ ⇡ 2.6 and the values of c

f

are settling into agreement
with experimental data. Shape factor also falls within the scatter of the experiments.

Figure 2(a)-(d) presents mean and fluctuation velocity profiles from the present simulation
compared with some of the experimental and numerical data sets used for figure 1, in the range
of Re

✓

= 4060 � 5160 (Re
⌧

⇡ 1320 � 1616), and it shows excellent agreement. Small scales
converge to nominal values within an eddy turn-over, approximately in a distance of 22�inlet99
from the inlet. BLII

1 velocity fluctuations are essentially correct through the entire domain, with
the exception of the inlet accommodation length seen in figure 2(e). Also presented in figure 2
are the data from the numerical channel simulation Re

⌧

= 2000 [Hoyas & Jiménez, 2006] for the
velocity fluctuations. While the maximum of u0+ agrees with the boundary layer fluctuations,
the transverse velocity fluctuations, v0+ and w0+, do not, and are higher for the boundary layers.
This was already noted by [Hoyas & Jiménez, 2008], although using boundary layer simulations
at relatively low Re

⌧

. Figure 2(e) presents the maximum velocity fluctuations over the range
Re

⌧

= 500 � 2000 compared with channels at Re
⌧

= 180, 550, 950 and 2000. Both boundary
layers and channels exhibit a small Reynolds number dependence in their maximum intensities,
failing the classical scaling with u

⌧

near the wall, as already discovered by [De Graaff & Eaton,
2000] in a comparative study of boundary layers. In the buffer layer the squared intensities should
be proportional to u2

⌧

log(Re
⌧

) when the fluctuations are scaled at fixed y+ instead of y/�. A
slightly different scaling for the velocity fluctuations was investigated by [Jiménez, del Álamo &
Flores, 2004] based on spectral arguments, noting that the intensities should be controlled by the
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scale ratio between the large structures in the outer region and the smallest ones at the buffer
region.

   












Figure 2. (a) Mean streamwise velocity; (b,c,d) root-mean-squared velocity fluctuations.
Symbols are: numerical channel [Jiménez, Hoyas, Simens & Mizuno, 2010] at Re

⌧

= 2003, • ;
boundary layer experiments by [De Graaff & Eaton, 2000] at Re

✓

= 5160, � ; and [Osterlund,
Johansson, Nagib & Hites, 2000] at Re

✓

= 5156, }. The simulations by [Schlatter & Örlü, 2010]
at Re

✓

= 4060 are . The law log(y+)/0.40 + 5 is ; and are the present simulation
at Re

✓

= 4060, 5160. (e) Maximum value of the velocity fluctuations versus Re
⌧

. ut stands for
[Schlatter & Örlü, 2010]

Even more interesting are the spectra in figure 3, which shows premultiplied spectral
energy �⇤⇤ = k

x

k
z

E⇤⇤(kxkz), where k
x

and k
z

are the wavenumbers in the two wall-parallel
directions, with associated wavelengths � = 2⇡/k, and ⇤ stands for the flow field variables.
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A two-dimensional spectra for boundary layer does not exist mathematically, since the only
homogeneous direction is spanwise. Spectra is therefore computed as the Fourier transform of
the two-points correlation function of each Fourier mode, after symmetrizing it with respect to
x. The largest streamwise wavelength is chosen to be �

x

⇡ 20�99 for all the spectra, in which the
boundary layer can be approximately considered as a parallel flow (for �

x

⇡ 20�99, ��/� ⇡ 0.25).
Figure 3(a) compares kinetic spectral density energy �

+
uu

for channels at Re
⌧

= 550 � 2000

and boundary layers at similar values of Re
⌧

at the buffer layer, y+ = 15 and for energy levels
of 15% and 57% of the total energy. They clearly show the development of the scale separation
with the Reynolds number, and also that the layers are slightly shorter than the channels at
similar Re

⌧

[Jiménez, Hoyas, Simens & Mizuno, 2010]. On the other hand, they show that the
aspect ratio of the large structures in both flows are essentially the same, �

x

= 10�
z

.
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Figure 3. (a) Solid lines are two-dimensional spectral densities Φ+
uu from channels at Reτ = 550–

2000 [Hoyas & Jiménez, 2006], and dashed ones those of boundary layers at Reτ = 550 [Jiménez,
Hoyas, Simens & Mizuno, 2010], and 1000 and 2000 from the present case at the buffer layer,
y+ = 15, in red, blue, and black respectively. (b) Large scales boundary layer footprint in the
vorticity spectral densities Φ+

ωω at the viscous sublayer y+ = 5 (black) and for the buffer layer
at y+ = 10− 15 (red, blue) at Reτ ≈ 2000. In both cases, the straight dashed line is λx = 10λz
and dots are λz = Reτ .

It is interesting to note the effect of the Reynolds number near the wall, due to the large
scale inactive motions in the sense of [Townsend, 1976]. This is clearly seen in figure 3(b), in
which the spectral enstrophy density Φ+

ωω is presented for the boundary layer at Reτ ≈ 2000 at
different wall-normal locations and for enstrophy levels of 8% and 50% of the total. Near the
wall, the large scales of the flow are irrotational, because the v impermeability condition inhibits
the Reynolds stresses 〈u′v′〉. This can be seen at the buffer layer locations, y+ = 10 (red) and
y+ = 15 (blue), where the large scales are missing. The nearest wall value is y+ = 5 (black),
within the viscous layer, and in which the potential flow cannot satisfy the no-slip boundary
condition, developing a thin rotational sublayer in which structures are long and wide so the
no-slip condition is attained [Hoyas & Jiménez, 2008]. Very near to the wall the vorticity is the
velocity gradient in the wall-normal direction, therefore, the vorticity and the velocity spectrum
should be proportional at a constant y+, as observed in figure 3.

Further analysis of the one-dimensional spectra k|E1D
∗∗ | versus y shows that the streamwise

velocities fluctuations structures are long, those for spanwise wide, and those for wall-normal
tall. The pressure fluctuations structures are as tall as the wall-normal velocity, but wider and
slightly shorter than the streamwise fluctuations ones. This pattern can be observed in figure



4, in which velocity fluctuations of an instantaneous realization of the flow field in the range
Re

✓

= 5800� 6600 (Re
⌧

⇡ 1797� 2016) are presented.

Figure 4. Instantaneous sections of the fluctuations: u+ (a, b), v+ (c, d), w+
(e, f), p+ (g,

h). (a, c, e, g) are the x� y sections for Re
✓

= 5800� 6600. (b, d, f, h) are the z � y sections
at Re

✓

= 5800. Fluctuations are normalized with the friction velocity, and the coordinates are
normalized with �99 at Re

✓

= 5800. Dark grey areas are below -0.5 wall units, and lighter areas
above +0.5.

4. Conclusions

We have introduced the concept of the effective dimensionless length x̃ in order to characterize
the accommodation length needed for the large-scale structure of the flows to converge from
artificial tripping methods to nominal values, resulting in lengths about x̃ ⇡ 4. This is especially
severe in the case of high Re

✓

in which the flow may not achieve the equilibrium by the end of
the physical domain. In order to perform a direct numerical simulation of a boundary layer at
high Re

✓

, an auxiliary simulation is conducted using relatively coarse resolution, and resolving
correctly the large scales of the flow. The computational penalization of this auxiliary boundary
layer is about 10% of the total time. It turns out that even at this low resolution the small scales
are essentially well-resolved.

A preliminary analysis of the statistics of this new simulation has been conducted. Integral
parameters, such as c

f

and the shape factor, are within the scatter of the available experiments
and numerical data sets. The same is true of the velocity fluctuations. At this relatively high
Reynolds number, the mean profile exhibits a clear logarithmic region, and the fluctuations have
been compared with the numerical channel at similar Reynolds numbers. Velocity fluctuations
clearly show a weak dependence with the Re

⌧

at the buffer layer, failing the classical scaling with
the friction velocity u

⌧

. The new simulation confirms that the transverse velocity fluctuations
are stronger in boundary layers than in channels. Energy density spectra also shows the large-
scale structure footprint near the wall. Boundary layer and channel kinetic energy spectra are
compared in that near-wall region, revealing that the structures for channels are somewhat larger
than boundary layers, but showing similar features for the small-scale structures.
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