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The length scales of the spectra and correlation functions of the velocity fluctuations in the overlap

region of turbulent wall-bounded flows are analyzed. It is found that a mixing length based on the

mean local shear works better as a normalization than the distance to the wall. To define an overlap

range sufficiently long and independent of the Reynolds number to allow the two scalings to be

tested, the classical asymptotic expansion of the mean shear is extended to include a near-wall

virtual origin and a wake component. The result represents well the velocity profile in yþ> 70 and

y=d< 0.3 – 0.5 for Res& 2000, and the spectral scales for Res& 500. It is suggested that the scaling

with a local mixing length could be interpreted as an indication that the size of the eddies is more

related to the local shear time scale than to the interaction with the wall. It is also noted that the

linearity of the mixing length is a more robust indicator of a logarithmic regime than those that rely

on a zero virtual origin. VC 2011 American Institute of Physics. [doi:10.1063/1.3626406]

I. INTRODUCTION

One of the most characteristic features of wall-bounded

turbulence is the inhomogeneity of the length-scales of the ve-

locity fluctuations. They are small near the wall, where they

scale in the wall units defined by the friction velocity us and

by the kinematic viscosity �, and larger in the outer layers,

where they are determined by the flow geometry. In the inter-

mediate region, where the distance, y, from the wall is large in

wall units but small with respect to the flow thickness, there is

no obvious unit of length, and it has been customary to use y
for that purpose.1 Conceptually, there are other possibilities.

An obvious one is the mixing length formed with the global

velocity scale, us, and the inverse of the local shear,

lðyÞ ¼ 1

us

dU

dy

� ��1

; (1)

where U is the mean streamwise velocity. Other choices can be

found in the turbulence-modeling literature. For high enough

Reynolds numbers, Townsend2 hypothesized that structures

away from the wall are self-similar with respect to y, independ-

ently of the viscosity and of the wall roughness, so that

l / y: (2)

The well-known logarithmic law follows from integrat-

ing Eq. (2). If the superscript “þ ” is used for variables nor-

malized in wall units,

Uþ ¼ 1

j0

log yþ þ B0; (3)

where j0 is the Kármán constant and the intercept B0

depends on the properties of the wall.

In ideal circumstances, all the length scales in the over-

lap region should be proportional to each other, because the

mean profile is determined by whatever is the controlling

scale. On the other hand, Eqs. (1) and (2) reflect different

physics. While Eq. (2) suggests the attached-eddy hypothesis

that the growth of the energy-containing structures is con-

trolled by their interactions with the wall,3 Eq. (1) empha-

sizes the deformation caused by the local shear. Moreover, it

is in non-ideal situations, where Eq. (3) is not exactly satis-

fied, that the two physical models can be distinguished more

readily. The purpose of the present paper is to take advantage

of the discrepancies between ideal and non-ideal behaviors

to explore the scaling characteristics of the flow in the over-

lap region between the inner and outer layers.

We represent by x, y, and z the streamwise, wall-normal,

and spanwise coordinates, and by u, v, and w the correspond-

ing velocity components. The friction Reynolds number is

Res: dþ, where d is the pipe radius, the channel half-height,

or the 99% boundary-layer thickness.

The behavior of the length-scales of the velocity fluctua-

tions has been studied extensively. Only the intermediate

scales of the two-point correlations of the streamwise veloc-

ity grow approximately linearly with y.4,5 The smaller eddies

scale in Kolmogorov’s viscous units. The larger ones reach

from the outer region to the wall without changing their

sizes, scale with d, and lead to anomalous intensities of the

near-wall fluctuations.6,7 The larger eddies have been classi-

fied into large-scale motions (LSMs), with sizes that do not

exceed a few boundary layer thicknesses, and very large-

scale ones (VLSMs), specially of the streamwise velocity,

which are much longer. It is typically only the hierarchy of

eddies leading to the LSMs that scale with the wall dis-

tance.8–10 For example, Ref. 10 finds that the azimuthal

dimensions of those eddies increase linearly with y in pipes,

while those of VLSMs grow more slowly. The spanwise

length-scale of the streamwise velocity fluctuations also

grows linearly in channels11,12 and in boundary layers,13 and
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is robust against wall disturbances.14 The two-point correla-

tions and spectra of the wall-normal velocity, which are less

contaminated by large eddies, always scale more closely

with y than those of the streamwise velocity.7,15–17

Those observations suggest that Eq. (2) needs correc-

tions in real flows. In fact, even when it holds, the origin of

the linear scaling does not always coincide with the wall,

and Eq. (2) has to include a non-zero virtual origin,

l / ðy� yoff Þ: (4)

For example, it is common to adjust the reference position of y
in flows over rough walls,18 in the same way as virtual origins

are used in self-similar shear layers or jets. Those adjustments

are typically required whenever different physics separates the

origin from the self-similar domain, and there is no reason to

exclude them for smooth walls, where self-similarity only holds

above the viscous near-wall layer. In the context of the logarith-

mic law for U, which follows from either Eq. (2) or Eq. (4),

Ref. 19 postulates an offset from physical considerations, and

the Lie-group analysis of the Navier-Stokes equations explicitly

allows one.20 Reference 21 estimated it to be yþoff ¼ 8 for pipes

and channels in the range Res¼ 180 to 53 000. An offset

yþoff ¼ �7:5 was found to represent best the logarithmic mean

velocity profile in numerical Ekman layers,22 and a mixing-

length theory incorporating yþoff ¼ �8:2 has been shown to pre-

dict the mean velocity of boundary layers well below the classi-

cal overlap region.23

In fact, it turns out that the local mixing length in Eq. (1),

which generally includes both an offset and other corrections,

scales the velocity spectra better than y. Defining the spectrum,

/ffðy; kx; kzÞ � hf̂ðy; kx; kzÞf̂�ðy; kx; kzÞi;

where f is an arbitrary velocity component, f̂ is its Fourier

transform, the asterisk stands for complex conjugation, and hi
denotes ensemble averaging. The wavelengths are defined as

k¼ 2p=k, in terms of the wavenumbers k. Figure 1 shows the

premultiplied spectra of the streamwise and wall-normal veloc-

ities in the overlap layer of a channel flow with Res¼ 934,7

comparing the normalization using the length in Eq. (1) with

the purely linear one using y. It is clear that the former is better

than the latter. Note that the relatively low Reynolds number

of that figure is chosen on purpose, as explained above. For a

channel with Res¼ 2003,24 a better collapse is also obtained

using l(y), but the difference is less marked, because correc-

tions from the inner and outer regions are smaller. The contour

levels in Fig. 1 are chosen relatively intense to isolate the ener-

getic modes in the spectral cores. Lower contours do not col-

lapse as well in either scaling, because they include smaller

and larger eddies that we have already seen to behave differ-

ently. Even at these contour levels, the smallest scales collapse

only moderately with l(y), although much better than with y.

Note that any model for l(y) must take into account the

outer corrections traditionally expressed as a “wake” func-

tion,31 which depend on the Reynolds number and on the

flow geometry. For example, the linear scaling in Eq. (2) is

harder to observe in boundary layers than in channels,17

because of the stronger wake in the former. That difference

is believed to persist at all Reynolds numbers.

Incorporating into the logarithmic law, a more compli-

cated scale dependence than the usual linear one has some

practical consequences. For example, if the logarithmic pro-

file is used to estimate us, an error in the origin implies an

error in the estimated friction and in the location of the

whole profile. Moreover, the logarithmic law (3) and the lin-

ear assumption (2) are key ingredients in many models of the

inner region used in RANS or LES, where they enter as off-

wall boundary conditions.32 They require corrections, if the

logarithmic law is generalized.

This paper is organized in two parts. Section II inquires

into how much the mixing length deviates from y in real

flows, introduces a model for the differences between l(y)

and the pure linear scaling, and calibrates it using numerical

and experimental data. That allows us to estimate l(y) even

when the data is too noisy or too sparse to compute deriva-

tives and to give uniform limits for the extent of the asymp-

totic overlap region. Section III uses l(y) to test the behavior

of both wall-parallel and wall-normal velocity length-scales,

and the conclusions are summarized in Sec. IV.

II. A MODEL FOR THE LENGTH-SCALE

A. Shifted model with a wake

Our first task is to determine whether it is possible to

extend the overlap scaling of the mean velocity profile to a

region that is reasonably independent of the Reynolds

FIG. 1. Premultiplied two-dimensional spectra of the velocity fluctuations,

as functions of the wavelengths. (a) Normalized with j0y, where j0¼ 0.365.

(b) Normalized with l(y) from Eq. (1). Channel C3 at Res¼ 934.7 *,

kxkz/uu;4, kxkz/vv. Contours are 0.05 of the local mean-squared intensity of

each component. Spectra are shown at y=d¼ 0.1, 0.15, 0.2, 0.3, and 0.4,

with the arrow in the direction of increasing y. The rectangles enclose the

“core” ranges defined in: — —, Eq. (12) for u; — �—, Eq. (13) for v.
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number, or at least whose dependence on Res can be pre-

dicted. That implies extending the definition of the overlap

profile, in a manner similar to those in Refs. 33–36.

The logarithmic profile of U follows from the linear

assumption in Eq. (2), but, from the point of view of asymp-

totic analysis, it is the lowest-order approximation of an as-

ymptotic expansion in the small parameter e � Re�1
s . The

inner expansion of the velocity gradient is a function of yþ,

and the outer one is a function of g : eyþ¼ y=d. For pipes

and channels, matching the two expansions in the region

where yþ � 1 and g� 1 results in the overlap profile,33–36

dUþ

dyþ
¼ j�1

0 þ ea1

yþ
þ d0 þ ed1

yþ2
þ ee2gþ Oðe2Þ; (5)

where, we have omitted terms that will turn out to be zero,

and higher-order ones of the form gn for n> 1 and 1=yþ
n

for

n> 2. A similar form is obtained for boundary layers.37,38

The variables used in Eq. (5) recognize that the positive

powers of g belong to the inner expansion of the outer wake

of the velocity profile, while the negative powers of yþ,

which are dominant near the wall, are part of the inner pro-

file. Since

1

yþ � yþoff

¼ 1

yþ
þ

yþoff

yþ2
þ Oð1=yþ

3Þ;

the 1=yþ
2

term in Eq. (5) can be incorporated, for yþ � 1,

into a virtual origin for y in the logarithm in Eq. (3), where

yoff can be expected to scale in wall units. The shifted linear

scaling in Eq. (4) is equivalent to Eq. (5) to O(e).
The resulting approximation is

dUþ

dyþ
� 1

jðyþ � yþoff Þ
þ e2

Res
g; (6)

where j�1 ¼ j�1
0 þ ea1 and yþoff ¼ jðd0 þ ed1Þ. The func-

tional form of the last term in Eq. (6) is chosen to be consist-

ent with the traditional representation of the mean velocity

as a composite profile of the form,31

Uþ ¼ 1

j
log yþ þ BþP

j
WðgÞ; (7)

with a wake that is quadratic near the wall,39

WðgÞ ¼ 2g2ð3� 2gÞ �P�1g2ð1� 3gþ 2g2Þ: (8)

The rightmost term in Eq. (6) is the leading-order expansion

of Eq. (8) and is related to the wake parameter by e2¼ 2(6P
– 1)=j. We will only use P from now on. Note that the form

of the expansions in Eq. (5) suggests that the parameters j,

yþoff , and P, might depend approximately on the Reynolds

number as bþ a=Res, where a and b are constants to be

determined later.

Viscous effects are modeled by a virtual origin for y,21

and outer ones by the additional term corresponding to the

profile “wake.” The scaling of the mean velocity profile has

been discussed extensively, and even the validity of the loga-

rithmic law has been questioned,40 but our main interest here

is whether the mean profile describes the scaling of the ge-

ometry of the velocity fluctuations better than the distance to

the wall. The purpose of this section is to determine how an

expression such as Eq. (6), which can still be considered as

an intermediate asymptotic expansion, can be used to extend

the range of the self-similar region beyond that of the basic

logarithmic approximation.

B. Calibration

To calibrate the parameters in Eq. (6), we minimize, for

each of the data sets in Table I, the cost function,

S2ðyl; yu; qÞ � 1

yn � y0

Xn

i¼1

lþi � mþðyi; qÞ
yþi

� �2

ðyi � yi�1Þ; (9)

where the yi are the positions of the available data and

yl < y1 < � � � < yn < yu. The choice of the fitting interval

(yl, yu) is discussed below. The model corresponding to

Eq. (6) is

mþðy; qÞ � 1

jðyþ � yþoff Þ
þ 2ð6P� 1Þ

jRe2
s

yþ

" #�1

; (10)

and the parameters to be adjusted are q : (j, yoff, P). The

point y0, which is needed for the integration in Eq. (9), is the

last data point below the lower end of the fitting interval, yl.

Since the range of validity of the model is unknown a-priori,

we use the Levenberg–Marquardt damped least squares itera-

tive algorithm41 to optimize the parameters for all the possi-

ble values of yl and yu.

Figures 2(a) and 2(b) show contours of the resulting

optimal j and P for the numerical channel C4, as functions

of the limits of the fitting interval. The corresponding opti-

mum values of the cost function S are given in Fig. 2(c),

which has several local minima corresponding to fits to dif-

ferent parts of the velocity profile. However, there is a clear

region of relatively small errors, bounded by yþl & 100 and

yþu < 1100, at whose lower-right corner there is a local mini-

mum that we take as the longest possible asymptotic fit. This

location is marked by a cross in the plots. It falls within rela-

tively uniform plateaus in which the parameters j, P (and

yoff, not shown here) vary only weakly with yl and yu. This

can be interpreted to mean that the model (10), with the pa-

rameters at the local minimum, fits the velocity profile in the

range of wall distances given by yl and yu. The same proce-

dure was applied to all the other data sets, although some of

the experimental profiles had to be interpolated to denser

grids using cubic splines to obtain a smooth behavior of the

fitting algorithm. For boundary layers, reasonably wide fit-

ting plateaus could only be found for Res& 2000, which was

TABLE I. Data sets used in the text.

Reference Flow Method Res

P1 (Ref. 25) Pipe Numeric 1142

BL1 (Ref. 26), BL2 (Ref. 27) Boundary layers Experiment 1480–8500

BL3 (Ref. 28) Boundary layer Numeric 690

C1 (Ref. 29), C2 (Ref. 30) Channel Experiment 1454–3945

C3 (Ref. 7), C4 (Ref. 24) Channel Numeric 934, 2003
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therefore taken to be the lowest Reynolds number for which

an extended overlap region exists. The low-Reynolds num-

ber channel C3 and the boundary layer BL3 could only be

fitted in a short range of y, and lacked the wide plateau of the

(yl, yu) sensitivity plots in Figs. 2(a) and 2(b).

Disregarding those very low Reynolds numbers, the

lower and upper ends of the logarithmic region recovered by

the model (10) scale in wall and outer units, respectively.

The effect of the offset is to extend the lower end of the loga-

rithmic region,42 and Fig. 3 shows that our original estimate

for the range of validity of the model was conservative, and

that the actual fit is reasonably good above yþb � 70 for all

the data sets. The wake parameter P determines the upper

end of the fit, which is seen in Fig. 4 to be ye=d¼ 0.5 for in-

ternal flows and ye=d¼ 0.3 for boundary layers.

The uncertainty of the estimated parameters stems not

only from the errors in the original data, but also from the fit-

ting procedure. We estimate it in the following way. Once the

nominal values q of the parameters are determined by fitting,

and the bounds yb and ye of the model fit are defined by some

comparison, such as those in Figs. 3 and 4, the nominal error

of the model m(y; q) with respect to the data is calculated as

�S � Sðyl ¼ yb; yu ¼ ye; qÞ:

The uncertainty range of a given parameter, such as j, is

defined as the range of values for which the fitting error is

smaller than �S when all the other parameters are kept fixed at

their nominal values. For example, if the nominal fitting pa-

rameters for a given case are �j, �P, and �yoff , the uncertainty

range for j is defined as all those ĵ for which

Sðyb; ye; ĵ; �yoff ; �PÞ < �S: (11)

Using the limits ðyþb ; ye=dÞ indicated in Figs. 3 and 4 to

estimate the uncertainties, the results for j and yoff are given

in Figs. 5(a) and 5(b). The numerical data generally have

lower uncertainties than the experimental ones. Both j and

yoff approach asymptotic values for large Reynolds numbers,

as predicted by the theory, but their precise asymptotes can

only be determined approximately by extrapolation. The

Reynolds number dependence of the different model param-

eters is approximated in Fig. 5 by functions of the type

aRe�1
s þ b, as suggested by Eq. (5), and the “recommended”

FIG. 3. Comparison of the mixing length l(y) in Eq. (1) with the model m(y)

in Eq. (10), for (a) channels at Res¼ 1454, 1727, 2003, 2433, 3119, and

3945; (b) boundary layers at Res¼ 1480, 2330, 3260, 4140, 5300, 7060, and

8500, and pipe at Res¼ 1142. *, experimental channels and boundary

layers; h, numerical channel C4 in (a) and pipe P1 in (b).

FIG. 4. Same as Fig. 3, in outer units.

FIG. 2. (a) Contours of the best fitting j in model (10), for the channel C4.

The contour interval is 0.01, and the shaded area is 0.355<j< 0.365.

(b) Contours for P, spaced by 0.02, and shaded in 0.195<P< 0.215.

(c) Resulting error S. The contours are cubically spaced, starting from 0.008,

and increasing in the direction of the arrow.
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coefficients for the three parameters are given in Table II.

Their asymptotic values for large Res are given by b.

The j’s of the channels are lower than those of the

boundary layers for all the available cases, and the asymp-

totes of the two flows are qualitatively similar, although not

identical, to the commonly accepted values for boundary

layers, j � 0.385,43,44 and channels j � 0.37.45 There is

probably no reason why our analysis should agree exactly

with the older ones. All of them, including ours, are in

essence empirical fits using models optimized for different

ranges of the Reynolds number. The present analysis is

mostly concerned with relatively low Reynolds numbers in

the overlap layer, and the three references cited above center

on the full velocity profile at high Reynolds numbers. How-

ever, the conclusion that the Kármán constant in channels is

slightly lower than in boundary layers is common to both

approaches, and should probably be taken as qualitatively

correct.

The offset yoff is negative in almost all the cases, and

approaches zero as the Reynolds number increases. It repre-

sents the inner correction to Eq. (2), and the better scaling

with l(y) of the spectra in Fig. 1 can mostly be attributed to

it. Fig. 5(b) suggests that its effect is still significant at

Res¼O(103).

The wake parameter P is shown in Fig. 5(c). It repre-

sents the outer correction and extends the upper limit of the

fit to a height independent of the Reynolds number. It is dif-

ferent for channels and boundary layers, in agreement with

the well-known difference between their wake strengths, but

each case is relatively independent of the Reynolds number.

That gives some confidence in the adequacy of the linear

term in Eq. (6) as a model for the effect of the wake on the

logarithmic region, and it is reassuring that the asymptotic

value of P given in Table 2 for boundary layers is compara-

ble to the commonly accepted value of about 0.5.44

Equation (6) is not the only possible representation of the

effect of the wake, and we tested models with no correction or

with a constant leading correction to the velocity gradient.

The linear choice discussed above, besides agreeing with the

traditional approximation, was found to be less sensitive to

the Reynolds number and to the details of the matching proce-

dure. The useful ranges of y and Res can be further extended

by models including more terms in the Laurent series expan-

sion in Eq. (5), or by using different functional forms.36,42

III. LENGTH-SCALES OF THE FLUCTUATIONS

A. Wall-parallel scales

From the point of view of the rest of this paper, the main

result in Sec. II is that the higher-order expansion of the mean

velocity gradient in Fig. 6 defines an overlap region that is

wider than the classical logarithmic approximation, as well as

Reynolds-number independent. The inner limit, yþ¼ 70, is

common to internal and external flows, and the outer one is

y=d¼ 0.3 for boundary layers and y=d¼ 0.5 for internal flows,

most probably, because the stronger wake of the former would

require more careful modeling. Fig. 6 shows that, even within

those limited ranges, the mixing length differs appreciable from

the linear behavior, specially for boundary layers at moderate

Reynolds numbers. To reduce clutter, that figure is drawn with

the model m(y), but we have also included the actual mixing

lengths for our two lowest-Reynolds-number flows: the channel

C3 used in Figure 1 and the boundary layer BL3 with the even

lower Res¼ 690. Neither is within the range of applicability of

the model discussed in Sec. II, and neither can claim an asymp-

totic overlap range. However, we saw in Figure 1 that the mix-

ing length is much better than y as a scale for the velocity

spectra of C3, and Figure 7 shows that the same is true for BL3.

In both cases, the scaling is restricted to the “core”

regions marked by dashed rectangles in both figures, which

FIG. 5. Estimated parameters for the model (10), as functions of Res. (a) j,

(b) yoff, and (c) P. ~, BL1; 	, BL2; h, C4; *, C1 and C2; 4, P1. The

dashed lines are approximations of the form bþ a=Res, with the parameters

in Table 2.

TABLE II. Coefficients of the best fits of the parameters of the model (10)

to a Reynolds number dependence of the form bþ a=Res.

Boundary layers Channels

a b a b

j –32.1 0.395 –10.3 0.365

yoff –3.6
 104 3.8 –2.0
 104 –8.5

P 185 0.51 96.4 0.16

085112-5 Mean velocity and length-scales Phys. Fluids 23, 085112 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



contain most of the spectral energy. Those ranges are insen-

sitive to the Reynolds number and to the flow geometry, but

they are different for each velocity component.7 The cores of

/uu and /uv are elongated in the streamwise direction, while

those of /vv and /ww are more isotropic. We define them

here as

Luu ¼ f5 < kx=lðyÞ < 50; 2:5 < kz=lðyÞ < 25g; (12)

for u, and

Lvv ¼ f2 < kx=lðyÞ < 20; 2 < kz=lðyÞ < 20g; (13)

for v. The one-dimensional core spectra are defined as

ES
uuðy; kzÞ �

ð
5<kx=lðyÞ<50

/uuðyÞ dkx;

ES
vvðy; kzÞ �

ð
2<kx=lðyÞ<20

/vvðyÞ dkx;

(14)

and are shown in Fig. 8, normalized by their peak values to

emphasize the scaling of their wavenumbers. The spectra of

the streamwise fluctuation for different heights and different

Reynolds numbers collapse well through the whole range of

kz, and the channels agree reasonably well with the boundary

layer. Note that Fig. 6 implies that, if the boundary layers

and channels agree when scaled with l(y), they should dis-

agree when scaled with y. That seems to contradict Figure 10

in Ref. 28, where it was shown that the cores of the two-

dimensional spectra of u in C3 and BL3 agree well at

y=d¼ 0.3. In fact, the difference is too small to be appreci-

ated either in that paper or in Fig. 8. Even if the ratio l(y)=y
changes by about 30% over the overlap range, the maximum

ratio between the l(y) of BL3 and C3 at the same y=d is only

about 10% (Fig. 6).

The spectra of the wall-normal velocity also scale well

with l(y), except for the smallest scales, which begin to be

contaminated by the isotropic inertial modes. The spectra of

the spanwise velocity (not shown) collapse similarly well.

The evolution of the scaling with the distance to the

wall is tested in Fig. 9, where the one-dimensional spectra of

the streamwise velocity are plotted as functions of kz=d and

y=d. They are compared with isolines of kz=l(y). The figure

confirms that l(y) captures well the behavior of the spectral

length-scales of the core structures, and that the scaling

extends over the overlap range defined in Sec. II for y. For

the flows in Figs. 9(a) and 9(b), the growth of the length-

scale with y is slower than linear because of the influence

from the inner and outer layers, but l(y) describes those

effects well. For the higher-Reynolds-number channel C4 in

Fig. 9(c), the growth of the length-scale is much closer to lin-

ear, and both y and l(y) are reasonable scales.

B. Wall-normal scales

The wall-normal length-scales of the fluctuations are

measured by the two-point correlation function between y
and y0,

Cffðy; y0Þ �
hfðy0ÞfðyÞi
hfðy0Þfðy0Þi ; (15)

where f is an arbitrary velocity component. Townsend’s hy-

pothesis would predict that Cff is a function of (y � y0)=y0,
independently of y0, although Ref. 5 found that, in a pipe at

Res ’ 2500, the linear scaling only holds for the correlation

of u at moderate streamwise length-scales. We also restrict

ourselves to correlations defined over the core wavelengths

defined in Eqs. (12) and (13),

FIG. 6. Comparison of the mixing-length model m(y) with the wall distance,

using the values in Table 2. ——, channels; — —, boundary layers.

Res¼ 2000, 5000, 10 000, with the Reynolds number increasing in the direc-

tion of the arrows. Symbols are l(y) for: *, C3; h, BL3.

FIG. 7. Premultiplied two-dimensional spectra of the velocity fluctuations,

as functions of the wavelengths for the boundary layer BL3, at Res¼ 690.

(a) Normalized with j0y, where j0¼ 0.395. (b) Normalized with l(y) from

Eq. (1). *, kxkz/uu;4, kxkz/vv. Contours are 0.05 of the local mean-squared

intensity of each component. Spectra at y=d¼ 0.2, 0.3, and 0.4, with the

arrow in the direction of increasing y. The rectangles enclose the “core”

ranges defined in: — —, Eq. (12) for u, — �—, Eq. (13) for v.
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CS
ffðy; y0Þ �

Ð
Lff

wffðy; y0; kx; kzÞ dkx dkzÐ
Lff

wffðy0; y0; kx; kzÞ dkx dkz
; (16)

where

wffðy; y0; kx; kzÞ � < hf̂ðy0; kx; kzÞf̂
�ðy; kx; kzÞi

n o
;

and R represents the real part. For large separations in y, the

correlation length cannot be associated with either y or y0,
and we use length-scales based on thresholding the correla-

tion at different levels,

Kþð�Þff ðy0; rÞ � y� y0; (17)

where y> (<)y0 satisfies

CS
ffðy; y0Þ ¼ r:

By definition, Kþ and K– are, respectively, always positive

and negative. The definition of these lengths is illustrated in

Fig. 10. We test their scaling with respect to length-scales eval-

uated at the mid point, y6
m ¼ y0 þ K6=2, between y and y0.

Figure 11 shows K6
uu and K6

vv normalized by j0y6
m and

by lðy6
m Þ, and it is clear that they scale better with the mixing

length than with the wall distance. The scaling works up to

y0 � 0.4d, which is comparable to the scaling range for the

spectra in Fig. 9(b). The correlation length of w behaves sim-

ilarly. The scaling breaks down near the center of the chan-

nel, in part because K6 begins to be comparable to d, and

the reference point y6
m moves too far from either y or y0 to

expect any single wall distance to represent the full correla-

tion length. For example, l(y) diverges at the center of chan-

nel. In addition, the effect of the large scales still contained

within the core rectangles becomes stronger near the center-

line. If Luu or Lvv is made narrower, the well-scaled range

becomes longer, whereas the full correlation functions in

Eq. (15), which include all the large scales, scale much

worse than those in Fig. 11. That is particularly true for Cuu,

while the correlations of the cross-stream velocities, Cvv and

Cww, which have weaker large-scale contributions, scale

comparatively better.

We have also examined the numerical channel at

Res¼ 550 from Ref. 7, which was not included in the

FIG. 8. Premultiplied “core” one-dimensional spectra of velocity fluctua-

tions, as in Eq. (14). (a) kzE
S
uuðy; kzÞ. (b) kzE

S
vvðy; kzÞ, normalized by their

individual maximum values, as functions of kz=l(y). h, BL3; *, C3;4, C4.

Each case is shown at y=d¼ 0.1, 0.2, and 0.4.

FIG. 10. Schematic plot of wall-normal length-scale of fluctuations defined

by Eq. (17).

FIG. 9. Contours of premultiplied one-dimensional spectra kzE
S
uuðy; kzÞ for

(a) BL3, (b) C3, and (c) C4, normalized by the intensity at each height, as

functions of kz=d and y=d. Contour-levels are at 0.05, 0.15, and 0.3. Hori-

zontal dashed lines are the overlap range, yþ¼ 70 to y=d¼ 0.3 in (a), and

0.5 in (b) and (c). Solid curves are defined by kz=l(y)¼ const. placed to align

with the contours. The dashed diagonal is linear scaling.
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previous discussion because of its very low Reynolds num-

ber. Even in that case, both the wall-parallel and wall-normal

characteristic lengths of the fluctuations scale reasonably

well with l(y).

IV. CONCLUSIONS

We have shown that the overlap range of the mean ve-

locity profile in turbulent pipes, channels, and boundary

layers can be extended to a wider range of wall distances by

including terms of OðRe�1
s Þ in its asymptotic expansion.

That agrees with previous results by other authors, but the

approximation used here is optimized for relatively low

Reynolds numbers, in which there are substantial differences

among models of the overlap region that can be used to test

different scaling hypotheses. By comparing with numerical

and experimental data, the overlap obtained from our model

is shown to extend from yþ¼ 70 to y=d¼ 0.3 in boundary

layers, and to y=d¼ 0.5 in internal flows.

The expansion holds at much lower Reynolds numbers,

Res � 600,36 than the lowest-order traditional logarithmic

law, and allows us to define a “mixing” length,

l(y)¼ (dUþ=dy)–1, that incorporates some of the effects of

viscosity and of the flow thickness. For Res �< 1000, the dif-

ferences between l(y) and the y are substantial, specially in

boundary layers, and we use them to test whether the length

scale of the velocity fluctuations is best described by the dis-

tance to the wall, or by the local shear.

It turns out that the latter is the better scaling. There is a

“core” region of the two-dimensional wall-parallel velocity

spectra, defined by wavelengths of O(y), which scales much

better with l(y) than with y. As expected, neither the smaller in-

ertial eddies, nor the very-large ones with wavelengths of O(d)

scale with y or with l(y). When the wall-normal correlation

functions of the three velocity components are compiled over

those core wavelengths, they also scale better with l(y) than

with y. Even if l(y) approaches y as Res!1, we have shown

that they are still visibly different in boundary layers at Res �
104. It is interesting to speculate about what those observations

might mean for the dynamics of the attached active eddies of

wall-bounded turbulence. The correction that is most effective

in extending the overlap region is the virtual origin, which

describes how the mean profile “sees” the wall, although the

wake correction also helps. What the scaling results show is

that the mean velocity and the fluctuations see the wall at the

same location. The implied model is slightly different from the

traditional one, suggesting that the structures are not controlled

by their geometry with respect to the wall, but by the local

shear, or time scale, of the velocity profile.

A serendipitous application of the present results is that

an effective logarithmic range can be most easily identified

in low-Reynolds-number experiments or simulations by

searching for a linear behavior of the mixing time (dU=dy)–1,

rather than by using the indicator (ydUþ=dy)–1, since the for-

mer is insensitive both to an additive constant, and to a vir-

tual origin. For example, that could be useful in analyzing

flows over rough walls.
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