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Drag reduction by riblets
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The interaction of the overlying turbulent flow with riblets, and its impact on their drag
reduction properties are analysed. In the so-called viscous regime of vanishing riblet
spacing, the drag reduction is proportional to the riblet size, but for larger riblets the
proportionality breaks down, and the drag reduction eventually becomes an increase. It
is found that the groove cross section A+

g is a better characterization of this breakdown
than the riblet spacing, with an optimum A+

g
1/2 ≈ 11. It is also found that the breakdown

is not associated with the lodging of quasi-streamwise vortices inside the riblet grooves,
or with the inapplicability of the Stokes hypothesis to the flow along the grooves, but
with the appearance of quasi-two-dimensional spanwise vortices below y+ ≈ 30, with
typical streamwise wavelengths l+

x ≈ 150. They are connected with a Kelvin–Helmholtz-
like instability of the mean velocity profile, also found in flows over plant canopies and
other surfaces with transpiration. A simplified stability model for the ribbed surface
approximately accounts for the scaling of the viscous breakdown with A+

g .
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1. Introduction

Riblets are small surface protrusions aligned with the direction of flow, which
confer an anisotropic roughness to a surface. They are one of the few techniques
that have been successfully applied to the reduction of the skin friction in
turbulent boundary layers, both in the laboratory and in full aerodynamic
configurations.

Riblets of very different geometries have been tested in wind tunnels,
demonstrating drag reductions of the order of 10 per cent over flat plates.
Walsh & Lindemann [1] tested several shapes, including triangular, notched-peak,
sinusoidal and U-shaped riblets, obtaining maximum drag reductions of 7–8% for
riblet spacings of approximately 15 wall units. A fairly broad early review was
that of Walsh [2], and more recent ones are those of Choi [3], who emphasizes the
work of the ERCOFTAC drag reduction group, and Bushnell [4], which is oriented
towards drag-reduction techniques for aircraft. In his review on turbulent flows
over rough walls, Jiménez [5] viewed drag reduction by riblets as a transitional
roughness effect.
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Riblet experiments have also been conducted in oil channels, which
allow larger riblet dimensions and better control of the geometry, although
typically at lower Reynolds numbers and shorter development lengths than
wind tunnels. For example, Bechert et al. [6] conducted extensive tests
on blade-shaped and trapezoidal-groove riblets, and proposed the latter as
a compromise between optimum performance and practical fabrication and
maintenance.

A recurrent theme of riblet research has been the motivation to study biological
surfaces, which are often geometrically complex. Bruse et al. [7] conducted oil
channel tests of shark-skin replicas, hairy surfaces and riblets with adjustable
geometry, and Bechert et al. [8] reviewed the drag-reduction properties of
biological surfaces and their replicas. More recently, Itoh et al. [9] tested the
flow over seal fur, obtaining drag reductions of 12 per cent.

Off-design conditions have also been considered. We will discuss later the
consequences of yaw and tip erosion, but we should mention here the effect of
adverse pressure gradients, first reviewed by Walsh [2]. Although that condition
is probably not the deciding factor in many practical applications, because
the skin friction of adverse pressure gradient boundary layers tends to be low,
pressure gradients of either sign are present over large areas of most practical
configurations, and their effect on riblets remains uncertain. Walsh [2] found that
riblet performance improved under adverse pressure gradients, but mentioned
contradictory results by other authors, which he justified by the difficulty of
using drag balances under those conditions. Coustols & Savill [10] summarized
the results of several previous investigations, and concluded that the pressure
gradients typically found over aircraft wings, whether adverse or favourable,
had relatively little effect on the performance of riblets, while Debisschop &
Nieuwstadt [11] tested riblets in a wind tunnel with dimensionless adverse
pressure gradients an order of magnitude larger than those discussed in Walsh [2],
and found that the maximum drag reduction of triangular riblets could increase
roughly from 7 to 13 per cent.

Riblets have been used successfully to reduce the overall drag of aerofoils
[12] and aircraft [13] with optimum riblet spacings of the order of 30–70 mm.
Szodruch [14] reports on the flight tests of a commercial aeroplane (Airbus 320)
with riblets over 70 per cent of its surface, and estimates an overall 2 per cent
drag reduction, based on the fuel savings obtained. A summary of those tests,
including maintenance and durability issues, can be found in Robert [15]. The
discrepancy between the optimum laboratory performance and full configurations
is probably to be expected from any method based on the reduction of skin
friction. Not all the drag of an aircraft is friction [16], and much of the latter
is distributed over three-dimensional or geometrically complex areas where drag
control is difficult to optimize. Note that those limitations might not apply to
configurations that are very different from commercial aircraft, such as gliders or
other high-performance vehicles.

There is anecdotal evidence of the successful use of riblets in applications
other than aircraft, particularly in sporting events in which cost and maintenance
considerations are less important than in commercial aviation. The hulls of the
USA challengers in the America’s Cup 1987 and 2010 sailing competitions were
fitted with riblets, which had been banned by the regulations in intervening years.
Both challenges succeeded, although it is impossible to determine whether riblets
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Figure 1. Definition of the drag-reduction regimes observed over triangular riblets with 60◦ tip
angle, as a function of the peak-to-peak distance s+. Adapted from Bechert et al. [6].

had any real role. Riblets were also used in the 1984 Olympic rowing events, but
they were subsequently forbidden in official racing, together with all other devices
that ‘modify the properties of the boundary layer’.

The physical mechanism of the drag reduction by riblets has been investigated
in detail, although some aspects remain controversial. In particular, mean and
local velocity profiles and turbulent statistics within and above the riblet grooves
have been reported for experiments in wind tunnels [17–19], water channels [20]
and numerical experiments [21–26].

Walsh & Lindemann [1] showed that the Reynolds number dependence of the
effect of riblets on the skin friction could be expressed in large part in terms of the
riblet dimensions expressed in wall units, L+ = Lut/n, where n is the kinematic
viscosity and ut = t1/2 is the friction velocity defined in terms of the skin friction
t, where we have assumed unit fluid density for simplicity. The same will be
done throughout the paper. A popular measure of the riblet size L is the groove
spacing, s, but other dimensions, such as the depth h, have also been used. We
will propose below an alternative that collapses the experiments better, and that
has some theoretical support. Figure 1 shows a typical curve of drag reduction as
a function of the spacing, in which different drag regimes can be defined according
to how the drag depends on s+. In the viscous regime, formally s+ � 1 but in
practice s+ � 10–15, the contribution of the nonlinear terms to the flow within and
in the immediate neighbourhood of the riblet grooves is negligible and, if t0 is the
skin friction for the smooth wall, the drag reduction DR = −Dt/t0 is proportional
to s+. The viscous regime breaks down near s+ = s+

opt, the optimum spacing for
which drag reduction is maximum, and, eventually, the reduction becomes a
drag increase, adopting a typical k-roughness behaviour [5]. The parameters that
determine the optimum performance of a given riblet are its optimum size and
the slope of the drag curve in the viscous regime. Both depend on the geometry,
but the qualitative drag curve is always as just described.

This paper is organized as follows. Section 2 considers the suitability of the
parameters traditionally used to scale the drag-reduction curves, and proposes
an alternative. Section 3 reviews the viscous regime of drag reduction, including

Phil. Trans. R. Soc. A (2011)



Drag reduction by riblets 1415

10

20

1.00 0.5

Ag/s2

s o
pt+

S

Ag h

Figure 2. Riblet spacing for maximum drag reduction, as a function of the groove aspect ratio,
Ag/s2. Triangles, triangular riblets; inverted triangles, notched top and flat valley riblets; circles,
scalloped semicircular grooves; squares, blade riblets [6]. Error bars have been estimated from the
drag measurement errors given in the original reference.

the effects of yaw and tip rounding, and §4 centres on the range of optimum
drag reduction, with particular emphasis on the reasons for the breakdown of the
viscous regime, and on the linear stability of the flow. The conclusions are then
summarized.

2. Scaling of the drag-reduction curves

We saw above that the drag reduction by riblets is a function of the riblet size
expressed in wall units, and that it has become common to characterize that size
by the spacing s+. We now enquire whether some other choice of riblet dimensions
describes experimental evidence better. Considering a generic length L, the drag
behaviour in the viscous regime is characterized by the slope

mL = − v(Dt/t0)
vL+

∣∣∣∣
L=0

, (2.1)

so that DR ≈ mL L+. We will see in §3 that this slope can usually be computed
theoretically, but a successful parameter should also predict the location L+

opt
of the breakdown of the linear behaviour, and collapse as much as possible the
experimental drag curves for L � Lopt. An approximation that has often been
used is that s+

opt ≈ 15, but this quantity is a function of the riblet geometry. As an
example, figure 2 shows the optimum spacing against the ratio of the groove cross
section to the square of the spacing, Ag/s2, for several riblet shapes. For a given
spacing, higher values of Ag/s2 imply deeper grooves, and, although s+

opt is always
in the range 10–20, it is clear from the figure that deeper grooves break down
earlier, and that their maximum drag reduction is achieved for narrower riblets.

Using experimental results from Bechert et al. [6] for triangular, trapezoidal,
blade and scalloped riblets, García-Mayoral & Jiménez [26] tested alternative
scalings to find whether it was possible to express drag reduction in terms of a
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Figure 3. Drag-reduction curves of diverse riblets, reduced to a common viscous slope. Drag
reduction (a) as a function of the spacing s+ and (b) as a function of the square root of the
groove cross section, �+

g . Open triangles, experimental results from Bechert et al. [6]; filled circles,
direct numerical simulation results from García-Mayoral & Jiménez [26].

geometric parameter that captured both the influence of the riblet spacing and
shape. The best results were achieved for the square root of the groove cross
section, �+

g = (A+
g )1/2. The optimum values of s+ or h+ have scatters of the order

of 40 per cent, while the optimum �+
g only varies by approximately 10 per cent

around �+
g,opt � 10.7 ± 1.0, for all the geometries reviewed.

Figure 3 compares experimental drag curves for a wide variety of riblet
geometries, reduced with the appropriate viscous slope to compensate for the
differences in viscous performance. The figure shows that there is good collapse
of the data with �+

g , at least for �+
g � 15. For the different geometries portrayed,

DRmax is roughly 83 per cent of the value that would result from extrapolating
the linear viscous regime up to �+

g,opt. The approximation

DRmax = 0.83 m� �+
g,opt ≈ 8.9 m�, (2.2)

using a fixed �+
g,opt = 10.7, is quite accurate for conventional riblets. That is tested

in figure 4a, which compares experimental values of m� and DRmax. Even for
riblets with depth-to-width ratios as low as 0.2, the error of the approximation
(2.2) is below 20 per cent.

However, it should be stressed that, although �+
g collapses the drag curves

better than s+ or h+ for conventional geometries, there is no reason why it
should do the same for unconventional configurations, such as the fibre riblets
in Bruse et al. [7], the seal fur surface proposed by Itoh et al. [9] or the T-shaped
riblets mentioned in Walsh [2]. Taking the latter as examples, the grooves become
increasingly isolated from the overlying flow as the wall-parallel segments of the
T-fences close into each other, but the groove area (or the groove spacing) changes
little. For the limit of fully sealed grooves, the geometry would behave as a
flat surface, and modifying �+

g should have no performance impact. The scaling
with �+

g can only be considered as an empirical curve fit that works better than
others for the experiments on existing geometries, but which should not be used
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Figure 4. (a) Maximum drag reduction DRmax as a function of the experimental viscous slope m�.
The solid line represents equation (2.2). (b) Experimental values of the viscous slope, as a function
of the theoretical protrusion height. The two straight lines are m0 = 0.66 and 0.785. In both (a) and
(b), triangles, triangular riblets; inverted triangles, trapezoidal grooves; circles, scalloped grooves;
squares, blades. Filled symbols are results from Walsh & Lindemann [2] and Walsh [1] and open
ones from Bechert et al. [6].

uncritically for configurations that are very different from conventional ones. On
the other hand, some theoretical justification for its use in conventional riblets is
provided in §4.

3. The viscous regime

We now discuss the concept of protrusion height, which is generally considered
to describe well the behaviour of riblets in the viscous regime. From here on, we
will denote the streamwise, wall-normal and spanwise coordinates by x , y and z ,
respectively, and the corresponding velocity components by u, v and w.

There is a thin near-wall region in turbulent flows over smooth walls where
viscous effects are dominant, nonlinear inertial effects can be neglected, and the
mean velocity profile is linear. Its thickness is 5–10 wall units [27]. From the point
of view of a small protrusion in this layer, the outer flow can be represented as
a time-dependent, but otherwise uniform shear. Riblets destroy this uniformity
near the wall but, if s+ is small enough, the flow still behaves as a uniform
shear for y � h. Because the equations of motion are locally linear, the riblets are
uniform in the streamwise direction, and the shear varies only slowly with x when
compared with riblet dimensions, the problem reduces to two uncoupled two-
dimensional sub-problems in the z–y cross plane. The first one is the longitudinal
flow of u, driven at y+ � 1 by a streamwise shear

u ∝ y − Du , (3.1)

and the second one is the transverse flow of v and w, driven by

w ∝ y − Dw and v = 0. (3.2)
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Far from the wall, the effect of the riblets reduces to the virtual origins Du
and Dw [28]. Bechert & Bartenwerfer [29] had suggested that Du was the
explanation of the drag reduction, essentially because it moved turbulence away
from the wall, but Luchini et al. [30] noted that the important quantity was
the offset Dh = Dw − Du , the ‘protrusion height’, which is independent of any
arbitrary reference wall position. Intuitively, if the cross-flow has a higher virtual
origin than the longitudinal one (Dh > 0), the spanwise flow induced by the
overlying streamwise vortices is impeded more severely than over a smooth wall.
The streamwise vortices are displaced away from the wall, and the turbulent
mixing of streamwise momentum is reduced. Since this mixing is responsible
for the high local shear near the wall [31], its reduction results in a lower skin
friction. The numerical calculation of Dh only involves the two stationary two-
dimensional Stokes problems for Du and Dw , which are computationally much
less intensive than the three-dimensional, time-dependent, turbulent flow over a
ribbed wall.

The relation between protrusion height and drag is modified by the effect of the
rest of the boundary layer velocity profile. The classical theory of wall turbulence
is that surface manipulations only modify the intercept of the logarithmic velocity
profile, while both the Kármán constant, k ≈ 0.4, and the wake function are
unaffected [32]. The free-stream velocity, Ud, can then be expressed as

U +
d =

(
2
cf

)1/2

= k−1 log d+ + B, (3.3)

where d is a suitable flow thickness, d+ is the friction Reynolds number and
B includes both the near-wall intercept and the contribution from the ‘wake’
component. The effect of a given ribbed surface would be to change B, which is
equivalent to the ‘roughness function’ used to characterize rough surfaces [5]. For
constant Ud and small relative variations of the friction, it follows from equation
(3.3) that

Dcf

cf 0
= Dt

t0
= − DB

(2cf 0)−1/2 + (2k)−1
, (3.4)

where the first term in the denominator is due to the change of ut in U +
d , and

the second one comes from the corresponding change in d+. Comparison between
riblets at different Reynolds numbers should be done in terms of DB, not of Dt/t0,
and the same is true when reducing experimental data to practical applications.
The classical theory of wall turbulence suggests that, if the riblet size is much
smaller than d, which holds easily in the drag-reducing range, the effect of riblets
should be confined to the near-wall layer, and that any change in B should only
depend on the geometry of the riblets scaled in wall units. Note that equation (3.4)
predicts that riblets lose effectiveness at high d+, such as in practical aerodynamic
configurations, but only through the logarithmically slow decrease in cf 0.

Because of the linearity of the viscous regime, the change DB should be
proportional to the protrusion height Dh+,

DB = m0Dh+, (3.5)
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with a universal coefficient m0. That was tested by Jiménez [33], who performed
direct simulations of channels at very low d+, in which the offset of the boundary
conditions was modelled independently of the presence of actual riblets. He
obtained m0 ≈ 0.66. A different argument by Bechert et al. [6], based on the
uniform translation of the velocity profile, suggests m0 ≈ 0.785. Equation (3.5) is
tested against experiments in figure 4b, but the experimental scatter is too large to
distinguish between the two coefficients, or even to decide on the applicability of
equation (3.5). At least some of the scatter is due to experimental artefacts. Wind
tunnel and oil channel experiments are not strictly comparable, mostly because
of the very different development lengths of the two set-ups, but also because
of the different levels of geometric control, not always in the expected direction.
For example, the open squares in figure 4 are blade riblets from Bechert et al. [6].
Those with crosses were mounted on a different base than those without them, and
they agree better with the theory. Bechert noted the discrepancy, and repeated
a few experiments after sealing the riblet base, increasing the drag reduction by
about one-fifth. Similar caveats apply to the other riblets in the figure, including
those that appear to agree with the theory.

However, if we believe the theoretical predictions in spite of the experimental
ambiguities, equations (3.5) and (3.4) can be combined in a formula for the viscous
drag-reduction slope m� that only depends on Stokes calculations,

m� = m0

(2cf 0)−1/2 + (2k)−1

v(Dh)
v�g

. (3.6)

The results could then be used in the equivalent of figures 4a or 3b to predict the
riblet performance, at least up to the limit of optimal drag reduction.

(a) The effect of yaw

The tools discussed above can be used to make useful predictions of the
behaviour of riblets in off-design situations. A simple case is the effect of a
misalignment angle q between the riblets and the flow, which was first measured
experimentally by Walsh [2]. He found that its effect on drag reduction was
negligible up to q = 15◦, which has been confirmed several times since then. The
experiments also find that the drag reduction vanishes at q = 25–35◦, and that
the maximum drag increase occurs for q = 90◦. A list of relevant references can
be found in the paper by Koeltzsch et al. [34].

Consider now the viscous regime. Since the problem is linear, the longitudinal
and transverse velocity with respect to the free stream can be projected into the
frame of reference of the riblets, with the result that the offsets with respect to the
flow are linear combinations of the offsets of perfectly aligned riblets, and that
the protrusion height decays with the yaw as Dh(q) = cos(2q)Dh(0) [35]. That
agrees qualitatively with the experiments mentioned above.

On the other hand, that simple dependence does not extend away from the
viscous regime. Hage et al. [35] reported on the effect of yaw on riblets near the
optimum spacing, and found a typically larger geometry-dependent degradation
than in the viscous case, increasing strongly as s+ exceeds the optimum value.
Since the viscous breakdown is an indication of the effect of nonlinearity on the
riblets, it is not surprising that the linear predictions do not apply in that limit.
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Figure 5. Protrusion height of rounded peak riblets, scaled with the characteristic length scale
�g = (Ag)1/2 as a function of the peak radius of curvature. Filled inverted triangles, triangular
riblet with tip angle 60◦; open triangles, triangular riblet, 45◦; open circles, blade riblet, h/s = 0.5
and thickness t/s = 0.15; filled circles, blade riblet, h/s = 0.5 and t/s = 0.25.

(b) The impact of tip rounding

Another effect that can be analysed using the results of the previous two
sections is riblet erosion, which is a major concern for industrial applications.
Walsh [37] measured drag reductions for triangular riblets with rounded peaks,
finding a performance loss of up to 40 per cent for a tip radius R ≈ 0.08s. He found
no significant performance degradation from the rounding of the groove bottoms.

We can infer from the discussion in §2 that the details of the tip geometry
should not affect significantly the viscous breakdown, because they barely modify
the groove cross section. That is supported by the experiments of Bechert et al. [6],
who tested blade and scalloped geometries in which only the tip thickness
changed. The maximum drag reductions changed with the tip thickness, but not
the optimum s+, suggesting that the differences in performance were due to the
changes in the slope of the drag-reduction curve in the viscous regime.

Viscous results for different geometries with tip rounding are presented
in figure 5. The triangular riblets show a dramatic performance decrease, in
agreement with Walsh [37], but the protrusion heights for flat-top blades, which
perform worse for R = 0 than the sharp triangles, change little with tip rounding,
and even increase slightly with growing radii. It is common knowledge [6,30] that
sharper riblets have higher protrusion heights. Tip rounding reduces the sharpness
of those configurations, and degrades their performance, but the rounding of
the tips of initially blunt blades in a sense sharpens them, thus improving their
performance. For practical applications in which erosion is an issue, it is probably
preferable to use riblets that do not depend initially too much on the sharpness
of their tips.

4. The breakdown of the viscous regime

In this section, we discuss the physical mechanism leading to the breakdown of
the viscous regime. This is a key issue in riblet design, because we have seen that
the optimum drag reduction is proportional to the riblet size at breakdown, and
using larger riblets would lead to better optimum performance.
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Figure 6. (a) Premultiplied two-dimensional cospectra of the Reynolds shear stress at y+ ≈ 4 above
the riblet tips, for blade riblets of thickness t/s = 0.25, from García-Mayoral & Jiménez [26]. From
left to right, �+

g ≈ 13, 15, 17 and 20. The superimposed solid contour lines correspond to the
smooth-wall case. The contour increments are 0.0035u2

t . The thick horizontal line to the left of
each plot marks the riblet spacing, and the thin rectangle is the spectral region isolated in figure 7.
(b) Detail near the wall of the instantaneous streamlines of the z-averaged perturbation u–v flow,
for �+

g ≈ 17, in a simulation box with L+
z ≈ 850. The solid lines correspond to clockwise-rotating

rollers, and the separation between streamlines is 1.3n.

The theories proposed in the literature fall into two broad groups. The first
one is that the effect of the riblets on the cross-flow loses effectiveness once
they move beyond the Stokes regime. For example, Goldstein & Tuan [24]
suggested that the deterioration is due to the generation of secondary streamwise
vorticity over the riblets, because the unsteady cross-flow separates and sheds
small-scale vortices that create extra dissipation. However, it is known that
spanwise wall oscillations, which also presumably introduce unsteady streamwise
vorticity, can decrease drag [38], and that spanwise boundary conditions that
inhibit the creation of secondary wall vorticity can increase it [39], suggesting
that the presence of extra vorticity near the wall need not be detrimental for
drag reduction.

The second group of theories assumes that the observed optimum wavelength,
s+ ≈ 10–20, is related to the scale of the turbulent structures in the wall region,
such as in the observations by Choi et al. [21], Suzuki & Kasagi [20] and Lee & Lee
[19], that the increase in drag coincides with the lodging of the quasi-streamwise
vortices within the riblet grooves. However, all those observations are for s+ =
30–40, well past the optimum size.

García-Mayoral & Jiménez [26] recently documented a different scenario in a
series of direct numerical simulation experiments with riblets spanning the full
range of sizes from drag reduction to drag increase. They observed, for riblet sizes
around the optimum, the formation of near-wall spanwise vortex rollers whose
intensity grows rapidly with the riblet size. Those structures can be seen in the
two-dimensional spectra of the flow variables, shown in figure 6a for the Reynolds
shear stress t = −〈uv〉, and their dimensions for different riblet sizes remain
essentially constant in wall units. They have streamwise wavelengths l+

x ≈ 150,
and only exist below y+ ≈ 30 when y+ is referred to the plane of the riblet tips.
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term; open circles, full Reynolds stress term; filled circles, Reynolds stress term calculated only
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They are long in the spanwise direction, extending from l+
z ≈ 50 to the full

channel width. An example can be seen in figure 6b, which shows instantaneous
spanwise-averaged streamlines in the x–y plane. The rollers are centred at
y+ ≈ 10–15, and penetrate slightly into the riblet grooves. The streamwise
separation between rollers of the same sign is l+

x ≈ 150, in agreement with the
spectra. Note that, since this figure is a spanwise average over a box with
L+

z ≈ 850, the aspect ratio of the surviving rollers is at least 10 with respect to
x and 30 with respect to y, implying a quasi-two-dimensional phenomenon in an
x–y plane.

Although, to our knowledge, those structures have not been reported before,
they can be seen, in retrospect, in some of the visualizations of Goldstein et al. [23]
and Chu & Karniadakis [22], and it is interesting that, even in conditions
very different from ours, their streamwise wavelengths are also in the range
l+

x = 100–200.
The new structures account for most of the degradation of riblet performance

with size. Consider two channels with identical half-width, d, and centreline
velocity Ud, one of them with riblets (R), and the other without (S). Define
an approximate wall friction, u2∗ = −(vxP)d, as the extrapolation of the total
stress, t(y) + nvyU , to y = 0, which is the plane of the riblet tips. Note that
this is not the skin friction that should be used in the true friction coefficient
of the ribbed channels, because it neglects the effect of the streamwise pressure
gradient over the cross section of the grooves, but it has the same qualitative
behaviour as the real one, and can be used for the present argument. That
can be seen by comparing the dashed line in figure 7, which is the friction
coefficient computed in this way, with the filled circles in figure 3b, which are
the true friction coefficients for the same cases. A complete treatment of the
following discussion can be found in García-Mayoral & Jiménez [26]. Integrating
the mean momentum equation for the two channels and defining the approximate
friction coefficient as c∗

f = 2u2∗/U 2
d , it can be shown by integrating the momentum
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equation between the planes of the riblet tips that the drag change owing to the
riblets is

Dc∗
f

c∗
f ,R

= −U0,R

Ud,R
+ 1

U ∗
d,R

∫ d∗
R

0
(t∗

R − t∗
S) dy∗

R, (4.1)

where quantities with asterisks are normalized with their own u∗, and subscripts
refer to the channel type. The two terms on the right-hand side are plotted
independently in figure 7. The first one is the slip velocity at the plane of the
riblet tips, owing to the presence of the grooves, and always reduces skin friction.
That is essentially the mechanism of drag reduction in the viscous regime,
and it is interesting that it remains proportional to the riblet size across the
figure, even after the drag starts to increase. The slip velocity in figure 7 follows
almost exactly the predictions of the longitudinal Stokes problem (3.1), even
for the larger riblets, showing that the deterioration of the drag is not due to
the breakdown of the viscous hypothesis within the groove. It turns out that
the velocities within the groove are small enough that their Reynolds numbers
remain small.

The deterioration is due to the extra Reynolds stress in the second term of
equation (4.1), whose integrand is small everywhere except near y = 0, because
the two stresses have been scaled to approximately coincide far from the wall.
Moreover, the figure includes, in open symbols, the integral of the full Reynolds
stress, and, in filled ones, the result of considering only the cospectrum in the
spectral region of the new structures, 65 ≤ l+

x ≤ 290, l+
z ≥ 50 and y+ � 35. It is

clear that the stresses responsible for the drag degradation are those of the new
spanwise structures.

The formation of structures perpendicular, rather than parallel, to the riblets
may seem surprising, but it is not completely unexpected. Similar spanwise rollers
have been reported over vegetable canopies [40,41], and over permeable [42]
and porous walls [43]. The length scale of the structures varies depending on
the particular problem, but, although few quantitative analyses exist in the
literature [42,44], the phenomenon has always been attributed to a Kelvin–
Helmholtz-like instability. In essence, the mean profile of a boundary layer
almost has an inflection point at the wall, and the reason that it remains
inviscidly stable is that the impermeability condition, v = 0, precludes the
antisymmetric unstable eigenfunctions characteristic of Kelvin–Helmholtz. Once
any modification of the wall allows local transpiration, the inflection-point
instability reappears.

García-Mayoral & Jiménez [26] adapted that general idea to ribbed surfaces.
The conceptual model is that the longitudinal Stokes flow along the grooves is
driven by the pressure variation of the overlying turbulent flow, and that the
resulting longitudinal variations of the velocity within the grooves create a wall-
normal transpiration that acts as a boundary condition for an inviscid Rayleigh
equation for linearized perturbations around the mean velocity profile in y > 0.
The boundary condition has the form

(vt + U vx)vyv = U ′vxv ∓ nv

L3
w
, (4.2)
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Figure 8. (a) Maximum growth rate of the transpiration instability in turbulent channels, as a
function of the parameter L+

w defined in equation (4.3). Dashed line, d+ = 185; solid line, 550;
filled circles, 950; open triangles, 2000. (b) Ratio Lw/�g, for conventional riblets. Filled inverted
triangles, triangular riblets; filled circles, scalloped grooves; open squares, blade riblets. The solid
lines connect riblets of the same type with equal tip width, which decreases in the direction of
the arrow.

where the two signs of the last term apply, respectively, to the upper and
lower walls and U ′ is the gradient of the mean velocity at the wall. The new
parameter Lw can be interpreted as a length scale for the groove cross section,
and is defined as

L3
w = s−1

∫∫
Ag

f dy dz , (4.3)

where f is the velocity owing to a normalized pressure gradient along the
groove, vxP = −n, and satisfies V2f = −1. It has dimensions of length squared
and depends only on the groove geometry. The flow is unstable for all Lw > 0, but
figure 8a shows that the instability only becomes significant for L+

w � 4, essentially
independently of the Reynolds number of the flow above the wall.

The values of Lw for several conventional riblet shapes are compiled in figure 8b,
which shows that Lw ≈ 0.35 �g for groove aspect ratios larger than Ag/s2 ≈ 0.4.
Together with the stability threshold just mentioned, this result suggests that
the flow becomes unstable above �+

g ≈ 11, giving some theoretical support to the
scaling of the drag curves found empirically in §2.

5. Conclusions

We have reviewed the regimes for drag reduction in ribbed surfaces, with
particular emphasis on the practical information that can be extracted from
the viscous regime, and on the conditions under which that regime breaks
down. We have shown that the existing experiments for the location of the
breakdown collapse better with a new length scale, �+

g = A+
g

1/2, based on the
groove area, than with more classical choices such as the riblet spacing or depth.
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The best estimate for optimum drag reduction is �+
g � 10.7, which, together with

the drag slope in the viscous limit, can be used to predict riblet performance
within 20 per cent. We have shown that this probably predicts the effect of
tip erosion, which, somewhat surprisingly, is not always deleterious, but that
the effect of yaw for optimized riblets is only qualitatively predicted by the
viscous regime.

Using direct simulations of ribbed channels spanning the range from viscous
drag reduction to drag increase, we have shown that the degradation for
large riblets of the linear regime of drag reduction is not connected with
the breakdown of the Stokes behaviour of the longitudinal velocity along the
riblet grooves. Even when the drag is already increasing, the slip velocity
at the plane of the riblet tips remains proportional to the riblet size. The
extra drag comes from a system of spanwise vortices below y+ ≈ 30, with
dimensions that scale in wall units, independently of the riblet size. We have
connected those rollers to a Kelvin–Helmholtz-like instability common to other
systems with surface transpiration, such as canopies, and permeable and porous
surfaces, and we have described a model for ribbed surfaces that provides some
theoretical justification for the experimental scaling of the breakdown with the
groove area.
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