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Abstract. A hybrid OpenMP-MPI code has been developed and opti-
mized for Blue Gene/P in order to perform a direct numerical simulation
of a zero-pressure-gradient turbulent boundary layer at high Reynolds
numbers. OpenMP is becoming the standard application programming
interface for shared memory platforms, offering simplicity and portabil-
ity. For architectures with limiting memory as Blue Gene/P, the use of
OpenMP is especially well suited. MPI communications overhead are
also improved due to the decreasing number of processes involved. Two
boundary layers are simultaneously run due to physical considerations,
represented by two different MPI groups. Different node mappings lay-
outs have been investigated reducing communication times in a factor of
two. The present hybrid code shows approximately linear weak scaling
up to 32k cores.
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1 Introduction

Modern parallel programming paradigms are now often used in clusters, combin-
ing Message Passing Interface (MPI) paradigm [2] for across the nodes with Open
Multi-Processing (OpenMP) [1] within the nodes, known as hybrid OpenMP-
MPI. The use of a hybrid methodology has some important advantages with
respect to the traditional use of MPI: it is easy to implement through the use of
directives, has low latency, high bandwidth, fine granularity, implicit communi-
cations versus explicit communications at node level, etc.

Previous TBL codes by our group were developed using MPI [6]. This choice
was justified because of the computer architecture and the relatively low number
of cores used. Nevertheless, using tens of thousands of cores with only MPI
may degrade the code scalability and thus, its performance. This is one of the
reasons to modify the original TBL code to a new hybrid OpenMP-MPI. Despite
that, the main reason to port the code is the available memory per core. In
order to simulate smooth Reθ ≈ 6650 and rough Reθ ≈ 4200 TBLs, allocation

� Corresponding author.

Y. Cotronis et al. (Eds.): EuroMPI 2011, LNCS 6960, pp. 218–227, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Hybrid OpenMP-MPI Turbulent Boundary Layer Code 219

time in Intrepid at Argonne National Laboratory (USA) and Jugene at Jülich
Forschungszentrum (Germany) have been granted through an INCITE award
and a PRACE project respectively. Both codes are similar, and, from now on,
we will just describe the smooth-wall one. The available memory per core is
in both cases 512 Mb, instead of 2 GB as is the case of Mare Nostrum (MN,
Barcelona). The previous Reθ ≈ 2000 TBL was run on MN facility under the
RES (Red Española de Supercomputación) project. With this available memory
and the current TBL problem size, the use of OpenMP has naturally arisen as
the simpler solution to overcome this issue. With the usage of OpenMP, some
of the extra communication overhead associated with the use of MPI within
the node is avoided as well. Nevertheless, other problems such as locality, false
sharing, data placement [4] can arise from its usage.

2 The Numerical Code

The boundary layer is simulated in a parallelepiped over a smooth wall, spatially
periodic spanwise, but with nonperiodic inflow and outflow in the streamwise di-
rection. The code uses a relatively classical fractional-step method [7,8] to solve
the incompressible Navier-Stokes equations expressed in primitive variables, us-
ing spectral expansions in the spanwise direction, and compact finite differences
in the other two. A three sub-step, semi-implicit low storage Runge-Kutta scheme
is used to evolve the equations in time.

For the problem here considered, both spectral methods and compact finite
differences are tightly coupled operations. Our code is constructed in such way
that only single data lines, along one of the coordinate directions, have to be
accessed globally. However, the three directions have to be treated in every sub-
step.

The code uses single precision in the I/O operations and communications and
double precision in the differentiation and interpolation operations where the
implicit part of the compact finite differences can cause loss of significance.

Compared to other highly scalable DNS/LES codes like FrontTier, Nek5000
or PHASTA, this code is specifically designed an tuned for a single purpose: to
solve a zero-pressure-gradient turbulent boundary layer over a flat plate.

2.1 Computational Setup

The simulation is split in two concatenated domains with different boundary
conditions as showed in figure 1. The planes πi and π′

i are given inflow boundary
conditions, and outflow boundary conditions are assigned to πe and π′

e. The
boundary conditions in πt and π′

t impose a zero pressure gradient on the domain.
Finally, the spanwise direction is considered periodic. The mission of the first
boundary layer (BL1) is to provide accurate inflow boundary conditions to the
second one (BL2). The inflow of BL1 is obtained from its own plane π1 that is
rescaled using a method based on the one proposed by Lund, Wu and Squires[5].
The physical length of BL1 is chosen to be long enough to let the large scales
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recover from an unrealistic initial condition and, once this asymptotic state has
been reached, the plane π2 is used to give BL2 its inflow boundary condition.
As a consequence, a small portion of the BL1 simulation is thrown away.

Given that the goal ofBL1 is to allow the large scales to reach their asymptotic
state and, given that the smaller scales take much shorter to reach a similar
condition, BL1 is run at a coarser resolution than BL2. This setup permits
computing a single boundary layer with significantly less computational work.

Fig. 1. Scheme of the computational domain and boundary conditions

Each of these two boundary layers is mapped to an MPI group. The first group
runs the auxiliary simulation at coarse resolution and it consists of 512 nodes
while the second MPI group comprises 7680 nodes and runs the main one in high
resolution. The first MPI group is only about 8.5% of the total computational
cost. This information is shown in table 1.

Table 1. Computational setup for the auxiliary BL1 and main BL2 boundary layers:
Nt is the total number of degree of freedoms in giga points; Time/DoF is the amount
of total CPU (core) time spent to compute a degree of freedom for every step

Case Reθ Nodes Nx × Ny × Nz Nt (Gp) Time/DoF

BL1 1100-3000 512 3585 × 315 × 2560 2.89 13.98 μs
BL2 2800-6650 7680 15361 × 535 × 4096 33.66 18.01 μs

MPI groups communicate each other only twice per sub-step by means of the
MPI COMM WORLD communicator, while communications within each group
occur via a local communicator defined at the beginning of the program. The
first global operation is a SEND/RECEIVE of the π2 plane, from BL1 to BL2.
The second global operation is an MPI ALL REDUCE to set the time step for
the temporal Runge-Kutta integrator, thus synchronizing both groups. The work
done by each group must be balanced since each MPI group must wait for the
other one in global operations, otherwise one group will slow down the second
one that must remain idle during that time. The worst case scenario is when the
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auxiliary simulation slows down the main one. The time employed in communi-
cations for the auxiliary simulation has been improved using a customized node
topology described in section 3.

2.2 Domain Decomposition

The parallelization distributes the simulation space over the different nodes, and
to avoid global operations across nodes, it does a global transpose of the whole
flow field twice every time sub-step (back and forth). The domain decomposition
is sketched in figure 3 and can be classified as a plane to pencil domain decompo-
sition. This strategy is motivated by the limited amount of memory in the Blue
Gene/P nodes. Only transverse planes ΠZY can fit in a node, and longitudinal
planes ΠXY must be decomposed in X lines, i.e, pencils PX . According with
the values presented in table 1, transverse planes are 25 Mb, longitudinal planes
94 Mb and pencils 120 Kbytes. Sixteen double precision buffers are need, and
3ΠZY planes per node are used in the main simulation. Hence, the memory node
occupation is close to 60%.

Fig. 2. Partition of the computational domain for OpenMP-MPI for N nodes and four
threads. Top, ΠZY planes; bottom, PX pencil.

Each node contains Nx/N cross-flow planes, where Nx is the number of grid
points in streamwise direction and N the total number of nodes. Each node is an
MPI process, and OpenMP is applied within the node, splitting the sub-domain
in a number of pieces equal to the available number of threads, four in Blue
Gene/P.

The variables are allocated in memory as ψ(Kz, Ny, Nx/N ), where Kz is the
number of modes in spanwise direction (2/3Nz) and Ny the number of Y grid
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points. Each thread works in the same memory region of the shared variables
using a first-touch data placement policy [3], maximizing data locality and di-
minishing cache missed [4], thus improving performance. The most common
configuration that a team of threads can find is presented in figure 3, in which
each thread works over a portion of Ny with static scheduling. This scheduling
is defined manually through thread private indexes, which maximizes memory
reuse. In that way, each thread always works in the same portion of the array.
Nevertheless, when loop dependencies in Y direction are found (i.e, LU decom-
position) threads work over portions of Kz. For such loops, blocking techniques
are used, putting the innermost loop index to the outermost part, thus maxi-
mizing data locality since strips of the arrays fit into the cache at the same time
that threads can efficiently share the work load. The block size has been tuned
for Blue Gene/P architecture comparing the performance of several runs.

In this configuration, operations in Y and Z are then performed. For operations
in X direction global transposes are used to change variables memory layout to
ψ(Nx,KzNy/N ). Now, each node contains a number of KzNy/N pencils. Each
OpenMP thread works over a packet of (KzNy/N )/Nthread, where Nthread is the
total number of threads. As in the previous configuration, workload is statically
distributed among threads using thread private indexes.

2.3 Global Transposes and Collective Communications

Roughly 45% of the overall execution time is spent transposing the variables
from planes to pencils and back, therefore it was mandatory to optimize the
global transpose as much as possible. Preliminary tests revealed that the most
suitable communication strategy was to use the alltoallv routine and the BG/P
torus network, twice as fast than our previous custom transpose routine based
on point to point communication over the same network.

The global transpose is split into three sub-steps. The first one changes the
alignment of the buffer containing a variable and casts the data from double to
single precision to reduce the amount of data to be communicated. If more than
one ΠZY plane is stored in every node then, the buffer comprises the portion of
contiguous data belonging to that node in order to keep message sizes as big as
possible.

The second sub-step is a call to the MPI ALLTOALLV routine. It was decided
not to use MPI derived types because the transpose operations that change the
data alignment and the double to float casting are parallelized with OpenMP.

The third and last sub-step transpose the resulting buffer aligning the data
PX -wise. This last transpose has been optimized using a blocking strategy be-
cause the array to be transposed has many times more rows than columns.
The whole array is split into smaller and squarer arrays that are transposed
separately. The aspect ratio of those smaller arrays is optimized for cache per-
formance using collected data from a series of tests. Finally the data is cast to
double precision again.

The procedure to transpose from PX pencils to ΠZY planes is similar and is
split in three sub-steps too.
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3 Blue Gene/P Mapping

Mapping virtual processes onto physical processors is one of the essential issues
in parallel computing, being a field of intense study in the last decade. Proper
mapping is critical to achieve sustainable and scalable performance in modern
supercomputing systems.

Blue Gene/P has a torus network topology, except for allocations smaller than
512 nodes, in which the torus degenerates to a mesh. Therefore, each node is
connected to six nodes by a direct link. The location of a node within the torus
can be described by three coordinates [X,Y, Z].

Fig. 3. Predefined (left) and custom (right) node mapping for a 8192 node partition in a
[8, 32, 32] topology. The predefined mapping assigns to BL1 the nodes in a [8, 32, 2] sub-
domain. Custom mapping assigns the nodes to a [8, 8, 8] sub-domain. BL2 is mapped
to the rest of the domain till complete the partition.

Different physical layouts of MPI tasks onto physical processors are predefined
depending of the number of nodes to be allocated. The predefined mapping for
a 512 node partition is a [8, 8, 8] topology, while for 8192 nodes it is [8, 32, 32] as
it is shown in figure 3. Users can specify their desired node topology by using
the environment variable BG MAPPING and specifying the topology in a text
file.

Changing the node topology completely changes the graph embedding prob-
lem and the path in which the MPI message travels. This can increase or decrease
the number of hops needed to connect one node to another, and as a result, alter
the communication time to send a message. Fine tuning for specific problems can
considerably improve the time spent in communications. Table 2 shows different
mappings that have been evaluated for our specific problem size. The custom
mapping reduces the communication time for BL1 by a factor of two. The work
load for BL1 is projected using this new communication time while the load for
BL2 is fixed. Balance is achieved minimising the time in which BL1 or BL2 are
idle in the global communications.

The choice of a user-defined mapping is motivated due to the particular
distribution of nodes and MPI groups. The first boundary layer BL1 runs in
512 MPI processes mapped onto the first 512 nodes, while BL2 runs in 7680
MPI processes mapped on the nodes ranging form 513 to 8192. Note that at
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Table 2. Time spent in communication during global transposes. Different node topolo-
gies are presented for 10 time steps and for each boundary layer. Times are given in
seconds.

Topology Nodes Comm BL1 Comm BL2

Predefined [8, 8, 8] 512 27.77 —
Custom [32, 32, 8] 8192 79.59 86.09
Predefined [32, 32, 8] 8192 160.22 85.44

the moment the communicator is split such that CommBL1 ∪ CommBL2 =
MPI COMM WORLD, neither CommBL1 nor CommBL2 can be on a 3D
torus network. The communications will drop down to a 2D mesh with
sub-optimal performance. Therefore, the optimum topology for our particular
problem would be the one in which the number of hops for each MPI group
is minimum, since collective communications occur locally for each group. For
a single 512 node partitions the optimum is the use of a [8, 8, 8] topology, in
which messages travel within a single communication switch. We have found the
optimum mapping for BL1 to be a [8, 8, 8] sub-domain within the predefined
[8, 32, 32], as shown in the right side of figure 3. BL2 is mapped to the remaining
nodes using the predefined topology and no other mappings have been further
investigated. Although a [8, 8, 8] topology is used for BL1 by analogy with the
single 512 node partition, communication time is nevertheless greater. This is
due to the sub-optimal performance of using a 2D mesh instead of a 3D torus
network, as already discussed. Ultimately, the reason can be found in the new
hardware connection, since the 512 nodes and 8192 nodes of the 3-Dimensional
torus network are physically connected in a different way. This leads to the in-
crease in the number of hops for BL1 collective communications, since messages
cannot travel within a single communication switch anymore.

The methodology to optimize communications for another size partitions
would be similar to the one just described: mapping virtual processes to nodes
that are physically as close as possible so the number of hops is minimized.

4 Scalability Results in Blue Gene/P

4.1 OpenMP Scalability

It is important to state that the reason to mix concurrency and parallelism was
not driven by the need for more performance but because the small memory
capacity of the Blue Gene/P node, which does not allow a physically-significant
block of data to be allocated to each core.

Some tests were run in a 512 node configuration after porting the code to
OpenMP. The results are shown in table 3. These samples suggest that almost
no penalty is paid when the computations are parallelized with OpenMP. In
addition, the problem size per node and the MPI message size can be increased
by a factor of four while using all the node’s resources.
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Table 3. OpenMP scalability test performed on 512 nodes. Two efficiencies (η) given:
one based on the computation time (Comp. T ) and one based on the total time
(Total T.). Times are given in seconds.

Nthreads Comp. T η Total T. η

1 60.820 1 70.528 1
2 30.895 0.984 38.951 0.905
4 16.470 0.923 24.438 0.721

4.2 MPI Scalability

Extensive data about MPI scalability was collected during the test runs in a
BG/P system. The most relevant cases are listed in the table 4.

Table 4. Data collected from the profiled test cases. Time/DoF is the amount of total
CPU (core) time spent to compute a degree of freedom for every step; Nt is the size in
GiB of a buffer of size Nx ×Ny ×Nz; Comm, Transp and Comp are the percentage of
the communication, transpose and computation time respect to the total.

Nodes Nx × Ny × Nz Nt Time/DoF Comm. Transp. Comp. Symbol

512 1297 × 331 × 768 0.33 10.6 μs 17.9% 8.29% 73.8% �
1024 3457 × 646 × 1536 3.43 17.6 μs 44.7% 7.52% 47.8% �
2048 6145 × 646 × 1536 6.10 17.4 μs 46.0% 5.31% 48.8% �
4096 8193 × 711 × 1536 8.94 17.6 μs 44.6% 5.23% 53.2% �
8192 8193 × 711 × 2048 11.93 19.4 μs 37.4% 8.30% 57.6% �
8192 16385 × 801 × 4608 60.47 19.3 μs 39.7% 8.41% 51.9% �

All the simulations run show a linear weak scaling up to 8192 nodes (32768
cores). The same code is expected to scale further without modifications, al-
though at this time, higher node partitions have been not tested.

Figure 4(b) shows that the communications time is typically 40% of the total
run time, and that both computation and communications are scaling as ex-
pected. The global transpose implementation shows an excellent scalability in
all the test cases as shown in figure 4(a). It is important to mention that in
the BG/P supercomputer architecture, the linear scaling is kept even when the
estimated message size is about 1 kB in size. All our previous implementations
of the global transpose broke the scalability near the 3 kB estimated message
size limit.

5 Parallel I/O

Intermediate stages of the simulation in the form of flow fields (velocities and
pressure) are an important result and are saved even more often than what
checkpointing would require. Another mandatory feature to maintain the scala-
bility with a high node count is the support for parallel collective I/O operations
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Fig. 4. Latency analysis (a) and scalability of the total and communication time for
different test cases (b). Solid lines are linear regressions computed before taking loga-
rithms of both axis.

when a parallel file system is available. A handful of alternatives have been
tested, mainly upon GPFS, like raw posix calls enforcing the file system block
size, sionlib (developed at JFZ) and parallel hdf5.

Hdf5 is a more convenient choice for storing and distributing scientific data
than the alternatives tested because, despite having better performance, they
require to translate the resulting files to a more useful format. Unfortunately
sufficient performance could not be acheived without tuning the I/O process.
Hdf5 performance depends on the availability of a cache in the file system. The
observed behaviour in the BG/P systems was that writing was one, and some-
times two, orders of magnitude slower than reading because in the GPFS used
the write cache was turned off. To overcome this issue, when the MPI I/O driver
for hdf5 is used, the sieve buffer size parameter of hdf5 can be set to the file sys-
tem block size. As a result, the write bandwidth for 8192 nodes was increased up
to 16GiB/s, similar to the read bandwidth 22GiB/s and closer to the estimated
maximum.

6 Conclusions

A hybrid OpenMP-MPI code has been developed from its original MPI version to
perform direct numerical simulations of smooth and rough turbulent boundary
layers at high Reynolds numbers. The code has been tested in a Blue Gene/P
computer using up to 8192 nodes for MPI processes, and four threads per process
for OpenMP, showing good scalability for both MPI and OpenMP. Two different
domain decompositions are used to perform global operations in each of the 3-
dimensional directions, employing collective communications to perform global
transposes. Customized mappings of processes onto physical processors has been
used for each of the two MPI groups, representing the auxiliary low resolution
and the main high resolution simulation, speeding communications up by a factor
of two.
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