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We are all agreed that your theory is crazy.

The question that divides us is whether it is crazy

enough to have a chance of being correct.

N. Bohr

And the colored girls go doo do doo do doo ...

L. Reed
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∆x Grid size in the streamwise direction, in terms of

collocation points
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collocation points
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µ0 Constant of proportionality between the protrusion height ∆h+

and the shift in the velocity profile ∆B
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ρ Density

τ Shear stress

τuv Reynolds stress

τtot Total shear stress

τvisc Viscous stress

τw Kinematic skin friction

τw0 Kinematic skin friction of the reference smooth wall
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Roman symbols
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mean velocity profile
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δ
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CFL Courant-Friedrichs-Lewy number
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Epp Spectral density of the pressure fluctuations

Euu Spectral density of the streamwise velocity

Euv Spectral density of the Reynolds stress

Evv Spectral density of the wall-normal velocity

Eww Spectral density of the spanwise velocity

h Riblet height, or groove depth

kx Wavenumber in the streamwise direction
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ms Viscous drag-reduction slope, when the riblet size is expressed as s+

Nr Number of riblets

Nx Number of collocation points in the streamwise direction

Ny Number of collocation points in the wall-normal direction

Nzc Number of collocation points in the spanwise direction for the

central block

Nzr Number of collocation points in the spanwise direction for the

wall blocks

p Pressure

pℓ, Px Mean pressure gradient in the streamwise direction

R Geometric radius

Re Reynolds number

Reτ Friction Reynolds number, Reτ = δ+

Rez Reynolds number based on the transverse shear, s2Sz/ν

s Riblet spacing

Sx Uniform shear in the streamwise direction

Sz Uniform shear in the spanwise direction

t Time

tr Riblet thickness

u Velocity in the streamwise direction

u Velocity vector containing u, v, and w

uτ Friction velocity

U Mean velocity profile

Uc Centerline velocity

Uδ Outer velocity

U∞ Free-stream velocity

U0 Mean slip velocity at y = 0. For the Taylor–Green vortex flow,

initial maximum of the velocity

v Velocity in the wall-normal direction

w Velocity in the spanwise direction

x Streamwise direction

y Wall-normal direction. In riblet channels, y = 0 represents

the riblet-peak plane

z Spanwise direction
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Resumen

El propósito de esta tesis es dar respuesta a la pregunta ¿por qué dejan de ser eficaces

los microsurcos a partir de un tamaño determinado?

Los microsurcos, riblets en inglés, son una rugosidad estriada, alineada en la dirección

media del flujo turbulento sobre la superficie, especialmente diseñados para reducir el

rozamiento entre ésta y el flujo. Están inspirados en superficies biológicas, como los

dent́ıculos ordenados de la piel de los tiburones de gran velocidad, y fueron objeto de un

gran número de investigaciones en los años ochenta y noventa. Aunque se comprobó que

la reducción de la resistencia depende del tamaño de los microsurcos, escalado en unidades

de pared, los mecanismos f́ısicos implicados no se hab́ıan explicado completamente hasta

ahora. Se comprend́ıa cómo interactúan los microsurcos de tamaño infinitesimal con

el flujo turbulento, produciendo un cambio en la resistencia proporcional a su tamaño,

pero éste no es el régimen de interés práctico. El comportamiento óptimo se da para

tamaños mayores, para los que el comportamiento lineal ya se ha perdido, pero antes de

que los microsurcos empiecen a adoptar un carácter de rugosidad común y aumenten la

resistencia. Este régimen, que es el más relevante desde el punto de vista tecnológico,

ha sido justo el peor comprendido, y hemos centrado nuestro estudio en él. Nuestros

esfuerzos han seguido tres direcciones básicas.

En primer lugar, hemos analizado los datos experimentales disponibles, buscando iden-

tificar caracteŕısticas comunes en el régimen óptimo de las distintas geometŕıas de micro-

surcos existentes. Este estudio nos ha llevado a proponer una nueva escala de longitud, la

ráız cuadrada de la sección del surco, para sustituir a la tradicional longitud de espaciado

entre microsurcos. Escalando las dimensiones de los microsurcos con esta magnitud, el

tamaño para el que colapsa el comportamiento lineal se hace prácticamente universal.

Ésto sugiere que el comienzo del colapso está relacionado con un valor del área concreto

para la sección del surco.

En segundo lugar, hemos realizado un conjunto de simulaciones numéricas directas so-

bre microsurcos de tamaños que cubren todo el rango de reducción de la resistencia. Aśı,

hemos podido reproducir la transición gradual entre los distintos reǵımenes. El análisis
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espectral de los flujos ha sido particularmente fruct́ıfero, ya que ha hecho posible la identi-

ficación de rollos transversales justo encima de los microsurcos, que comienzan a aparecer

cuando el tamaño de los microsurcos se aproxima al óptimo. Ésta es una caracteŕıstica

del flujo bastante sorprendente, no por la singularidad del fenómeno, que ya hab́ıa sido

observado anteriormente para otros tipos de superficies complejas y porosas, sino porque

la mayoŕıa de los estudios previos se hab́ıan centrado en el detalle del flujo sobre cada

microsurco como unidad. La originalidad de nuestro tratamiento ha proporcionado las

herramientas adecuadas para capturar estructuras coherentes con un soporte transversal

más amplio, que interactúan con los microsurcos no de forma individual, sino colectiva.

También hemos comprobado que estas estructuras coherentes son responsables del incre-

mento de la resistencia tras el colapso del régimen viscoso.

Finalmente, hemos analizado la estabilidad del flujo con un modelo simplificado, que

vincula la apariencia de los rollos a una inestabilidad de tipo Kelvin–Helmholtz, como

sucede también en el flujo sobre doseles vegetales y superficies porosas. A pesar de

que el modelo refleja la presencia de microsurcos sólo de forma general y promediada,

consigue capturar los atributos esenciales del colapso del régimen viscoso, y proporciona

una justificación teórica para el escalado con la sección del surco.
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Summary

The purpose of this thesis is to give answer to the question: why do riblets stop

working for a certain size?

Riblets are small surface grooves aligned in the mean direction of an overlying tur-

bulent flow, designed specifically to reduce the friction between the flow and the surface.

They were inspired by biological surfaces, like the oriented denticles in the skin of fast-

swimming sharks, and were the focus of a significant amount of research in the late eighties

and nineties. Although it was found that the drag reduction depends on the riblet size

scaled in wall units, the physical mechanisms implicated have not been completely un-

derstood up to now. It has been explained how riblets of vanishing size interact with the

turbulent flow, producing a change in the drag proportional to their size, but that is not

the regime of practical interest. The optimum performance is achieved for larger sizes,

once that linear behavior has broken down, but before riblets begin adopting the character

of regular roughness and increasing drag. This regime, which is the most relevant from

a technological perspective, was precisely the less understood, so we have focused on it.

Our efforts have followed three basic directions.

First, we have re-assessed the available experimental data, seeking to identify common

characteristics in the optimum regime across the different existing riblet geometries. This

study has led to the proposal of a new length scale, the square root of the groove cross-

section, to substitute the traditional peak-to-peak spacing. Scaling the riblet dimension

with this length, the size of breakdown of the linear behavior becomes roughly universal.

This suggests that the onset of the breakdown is related to a certain, fixed value of the

cross-section of the groove.

Second, we have conducted a set of direct numerical simulations of the turbulent flow

over riblets, for sizes spanning the full drag reduction range. We have thus been able to

reproduce the gradual transition between the different regimes. The spectral analysis of

the flows has proven particularly fruitful, since it has made possible to identify spanwise

rollers immediately above the riblets, which begin to appear when the riblet size is close to

the optimum. This is a quite surprising feature of the flow, not because of the uniqueness

XI



of the phenomenon, which had been reported before for other types of complex and porous

surfaces, but because most previous studies had focused on the detail of the flow above

each riblet as a unit. Our novel approach has provided the adequate tools to capture

coherent structures with an extended spanwise support, which interact with the riblets

not individually, but collectively. We have also proven that those spanwise structures are

responsible for the increase in drag past the viscous breakdown.

Finally, we have analyzed the stability of the flow with a simplified model that connects

the appearance of rollers to a Kelvin–Helmholtz-like instability, as is the case also for

the flow over plant canopies and porous surfaces. In spite of the model emulating the

presence of riblets only in an averaged, general fashion, it succeeds to capture the essential

attributes of the breakdown, and provides a theoretical justification for the scaling with

the groove cross-section.
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Chapter 1

Introduction

The present thesis is a study on the interaction of surface geometry manipulations with

the overlying turbulent flow, when those manipulations are designed to reduce the drag

force that the surface exerts on the flow, constituting a form of passive flow control. Some

of the results presented in this thesis have been published in Garćıa-Mayoral & Jiménez

(2011b) and Garćıa-Mayoral & Jiménez (2011a).

A popular type of surface manipulation is directional roughness, in the form of small

two-dimensional protrusions aligned with the flow, which are known as riblets. They

have been one of the few turbulent-drag-reduction techniques successfully demonstrated

not only in theory, but also in practice, both in the laboratory and in full aerodynamic

configurations.

Riblets of very different geometries have been tested in wind tunnels, demonstrating

drag reductions of the order of 10% over flat plates. Walsh & Lindemann (1984) tested

several shapes, including triangular, notched-peak, sinusoidal, and U-shaped riblets, ob-

taining maximum drag reductions of 7–8% for riblet spacings of approximately 15 wall

units. A fairly broad early review was that of Walsh (1990b), and more recent ones are

those of Choi (2000), who emphasizes the work of the ERCOFTAC drag reduction group,

and Bushnell (2003), which is oriented towards drag reduction techniques for aircraft. In

his review on turbulent flows over rough walls, Jiménez (2004) viewed drag reduction by

riblets as a transitional roughness effect.

Riblet experiments have also been conducted in oil channels, which allow larger ri-

blet dimensions and better control of the geometry, although typically at lower Reynolds

numbers and shorter development lengths than wind tunnels. For example, Bechert et al.

(1997b) conducted extensive tests on blade-shaped and trapezoidal-groove riblets, and

proposed the latter as a compromise between optimum performance and practical fabri-

1



2 1. Introduction

cation and maintenance.

Off-design conditions have also been considered. We will discuss the consequences of

yaw and tip erosion, but we should mention here the effect of adverse pressure gradients,

first reviewed by Walsh (1990b). Although that condition is probably not the deciding fac-

tor in many practical applications, because the skin friction of adverse-pressure-gradient

boundary layers tends to be low, pressure gradients of either sign are present over large ar-

eas of most practical configurations, and their effect on riblets remains uncertain. Walsh

(1990b) found that riblet performance improved under adverse pressure gradients, but

mentioned contradictory results by other authors, which he justified by the difficulty of

using drag balances under those conditions. Coustols & Savill (1992) summarized the

results of several previous investigations, and concluded that the pressure gradients typ-

ically found over aircraft wings, whether adverse or favorable, had relatively little effect

on the performance of riblets. Later, Debisschop & Nieuwstadt (1996) tested riblets in a

wind tunnel with dimensionless adverse pressure gradients an order of magnitude larger

than those discussed in Walsh (1990b), and found that the maximum drag reduction of

triangular riblets could increase from roughly 7% to 13%.

Riblets have been used successfully to reduce the overall drag of airfoils (Lee & Jang,

2005) and aircraft (Viswanath, 2002), with optimum riblet spacings of the order of 30-

70 µm. Szodruch (1991) reports on the flight tests of a commercial aeroplane (Airbus 320)

with riblets over 70% of its surface, and estimates an overall 2% drag reduction, based on

the fuel savings obtained. A summary of those tests, including maintenance and durability

issues, can be found in Robert (1992). The discrepancy between the optimum laboratory

performance and full configurations is probably to be expected from any method based on

the reduction of skin friction. Not all the drag of an aircraft is friction (Roskam, 1987),

and much of the latter is distributed over three-dimensional or geometrically complex

areas where drag control is difficult to optimize. Note that those limitations might not

apply to configurations that are very different from commercial aircraft, such as gliders

or other high-performance vehicles.

There is anecdotal evidence of the successful use of riblets in applications other than

aircraft, particularly in sporting events in which cost and maintenance considerations

are less important than in commercial aviation. The hull of the USA challengers in the

America’s Cup 1987 and 2010 sailing competitions were fitted with riblets, which had

been banned by the regulations in intervening years. Both challengers won the Cup,

although it is impossible to determine whether riblets had any real role. Riblets were also

used in the 1984 Olympic rowing events, but they were subsequently forbidden in official
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racing, together with all other devices that “modify the properties of the boundary layer”.

Racing swimsuits produced by Speedo, TYR and Arena in the early 2000s also employed

riblet patterns on the surface to reduce passive drag in competitive swimming (Krieger,

2004), claiming a drag reduction of up to 4%. Much of that improvement was however

most likely due to the reduction of form drag, whose contribution in human swimming

is much larger than that of friction (Marinho et al., 2009). Speedo’s latest model, the

Fastskin LZR Racer, seems to have dropped riblets completely and turned its focus solely

on reducing form drag (Matthews, 2008).

A recurrent theme of riblet research has been the motivation by biological surfaces,

which are often geometrically complex. Bruse et al. (1993) conducted oil channel tests on

shark-skin replicas, hairy surfaces based on the ideas of Kramer (1937), and riblets with

adjustable geometry, and Bechert et al. (1997a) reviewed the drag reduction properties

of biological surfaces and their replicas. More recently, Itoh et al. (2006) tested the flow

over seal fur, obtaining drag reductions of up to 12%, with a dependence on mean hair

separation similar to that of riblets with s+. These hairy surfaces exploit the effect of

anisotropic porosity, instead of the directional roughness of conventional riblets. The

permeability in the streamwise direction generates a slip effect that could in principle

reduce friction and even lead to the relaminarization of the flow (Hahn et al., 2002). On

the other hand, wall-normal transpiration induces a Kelvin-Helmholtz-related instability

that manifests itself in a well defined range of streamwise wavelengths if the transpiration

is strong enough (Kong & Schetz, 1982; Jiménez et al., 2001), and that tends to increase

drag. If the anisotropy of the porosity results in slip dominating over transpiration, the

net effect could be the drag reduction observed in hairy surfaces.

Another approach to the design of riblets attempts to combine the drag reduction

properties of riblets with those of spanwise oscillation of the wall (Jung et al., 1992).

Viotti et al. (2009) suggested that the oscillating effect could also be produced by imposing

at the wall a spanwise velocity profile constant in time, but sinusoidal in the streamwise

direction. This kind of velocity distribution could be achieved by implementing three-

dimensional riblets, with a slight alternative misalignment with the flow, inducing some

coherent streamwise-varying spanwise velocity in the vicinity of the wall. Sha et al. (2005)

measured the drag reduction of zigzag riblets, and Kramer et al. (2010) did the same for

sinusoidal riblets, but neither achieved results better than those for straight riblets with

the same section. The range of oscillation wavelengths and amplitudes tested is however

too narrow for that statement to be considered conclusive.

The physical mechanism of the drag reduction by riblets has been investigated in detail,
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Figure 1.1: Effect of the peak-to-peak distance, s+, on the skin friction of a triangular riblet

with 60◦ peak sharpness, from Bechert et al. (1997b).

although some aspects remain controversial. In particular, mean and local velocity profiles

and turbulent statistics within and above the riblet grooves have been reported for ex-

periments in wind tunnels (Choi, 1989; Vukoslavcevic et al., 1992; Park & Wallace, 1994;

Lee & Lee, 2001), water channels (Suzuki & Kasagi, 1994), and numerical experiments

(Choi et al., 1993; Chu & Karniadakis, 1993; Goldstein et al., 1995; Goldstein & Tuan,

1998; El-Samni et al., 2007; Garćıa-Mayoral & Jiménez, 2011b).

Early in the investigation of riblets, Walsh & Lindemann (1984) showed that the

Reynolds number dependence of the effect of a given riblet geometry on the skin fric-

tion could be approximately expressed in terms of the riblet dimensions expressed in wall

units, L+ = Luτ/ν, where ν is the kinematic viscosity, and uτ =
√
τw is the friction ve-

locity defined in terms of the kinematic skin friction τw. Throughout this thesis the fluid

density will be taken as constant and equal to unity. A popular measure of the riblet size

L is the groove spacing s, but other dimensions, such as the depth h, have also been used.

The dependence of the performance of a particular riblet geometry on the rib spacing

is sketched in figure 1.1. We will refer to the limit of very small riblets as the ‘viscous’

regime, which is formally s+ ≪ 1 but in practice s+ . 10 − 15. In this viscous regime,

the reduction in drag is proportional to the riblet size. However, as the riblets get larger

and their effect saturates, a minimum drag is reached when the viscous regime ‘breaks

down,’ for an optimum spacing s+opt. While the viscous limit is fairly well understood

and quantified (Bechert & Bartenwerfer, 1989; Luchini et al., 1991), the mechanism of its

breakdown has remained controversial, in spite of having been the subject of several stud-

ies (Choi et al., 1993; Goldstein & Tuan, 1998). For a given riblet geometry, the spacing
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of breakdown limits the optimum performance, so we will attempt to clarify how it is re-

lated to that geometry. This clarification may provide the base for the design of surfaces

with larger critical sizes than the ones available at present, and consequently with better

peak performances.

1.1 The viscous regime

In the viscous regime of small s+, the contribution of the nonlinear terms to the inter-

action of the flow with the riblets is negligible and, if τw0 is the skin friction for a smooth

wall, the drag reduction DR = −∆τw/τw0 depends linearly on s+, as mentioned above.

The linearity of this regime was recently verified experimentally by Grüneberger & Hage

(2011). The regime eventually breaks down for typical spacings s+opt ≈ 10− 20, for which

drag reduction is maximum. For even larger riblets, the reduction ultimately becomes

a drag increase and follows a typical k-roughness behavior (Jiménez, 2004). The opti-

mum performance of each riblet geometry can roughly be estimated as the product of the

breakdown size s+opt and the slope of the drag curve in the viscous regime,

ms = − ∂(∆τw/τw0)

∂s+

∣∣∣∣
s=0

= − ∆τw/τw0

s+

∣∣∣∣
s+≪1

. (1.1)

Both ms and s+opt depend on the geometry, but the qualitative behavior is always as just

described.

The analysis of the available experimental evidence suggests that the viscous and

breakdown regimes are essentially unrelated phenomena. For example, blade thickness

has a strong effect on the viscous performance of thin-blade riblets without apprecia-

bly changing their groove geometry, as shown in figure 1.2(a) for progressively thicker

blades (1–4%), with fairly different viscous slopes and very similar breakdown spacings.

Conversely, figure 1.2(b) is a compilation of drag curves for riblets with similar ms but

different geometries, whose optimum spacings vary widely. To separate the two effects

as much as possible, when focusing on the breakdown mechanism we will often use drag

curves normalized so that their initial viscous slopes are unity.

It is widely believed that the drag-reduction properties of riblets in the viscous regime

are well described by the concept of ‘protrusion height’, which was initially introduced

by Bechert & Bartenwerfer (1989) as an offset between the virtual origin seen by the

mean streamwise flow and some notional mean surface location. The correct form was

given by Luchini et al. (1991), who defined it as the offset between the virtual origins

of the streamwise and spanwise flows. From here on, we will denote the streamwise,
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Figure 1.2: Drag reduction curves of various riblets, adapted from Bechert et al. (1997b). (a)

Blades with fixed height-to-spacing ratio, h/s = 0.5, and different tip width, t/s. �, t/s = 0.04;

2, t/s = 0.01; �, t/s = 0.02 with improved blade alignment and groove impermeability. (b)

Riblets with approximately equal viscous slope ms. �, blades with h/s = 0.4 and t/s = 0.01;

2, blades with h/s = 0.5 and t/s = 0.04; •, scalloped groves with h/s = 0.7 and t/s = 0.015;

◦, scalloped groves with h/s = 1.0 and t/s = 0.018; H, trapezoidal riblets with tip angle 30◦;

▽, trapezoidal riblets, 45◦.

wall-normal and spanwise coordinates by x, y and z respectively, and the corresponding

velocity components by u, v and w. The origin for y will be taken at the top of the riblet

tips.

There is a thin near-wall region in turbulent flows over smooth walls where viscous

effects are dominant, nonlinear inertial effects can be neglected, and the mean velocity

profile is linear. Its thickness is 5–10 wall units (Tennekes & Lumley, 1972). From the

point of view of a small protrusion in this layer, the outer flow can be represented as a

time-dependent, but otherwise uniform shear. Riblets destroy that uniformity near the

wall but, if s+ ≪ 1, the flow still behaves as a uniform shear for y ≫ s. A further

simplification is that the problem decouples into two two-dimensional sub-problems in

the z–y cross plane, because the equations of motion are locally linear, the riblets are

uniform in the streamwise direction, and the outer shear varies only slowly with x when

compared to its variations in the cross plane. The first sub-problem is the longitudinal

flow of u, driven by a streamwise shear that takes the form

u ≈ Sx(x, t) (y +∆u) (1.2)

at y+ ≫ 1, and the other is the transverse flow of v and w, driven by

w ≈ Sz(x, t) (y +∆w) and v ≈ 0. (1.3)
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Far from the wall, the effect of the riblets reduces to the ‘virtual origins’ ∆u and ∆w,

which are different for the two flow directions, and are sketched in figure 1.3. What

Bechert & Bartenwerfer (1989) and Luchini et al. (1991) suggested was that the ‘pro-

trusion height’ between the two virtual origins, ∆h = ∆u − ∆w, was the controlling

parameter for the viscous drag reduction. Intuitively, if the virtual origin for the cross-

flow is farther into the flow than the one for the longitudinal one (∆h > 0), the spanwise

flow induced by the overlying streamwise vortices is impeded more severely than over a

smooth wall. The vortices are displaced away from the wall, and the turbulent mixing

of streamwise momentum is reduced. Since this mixing is responsible for the high local

wall shear (Orlandi & Jiménez, 1994), the result is a lower skin friction. This was verified

by Jiménez (1994) by direct numerical simulations (DNSs) in which ∆h was introduced

independently of the presence of riblets.

The numerical calculation of ∆h only requires the solution of the two stationary two-

dimensional Stokes problems for ∆u and ∆w, which are computationally much less inten-

sive than the three-dimensional, time-dependent, turbulent flow over ribbed walls. Note

that the linearity of the Stokes problems implies that ∆u, ∆w and ∆h are all proportional

to the riblet size in the viscous regime, as observed in experiments.

1.2 The breakdown of the viscous regime

As s+ increases, the predictions of the viscous theory break down, particularly the

linear dependence on s of the drag. The theories proposed in the literature for this

deterioration of performance fall in two broad groups, both of which focus on the behavior

of the crossflow.

The first one is that the riblets lose effectiveness once s+, which is used as a measure

of the Reynolds number of the crossflow, increases beyond the Stokes regime. For exam-

ple, Goldstein & Tuan (1998) suggested that the deterioration is due to the generation

of secondary streamwise vorticity over the riblets, as the unsteady crossflow separates

and sheds small-scale vortices that create extra dissipation. However, it is known that

spanwise oscillations of the wall, which also presumably introduce unsteady streamwise

vorticity, can decrease drag (Jung et al., 1992), and that modifying the spanwise bound-

ary condition to inhibit the creation of secondary wall vorticity increases drag (Jiménez,

1992; Jiménez & Pinelli, 1999). Both observations suggest that introducing small-scale

streamwise vorticity near the wall decreases drag by damping the larger streamwise vor-

tices of the buffer layer, and that inertial crossflow effects need not be detrimental to drag
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Figure 1.3: Definition of protrusion height ∆h = ∆u − ∆w as the offset between the virtual

origins of the streamwise and spanwise flows.

reduction.

A related possibility that was considered during the course of the present thesis was

that the concept of protrusion height could be extended beyond the strictly viscous regime,

and that the observed deviations from linearity would be due to the increased importance

of advection in the vicinity of the riblets. In that model, the flow far from the riblets

would still be a uniform shear but, within the riblets, it would begin to feel the effects of

the finite Reynolds number. If that were the case, the breakdown could still be estimated

from simple two-dimensional calculations analogous to the viscous ones.

The second group of theories assumes that the observed optimum spacing is related

to the scale of the turbulent structures in the unperturbed turbulent wall region. In that
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group we could mention the observations by Choi et al. (1993), Suzuki & Kasagi (1994)

and Lee & Lee (2001), that the streamwise turbulent vortices lodge within the riblet

grooves for riblets in the early drag-degradation regime.

All those models result in optimum spacings of roughly the right order of magnitude,

but they can be characterized as ‘circumstantial’ in the sense that they are based on

observations at spacings for which the viscous regime has already broken down, rather than

at those close to the deterioration. Moreover, although they suggest plausible reasons for

why the Stokes regime fails beyond a certain riblet size, none of them provides convincing

physical arguments for why that failure should lead to a drag increase. As a consequence,

it is difficult to establish with certainty whether the observed phenomena are consequences

or causes of the breakdown, and the ultimate reason for the observed degradation of the

effectiveness of riblets has remained until now open.

1.3 Contents and organization of the thesis

Beyond this introduction chapter, the present thesis is organized into another seven.

Chapter 2 reviews the existing experimental data on riblets and considers the suitability

of the parameters traditionally used to scale the drag-reduction curves, proposing an al-

ternative. Chapter 3 describes the numerical methods that have been used for simulations

conducted during the course of the thesis, and provides the validation for those methods.

Chapter 4 discusses results of Stokes simulations for the viscous regime, and the inability

to explain the viscous breakdown of their extension into the nonlinear regime. Chapter

5 presents results from fully turbulent simulations at Reτ ≈ 180 for riblet sizes covering

all the drag reducing regimes, and also discusses the relationship between the breakdown,

the riblet size, and the overlying turbulent flow. Chapter 6 uses results at Reτ ≈ 550

to analyze the modulation with the Reynolds number of the riblet interaction with the

flow. Chapter 7 proposes a linear stability model that captures the essential attributes

of the breakdown, including an approximate justification for the size scaling parameter

proposed in chapter 2. A chapter of conclusions and recommendations for future work is

finally included.

The novel contributions of this thesis to the understanding of the physics of riblet-

bounded turbulent flows are essentially contained in chapters 2, 5 and 7, and have been

published in Garćıa-Mayoral & Jiménez (2011b).





Chapter 2

Scaling of drag reduction curves

As mentioned in the introduction, drag reduction curves generally represent the rela-

tive change in the wall friction, DR = −∆τw/τw0, as a function of the riblet spacing s+.

We will see in this chapter that neither expressing performance as DR nor the riblet size as

s+ are truly convenient choices. Concerning performance, DR depends, although weakly,

on the Reynolds number. This dependence can be eliminated if results are expressed in

terms of the shift of the logarithmic profile of the mean velocity, produced by riblets or

any other surface manipulation. As for the riblet size, the spacings for the different drag

reduction regimes, and particularly the optimum s+opt, depend heavily on the particular

riblet geometry. We will inquire whether it is possible to express the riblet size in terms

of some other dimension, for which that geometry dependence is eliminated, or at least

reduced.

2.1 Scaling of drag reduction with the shift of the

logarithmic profile

The dependence of the drag reduction on the Reynolds number Re cannot be com-

pletely described by the variation of s+ as depicted in figure 1.1. According to the classical

theory of wall turbulence, surface manipulations only modify the intercept of the logarith-

mic velocity profile, while both the Kármán constant, κ ≈ 0.4, and the ‘wake’ function

are unaffected (Clauser, 1956). The free-stream velocity, Uδ, can be expressed as

U+
δ =

(
2

cf

)1/2

= κ−1 log δ+ +B, (2.1)

where δ+ = Reτ is the flow thickness in wall units, and B includes both the near-wall

intercept and the contribution from the wake component. We will favor the notation Reτ

11
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when the intention is to characterize the turbulence of the flow, and δ+ when implying a

length scale, although both refer to the same quantity. Notice that the friction coefficient

is defined as cf = 2τw/U
2
δ = 2/U+

δ
2
. We will use δ loosely to refer to the flow thickness,

and when referring to our results it will always represent the channel half-width. In the

same way, Uδ will be the mean velocity at the central plane of the channel, instead of

the bulk velocity, to obtain friction coefficients whose definition resembles as closely as

possible those in boundary layers, which are scaled with the free-stream velocity.

The main effect of a given ribbed surface is to change B (Choi, 1989), which is equiv-

alent to the ‘roughness function’ used to characterize rough surfaces (Jiménez, 2004), but

the resulting change of cf also depends on the Reynolds number δ+. For constant Uδ and

small relative variations of the friction coefficient, it follows from (2.1) that

∆cf
cf0

=
∆τw
τw0

= − ∆B

(2cf0)−1/2 + (2κ)−1
, (2.2)

where the first term in the denominator is due to the change of uτ in U+
δ , and the second

one comes from the corresponding change in δ+. If ∆B is positive, the logarithmic profile

is shifted ‘upwards’ and friction is reduced, and vice versa. The classical theory of wall-

turbulence suggests that the effect of riblets, at least if they are small with respect to δ,

should be confined to the near-wall layer, and that any change in B should only depend on

geometrical quantities scaled in wall units. It follows from (2.2) that, for a given ∆B, the

drag reduction of any riblet will change with cf0, even if s+ remains constant. The cf0 weak

Re−1/4 dependence (Dean, 1978) should be expected to have an impact on performance,

so that DR curves for a given riblet at different Re were not equal, but proportional to

each other. Therefore, comparison between measurements at different Reynolds numbers

should be done in terms of the roughness function ∆B, not of ∆τw/τw0, and the same is

true when reducing experimental data to aeronautical applications (Spalart & McLean,

2011). For instance, the experiments of Walsh & Lindemann (1984) and Walsh (1990b)

were conducted on boundary layers in a wind tunnel, at cf = 3.5 − 4 × 10−3, while

Bechert et al. (1997b) conducted theirs in an oil channel at lower Reynolds numbers,

cf = 5.5− 7.5× 10−3. For the same geometry, we could therefore expect the performance

of Walsh’s riblets to be about 20% worse than Bechert’s.

The relation between ∆B and DR can in turn be used to obtain an expression relating

the viscous slope ms to the protrusion height ∆h/s. Because of the linearity of the viscous

regime, for small s+ the change ∆B should be proportional to the protrusion height ∆h+,

∆B = µ0∆h+, (2.3)
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Figure 2.1: Experimental values of the viscous slope, as a function of the theoretical protrusion

height. △, triangular riblets; ▽, notched top and flat valley riblets; ◦, scalloped semicircular

grooves; 2, blade riblets. The solid symbols are results from Walsh & Lindemann (1984) and

Walsh (1990b), and the open ones results from Bechert et al. (1997b). , line with slope

µ0 = 0.66; , µ0 = 0.785.

with a universal coefficient µ0. That was tested by Jiménez (1994), who performed direct

simulations of channels in which the protrusion effect was modeled independently of the

presence of actual riblets, using the active control approach of Choi et al. (1994). His

results were consistent with

∆B ≈ 0.66∆h+, (2.4)

which agrees well with a rapid-distortion model also in Jiménez (1994). The coefficient

should nevertheless be treated with care, because of the very low Reynolds numbers at

which the numerical experiments were conducted. Alternatively, Bechert et al. (1997b)

proposed a simplified model that assumes a uniform translation of the viscous-sublayer

velocity profile, according to which

∆B ≈ 0.785∆h+. (2.5)

The coefficients in (2.4) and (2.5) are too similar to determine from experimental data

which one represents reality more accurately, but at any rate the viscous performance of

the riblets would be given by

∆B|s+≪1 =

(
µ0

∆h

s

)
s+. (2.6)

Using (2.6), the coefficients in (2.4) and (2.5) are tested in figure 2.1 against the

experiments of Walsh & Lindemann (1984), Walsh (1990b) and Bechert et al. (1997b).
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However, the experimental scatter is too large to distinguish between the two coefficients,

or even to decide on the applicability of (2.3). At least some of the scatter is due to

experimental artifacts like the very different development lengths of the two set-ups. While

Walsh’s surfaces were covered with riblets over relatively large areas, and his boundary

layers could be assumed to be at equilibrium, Bechert used relatively small patches of

the order of a single boundary layer thickness. The effect on a boundary layer of a step

change in the wall roughness was reviewed in Smits & Wood (1985). They concluded

that the relaxation to the new equilibrium takes about 10–20 boundary layer thicknesses.

Even perturbing the whole logarithmic layer requires 5 − 6δ. The effect of Bechert’s

riblets was therefore likely restricted to the near-wall region, suggesting that the second

summand in the denominator of (2.2) should probably not be included when reducing

them to ∆B. Another source of uncertainty is the different level of geometric control.

The lower Reynolds number of Bechert’s experiments meant that he could obtain optimum

drag reductions for riblet spacings of the order of 5 mm, while the equivalent dimensions

in Walsh & Lindemann (1984) and Walsh (1990a) were an order of magnitude smaller.

The small sizes in Walsh’s experiments led to relatively large machining defects, which,

together with the smaller precision of his drag balance, is the cause of a larger scatter of

his results when compared to those of Bechert. Nevertheless, the lesser geometric control

was not always in the expected direction. For example, the open squares in figure 2.1 are

blade riblets from Bechert et al. (1997b). Those with crosses were mounted on a different

base than those without them, and they agree better with the theory. Bechert noted

the discrepancy, and repeated a few experiments after sealing the riblet base, increasing

the drag reduction by about one fifth (an example can be seen in figure 1.2(a)). Similar

caveats apply to the other riblets in figure 2.1, including those that appear to agree with

the theory.

However, if we believe the theoretical predictions in spite of the experimental ambi-

guities, (2.3) and (2.2) can be combined in a formula for the viscous drag-reduction slope

ms that only depends on Stokes calculations and the value of cf0,

ms =
µ0

(2cf0)−1/2 + (2κ)−1

∆h

s
. (2.7)

This equation can be used to convert, for any given riblet geometry, the theoretical pro-

trusion height into the performance-relevant drag-reduction slope. The influence of the

Reynolds number on riblet performance should be restricted to the change in cf0 in the

denominator. As mentioned above, this influence can be eliminated by expressing the

drag change in terms of ∆B, but alternatively it can be eliminated by expressing results
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in terms of DR/ms,
DR

ms

=
∆B

µ0 (∆h/s)
, (2.8)

which in addition absorbs the dependence on the viscous performance of the particular

riblet geometry, expressed through ∆h/s.

2.2 Scaling of the riblet size of viscous breakdown

Historically, riblet size in drag curves has been expressed in terms of the spacing s+.

This choice captures the collapse of different experiments for each specific riblet geometry,

so for instance the optimum performance is always obtained for a fixed s+opt. However,

the use of s+ offers no particular advantage over other geometric parameters, such as for

instance the groove depth h+, which has also sometimes been used. In an attempt to

identify what aspect of the riblet geometry is important for the viscous breakdown, we

have investigated whether it was possible to find a different scale for the riblet dimension,

for which the scatter of the frequently used s+opt ≈ 15 ± 5 was substantially reduced, so

the breakdown took place for an approximately fixed length value, common to any riblet

shape. Figure 2.2(a) illustrates the variation of s+opt from one geometry to another. The

figure portrays the optimum spacing for several experimental riblets against the ratio of

the groove cross-section to the square of the spacing, Ag/s
2, which is a rough measure

of the depth-to-width ratio of the groove. Although s+opt is always in the range 10 − 20

mentioned above, it is clear that deeper grooves break down earlier, and achieve their

optimum performance for narrower spacings. Note that this effect cannot be explained

by any of the breakdown models discussed in §1.2. For example, the lodging of buffer

layer vortices within the riblet grooves might qualitatively explain why the drag reduction

breaks down for riblet spacings of the order of the vortex diameters, about 20 wall units

according to Kim et al. (1987), but it does not explain why the groove depth affects s+opt.

A successful alternative should predict the location of the viscous breakdown and collapse

as much as possible the different regimes in the experimental drag curves, at least for

sizes not much larger than the optimum.

An empirical, non-exhaustive search among possible length scales for the riblet size

gave as a result that the one that best captures the influence of both the riblet spacing

and the groove shape is the square root of the groove cross-section, ℓ+g =
√

A+
g . We

portray in figures 2.2(b)–2.2(e) the histograms of the breakdown size for several riblets,

expressed in terms of s+, h+,
√
s+h+, and ℓ+g . We have omitted experiments for which the

optimum performance could not be clearly defined, such as the measurements for fibers
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Figure 2.2: (a) Riblet spacing for maximum drag reduction, as a function of the relative groove

cross-section Ag/s
2. The symbols are the same as in figure 2.1. Error bars have been estimated

from the drag measurement errors given in the references. (b–e) Histograms of the optimum

performance point, expressed in terms of the peak-to-peak spacing s, the groove depth h, their

combination
√
sh, and the square root of the groove cross-section, ℓg =

√
Ag. For several riblet

geometries.

of Bruse et al. (1993), or those for seal fur of Itoh et al. (2006). Disregarding them, the

histograms show that the optimum values of s+ and h+ have scatters of the order of 40%,

while the scatter for ℓ+g is only about 10%. The implied optimum is ℓ+g,opt ≈ L+
opt±1, with

L+
opt = 10.7 .

Scaling the whole drag-reduction curves requires both normalizing the riblet size with

ℓ+g , and scaling the drag reduction with a redefined viscous slope mℓ,

mℓ = − ∆τw/τw0

ℓ+g

∣∣∣∣
ℓ+g ≪1

=
s

ℓg
ms, (2.9)

so that DR = mℓℓ
+
g in the viscous regime, with the implication that DR/mℓ should be a

‘universal’ function of ℓ+g in the full drag reducing range. Note thatmℓ is a viscous quantity

that can be computed from Stokes two-dimensional simulations, using the expression

mℓ =
µ0

(2cf0)−1/2 + (2κ)−1

∆h

ℓg
. (2.10)

In practice, mℓ is often estimated directly from the experimental results for the smallest

riblets, because of the uncertainty about the real geometry details like tip-rounding, which

greatly affects the viscous performance.
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Figure 2.3: Drag reduction curves for several riblet geometries from Bechert et al. (1997b),

reduced to a common viscous slope, as functions of (a) s+, (b) h+, (c)
√
s+h+, and (d) ℓ+g .

For s+, h+, and
√
s+h+, the analogous slopes ms, mh, and msh can be defined, and

the influence of the viscous regime on the drag-reduction curve should, in principle, be

limited to their values. In particular, since our interest is mostly on the riblet size at

breakdown, we will generally use drag curves normalized with the viscous slopes, computed

either directly from Stokes calculations or from the experiments, as proposed at the end

of §2.1. This leaves out phenomena directly connected with the properties of riblets

in the viscous regime that do not influence the mechanism of breakdown, such as the

effect of tip rounding (Walsh & Lindemann, 1984; Garćıa-Mayoral & Jiménez, 2011a),

which decreases the viscous slope but does not seem to modify the size for maximum

performance. Note that the normalization does not modify the location of the optimum

drag reduction, but that it simplifies its identification by removing the influence of all the

other scaling parameters. This is done in figure 2.3 for a variety of riblet geometries and
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Figure 2.4: Values of DRmax compared with the predictions obtained using the values of the

viscous slopes. (a) Direct comparison with ms. (b) Comparison between actual values of DRmax,

represented by symbols, and those estimated by the extrapolation of the viscous regime into the

optimum size, represented by the dashed line; the solid line is a linear fit with slope 0.83, and

the inserted sketch illustrates how the real DRmax is roughly 0.83 times the result of the direct

extrapolation. The last two panels are comparisons of DRmax with viscous estimates assuming

(c) s+opt ≈ S+
opt = 15, and (d) ℓ+g,opt ≈ L+

opt = 10.7 . The symbols are the same as in figure 2.1.

for four different size measures, and it is clear that ℓ+g provides the best collapse.

The scaling with ℓ+g poses a significant advantage as a tool for engineering predictions,

since it enables the estimation of DRmax with reasonable accuracy solely from viscous

regime results, as evidenced in figure 2.4. The first panel portrays the optimum perfor-

mance compared with the conventional viscous slope ms, and shows that both quantities

are only weakly correlated. An accurate estimation of DRmax would not only require
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the value of ms, but also the determination of the optimum spacing s+opt. Figure 2.4(b)

shows that DRmax is slightly lower than what would result from the direct extrapolation

from the viscous regime into the optimum size, DRmax ≈ mss
+
opt, but the difference is

roughly geometry-independent, and the actual value of DRmax turns out to be roughly

83% of the result of that extrapolation, DRmax ≈ 0.83mss
+
opt. However, the latter ex-

pression is of little use for geometries that have not yet been tested in the laboratory,

for which ms could be estimated a priori but s+opt would need to be measured, with the

only available estimate being the average s+opt ≈ S+
opt = 15 often mentioned in the lit-

erature. Figure 2.4(c) shows that the resulting estimate for the optimum performance,

DRmax ≈ 0.83 ms S
+
opt = 12.45 ms, can be quite inaccurate, obviously showing the same

scatter as figure 2.4(a). On the other hand, the scaling with ℓ+g leads to the estimate

DRmax ≈ 0.83 mℓ L
+
opt = 8.9 mℓ, (2.11)

shown in panel (d), which provides a better collapse.

Equation (2.11) can provide a reasonable estimate for DRmax from the value of the

viscous slope mℓ only, which in turn can be calculated from Stokes computations for the

protrusion height ∆h/ℓ+g using (2.10). The approximation of (2.11) is quite accurate for

conventional riblets, even for depth-to-width ratios as low as 0.2, with a scatter below

20%.

In spite of the good collapse of figures 2.3(d) and 2.4(d), it should be stressed that

ℓ+g may not be an adequate parameter to characterize the performance of unconventional

geometries, such as the fibers and seal fur mentioned above, for which Ag is difficult to

define, or the T-shaped riblets cited by Walsh (1990b). Taking the latter as example, it is

clear that, as the wall-parallel segments of the T-fences widen and close into each other,

the grooves become increasingly isolated from the overlying flow, while still maintaining

the same ℓ+g . In the limit of fully sealed grooves, the geometry would behave as a flat

surface, and modifying ℓ+g would have no performance impact. The present rule can

only be considered an empirical approximation, valid for geometries that are not too

different from the experimental ‘conventional’ riblets –the triangular, trapezoidal, blade,

and scalloped riblets frequently proposed in the literature, in which a groove fully exposed

to the outer flow can clearly be defined.

It is therefore important to understand the nature of the viscous breakdown, to clarify

the reason for the present collapse, and to find whether it can be extended to other geome-

tries, either using ℓ+g or other related parameter. For that purpose, we have conducted

the DNS experiments described in chapters 5 and 6.





Chapter 3

Numerical methods

In this chapter we detail the numerical algorithms used in the present thesis to simulate

the flow over riblets. A first family of methods, designed for two-dimensional flows, is

used to obtain the protrusion height results presented in chapters 4 and 7. A second

family is used for the DNS of fully-turbulent, three-dimensional flows. The results of

those simulations are discussed in chapters 5 and 6. Validation test-cases are provided

for both the two-dimensional and three-dimensional algorithms at the end of the present

chapter.

3.1 Numerical methods for the calculation of two-

dimensional flows over riblets

3.1.1 Flow driven by uniform shear

The purpose of this code is to simulate the flow over a ribbed surface with peak-to-

peak distance s, under conditions of uniform shear given by equations (1.2) and (1.3) far

from the wall. There is no mean pressure gradient along either x or z and, as discussed

in §1.1, we neglect all the streamwise derivatives. Under those conditions the problem

decouples into an equation for the streamwise velocity, and another one for the cross-flow,

both of which involve only the y − z plane. There are no convective terms involving u in

the momentum equations for v and w, and the velocity scales for u and for the transverse

velocities can be chosen independently. We assume constant density ρ = 1, and scale all

the lengths with the riblet spacing s. The streamwise velocity u scales with sSx, and the

crossflow velocities v and w with sSz. The pressure fluctuations scale with ρ(sSz)
2. The

flow is assumed periodic in z with wavelength s. A few simulations were done in boxes

21
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including two riblets, to check the possibility of subharmonic bifurcations, but none were

found. Although the solutions obtained are stationary, that character is not assumed

a priori, and the crossflow could in principle shed unsteady vorticity for high enough

Reynolds numbers.

Under those conditions, the non-dimensional Navier–Stokes equations are

∇ · u = 0, (3.1)

∂u

∂t
+ u · ∇u = −∇p +

ν

s2Sz
∇2

u, (3.2)

where all the differential operators are restricted to the z − y plane. The boundary

conditions are

∂u

∂y

∣∣∣∣
y→∞

= 1, v|y→∞
= 0,

∂w

∂y

∣∣∣∣
y→∞

= 1, (3.3)

and no slip at the riblet surface.

The only flow parameter is the transverse Reynolds number, Rez = s2Sz/ν, which

is the square of the riblet spacing expressed in wall units based on the spanwise shear,

s+z . At the wall, the spanwise shear is the streamwise vorticity, whose typical root mean

square value is ω′

x ≈ 0.25 〈Sx〉 (Kim et al., 1987), providing an estimate Sz ≈ 0.25Sx. For

riblets of size past the viscous regime, s+ ≈ 10− 20, it follows that

Rez ≈ S+
z s+

2 ≈ 0.25 s+
2
= 25− 100, or s+z = 5− 10. (3.4)

We have studied both the Stokes limit, Rez = 0, and non-zero Reynolds numbers in the

range given by (3.4). Since the purpose of the latter simulations is to check the possibility

of a two-dimensional mechanism for nonlinearity as mentioned in §1.2, the test would

be whether the protrusion height degrades significantly within this range of Reynolds

numbers.

The boundary conditions of uniform shear at y → ∞ are numerically imposed far

enough from the riblet surface for the flow to have reached uniformity. Depending on the

riblet geometry, a distance between 0.8 s and 1.7 s above the riblet peaks proved to be

sufficient in our simulations.

At the riblet surface, given the complexity and diversity of the riblet geometries in-

vestigated, we have chosen to impose the no-slip condition using an immersed-boundary

technique, first proposed by Peskin (1972). This choice allows us to use a Cartesian

uniform grid, and to simulate different geometries by changing only the module of the

code that generates the coefficients needed for the equations at the boundary nodes. The

immersed-boundary method implemented will be detailed in §3.3.
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To discretize the convective, pressure, and viscous terms, we use a second-order, cen-

tered finite-difference scheme on a staggered grid (Ferziger & Perić, 1996). The integration

in time is done using a fractional step, pressure correction method, in combination with

a three substep Runge–Kutta, resulting in second-order accuracy in time (Le & Moin,

1991). The viscous terms are treated implicitly and the convective terms explicitly, so

that the discrete form of (3.1)–(3.2) for the nth time step is
[
1−∆t

βk

Rez
L

]
u

n
k = u

n
k−1 +∆t

[
αk

Rez
L
(
u

n
k−1

)
− γkN

(
u

n
k−1

)

−ζkN
(
u

n
k−2

)
− (αk + βk)G (pn)

]
, k = 1, 2, 3 (3.5)

L
(
φn+1

)
=

1

∆t
D (un

3 ) , (3.6)

pn+1 = pn + φn+1, (3.7)

u
n+1 = u

n
3 −∆tGφn+1, (3.8)

where k is the Runge–Kutta substep, u
n
0 = u

n, and D, G, L = DG, and N are the

discretized divergence, gradient, Laplacian and nonlinear-convective operators. Note that

continuity is only enforced at the last Runge–Kutta substep. The coefficients αk, βk,

γk and ζk are those in Le & Moin (1991). Since ∂v/∂x = ∂w/∂x = 0, the convective

terms involving u in the equations for v and w vanish. The crossflow decouples from the

streamwise flow, and it can be solved independently. The same does not hold for the

streamwise equation, that requires the input from the crossflow. However, the equation

for u is simpler, because it is a scalar that requires no continuity, nor a pressure correction

substep.

To solve the discrete linear systems in equations (3.5) and (3.6), we take advantage of

the periodicity of the problem in z, and perform fast Fourier transforms in that direction.

The system then reduces to a set of tridiagonals that can be solved efficiently by LU

decomposition. Given any variable ξ, for the z derivatives in the left-hand side of (3.5)

and (3.6) we substitute the spectral operator

L
(
∂2ξ

∂z2

)
= −k2

zL (ξ) , (3.9)

where L denotes the Fourier transform and kz the spectral wavenumber, by the approxi-

mation

L
(
∂2ξ

∂z2

)
= 2

cos (kz∆z)− 1

∆z2
L (ξ) . (3.10)

We thus sacrifice the spectral resolution of conventional Fourier methods, but preserve the

consistency with the finite-difference discretization. For the temporal integration, we use
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a variable time step, chosen so that the convective and viscous Courant–Friedrichs–Lewy

numbers, CFLC and CFLV respectively, are

CFLC = ∆t

∥∥∥∥
|v|
∆y

+
|w|
∆z

∥∥∥∥ ≤ 0.5, (3.11)

CFLV =
∆t

Rez min (∆y2,∆z2)
≤ 2. (3.12)

The Stokes regime

The above solution method needs to be modified slightly for the Stokes case, Rez = 0,

for which results are discussed in the §4.1. The pressure is then scaled with ρνSz instead

of ρ(sSz)
2, and equation (3.2) takes the form

∂u

∂t
= −∇p+∇2

u, (3.13)

Having no convective terms, the streamwise flow and the crossflow are now fully decoupled

and, since we are now only interested in the final stationary flow, we solve them separately.

Since there are no explicit convective terms, we can use a simple implicit Euler algorithm

for the velocity step. The fractional-step algorithm reduces then to

[1−∆tL] ûn+1 = u
n −∆tG (pn) , (3.14)

L
(
φn+1

)
=

1

∆t
D
(
û

n+1) , (3.15)

pn+1 = pn + φn+1, (3.16)

u
n+1 = û

n+1 −∆tGφn+1. (3.17)

Only the crossflow requires a pressure correction step, so for the streamwise flow the

algorithm merely reduces to

[1−∆tL] un+1 = un, (3.18)

Note that the solution of the Stokes problem (3.13), which is normalized for unity

shear at y → ∞ in both the streamwise and transverse directions, only depends on the

riblet geometry.

3.1.2 Flow driven by a uniform pressure gradient

We will see in chapter 7 that it is also useful to calculate the Stokes flow within a riblet

groove driven by a uniform streamwise pressure gradient, −pℓ, instead of the uniform shear

of the above section. The momentum equations are still defined by (3.13), but v = w = 0,
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so only the streamwise flow must be solved. The velocity u is normalized with s2pℓ/ρν,

leading to
∂u

∂t
= 1 +∇2

u, (3.19)

which can be solved using a slight modification of the algorithm (3.18), namely

[1−∆tL] un+1 = un +∆t, (3.20)

with no-slip conditions at the groove surface, again imposed using the immersed-boundary

method detailed in §3.3, and ∂u/∂y = 0 at the riblet-peak plane. The stationary solution

required for the ‘penetration length’ of chapter 7 is obtained from the time evolution of

(3.20), as the asymptotic final state.

3.2 Numerical method for the direct simulation of

flows in ribbed channels

In this section we outline the method used to solve the incompressible Navier–Stokes

equations in a parallelepiped that includes the walls of a ribbed channel, periodic in the

two wall-parallel directions.

When the spacing between riblets is in the drag-reducing range, the accurate repre-

sentation of the flow near the ribbed walls requires a finer grid than the one required for

the body of the channel. To alleviate the computational cost, our grid is divided into

three blocks, one near each wall in which the resolution is fine enough to represent the

riblets, and a coarser central one in which the resolution is only enough to simulate the

turbulence. The walls are modeled with the immersed-boundary technique detailed in

§3.3.
The velocities and pressure are collocated and expanded in Fourier series along the

two wall-parallel directions x and z. The differential operators are approximated spec-

trally along those directions, and the nonlinear terms are dealiased using the 2/3 rule.

The spatial differential operators in y are discretized using second-order, centered finite-

differences on a non-uniform grid. The grid spacing in y is coarsest at the center of the

channel and finest near the walls, as shown in figure 3.1, remaining nearly constant within

the riblet grooves. The number of x modes is set equal in the three blocks. In the central

block of the grid, the resolution along z is just enough to capture the smallest turbulent

scales, while the number of z modes in the blocks containing the walls is higher, to solve

the flow around the riblets with sufficient accuracy. The required number of z-collocation
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Figure 3.1: (a) DNS grid resolution in the wall normal direction. , present finite-difference

grid for Reτ ≈ 185; , spectral grid from del Álamo & Jiménez (2003) for Reτ ≈ 185; • ,

present finite-difference grid for Reτ ≈ 550; • , spectral grid from del Álamo & Jiménez

(2003) for Reτ ≈ 550. (b) Detail of the grid resolution in the near-wall region.

points per riblet depends on the particular geometry and, so long as the wall resolution

remains higher than that required by turbulence, it can remain constant when varying

s+. For each geometry considered, the total number of nodes in the wall blocks is then

proportional to the number of riblets in the simulation box.

The additional Fourier modes of the wall blocks require boundary conditions at the

interface with the central block, where they disappear. We impose at those points that the

three velocities and ∂p/∂y vanish, and require that the wall blocks extend far enough into

the channel for those four quantities to have decayed to negligible levels at the interface.

This condition is checked a posteriori and found to be satisfied beyond one or two riblet

heights above the plane of the riblet tips, comparable to the y limit of our two-dimensional

simulations, where the flow was required to be uniform above the riblet unit.

Incompressibility is enforced weakly (Nördstrom et al., 2007). If we denote the velocity

divergence by D = ∇ · u, the equations of motion are,

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2

u, (3.21)

∂D

∂t
= −λDD +

1

ReD
∇2D, (3.22)

where λD and ReD are positive coefficients, so that D is driven continuously and expo-

nentially towards zero, instead of being required to vanish strictly. This weak form of the

incompressibility condition allows us to use a collocated grid, while eliminating the usual
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‘checkerboard’ problem (Ferziger & Perić, 1996).

The temporal integrator is a fractional-step, pressure-correction, three-substep Runge–

Kutta, which only corrects the pressure in the final step (Le & Moin, 1991),

[
1−∆t

βk

Re
L

]
u

n
k = u

n
k−1 +∆t

[
αk

Re
L
(
u

n
k−1

)
− γkN

(
u

n
k−1

)

−ζkN
(
u

n
k−2

)
− (αk + βk)G (pn)

]
, k = 1, 2, 3 (3.23)

Dn+1 = Dn +∆tF

(
Dn +

∆t

2
F (Dn)

)
, (3.24)

L
(
φn+1

)
= − 1

∆t

(
Dn+1 − D (un

3 )
)
, (3.25)

pn+1 = pn + φn+1, (3.26)

u
n+1 = u

n
3 −∆tGφn+1, (3.27)

where k is the Runge–Kutta substep, un
0 = u

n, N is the dealiased convective term op-

erator, D, G, and L are the discretized divergence, gradient and Laplacian operators,

and F(D) = −λDD + L(D)/ReD. Because of the weak treatment of incompressibility,

L = DG is not required to hold strictly, so the three operators can use second-order finite-

differences in y even with a collocated grid. The coefficients αk, βk, γk and ζk are again

those in Le & Moin (1991). If strict incompressibility is enforced, the above method is

second order in time for the velocity, with the second-order errors mostly associated with

the viscous terms, and the convective terms producing higher-order errors, as in most in-

compressible fractional-step Runge–Kutta schemes (Simens et al., 2009). The advancing

scheme for the divergence (3.24) was chosen to preserve that second order accuracy.

The variable time step is adjusted to maintain fixed CFLC = 0.5 and CFLV = 2.5, so

that

∆t = min

{
CFLC

[
∆x

π|u| ,
∆z

π|w| ,
∆y

|v|

]
,ReCFLV

[
∆x2

π2
,
∆z2c
π2

,
∆z2r
π2

,
∆y2min

4

]}
, (3.28)

where the subscripts ‘c’ and ‘r’ refer to the central and riblets blocks.

The parameters λD and ReD are chosen at each time step so that (3.24) is stable for

the ∆t given by (3.28). From the numerical analysis of (3.24), it follows that the condition

for stability is |∆tF| ≤ 2, or

λD ≤ 2

∆t
, (3.29)

ReD ≥ ∆t

2−∆tλD
max

[
π2

∆x2
,
π2

∆z2c
,
π2

∆z2r
,

4

∆y2min

]
. (3.30)



28 3. Numerical methods

For our simulations, we have chosen

λD =
qD
∆t

, (3.31)

ReD =
4∆t

3− 2qD

[
π2

∆x2
+

π2

∆z2r
+

4

∆y2min

]
, (3.32)

with qD = 0.8. The resulting divergence in the flow is never higher than D+ ≈ 2 · 10−4,

which should be compared with the magnitude of other velocity gradients, for example

the magnitude of the vorticity, |ω+| ≈ 0.05− 0.2.

The channel half-height is δ = 1 in all cases, including in the smooth reference one,

and is defined as the distance from the center of the channel to the riblet tips, while the

domain half-height is slightly larger, extending to the groove floors. The time-dependent

mean streamwise pressure gradient Px is adjusted to ensure a constant flow rate Q in

y ∈ (0, 2δ). Thus, the periodic channel resembles a segment of an infinitely long one in

which, because of continuity, the flow rate is forced to be constant, while the pressure

gradient, which is constant in the infinite channel, fluctuates for the segment around its

mean value. This technique yields the same results as keeping a constant pressure gradient

and letting the flow rate fluctuate (Orlandi, 2000). The constant Q is achieved at each

substep by a correction ∆Un
k to the instantaneous plane-averaged streamwise velocity

profile Un
k ,

[
1−∆t

βk

Re

∂2

∂y2

]
Ûn
k = −∆t (αk + βk) , (3.33)

∆Px =
Q−Qn

k

Q̂n
k

, (3.34)

∆Un
k = ∆PxÛ

n
k , (3.35)

where Q̂n
k is the flow rate associated with the auxiliary Ûn

k , and Qn
k is the flow rate of the

uncorrected Un
k . For simplicity, Ûn

k is only defined for y ∈ (0, 2δ), and its boundary condi-

tions are Ûn
k = 0 at the riblet tip planes, so there is no correction within the grooves owing

to the constant Q constrain. This entails a very small error, because the corrections on Px

and Un
k are several orders of magnitude smaller than their uncorrected values. Except for

that small error, the procedure is equivalent to imposing on the discretized Navier–Stokes

problem (3.23)–(3.27) the time-dependent pressure gradient required to obtain a constant

flow rate, which is the procedure used in most channel DNSs, both smooth (Moser et al.,

1999; del Álamo & Jiménez, 2003; Hoyas & Jiménez, 2006) and rough (Choi et al., 1993;

Chu & Karniadakis, 1993; Orlandi et al., 2006; El-Samni et al., 2007). The procedure is

explicitly formulated in Chu & Karniadakis (1993).
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Case 1/ν NR Lx Lz Nx Nzc Nzr Ny T uτ/δ

20CH 3200 8 1.05π 0.30π 72 72 576 153 335

0S 3250 0 2π 0.67π 192 192 192 153 175

5S 3250 48 2π 0.67π 192 192 1152 153 171

7S 3250 32 2π 0.67π 192 192 768 153 170

10S 3250 24 2π 0.67π 192 192 576 153 169

13S 3250 18 2π 0.67π 192 192 432 153 169

15S 3250 16 2π 0.67π 192 192 384 153 170

17S 3250 15 2π 0.73π 192 192 360 153 173

20S 3250 12 2π 0.67π 192 192 288 153 177

10FX 3250 24 2π 0.67π 384 192 576 153 11

10FZ 3250 24 2π 0.67π 192 192 1152 153 11

10DX 3250 24 4π 0.67π 384 192 576 153 17

10DZ 3250 48 2π 1.33π 192 384 1152 153 26

17FX 3250 15 2π 0.73π 384 192 360 153 11

17FZ 3250 15 2π 0.73π 192 192 720 153 11

17DX 3250 15 4π 0.73π 384 192 360 153 15

17DZ 3250 30 2π 1.46π 192 384 720 153 53

0L 11180 0 3π 1.50π 576 576 576 453 90

07L 11180 216 3π 1.48π 576 576 5184 453 15

13L 11180 128 3π 1.52π 576 576 3072 453 15

20L 11180 72 3π 1.34π 576 576 1728 453 15

Table 3.1: Parameters of the DNSs conducted. ν is the kinematic viscosity, NR is the number

of riblets in the simulation box, Lx and Lz are the channel length and width, Nx is the number of

collocation points in the streamwise direction, Nzc and Nzr are those in the spanwise direction for

the central and wall blocks respectively, andNy those in the wall normal direction for−δ ≤ y ≤ δ.

T is the approximate total time of the simulation, given in terms of the eddy-turnover time,

δ/uτ .

The parameters of our simulations are given in table 3.1. Simulation 20CH reproduces

one of the cases studied in Choi et al. (1993), and served as a validation test for the code.

The box includes riblets at the lower wall only, and thus has a single fine-resolution block,

with the upper wall included in the coarser block. Results are presented in §3.4.4.
Simulations 0S to 20S were conducted with Reτ ≈ 185 for a rectangular-blade geometry

with riblet height h = 0.5s and tip width tr = 0.25s, with the number of riblets in the box
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systematically varied to span the full drag-reducing range. Case 0S is actually a smooth

channel, and was also used for the validation of the code. To our knowledge, this is the

first time that such a systematic parameter sweep has been undertaken for numerical

riblets, except perhaps that by El-Samni et al. (2007), who included five different riblet

sizes. Notice that Lz is increased slightly in case 17S, to obtain the desired ℓ+g while

keeping the fixed geometric resolution of the riblets, 24 collocation points per riblet in z.

For this set of simulations, the number of x modes was set so that ∆x+ ≈ 6, in terms of

collocation points, in the three blocks, and the spanwise resolution in the central block was

set to ∆z+ ≈ 2. The spanwise grid is thus between 1.5 and 6 times finer in the wall blocks

than in the central one, depending on the case. In the wall-normal direction, ∆y+min ≈ 0.3

at the riblet peaks, and ∆y+max ≈ 3 at the center of the channel. The simulations in this

set were run for more than 150 eddy turn-over times, δ/uτ , of which the first few were

discarded to avoid the effects of the initial transients on the statistics. They had to be

run for such long times to reduce the effect of the wall-friction oscillations, which, for the

relatively small simulation boxes, are of the order of 10%. This set of simulations will be

throughly analyzed in chapter 5.

In addition, cases 10S and 17S were repeated while independently doubling Nx, Nzr ,

and the length and width of the channel, to check whether the simulations could be

considered converged with respect to the grid and box sizes. These simulations, 10DX

to 17FZ, were not required to run for such long times, in part because of their increased

computational cost, but mainly because the precision in the friction statistics mentioned

above was here unnecessary. The results are presented in §3.4.5.

To analyze the effect of the Reynolds number, a final set of simulations was conducted

with Reτ ≈ 550. The computational cost of these simulations is several orders of mag-

nitude higher than the previous ones, so we reduced the number of cases from eight to

four: a smooth reference case, 0L; one in the viscous regime, 7L, one near the optimum

performance, 13L, and one well past the viscous breakdown, 20L. Though still in the

DNS range, the resolution of these simulation is somewhat higher, ∆x+ ≈ 9, ∆y+min ≈ 0.3

and ∆y+max ≈ 3, and ∆z+ ≈ 4 in the central block. Also, the convective CFL num-

ber was raised to CFLC = 0.7. The boxes are, in wall units, much larger than those

with Reτ ≈ 185, so the friction fluctuations were much smaller, and the number of eddy

turnovers required to achieve the desired convergence of the drag-reduction results was

greatly reduced. The simulation time for case 0L was much longer because the initial

field was taken from case 0S, and the large scales of the flow required very long times to

reach equilibrium with the new conditions. The results of these simulations can be found



3.2. Immersed boundaries 31

in chapter 6.

3.3 Implementation of immersed boundaries

To model the no-slip condition at the riblet walls, we use the direct-forcing immersed-

boundary technique of Mohd-Yusof (1997). With that method, the discrete equation

satisfied by the points where the boundary condition is enforced would be

u
n+1 − u

n

∆t
=

V − u
n

∆t
, (3.36)

where V is the desired velocity at the forcing points. Numerically, the above immersed-

boundary condition is approximated by
[
1−∆t

βk

Re
L

]
u

n
k =

(
V

n
k−1 − u

n
k−1

)
+

[
1−∆t

βk

Re
L

]
u

n
k−1, (3.37)

which, in practice, is a modification at the forcing points of (3.23) or (3.5), or of (3.14)

and (3.20) if the βk/Re factors are dropped.

If the forcing point is not exactly at the virtual, immersed boundary, the term V
n
k−1

can be explicitly calculated from the velocity u
n
k−1 at the neighboring grid points, using

either linear interpolation (Fadlun et al., 2000) or extrapolation (Iaccarino & Verzicco,

2003). We have favored an extrapolation scheme whenever possible, because it does

not apply momentum forcing within the flow field. However, in the cases in which the

boundary is very close to one of the fluid nodes used to calculate V
n
k−1, extrapolation

may cause numerical instability, because it leads to large negative weighting coefficients

(Tseng & Ferziger, 2003). In those cases, we have substituted the extrapolation by an

interpolation involving nearby nodes. For example, in figure 3.2(a), triangle (I) substitutes

an equal triangle right below it, which would have lead to a large weighting coefficient.

As a criterion to discard nodes we set a threshold for the weighting coefficients, typically

−4 for the two-dimensional simulations and −0.4 for the DNSs. However, for the DNSs

this interpolation/extrapolation process was only necessary for the triangular riblets of

case 20CH, since the surface of our rectangular riblets is formed by grid points, so V is

always zero. Equation (3.37) was additionally used in our DNSs to force the velocities

to vanish at all the points within the solid part of the riblets, and there is a notional

flat boundary at the level of the groove floors, where the velocities and ∂p/∂y are also

required to vanish.

Immersed boundaries are an approximate technique, and as such the surface velocity

is never exactly zero. The errors come from the implicit treatment of the viscous term
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Figure 3.2: (a) Two-dimensional immersed-boundary implementation. ◦, fluid internal nodes,

where Navier–Stokes equations are satisfied, N, nodes inside the solid body; •, points at the

boundary, in which the velocity is known (point 0); △, nodes where the boundary conditions

are imposed (point 1). In triangle (I), an interpolation scheme is used, so that the velocity to

be imposed at node 1 is interpolated from the velocities at nodes 2 and 3 and the velocity at

point 0. In triangles (II) and (III), an analogous scheme is used, but in those cases the velocity

at 1 is calculated from those at 2, 3 and 0 by extrapolation. Note that points of class 0 do not

belong to the grid. (b) Sketch of a three-dimensional immersed-boundary implementation.

and from the pressure-correction step (see Fadlun et al. (2000), for more details). The

transpiration is not related to the Reynolds number of the flow directly, but to the viscous

CFL of the time integrator. In our case, the resulting velocities at the riblet surface are

at worst of order 0.1uτ for u, and 0.01uτ for v and w, which is in both cases roughly one

order of magnitude smaller than the corresponding values in the first grid point away from

the surface. Figure 3.3 shows typical values of the velocities near the wall. The small

penetration of flow is mostly in the blade corners, and is equivalent to a small rounding

of the riblet peaks. That only affects the viscous slope of the drag curve (mℓ), and has

a negligible impact on the dynamics of the breakdown, as will be discussed in §4.1.2. In

chapters 5 and 6, the impact on mℓ will be taken into consideration by obtaining the

protrusion heights from Stokes simulations with equivalent resolution.

Note that the interpolation/extrapolation triangle scheme portrayed in figure 3.2(a)

is intrinsically two-dimensional and, for flows over three-dimensional surfaces, a scheme

based on tetrahedra, such as the one sketched in figure 3.2(b), would be more suitable.

However, the two-dimensional character of the riblet surface makes such scheme unneces-

sary, and even undesirable. In our DNSs, we apply equation (3.37) not in the fully-physical
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Figure 3.3: Permeability error for (a) u, (b) v and (c) w at the immersed boundaries, for a

random instantaneous cross-section of simulation 10S. The dotted contours are negative, and

the dashed ones positive, with zero solid. The absolute values of the non-zero contours are

[0.01(×
√
10)1] for u, and [0.001(×

√
10)0.1] for v and w, in wall units.

space, but separately for each streamwise Fourier mode. Because of the linearity of the

interpolation/extrapolation triangular scheme, and of the streamwise Fourier transform,

this mode-by-mode implementation has spectral resolution in x, higher than any three-

dimensional scheme, and is equivalent to a plane-by-plane triangular implementation.

For the Stokes case in §3.1.1, we have also applied an accelerated forcing version of

(3.37),

[1−∆tL]un+1 = K (V n − u
n) + [1−∆tL]un, (3.38)

where K is a coefficient that is set by trial and error in the range 1–100 to optimize the

speed of convergence.
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3.4 Code validation

3.4.1 Transition of the wake behind a cylinder

To validate the two-dimensional code described in §3.1.1, and in particular the immersed-

boundary method of §3.3, we simulate the flow around a circular cylinder. The transition

to an unsteady wake behind a cylinder is a typical –and very stringent– test often used for

the validation of immersed-boundary methods, because the instability is very sensitive to

the geometry of the obstacle (Linnick & Fasel, 2005). In our tests, the flow transitioned

at Re ≈ 41, defined with the cylinder diameter, which is in good agreement with the

experimental range Re = 40−49 (Roshko, 1953; Williamson, 1989). Hitting that bracket,

as we do, requires a correct representation of the cylinder surface, which is after all, the

main purpose of the immersed-boundary method.

The simulations were conducted in domains of size 50R × 50R, with R being the

cylinder radius, as those portrayed in figure 3.4, with 512 × 512 points. Note that the

implied total number of points where immersed-boundary forces are imposed to represent

the presence of the cylinder is only of order ≈ 100. Periodic boundary conditions were

imposed in the transverse direction, with u = 1 and v = ∂p/∂x = 0 at the inflow and

∂u/∂x = ∂v/∂x = ∂p/∂x = 0 at the outflow. Several Reynolds numbers in the range 10–

100 were simulated. Some illustrative results are portrayed in figure 3.4, clearly showing

the transition for Re ≈ 41, and figure 3.5, that shows the adequate resolution of the virtual

cylinder surface. The weak flow inside the cylinder, which is induced by the extrapolation

schemes of the immersed boundaries into points inside the cylinder, as sketched in figure

3.2(a), has no physical meaning.

3.4.2 Taylor–Green Vortex

To validate the time integrator described in §3.2, and in particular the weak enforce-

ment of continuity of (3.22), we simulate Taylor–Green vortices. This flow is widely used

to validate Navier–Stokes discretizations, because of its delicate balance between con-

vective and pressure terms on one hand, and viscous and temporal terms on the other,

and also because the existence of an analytical solution allows a precise quantification of

errors. The analytical solution is

u = U0 e
−2νt sin x cos y, (3.39)

v = −U0 e
−2νt cosx sin y, (3.40)

p = U2
0 e

−4νt cos 2x sin 2y. (3.41)
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Figure 3.4: Instantaneous streamwise velocity contours of the flow around a circular cylinder

at increasing Reynolds numbers, obtained with the code described in §3.1.1. From left to right
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Figure 3.5: Instantaneous streamlines of the flow around a circular cylinder, in its immediate

vicinity, for increasing Reynolds numbers, obtained with the code described in §3.1.1. From left

to right and top to bottom, Re = 20, 40, 41, 42, 60, and 80. The streamfunction contours are

in all the panels [−0.05(0.01)0.05] × U∞R and [−2.5(0.25)2.5] × U∞R.
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Figure 3.6: Influence of the CFL number on the global error for different Runge–Kutta algo-

rithms. Triangles are used for the error in the velocities, and circles for the error in the pressure.

Solid symbols correspond to the algorithm proposed in Simens et al. (2009), and open ones to

the one presented in §3.2, both for Re = 10 and with the global error measured at t = 5Lx/U0.

Grey symbols correspond to the latter algorithm, for Re = 1000 and with the global error mea-

sured at t = 100Lx/U0. , line with slope 2, indicating err ∝ ∆t2. , line with unity

slope.

We solve the flow in a periodic domain of size Lx × Ly = 2π × 2π. The flow variables

are expanded in Fourier series along both x and y, with the differential operators ap-

proximated spectrally, and the nonlinear terms dealiased using the 2/3 rule. We solve for

64 modes in each direction although, given the spectral resolution in space, a handful of

modes would be enough to reproduce the solution (3.39)–(3.41). However, the resulting

crystal of vortices is unstable, and the two vortex pairs in the periodic domain eventually

merge into a single one, in a sudden transition. This can be circumvented by solving in a

domain of half size 2π×π, imposing the corresponding symmetries, but since we are only

interested in measuring the time resolution of different discretizations, it is sufficient to

compare the errors for a given time before the transition occurs. Some of those errors are

portrayed for increasing CFL number in figure 3.6, for two different Reynolds numbers,

defined with the maximum initial velocity U0 and the length Lx/2π. The figure shows

that the method is indeed second-order accurate in time.

3.4.3 DNS of smooth channels

Another test for the method described in §3.2 is the comparison of the results for

smooth channels with those in the literature. This serves as a test for the full method,
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Figure 3.7: Comparison of results for smooth channels. (a), (c), (e) and (g), at Reτ ≈ 185,

and (b), (d), (f) and (h), at Reτ ≈ 550. Solid lines represent results obtained with the code

presented in §3.2, and symbols results from del Álamo & Jiménez (2003). (a) and (b), mean

velocity profile. (c) and (d), velocity fluctuations; •, u′+; •, v′+; ◦, w′+. (e) and (f), streamwise

vorticity fluctuations. (g) and (h), Reynolds stress.
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including the complete, three-dimensional spatial discretization but, in the absence of an

analytical exact solution, we can only compare the statistical properties of the flow.

The mean u profile, Reynolds stress, and fluctuations of the three velocities and of the

streamwise vorticity are portrayed in figure 3.7. Cases 0S, Reτ ≈ 185, and 0L, Reτ ≈ 550,

are compared with results from del Álamo & Jiménez (2003), showing a nearly exact

agreement.

3.4.4 DNS of a channel with triangular riblets

Many of the reference riblet DNSs date back to the 1990’s, and have either grids that

we would now consider too coarse, simulation boxes that we would consider too small,

or running times too short to consider their statistics fully converged. Of course, those

were at the time pioneering simulations, and their resolution was limited by the capacity

of computers at that time. It is actually surprising that present-day DNSs of riblets and

other roughness are still run at Reτ ≈ 180 (Orlandi et al., 2006; El-Samni et al., 2007;

Kramer et al., 2010), which is turbulent only by a narrow margin. Nevertheless, the low

Reynolds number has probably a small impact on the results, since the effect of riblets

presumably extends only to the buffer layer.

We have validated our code by running one of the channels with triangular riblets in

Choi et al. (1993), with 60◦ peak sharpness and s+ = 20. This simulation had some of the

caveats just described. For example, its streamwise resolution, ∆x+ = 35 in a second-order

code, is between 4 and 6 times what we would dare to do. On the other hand, to achieve the

same resolution as Choi et al.in the cross-plane near the riblet peaks, our homogeneous

grid requires 72 collocation points in z per riblet, which is elsewhere much more than

necessary. The simulation box was also very small, almost minimal (Jiménez & Moin,

1991), and had riblets only in the lower wall, defining the drag reduction as the relative

difference between the friction at both walls. For a closer comparison, we have used the

same domain and method to measure DR in this case.

The results are compared in Figure 3.8. The value DR = 6% reported by Choi et

al.is portrayed, together with the value DR = 4% that they used as reference, which was

obtained from experiments by Walsh (1982). We have obtained a mean DR = 4.32% from

our simulation, extending for t ≈ 6000 δ/Uc, much longer than the time span t ≈ 330 δ/Uc

of Choi et al.. We also show DR results corresponding to partial averages over time

intervals as long as that of Choi et al., with the intervals overlapping and centered at the

points portrayed. We conclude that, in their small box, the simulation of Choi et al.could

have resulted in any value within the range we portray and that, as Choi himself declared
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Figure 3.10: Mean fluctuation velocities conditioned to the position over the riblet. (a)-(d),

u′; (b)-(e), v′; (c)-(f), w′. The first three panels have been scanned from figure 12 in Choi et al.

(1993), while the other three correspond to our simulation 20CH. The contour increments are

the same in both cases, 0.0064Uδ for u′, and 0.0016Uδ for v′ and w′.

in his thesis (Choi et al., 1992), his simulation would have required a longer run time, and

was only marginally converged.

The panels in figure 3.9 show comparisons of the maximum fluctuation velocities.

Both the maximum values for u′+, v′+ and w′+, and their corresponding y+ coordinates

are portrayed. In general, our values are higher than those of Choi et al., but within

the scatter of the short-time averages. The largest error is in w′+
max, for which the values

of Choi et al.are too low. That is also true also for their smooth case, whose results

are lower than our spectral reference results, which otherwise agree well with standard

simulations (Kim et al., 1987; del Álamo & Jiménez, 2003). That is probably due to the
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Figure 3.11: Streamfunction of the conditionally averaged cross-flow above and within the

riblet grooves, conditioned to a mean rightwards flow in the plane immediately above the riblet

tips. (a) simulations 10S and 10FZ; (b) 17S and 17FZ. , original resolution, cases 10S and

17S; , doubled spanwise resolution, 10FZ and 17FZ. The contours are the same for all cases,

and are detailed in figure 5.2(a).

very low resolution of Choi et al.in the streamwise direction, which we have already

mentioned (see Choi et al. (1992), appendix E, for details on the effect of the resolution

of his simulations). The other notable feature, the scatter of the wall-normal height for

w′+
max, y

+ = 40 − 60, is due to the flatness of the w′+ curve, which is nearly constant

between y+ = 25 and 70.

The detail of the velocity fluctuations in the vicinity of the riblets is illustrated by

figure 3.10, which compiles the statistical values of the fluctuations conditioned both to

the y coordinate and the spanwise position above the riblet. The detail of the fluctuations

near the riblets agree well, and the differences are due to our slightly higher values away

from the wall, reported above, which change the scale of the results slightly.

3.4.5 Effect of channel dimensions and grid resolution on the

DNS of channels with blade riblets

As a final test, we have replicated cases 10S and 17S while independently doubling

Nx, Nzr , and the length and width of the channel, in the simulations 10FX to 17DZ,

summarized in table 3.1. This simulations were conducted to check that our base set was
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Figure 3.12: Spectral energy density of the wall-normal velocity, kxkzEvv , at y+ ≈ 5. From

left to right, simulations 10FX, 10FZ, 10DX, and 10DZ. The contour increments are 0.0015u2τ .

Solid lines correspond to the original simulation 10S.
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Figure 3.13: Spectral energy density of the wall-normal velocity, kxkzEvv , at y+ ≈ 5. From

left to right, simulations 17FX, 17FZ, 17DX, and 17DZ. The contour increments are 0.003u2τ .

Solid lines correspond to the original simulation 17S.
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Figure 3.14: Spectral density of the Reynolds stress, −kxkzEuv, at y
+ ≈ 5. From left to right,

simulations 10FX, 10FZ, 10DX, and 10DZ. The contour increments are 0.008u2τ , starting at

0.004u2τ . Solid lines correspond to the original simulation 10S.
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Figure 3.15: Spectral density of the Reynolds stress, −kxkzEuv, at y
+ ≈ 5. From left to right,

simulations 17FX, 17FZ, 17DX, and 17DZ. The contour increments are 0.008u2τ , starting at

0.004u2τ . Solid lines correspond to the original simulation 17S.

converged with respect to the grid and box size.

The increase of the resolution in the spanwise direction in the riblet blocks has been

used to test in particular whether the flow around the riblets was correctly represented.

Given the uniformity of the riblets in the streamwise direction, we can expect that the

wall roughness only requires a high resolution in the cross plane, although that would not

hold for a more general, three-dimensional roughness. The conditional cross-flow in and

immediately above the riblet grooves, obtained as discussed in §5.1, is portrayed in figure

3.11 for cases 10FZ and 17FZ, compared with the original cases 10S and 17S. There is a

good agreement between the standard and finer resolutions, so we can conclude that 24

collocation points per riblet are sufficient to represent the flow around our tr/h = 0.25

blades.

In figures 3.12 and 3.13, we portray the spectral distribution of the energy carried by

the wall normal velocity for cases 0S and 17S, compared with the distributions for the

corresponding cases with increased resolution and box size. The same is done for the

Reynolds stress in figures 3.14 and 3.15. We will see in §5.2 that those distributions are

greatly affected by the presence of riblets and their size, and are therefore an illustrative

representation of the flow. Beyond a greater noise in most of the validation cases, which

is due to the smaller simulation time, we observe good agreement, that confirms that

the dimensions of our original set of simulations is adequate and their results can be

considered converged.





Chapter 4

Results from two-dimensional models

In this chapter we present results from two-dimensional models for the flow over ri-

blets. These results are mainly from Stokes regime simulations for the determination

of protrusion heights, which fully account for the performance of riblets in the viscous

regime, as discussed in §2.1. For a few representative riblets, we analyze the effect of some

key geometric parameters, like groove depth and tip rounding, and flow conditions, like

yaw. Additionally, we investigate the validity of the extension of the original model of

the protrusion-height of Bechert & Bartenwerfer (1989) and Luchini et al. (1991) into the

nonlinear regime, also commenting on the impact of the different geometric parameters

under non-viscous conditions.

Sketches of two of the configurations that we study can be seen in figure 4.1. The

first one is typical of the conventional ‘grooved’ riblets that have been extensively studied

experimentally (Bechert et al., 1997b), while the second is a novel one based on fibers laid

anisotropically above a smooth surface.

4.1 Results of simulations in the viscous regime

We first undertake the simulation of the flow over riblets in the Stokes regime. Due

to the relatively small computational cost of these simulations, it is possible to conduct

extensive parametric studies for several configurations, studies that would be prohibitive

if the actual turbulent flow were to be simulated. We are thus able to analyze the effect of

different geometric parameters on the viscous performance. We give our results in terms

of the ‘protrusion height’ ∆h defined in §1.1, and discuss the extrapolation of these results

to DRmax using the scaling with ℓ+g proposed in §2.2.
Figure 4.2 shows two examples of the steady flow fields to which our simulations

45
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Figure 4.1: Different riblet geometries. (a) Conventional trapezoidal grooves. (b) Fiber riblets.

The red arrows represent the direction of the mean flow driven by the shear Sx.

converge. For each geometry, comparing the figures for the streamwise and transverse

flows we can qualitatively appreciate how the former penetrates more deeply into the

grooves than the latter, resulting in positive protrusion heights. The offset between the

two shears can be more clearly distinguished in figure 4.3, where the profiles for u and w

are plotted for both configurations above the riblet peaks and valleys. As the height y

above the riblets increases, the profiles of u above the peaks and above the valleys merge

into a single, linear curve, and the same is true for the cross-flow w. The separation

between the curves of u and w, once they become linear, is actually ∆h.

4.1.1 The effect of groove depth

The effect of groove depth on turbulent drag reduction was studied extensively in

Bechert et al. (1997b) for blade riblets. They observed that, in spite of the protrusion

height increasing monotonically with groove depth, the maximum drag reduction was

achieved for h/s = 0.5. To analyze the effect of groove depth in the viscous limit, we have

simulated the Stokes flow over riblets with trapezoidal grooves of different h/s, with peak

angles of 45◦ and 60◦. These trapezoidal riblets were proposed by Bechert et al. (1997b)

as a compromise between good performance and industrial realizability, since they are

easier to manufacture and sturdier than blades, but still outperform triangles.

The simulations were run in two-dimensional domains containing a single riblet with

peak angle α and height h. The domains were of size s = 1 in z and ymax = 2s in y, except

for those cases with h/s ≤ 0.2, for which ymax = s. Each s × s square in the domain

contained 256× 256 grid points.

Results for the conventional protrusion height, ∆h/s, are portrayed in figure 4.4(a).
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Figure 4.2: Typical velocity fields for (a,c) trapezoidal and (b,d) fiber riblets in the viscous

regime. (a) and (b) are evenly spaced streamwise velocity isocontours, (c) and (d) crossflow

streamfunction contours.
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Figure 4.3: Velocity profiles for the cases of Figure 4.2. (a) corresponds to the conventional

case, and (b) to the fiber one. , u above a riblet valley; , u above a riblet peak; ,

w above a riblet valley ; , w above a riblet peak.
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Figure 4.4: Influence of the groove depth on the viscous performance of riblets. Protrusion

heights are scaled (a) with the riblet spacing, ∆h/s; (b) as proposed in §2.2, ∆h/ℓg. ◦, trapezes
with peak angle α = 45◦ △, trapezes with α = 60◦ H, protrusion heights of blade riblets,

estimated from experimental viscous slopes, from Bechert et al. (1997b); 2, experimentalDRmax

for the same blade riblets. To enhance comparison, each set of results has been scaled so its

maximum is unity.

They show that the groove depth has a negligible effect for h/s ≥ 0.5, but the protrusion

height decreases rapidly for smaller h/s. The figure includes results from the experimental

viscous slopes of blade riblets from Bechert et al. (1997b). They agree incredibly well

with our simulations, even if the two geometries, blades and trapezes, are not the same,

implying that the effect of groove depth on the viscous performance is similar for the

different geometries.

To illustrate that viscous and optimum performance are not strictly correlated, exper-

imental results for DRmax from Bechert et al. (1997b), are also included. The comparison

shows that the high values of ∆h/s for the deeper grooves do not translate in practice into

good optimum performance. This is due to the early breakdown of the viscous regime for

deep grooves. If the protrusion heights are scaled with ℓg instead, as proposed in §2.2,
the asymptotic behavior for h/s ≥ 0.5 is lost, but the rescaled protrusion heights ∆h/ℓg

correlate much better with DRmax, as shown in figure 4.4(b).

4.1.2 The impact of tip rounding

Riblet erosion is a major concern for the industrial applications. Walsh (1990a) mea-

sured drag reductions for triangular riblets with rounded peaks, finding a performance

loss of up to 40% for a tip radius R ≈ 0.08s. He also found no significant performance
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Geometry of rounded-peak blade riblets.

degradation from the rounding of the groove bottoms.

We can infer from the discussion in §2.2 that the details of the tip geometry should

not affect significantly the viscous breakdown, because they barely modify the groove

cross-section. That is supported by the experiments of Bechert et al. (1997b), who tested

blade and scalloped geometries in which only the tip thickness changed (see for instance

the experiments portrayed in figure 1.2(a)). The maximum drag reductions changed with

the tip thickness, but not the optimum s+, suggesting that the differences in performance

were due to the changes in the slope of the drag-reduction curve in the viscous regime. If

that is the case, the influence of the tip details should be restricted to a decrease in the

protrusion height.

Viscous results for different geometries with tip rounding are presented in figure 4.5.

Again, these simulations were run in two-dimensional domains containing a single riblet

with peak angle α and nominal height h, although the actual height of the triangular

riblets is in fact lower, since the straight sides of the riblet are connected at the peak by a

circular segment of radius R tangent to both, instead of meeting at y = h. The domains

were of size s = 1 in z, and ymax = 2 s in y. Each s× s square in the domain contained

128 × 128 grid points, except in the cases with the two smallest radii, R/s ≤ 0.05, for

which the spatial resolution was doubled in each direction to resolve the circular corners.

In agreement with Walsh (1990a), the triangular riblets show a dramatic performance

decrease but, surprisingly, the protrusion heights for the flat-top blades tested –which

perform worse with no rounding than the sharp triangles– change little with tip rounding,
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and even increase slightly as the rounding increases. It is well established that sharper

riblets have higher protrusion heights (Luchini et al., 1991; Bechert et al., 1997b). Tip

rounding reduces the sharpness of initially sharp configurations, and degrades their per-

formance. The new result in figure 4.5 is that the rounding of the tips of initially blunt

blades improves their performance. Although unexpected, this result is not completely

contradictory with the previous knowledge, since the rounding of the corners of rectan-

gular blades does indeed sharpen their otherwise flat tops. For practical applications in

which erosion is an issue, it is probably preferable to use riblets which do not depend

initially too much on the sharpness of their tips.

4.1.3 The effect of yaw

The linearity of the viscous regime allows us to compute the effect of riblet yaw.

Assume that the riblets are aligned at an angle θ with respect to the free stream. We

would like to determine the offset between the virtual origins defined in (1.2) and (1.3)

for the streamwise and spanwise velocities. Because of the linearity of the problem, we

can project those velocities to a frame of reference aligned with the riblets, with the

longitudinal and transverse velocities being

uL = u cos θ + w sin θ = (Sx cos θ + Sz sin θ) (y −∆L), (4.1)

uT = −u sin θ + w cos θ = (−Sx sin θ + Sz cos θ) (y −∆T ), (4.2)

where ∆L and ∆T are the virtual origins for perfectly aligned riblets. The corresponding

offset would be ∆h0 = ∆T −∆L. After some algebra we obtain

∆h(θ) = ∆w −∆u =

(
cos(2θ) +

S2
z − S2

x

2SxSz
sin(2θ)

)
∆h0. (4.3)

The correction factor depends on the ratio of the spanwise to streamwise shear, which

could be estimated from the experimental values of the streamwise vorticity fluctuations

at the wall. However, once (4.3) is averaged over time, the shear-dependent factor drops

out, because of antisymmetry. The final result is

〈∆h〉(θ) = cos(2θ)∆h0. (4.4)

This agrees with the observation in Walsh (1990b) that the performance of riblets degrades

little up to yaw angles of 15◦. Equation (4.4) predicts that the degradation at that angle

should be about 13%. At θ = 45◦, riblets would lose all their efficiency. At 90◦, they

would increase drag as a regular rough wall.
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Figure 4.6: Drag reduction of the seal fur surface from Itoh et al. (2006). △, seal fur; �,

trapezoidal, flat-peak riblets, also from Itoh et al. (2006).

On the other hand, that simple dependence does not extend away from the viscous

regime. Hage et al. (2000) reported on the effect of yaw on riblets near the optimum

spacing, and found a typically larger geometry-dependent degradation than in the viscous

case, increasing strongly as s+ exceeds the optimum value. Since the viscous breakdown

is an indication of the effect of nonlinearity on the riblets, it is not surprising that the

linear predictions do not apply in that limit.

4.1.4 Fiber riblets

Based on the ideas of Kramer (1937), Bruse et al. (1993) proposed a riblet-like surface

formed by a layer of fibers over a smooth wall, lined up in the direction of the flow.

Similarly to the fences in blade riblets, the fibers would keep the turbulence away from

the smooth surface, preventing its exposure to high momentum flow and reducing the

friction. Bruse et al. (1993) conducted some experiments to study the influence of the

fiber radius and distance to the wall, but the results were discouraging, as the drag

reductions obtained were nearly negligible. Goldstein et al. (1995) conducted simulations

on similar setups, obtaining also modest results.

More recently, Itoh et al. (2006) have tested the drag reduction properties of seal fur,

also obtaining a riblet-like behavior. The drag reduction of these experiments is depicted

in figure 4.6, where s+ has been obtained from the wavelength identified by Itoh et al.,

by analogy, as the ‘riblet pitch’. This fibrous surface appears to achieve roughly a 12%

maximum drag reduction, and also to have a wider range of s+ with nearly optimum
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Figure 4.7: (a) Sketch of the fiber riblets simulated. (b) Protrusion height of fiber riblets

as a function of the fiber radius. ◦, results obtained with the numerical method outlined in

§3.1.1. △, finite-elements results for the Laplacian and biharmonic equations, for u and the

streamfunction of the crossflow respectively (L. González, private communication).

performance than conventional riblets. Itoh et al. attributed this wider range to the

existence of a continuous distribution of spanwise ‘riblet’ wavelengths, rather than a single

discrete one. However, more experiments on such surfaces would be required to confirm

that the drag reductions achieved are only due to the surface geometry, and not to other

phenomena such as hydrophobicity.

Based on these ideas, we have proposed a novel, unconventional riblet, consisting of

fibers aligned in the streamwise direction, creating a layer of anisotropically porous ma-

terial (Garćıa-Mayoral & Jiménez, 2007). The fibers, of radius R, are arranged in several

staggered rows, as sketched in figure 4.7(a). Because of its anisotropy, the fibrous layer

hinders the cross-flow more than the streamwise flow, creating a positive protrusion height

much like conventional riblets. The topmost row of fibers forms then the ‘riblet peaks’,

and the next one the ‘valleys’, resulting for our arrangement in a ‘height’ h = 0.5s. This

value is just a tentative choice, loosely based on the optimum for blade and trapezoidal

riblets found by Bechert et al. (1997b). As we mentioned in §2.2, unconventional riblets
do not appear to show the same scaling for their optimum as conventional ones, so the

optimum fiber arrangement could be entirely different. For the same reason, the scaling

with ℓ+g would not offer any particular advantage, so we have maintained the classical one

with s. In any case, the effect should be roughly similar to that of the seal fur studied

by Itoh et al. (2006), or to the fibrous surfaces proposed by Bechert’s group (Bruse et al.,
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Figure 4.8: Ratio between the protrusion heights of shallow and deep fiber linings, H = 2h

and H = 6h respectively, as a function of fiber radius.

1993; Bechert et al., 1997a), although probably with more open space than the former,

and somewhat less than the latter. In our simulations, the domain is bounded at the

bottom by a no-slip surface at a distance H from the top of the uppermost fiber.

To study the influence of the fiber thickness on the protrusion height, we conducted

simulations with fiber radii ranging from R/s = 0.01 to R/s = 0.20. The domains,

periodic with spanwise wavelength z = s, reach to a maximum height ymax = s measured

from the top of the fibers. Each s × s square contains 128 × 128 grid points, although

the resolution was increased to 512 × 512 for the case R/s = 0.01 to capture the detail

of the finer fibers. In most simulations, the depth of the lining was chosen H = 6h, so

that it contained six layers of fibers. It will however be seen below that, except perhaps

for the case R/s = 0.01, there is very little difference between these deep linings and very

shallow ones with just two layers, H = 2h.

The results are given in figure 4.7(b), and show that thinner fibers produce larger

protrusion heights. The logarithmic behavior of the protrusion height with R/s is not

completely unexpected, because the drag of cylinders, both parallel and perpendicular

to the flow, depends logarithmically on R (Batchelor, 1994). Nevertheless, the analytic

theory for the present case is incomplete, and the evidence for a logarithmic limit for

vanishing R is at present numerical.

To determine the influence of the number of rows of fibers in the staggered arrange-

ment, we compare the protrusion heights obtained with two and with six fiber layers,

H = 2h and H = 6h respectively. As we have mentioned, the shallow arrangements of

Bruse et al. (1993) produced poor results, so we should expect to require more than one

row of fibers if we are to obtain a better performance. Figure 4.8 represents, for several
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values of the fiber radius, the ratio between the protrusion heights for the two values of H

considered. In general, deeper linings perform better, but the effect is small. The largest

relative decrease is 4% for the shallower lining of fibers with R/s = 0.01. For R/s = 0.05

it is less than 1%, and for R/s ≥ 0.10 it is negligible.

According to our results, the fiber linings yield protrusion heights similar to those of

conventional riblets, but they seem to be more geometrically permissive. It follows from

figure 4.7(b) that fibers of diameter 2R = 0.02s achieve ∆h/s = 0.137, a higher viscous

performance than optimum blade riblets (h/s = 0.5) with blade thickness tr/s = 0.02,

which yield ∆h/s = 0.113. They even perform better than infinitely thin, infinitely deep,

blade riblets, which yield ∆h/s = 0.132 (Bechert et al., 1997b). To get the same perfor-

mance as a more technologically relevant 60◦ triangular riblet would require a diameter

2R ≈ 0.1s. As shown in figure 4.5, a triangular riblet with a tip rounding of the same

radius would have its performance degraded by 25% with respect to an ideal triangle.

However, to determine DRmax, which is after all the quantity of practical interest, it

would be necessary to determine how early do the fibers experience the viscous break-

down. In the worst case, fibers could behave like infinitely deep blades. As we have just

mentioned, infinite blades have an optimum protrusion height, but are also known to have

an extremely early viscous breakdown (Bechert et al., 1997b), so they yield a low DRmax.

4.2 Effect of convection on the two-dimensional flow

In this section, we investigate the effect of nonlinearity on the protrusion height as a

possible cause for the breakdown of the viscous regime, as discussed in §1.2. We conduct

simulations preserving the two-dimensional character of the flow, but otherwise including

nonlinear effects. The strength of the nonlinearity is determined by the riblet spacing

s+z =
√
Rez =

√
Sz/Sxs

+, which was shown in §3.1.1 to be of the order of s+z ≈ s+/2.

Since experimentally the linear behavior breaks down for s+ ≈ 10 − 20, the test of the

present model would be whether the same is true here for s+z ≈ 5− 10.

Figures 4.9 and 4.10 are the nonlinear analogues of Figures 4.2 and 4.3. In figure 4.9,

we can appreciate how the nonlinearity breaks the symmetry of the flow that existed in

the viscous case. On the other hand, the penetration depths of the streamwise and of the

transverse flows inside the grooves do not change noticeably, at least for the range of s+z

in which we are interested. Figure 4.10 shows the velocity profiles at different locations

across the riblet, as in figure 4.3.

Figure 4.11 represents the typical behavior of ∆h under varying s+z for a triangular
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Figure 4.9: Typical velocity fields for (a,c) conventional and (b,d) fiber riblets in the nonlinear

regime. Contours and conditions are as in figure 4.2, except that s+z ≈ 8.2 for the trapezoidal

riblet and 6.5 for the fibers.
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Figure 4.10: Velocity profiles for the cases of figure 4.9. (a), conventional trapezoidal riblet;

(b) fiber riblet. , u above a riblet valley; , u above a riblet peak; , w above a riblet

valley ; , w above a riblet peak.
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Figure 4.11: Protrusion heights of a triangular and a fiber riblet, as a function of s+z ≈ s+/2.

△, 60◦ triangular riblet; ◦, R/s = 0.05 fibers.

and for a fiber riblet of similar Stokes protrusion heights. The influence of the nonlinear

effects is smaller on the triangular riblet, and is slightly beneficial up to s+z ≈ 15, reaching

its maximum for s+z ≈ 10. Fiber riblets are more sensitive to nonlinear effects, and the

effect is always deleterious. In both cases the effect is nevertheless small, and changes of

the order required to explain the experiments are not reached until s+z ≈ 10−20, which is

too large. We will see in the next two subsections that similar results are obtained for all

the other configurations tested. It would appear from these results that the experimental

observations are more likely to be explained by processes acting at lower Reynolds numbers

than the present one.

In fact, of all the assumptions made when defining the protrusion height, the one that

looks riskier for non-zero Reynolds numbers is the homogeneity of the spanwise shear.

The buffer layer extends from y+ ≈ 10 to y+ ≈ 60, and its lower region is dominated

by streaks whose lengths and widths are of the order of 1000 × 100 wall units, and by

quasi-streamwise vortices centered at y+ ≈ 20 with diameters 2R+ ≈ 30. The vortices

are responsible for the spanwise shear and, while it might be reasonable to assume that

they are locally seen as a uniform shear by riblets whose size is s+ = O(1), the same

assumption is less justified when s+ ≈ 10, roughly of the order of the vortex radii. The

same can be said about the stationarity of the problem. When the s+z is larger than

unity, the characteristic evolution time for the flow around riblets is by definition s+z .

The typical length of the vortices in the buffer layer is 100 − 200 wall units, and their

advection velocity is C+
u ≈ 10. That gives a persistence above any given point of the
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Figure 4.12: Protrusion heights of 60◦ trapezoidal groove riblets, as a function of s+z ≈ s+/2.

N, h/s = 0.3; •, h/s = 0.5; H, h/s = 0.7; △, h/s =
√
3/2; ◦, 90◦ triangular riblet (h/s = 0.5)

order of T+ ≈ 10 − 20, which begins to be of the same order as the riblet time as soon

as s+ & 10. This is consistent with the results portrayed in figure 4.11, which show some

nonlinear effects, but only small ones and, specially, of different signs for different riblets.

It appears most probable that the main reason for the nonlinear degradation of riblet

performance with s+ is their interaction with the nonuniform flow above.

Nevertheless, an interesting conclusion from the present study is that, away from the

Stokes regime, the ability of fibers to impede the flow in the cross-plane degrades more

rapidly than for conventional riblets.

4.2.1 Conventional riblets

In order to elucidate whether convective effects have a similar influence on different

trapezoidal and triangular riblets, we have conducted a series of simulations for different

groove parameters and shapes. Due to limitations of computation time, we have used

coarser grids than in §4.1.1. In these convective simulations, each s × s square in the

domain contains 128 × 128 grid points. The resulting errors are still small, and do not

modify the trend with the Reynolds number, which is what we are interested in.

The results of our simulations can be seen in Figure 4.12. Trapezoidal 60◦ riblets with

h/s = 0.5 and h/s = 0.7 show nearly the same behavior as the corresponding equilateral

triangular riblet (h/s =
√
3/2). The trends of the trapeze with h/s = 0.3 and the 90◦

triangular riblet seem to be analogous, but evolve at a slower rate with s+z than in the
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Figure 4.13: Protrusion height of different fiber riblets, as a function of s+z ≈ s+/2. •,
R/s = 0.15; ◦, R/s = 0.05; N, R/s = 0.01.

previous cases. We have not extended our simulations enough to confirm whether those

two curves also reach a maximum at s+z ≈ 15 since, as discussed above, the information

for s+z > 10 would not be meaningful.

4.2.2 Fiber riblets

As with conventional riblets, we have conducted a series of simulations for fiber riblets

with different geometries, to establish if convective effects have a similar influence for

different configurations. We have tested fiber riblets with different sizes R/s and for

different lining depths.

Figure 4.13 portrays results for three riblets with different fiber radii. The grid res-

olutions and domain sizes for these simulations were the same as those used for the

corresponding cases in §4.1.4. As in the case of triangular riblets, the behavior of ∆h

with s+z is similar for the three different radii, but evolves at a slower rate for the thicker

fibers. For the thinner fibers, which yielded the best viscous performance, the degradation

is more severe. This suggests that the sensitivity to convective effects increases with fiber

thinning.

The influence of the lining depth is portrayed in figure 4.14. For fibers with R/s = 0.01

and R/s = 0.05, the figure depicts evolution with increasing s+z of the ratio between the

protrusion heights of H = 2h and H = 6h linings. For R/s = 0.01, the difference

between the two depths is somewhat reduced as the flow becomes more nonlinear. In
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Figure 4.14: Ratio between the protrusion heights for linings with two and six rows of fibers,

H = 2h and H = 6h, as a function of s+z . (a) R/s = 0.01. (b) R/s = 0.05. Notice the very

narrow vertical scale.

the case R/s = 0.05, the difference seems to grow with s+z , but the increment is in any

case negligible. We can infer from these results that the effect of lining depth is also

insignificant for the nonlinear flows, at least in the range s+z < 10 of practical interest.





Chapter 5

Results from DNSs of channels with

blade riblets at Reτ ≈ 180

In this chapter we discuss our DNS results for the rectangular riblets sketched in

figure 5.1 at Reτ = δ+ ≈ 180. The wall geometry chosen for our experiments consists of

rectangular riblets with depth-to-spacing ratio h/s = 0.5, blade thickness tr/s = 0.25, and

ℓg/s ≈ 0.61, for which Stokes calculations give a protrusion height ∆h/ℓg = 0.095, and

an offset for the streamwise velocity ∆u/ℓg = −0.16. From a drag-reduction perspective,

this geometry is far from optimal, with a maximum expected reduction of about 6%,

but it requires a lower numerical resolution than sharper configurations, reducing the

computational cost, and improving the accuracy of the results. Previous DNSs of riblets

(Choi et al., 1993; Chu & Karniadakis, 1993; Stalio & Nobile, 2003; Orlandi et al., 2006;

El-Samni et al., 2007) were usually conducted in channels with riblets in only one wall,

with the opposite wall used as the reference to measure friction. However, although that

arrangement may be useful in comparing channel simulations among themselves, it is

inconvenient when trying to relate computations to experiments on boundary layers. If

only one wall is ribbed, the flow is asymmetric, and the friction velocities are different for

both walls. This leads to different friction Reynolds numbers and wall units at either side

of the channel, which, if not taken into account, would lead to errors in the calculation of

the riblet sizes s+ or ℓ+g . It is also unclear which value should be used for the free-stream

velocity in the friction coefficient, to make it comparable with boundary layers. These

effects are negligible for moderate or high Reynolds numbers, but they can be substantial

at the relatively low Reynolds numbers of most DNSs, especially when dealing with the

relatively weak effects of most riblets. To avoid those potential errors, our simulations

include riblets in both walls, and use as reference a smooth-wall channel with the same

61
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Figure 5.1: Drag-reduction results from DNSs of channels with the sketched rectangular riblets.

•, results normalized using equation (2.10), with protrusion heights obtained from a second-

order finite-differences Stokes simulation with the same effective resolution as the DNSs, and

the value for µ0 from Jiménez (1994). The error bars have been estimated from the time-history

of DR, following Hoyas & Jiménez (2008). The shaded area is the envelope of the experimental

data in figure 2.3(d).

mass flux between the two planes defined by the riblet tips. We also take as reference

velocity the one at the centerline.

This set of simulations was devised to cover the full drag reducing range, 0 ≤ ℓ+g . 20,

and the target parameters for the eight simulations, summarized in table 5.1, were chosen

accordingly. Figure 5.1 compares the drag reduction obtained for the numerical cases 0S

to 20S with the experimental data discussed in §2.2, with reasonably good agreement.

The definition of the friction coefficient deserves some comment. It was noted by

Luchini (1995) that the friction coefficient of internal flows is harder to define than that

of external boundary layers. In the latter case, a reasonable procedure is to normalize

the wall friction with the free-stream velocity, which is also the quantity of interest in

vehicular applications. In internal flows, the practical quantity is the mass-flow rate,

but, if it is used to normalize cf , there is an ambiguity as to which hydraulic radius

should be used to convert the flow rate into a bulk velocity. Luchini (1995) remarked that

different ‘reasonable’ choices could result in changes of the friction coefficient comparable

to those expected from the riblets themselves, with the neutral choice being measuring

the hydraulic radius from the virtual origin ∆u.

On the other hand, it follows from the discussion in §2.1 that the physically relevant
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Case ℓ+g s+ Reτ cf × 103 DR(%)

0S 0 0 189.31 5.99 0

5S 4.95 8.09 185.37 5.80 3.26

7S 7.39 12.06 184.33 5.76 3.91

10S 9.80 16.01 183.47 5.73 4.39

13S 13.04 21.29 182.99 5.72 4.54

15S 14.74 24.07 183.91 5.75 3.94

17S 17.48 28.55 186.93 5.96 0.56

20S 20.46 33.41 191.42 6.20 -3.43

17DZ 17.51 28.59 187.23 5.97 0.31

Table 5.1: Parameters resulting from DNSs at Reτ ≈ 180. ℓ+g is the square root of the groove

cross-section; s+ is the riblet spacing; Reτ is the friction Reynolds number; cf is the friction

coefficient; and DR the drag reduction.

definition of drag change should be based on the offset ∆B of the logarithmic velocity

profile, which, if we assume that surface manipulations only modify the near-wall region,

is equivalent to the change in the maximum mean velocity U+
δ . The only corrections are

those associated with the denominator of (2.2), which depends weakly on the Reynolds

number. That is why in this thesis we use the centerline velocity to normalize the friction

coefficient, rather than the mass flux. The friction Reynolds number is kept approximately

constant by the procedure of fixing the flux among the different cases, and the effect of

any small change should only manifests itself in the change of cf0 in the denominator of

(2.2), which would yield at most a 1% change in drag.

The friction itself is defined in terms of the mean pressure gradient Px. In the case

of smooth walls, the skin friction can be obtained by extrapolating to the wall the total

stress, τ(y) = −〈uv〉+ν∂y 〈u〉, which is linear in y with slope Px. The brackets 〈〉 stand for

averaging over wall-parallel planes and time. Equivalently, it follows from the integrated

streamwise momentum equation that

2Lzτw = −AcPx, (5.1)

because the friction in both walls has to compensate the effect of Px over the cross-sectional

area Ac = 2δLz. The result,

τw = −δ Px, (5.2)

can be derived either from the extrapolation of τ(y) or from (5.1).
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In cases with riblets, the wall friction is not exerted at a constant y-plane to which τ(y)

can be extrapolated, but we can use (5.1) as long as Ac is the real channel cross-section,

including the open section of the grooves. Equivalently, since the total stress is still linear

above the riblet tips, τw can be computed by extrapolating τ(y) to the level y = δ − δ′,

where Ac = 2δ′Lz, which is the y-plane at which a smooth wall would have to be located

for a channel of area Ac. The resulting τw is the total friction exerted per unit streamwise

length and channel span, and is thus the correct quantity to compare with the friction on

a smooth wall when estimating drag reduction. For our test geometry, δ′ = δ+3h/4. Note

that, if those corrections are not taken into account, and τw is estimated by extrapolating

the total stress to y = 0, the relative error in cf would be of order (δ − δ′)/δ ∼ h/δ. For

typical values of ∆cf/cf ≈ 0.1, that error would only be negligible if h/δ ≪ 0.1, which is

not our case.

5.1 The conditional flow

To elucidate the structure of the flow near the ribbed surface, we have compiled flow

statistics conditioned on the spanwise position across the riblet. Figure 5.2(a) portrays

the conditionally-averaged crossflow inside and immediately above a riblet groove, for

several riblet sizes. The panel for ℓ+g = 0 is the two-dimensional Stokes crossflow used

for the computation of the protrusion height. For non-zero values of ℓ+g , the crossflow is

averaged over identical spanwise locations with respect to each riblet, as well as over time

and x, but, since that procedure only recovers a weak secondary flow, the statistics are

also conditioned on the mean direction of the crossflow in the plane immediately above

the riblet tips. The flow over individual grooves is characterized as either ‘rightwards’ or

‘leftwards’, and the statistics for the two directions are combined by adding the specular

image of the mean leftwards flow to the rightwards one. Note that this procedure generates

statistics that are not periodic with the riblet spacing, because the flow over each riblet

is conditioned to a particular orientation, while those over the neighboring ones are not.

Figure 5.2(a) shows that there is a weak recirculation bubble in the riblet groove,

which is especially clear in the Stokes case (first panel in the figure), but which persists

up to the viscous breakdown, becoming increasingly asymmetric for the larger riblets.

At the same time, other changes occur in the outer flow. The increasing curvature

of the conditional streamlines suggests that a mean vortex settles above the groove, and

drifts towards the wall as the riblet size increases. It turns out that the drift is mostly

due to the change in the scale of the figures, which are normalized with the riblet height.
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Figure 5.2: (a) Streamfunction of the conditionally averaged crossflow above and within the

riblet grooves, conditioned to a mean rightwards flow in the plane immediately above the riblet

tips. From left to right and top to bottom, ℓ+g = 0 and cases 5S to 20S. The case ℓ+g = 0 is

a two-dimensional Stokes simulation. To facilitate the comparison between different cases, the

streamfunction has been scaled with uτ and with the riblet height h. , rightwards flow with

streamfunction values 0.05 × [0(0.2)1]2 and 0.10(0.05)0.60. , clockwise recirculation flow,

with streamfunction values −2×[0.2(0.2)1]×10−3 . (b) Fluctuation of the streamwise vorticity as

a function of the distance to the riblet peak plane, for cases 0S to 20S. (c) Maximum conditioned

streamwise vorticity, as a function of the z-position across the riblet span, for cases 10S to 20S.

The arrows in (b) and (c) indicate increasing ℓ+g .
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The vertical position of the vortices is better measured by the unconditioned root-mean-

squared intensity of the streamwise vorticity ωx, which is shown in figure 5.2(b). The

quasi-streamwise vortices correspond to the maximum away from the wall, and slowly

approach the wall as the riblets get larger, but they never get closer than y+ ≈ 10 − 15.

The simplest interpretation of the velocity fields in figure 5.2(a) is that the vortices tend

to linger on top of the grooves. To measure this tendency, we can obtain mean vorticity

fields conditioned to the direction of the crossflow, 〈ωx〉c, following the procedure described
above, and determine the modulation in z of the maximum for each y, maxy〈ωx〉c. This

quantity is shown in figure 5.2(c). It is maximum above the grooves and minimum above

the riblet tips, but the modulation is negligible for the smallest riblets, increasing with

the riblet size. This shows that the vortices get increasingly localized above the grooves

for the larger riblets.

Choi (1989), Goldstein et al. (1995) and Goldstein & Tuan (1998) suggested that one

of the effects of the riblets was to order the turbulent flow near the wall by preventing the

spanwise motion of the streamwise vortices, inhibiting the instability of the streamwise-

velocity streaks, and eventually the bursting. They conjectured that this effect would be

part of the drag-reduction mechanism. The vortex localization observed in figure 5.2(c)

supports the flow-ordering idea, but it is interesting that the localization is weak for the

riblets that actually reduce drag, and strongest for those that increase it, suggesting that

other phenomena may be more important for the drag evolution.

The actual lodging of the vortices inside the grooves, which was documented by

Choi et al. (1993) and Lee & Lee (2001) for grooves with ℓ+g & 25, and proposed as a

mechanism for the drag deterioration, is not observed in the present simulations. Figures

5.1 and 5.2(a) suggest that, if it happens at all, it probably only does for very large riblets

in the drag-increasing regime, rather than for those in the neighborhood of the perfor-

mance optimum. In that sense, it should probably be considered a consequence, rather

than the cause, of the penetration of the outer flow into very large grooves.

On the other hand, although it could have been expected that the recirculation bubbles

would isolate the valley floor from the overlying flow, keeping the high-momentum fluid

away from the groove walls, it is somewhat surprising that all the changes in the crossflow

have a relatively small effect on the streamwise velocity, which is the component respon-

sible for the friction. That is seen in figure 5.3, which portrays the mean slip velocity U0

at y = 0, as a function of the riblet size, and shows that the linear Stokes approximation

holds for the longitudinal flow throughout the whole range of our simulations, at least in

the mean. Averaging the Stokes assumption (1.2) over the streamwise direction and time
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Figure 5.3: Mean slip velocity at the riblet-tip plane, compared with the Stokes result (5.3),

represented by the solid line.

implies that the mean velocity of the boundary layer approaches the wall with an effective

slip velocity

U+
0 ≡ U+(y = 0) = −∆+

u , (5.3)

which is represented by the solid line in figure 5.3.

The reason for the small effect of the crossflow on U0 is probably that the recirculation

bubbles in figure 5.2(a) are relatively weak. The magnitude of the conditioned spanwise

velocity at the horizontal mid-plane of the riblet grooves in figure 5.2(a), y = −h/2,

never exceeds 0.04 uτ , and the mean streamwise velocity within the grooves follows the

same universal curve U(y/h)/U0 within a few percent for all the riblets in our simulations.

Similarly, the mean velocity gradient at the bottom of the groove is always (∂yU)+ ≈ 0.15.

That low shear at the bottom of the grooves is not enough to guarantee drag reduction,

as seen in the case ℓ+g = 0, where the drag reduction is zero because the low shear within

the groove is compensated by the higher one at the peaks. In fact, the approximately

universal scaling of the streamwise velocity inside the grooves suggests that the reason of

the drag reduction is not so much that the friction decreases, but that the slip augments

the velocity of the free stream, thus decreasing the friction coefficient 2τw/U
2
δ . Of course,

both interpretations are essentially the same, depending on the units used to express the

result, and the question will be examined quantitatively in §5.2.
Before doing that, we can gain some insight on how the riblets affect the distribution

of the friction by examining the conditional statistics of the viscous, Reynolds, and total

streamwise stresses on the x–z plane just above the riblet tips. Figures 5.4(a)–5.4(c)
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Figure 5.4: Conditionally averaged (a) viscous, (b) Reynolds and (c) total shear stresses at

the x − z plane just above the riblet tips, as a function of the spanwise position with respect

to the riblets. The arrows indicate increasing ℓ+g . The dashed line corresponds to the Stokes

two-dimensional simulations for ℓ+g = 0. The rectangles at the bottom of the figures mark the

z-location of the riblet tips. Each flow is normalized in its own wall units. (d) Integrated average

stresses at the same x–z plane, as a function of ℓ+g ; • , viscous stress; ◦ , Reynolds stress;

△ , total stress. The difference between the total stress portrayed here and the results in figure

5.1 is due to the pressure drop within the grooves, which is not accounted for here, and whose

contribution increases with groove size.

portray the conditionally-averaged stresses normalized with the friction velocity of each

ribbed surface. The figures show that the dominant stress on that plane is always the

viscous one, τvisc = ν∂y〈u〉c, which partially compensates its high value over the tips with

a lower one above the grooves. We have already mentioned that the net effect vanishes

in the case ℓg = 0, and figures 5.4(a)–5.4(c) show that, although the viscous contribution

decreases over the groove as the riblet size increases, the effect is partly compensated

by the Reynolds stress, τuv = −〈uv〉c, which becomes significant for the larger riblets.
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The ratio between the contributions to the total skin friction of the tips and of the

grooves remains relatively unchanged over the range of our simulations, in agreement

with the previous observation that the streamwise flow in the groove remains dominated

by viscosity. The partial transfer of viscous to Reynolds stress reflects the modification

of the distribution of streamwise and wall-normal velocities near the plane of the riblet

tips, but it does not reach deep into the grooves.

This does not mean that the drag remains constant, since our simulations cover the

whole range from drag reduction to drag increase. The net contributions of the two

stress components, now expressed in terms of the constant friction velocity of the smooth

channel, can most clearly be appreciated in figure 5.4(d). The figure shows that the

net viscous stress decreases almost linearly with ℓ+g , while the Reynolds stress increases

slowly at first and faster for the larger ℓ+g . In the cases near the maximum drag reduction,

the Reynolds stress compensates the decrease of the viscous one and the drag reduction

saturates. For riblets larger than the optimum the drag reduction begins to degrade,

because the mean Reynolds stress increases further. For case 20S, the contribution of

the Reynolds stress is so large that the drag reduction becomes a k-roughness-like drag

increase. The breakdown is therefore associated with the appearance of inertial effects,

but the discussion in the previous paragraph suggests that they are concentrated near or

above the plane of the tips, rather than within the grooves. They are discussed in the

next section.

5.2 Spectral analysis

The main difference between flows in smooth and ribbed channels is the higher fluc-

tuation intensities of the latter immediately above y = 0 (not shown, but see figures 5.5

to 5.9). In the same way, the transverse Reynolds stress −〈uv〉 increases over riblets,

especially over the larger ones (see figure 5.4(b)). Both things are to be expected from

the relaxation of the wall boundary conditions above the riblet grooves, and are consistent

with the discussion in the previous section. To account for these increases, Choi et al.

(1993) introduced a virtual origin for the turbulent statistics slightly below the riblet-peak

plane.

More interesting is than those higher intensities is their spectral distribution. Figures

5.5 to 5.10 contain examples of two-dimensional spectral energy densities over wall-parallel

planes for cases 0S to 20S, representing how the energy of the different velocity components

is distributed in the λ+
x –λ

+
z wavelength plane. Cases 13S to 20S, which are those with ℓ+g
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Figure 5.5: Spectral energy density of the streamwise velocity, kxkzEuu, at y+ ≈ 5. From

left to right and top to bottom, cases 0S, 5S, 7S, 10S, 13S, 15S, 17S, and 20S. The contour

increments are 0.09u2τ . For comparison, the contours from case 0S are superimposed as solid

lines in all panels. The thick horizontal line to the left of the plots marks the riblet spacing.

The rectangular area indicates the region of the spectrum considered in figure 5.13.
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Figure 5.6: Spectral energy density of the wall-normal velocity, kxkzEvv, at y+ ≈ 5. From

left to right and top to bottom, cases 0S, 5S, 7S, 10S, 13S, 15S, 17S, and 20S. The contour

increments are 0.003u2τ . Solid lines are as in figure 5.5.
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Figure 5.7: Spectral energy density of the spanwise velocity, kxkzEww, at y
+ ≈ 5. From left to

right and top to bottom, cases 0S, 5S, 7S, 10S, 13S, 15S, 17S, and 20S. The contour increments

are 0.026u2τ . Solid lines are as in figure 5.5.
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Figure 5.8: Spectral density of the Reynolds stress, −kxkzEuv, at y
+ ≈ 5. From left to right

and top to bottom, cases 0S, 5S, 7S, 10S, 13S, 15S, 17S, and 20S. The contour increments are

0.008u2τ , starting at 0.004u2τ . Solid lines are as in figure 5.5, and the dashed line represents the

Euv = 0 contour for case 0S.
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Figure 5.9: Spectral density of the pressure fluctuations, kxkzEpp, at y+ ≈ 5. From left to

right and top to bottom, cases 0S, 5S, 7S, 10S, 13S, 15S, 17S, and 20S. The contour increments

are 0.2u4τ . Solid lines are as in figure 5.5.
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Figure 5.10: Premultiplied two-dimensional spectrum of v2 for case 17S. From left to right, at

heights y+ ≈ 10, 15, 19, and 25. The same spectrum is plotted for y+ ≈ 5 in figure 5.6. The

superimposed solid contour lines correspond to the smooth-wall case. The contour increments

are 0.010, 0.015, 0.020, and 0.025u2τ for increasing y+. The thick horizontal line to the left of

the plots marks the riblet spacing.

beyond the viscous breakdown, are the ones whose spectra differ most from those of the

smooth channel, which are superimposed for comparison as solid lines.

For instance, figure 5.6 shows the spectral density of v2 at y+ ≈ 5. As the riblet

size increases beyond the optimum spacing, energy accumulates in a spectral region near

λ+
x ≈ 150 that extends over all the spanwise wavelengths longer than λ+

z ≈ 50, and which

therefore represents very wide structures. The same can be seen in the spectra of the
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Figure 5.11: Premultiplied streamwise cospectra of the Reynolds stress, kxE
+
uv. From left to

right and top to bottom, cases 0S, 5S, 7S, 10S, 13S, 15S, 17S, and 20S. The spectra have been

integrated in z only for λ+
z ≥ 130. The solid isolines are spaced by 4 × 10−3, with the shaded

area corresponding to positive values. The dashed isolines correspond to 4× [0.2(0.2)0.8]×10−3 .

Notice that the stresses in the region portrayed are counter-gradient for the smooth-wall case,

as can be observed in figure 5.8.

other flow variables, given in figures 5.5 to 5.9. The new spectral region exists only for

heights below y+ ≈ 15 − 20, depending on the variable considered. The widest vertical

ranges correspond to v2, whose spectrum for case 17S is portrayed at different heights in

figure 5.10, and to the pressure fluctuations (not shown, but see figure 6.7(c)).

We next focus our analysis on those new structures, which we will treat as being ap-

proximately confined to a spectral window delimited by 65 < λ+
x < 290 and λ+

z > 130.

That window is included in figure 5.6 for reference. Note that the relatively high lower

limit for λ+
z implies that we will essentially be studying the effect of riblets on the

spanwise-averaged flow, as opposed to the conventional approach used in §5.1, which

stresses streamwise averages.

Figure 5.11 portrays the streamwise one-dimensional cospectral density of the uv

stress, integrated for λ+
z > 130, and shows that the shear stress carried by the new struc-

tures concentrates around λ+
x ≈ 150 and y+ ≈ 4, and that their contribution increases

with the riblet size. The Reynolds stress of the smooth channel is weak and positive
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Figure 5.12: Increment in the spectra of the flow variables caused by the presence of riblets, in-

tegrated for λ+
z > 130. (a–b), ∆(kxEu2); (c–d), ∆(kxEv2). (e–f), ∆(kxEw2); (g–h), ∆(−kxEuv).

Figures are scaled in wall units in the first column, and with the riblet height h in the second.

Shaded, case 13S; , 15S; , 17S; , 20S. The isolines drawn have been chosen to

enhance the comparison of the scales in the four cases considered, regardless of their magnitude.
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Figure 5.13: Energy contained in the long spanwise structures above riblets. The figures

portray the integrals of the spectra of (a) u+2, (b) v+2, (c) w+2, and (d) −uv+, in the region

65 ≤ λ+
x ≤ 290, λ+

z ≥ 130. △ , smooth wall; , 13S; , 15S; , 17S; , 20S.

(counter-gradient) in that spectral region, but becomes negative and stronger for riblets

larger than the optimum.

The spectra of the additional energy of the three velocity components carried by the

new structures also scale well in wall units, and better than when normalized with the

riblet size. Figure 5.12 portrays, for the cases with ℓ+g larger than the optimum, the

departures from the smooth case of the spectra integrated for λ+
z > 130. The figure

shows that the position of the structures collapses well when expressed in wall units, but

not so much when λx and y are scaled with the riblet size. There is a slight drift of the

structures towards longer λ+
x for increasing riblet size, which is perhaps more apparent for

v2 and uv. The spanwise structures center around λ+
x ≈ 150 and y+ ≈ 5 in most cases,

although for the streamwise velocity they are slightly longer, λ+
x ≈ 200, and v2 peaks

around y+ ≈ 10. Since the present simulations have approximately the same Reynolds
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number, it is impossible to determine from them whether the spectra collapse in wall or in

outer units, although the former seems more plausible given the location of the structures

very near the wall, as well as the experimental scaling of the viscous breakdown in wall

units. The simulations at higher Reynolds number of chapter 6 were devised largely to

shed light on this dilemma, and further support for the wall scaling is provided in chapter

7, where a simplified linearized model for the structures is proposed.

The energy integrated over the spectral window defined above is given in figure 5.13

for the three velocity components and for the shear stress. For riblets smaller than 10S,

which are not shown in the figure, the results are virtually indistinguishable from the

smooth case, but the fluctuations become stronger beyond the optimum riblet size, and

keep increasing thereafter.

5.2.1 Breakup of the different contributions to the change in

friction drag

The additional uv stresses can be directly related to the drag increase beyond the

breakdown. Using the subscript ‘S’ to refer to the reference smooth channel, the momen-

tum balances for the smooth and ribbed channel are, respectively,

τuvS + ν
∂US

∂y
= u2

τS

δ − y

δ
, (5.4)

τuv + ν
∂U

∂y
= u2

τ

δ − y

δ′
. (5.5)

If we define u∗ = uτ(δ/δ
′)1/2 and integrate these equations over y ∈ (0, δ), they can be

combined into ∫ δ

0

τ ∗uv dy +
ν

u2
∗

(Uδ − U0) =

∫ δ

0

τ+uvS dy +
ν

u2
τS

UδS , (5.6)

where τ ∗uv = τuv/u∗
2. Further manipulation results in

∆cf
cf0

≈ −∆U+
δ

2

U+
δ

2 = T1 + T2 + T3, (5.7)

where

T1 =

[
1− δUδ

δ′UδS

](
U+
δS

U+
δ

)2

, (5.8)

T2 = −U+
0

U+
δ

, (5.9)

T3 =
δδ+

δ′U+
δ

∫ 1

0

(
τ ∗uv − τ+uvS

)
d(y/δ). (5.10)
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Figure 5.14: Contributions T1, T2 and T3 to the drag reduction curve, as defined by equations

(5.8)–(5.10). ▽ , T1; △ , T2; ◦ , T3 calculated from the full uv stress; • , T3 calculated

considering uv only within 65 ≤ λ+
x ≤ 290, λ+

z ≥ 50, and y+ . 35. , total drag reduction

T1 + T2 + T3.

These three terms are shown in figure 5.14. The first one is a correction factor that

accounts for the differences in the definition of the two channels, both in height and in

mass flux. It should remain small for the decomposition (5.7) to be useful, since otherwise

the influence of the Reynolds number mentioned in §2.2 should be taken into account.

Figure 5.14 shows that T1 is always less than a few percent in our simulations.

The term T2 represents the slip velocity at the riblet tips, which we have already

discussed in §5.1. It is directly related to the drag-reduction mechanism of the protrusion

height, and remains proportional to the riblet size over our simulation range. It always

reduces the skin friction.

The term T3 represents the effect of the extra Reynolds stresses in the flow above the

riblet tips and, owing to the scaling with u∗, its integrand differs from zero only near the

wall. Figure 5.14 confirms that T3 is the term responsible for the drag degradation. The

figure also includes the part of the extra Reynolds stress that is contained in the spectral

region that we have associated with the new spanwise structures. It shows that this region

contains most of the extra stress, strongly suggesting that the new structures are the root

cause of the degradation of the drag.
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Figure 5.15: (a) Instantaneous streamlines of the spanwise-averaged perturbation u–v flow,

for case 17D. The solid lines correspond to clockwise-rotating rollers. (b) For the same instant,

wall normal velocity at y+ ≈ 3. The clear regions represent negative velocities, or flow towards

the wall, and the dark regions positive ones. The position of riblet tips and grooves is sketched

to the right of the figure.

5.2.2 Instantaneous realization of the spanwise structures

The spanwise length of the new structures, λ+
z & 50, implies that they extend over

several inter-riblet spacings. In fact, because they are much wider than their streamwise

wavelengths, they can be characterized as spanwise rollers, which are shown in figure 5.15

for an instantaneous realization of case 17D. Figure 5.15(a) portrays streamlines of the

flow averaged over the full span of the simulation box, which is in this case L+
z ≈ 850. The

averaged rollers are centered at y+ ≈ 10 − 15, and extend to the wall, even penetrating

the riblet grooves. Their streamwise extent is about 50–70 wall units, and the separation
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between rollers of the same sign is λ+
x ≈ 150, consistent with the spectral analysis. That

implies aspect ratios for the spanwise-averaged structures in figure 5.15(a) of the order of

10–20, and characterizes them as quasi-two-dimensional in the x–y plane. The structures

themselves can be seen in the wall-parallel section in figure 5.15(b), which confirms their

spanwise coherence across several riblet grooves. That coherence manifests itself in spite

of the presence of the riblet blades, which disrupts the structures with riblet-spacing

periodicity. It must however be stressed that figure 5.15 is merely an instantaneous

realization of the flow, and is only included here to help the reader visualize the roller

structures. The evidence for those rollers is not in this figure, but in the discussion on

spectra of §5.2, and in the corresponding figures 5.6 to 5.13.

To our knowledge, those structures had not been reported before over riblets, but

they can probably be found, in retrospect, in some of the visualizations published by

previous authors. See, for example, the visualization of v at y+ = 8 above the tips of

triangular riblets in figure 20(b) of Goldstein et al. (1995), or the spanwise lines of velocity

reversal within the grooves of similar riblets in figure 30 of Chu & Karniadakis (1993).

Even if their conditions are very different from ours, it is interesting that the streamwise

wavelengths of the observed structures are in both cases in the range λ+
x = 100− 200. It

should be noted, however, that we do not observe flow reversal within our grooves.

Although the formation of these structures, perpendicular rather than parallel to the

riblets, may seem surprising, it is not completely unexpected. Similar spanwise rollers

have been reported over vegetable canopies (Raupach et al., 1996; Finnigan, 2000), and

over permeable (Jiménez et al., 2001) and porous walls (Breugem et al., 2006). They are

typically attributed to Kelvin–Helmholtz-like instabilities due to the relaxation of the im-

permeability condition at the wall, although quantitative analyses to support that claim

are somewhat scarce in the literature (Jiménez et al., 2001; Py et al., 2006). Ghisalberti

(2009) has proposed that these Kelvin–Helmholtz structures are a dominant feature com-

mon to “obstructed” shear flows.

5.2.3 Convection velocities

The hypothesis of an instability is reinforced by the spectral distribution of the ad-

vection velocities of the u, v and w-structures, respectively Cu, Cv and Cw. They can be

computed as a function of y and of the two wall-parallel wavelengths, using the scheme

in del Álamo & Jiménez (2009), which for Cu is

Cu (kx, kz, y) =
Im 〈û∗∂û/∂t〉

kx
〈
|û|2

〉 . (5.11)



80 5. Blade riblets at Reτ ≈ 180

10
1

10
2

λ z+
  

10
2

10
3

10
1

10
2

   λ
x
+

λ z+
  

10
2

10
3

   λ
x
+ 10

2
10

3
   λ

x
+ 10

2
10

3
   λ

x
+

 

 

7

8

9

10

11

Figure 5.16: Spectral distribution of the convection velocity C+
u of u-structures at y+ ≈ 5 for

cases 0S to 20S. Values are only significant within the shaded region, and are portrayed elsewhere

by dashed contours. The encircling solid line represents the threshold kxkzEuu = 0.09u2τ .

Outside of it the u-structures carry very little energy, but lead to large uncertainty errors in the

calculation of convection velocity. The thick horizontal line to the left of the plots marks the

riblet spacing.
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Figure 5.17: Spectral distribution of the convection velocity C+
v of v-structures at y+ ≈ 5

for cases 0S to 20S. The lines and contours are the same as in figure 5.16, with the solid line

encircling the shaded region representing the threshold kxkzEvv = 0.0012u2τ .
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Figure 5.18: Spectral distribution of the convection velocity C+
w of w-structures at y+ ≈ 5

for cases 0S to 20S. The lines and contours are the same as in figure 5.16, with the solid line

encircling the shaded region representing the threshold kxkzEww = 0.026w2
τ .

The schemes for Cv and Cw are defined analogously. The spectral distributions are por-

trayed for y+ ≈ 5 in figures 5.16, 5.17 and 5.18. For the spectral region of the new

spanwise structures, the advection velocities are noticeably lower than for the spectral

region of the regular ones. Near the wall, for y+ . 15, the latter are of order 10 uτ , while

the former are 6 − 8 uτ . The effect becomes more noticeable for the larger riblets, and

suggest that the structures are not advected by the local flow, but correspond to unstable

eigenstructures with a y-support extended below the riblet-tip plane. We will analyze this

instability in chapter 7 with a generalized linear stability model.





Chapter 6

Results from DNSs of channels with

blade riblets at Reτ ≈ 550

In the present chapter, results for riblet channels at Reτ ≈ 550 are presented. To our

knowledge, no similar set of simulations has ever been reported. In fact, all previous DNSs

with riblets have been conducted at Reτ ≈ 180 (Choi et al., 1993; Chu & Karniadakis,

1993; Stalio & Nobile, 2003; Orlandi et al., 2006; El-Samni et al., 2007; Wassen et al.,

2008; Kramer et al., 2010). In principle, the effect of the Reynolds number should be

small, because riblets seem to interact only with the near-wall structures, so their pres-

ence should only affect the flow in the buffer layer. However, results of simulations at

Reτ ≈ 180 should always be treated with care, since for such low Reτ the flow is only

marginally turbulent. It is our belief that some higher Reynolds number simulations were

needed in the community, at least to confirm the validity of the DNSs at low Reτ . Part

of the reason for such simulations not having been conducted before is that the computa-

tional cost is prohibitive, especially because of the high spanwise resolution required near

the riblet surfaces. It is worth noting that our parallelization strategy, which involves

dividing the domain in constant-y planes, reaches for these simulations its limit of appli-

cation. Due to memory limitations, not more than a single wall-block, fine-grid plane can

be assigned to each individual computing process. In other words, if the domain is divided

into its smallest elements, it barely ‘fits’ in the machine, and this cannot be circumvented

by further division. For simulations at higher Reτ , a finer parallelization strategy would

therefore be required.

Given the high computational cost, we have only conducted simulations for a few

cases, selecting them so that they were representative of the different flow conditions. We

have also tuned the simulations to closely match ℓ+g values from the set of simulations of

83
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Case ℓ+g s+ Reτ cf × 103 DR(%)

0L 0 0 558.05 4.51 0

7L 7.21 11.77 546.85 4.36 3.38

13L 12.45 20.32 544.19 4.35 3.71

20L 20.52 33.51 571.76 4.77 -5.74

Table 6.1: Parameters resulting from DNSs at Reτ ≈ 550. ℓ+g is the square root of the groove

cross-section; s+ is the riblet spacing; Reτ is the friction Reynolds number; cf is the friction

coefficient; and DR is the drag reduction.
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Figure 6.1: Drag-reduction results from DNSs of channels with rectangular riblets at Reτ ≈ 550

compared with those of chapter 5. ▽, results for cases 0L, 7L, 13L and 20L, normalized using

equation (2.10), with protrusion heights obtained from a second-order finite-differences Stokes

simulation with the same effective resolution as the DNSs, and the value for µ0 from Jiménez

(1994). •, results at Reτ ≈ 185 from chapter 5, also normalized using equation (2.10). The

error bars have been estimated from the time-history of DR, following Hoyas & Jiménez (2008).

The shaded area is the envelope of the experimental data in figure 2.3(d).

the previous chapter, so that direct comparisons could be made. Thus, we have simulated

a smooth reference case, 0L, one in the viscous regime, 7L, one near the optimum perfor-

mance, 13L, and one well past the viscous breakdown, 20L. The parameters resulting from

the simulations are summarized in table 6.1. Throughout the chapter, we will compare

the present results with those of the corresponding simulations 0S, 7S, 13S and 20S at

Reτ ≈ 185.

The drag reduction results of the present simulations are portrayed in figure 6.1,

together with the results at Reτ ≈ 185 of figure 5.1. The new results have been scaled with
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Figure 6.2: Streamfunction of the conditionally averaged crossflow above and within the riblet

grooves, conditioned to a mean rightwards flow in the plane immediately above the riblet tips.

From left to right, ℓ+g ≈ 7, ℓ+g ≈ 13 and ℓ+g ≈ 20. To enhance the comparison between the

different cases, the streamfunction has been scaled for each case with the corresponding uτ and

riblet height h. , results from the present simulations at Reτ ≈ 550, cases 7L, 13L and 20L.

, results from the cases 7S, 13S and 20S of chapter 5, at Reτ ≈ 185. The contour levels are

the same as in figure 5.2(a).

a viscous slope mℓ calculated using equation (2.10) with cf0 = 4.51×10−3, corresponding

to the smooth wall at Reτ ≈ 550, like the previous set was scaled with the slope obtained

for Reτ ≈ 185. Therefore, the scale for DR at the right-hand-side ordinate axis only

applies to the results at Reτ ≈ 550. The comparison with the DR results of figure 5.1

indicates that the performance in terms of DR drops roughly to 0.85 times its value at

Reτ ≈ 185, because of the change in equation (2.2) of the friction coefficient. On the

other hand, the performance in terms of ∆B, or DR/mℓ, remains essentially unaltered,

supporting the reduced scaling discussed in §2.1.

6.1 The conditional flow

Once more, we have compiled statistics of the flow near the ribbed surface conditioned

both on the spanwise position across the riblet and on the mean direction of the crossflow

in the plane immediately above the tips. We have followed the procedure described in

§5.1. The mean conditioned crossflows within the grooves are portrayed in figure 6.2 for

simulations 7L, 13L, and 20L, compared with the corresponding simulations at Reτ ≈ 185.

The same evolution of the recirculation bubbles can be observed, with increasing asym-
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metry for the larger riblets. The flows remain weak inside the grooves and very similar

to those at Reτ ≈ 185, although there is some modulation coming from the overlying

turbulence. The difference is most apparent for the case 20L for which, if the lengths are

measured with the riblet dimension, as has been done in the figure, the riblets see the

peak of the velocity perturbations closer than in the other cases. The higher peak values

of v′+ and w′+ are a Reynolds number effect common to the smooth wall case (see figures

3.7(c) and (d)), and essentially independent of the presence of riblets.

6.2 Spectral analysis

To investigate the presence of spanwise rollers, we have again compiled the spectral

distribution of the flow variables for simulations 7L, 13L and 20L, as in §5.2. Some results

are portrayed in figures 6.3 to 6.7, which contain examples of two-dimensional spectral

energy densities over wall-parallel planes at several heights y+ over the riblet peaks. The

spectral densities are compared with those of cases 7S, 13S and 20S at Reτ ≈ 185.

The figures show the increase in the mean intensity mentioned in the previous sec-

tion. The increase is largest for the wall-normal velocity and for the pressure fluctuations

(del Álamo & Jiménez, 2003), and very small for the streamwise velocity ones (see figures

3.7(c) and (d) for a comparison between the velocity fluctuations in the case of smooth

channels). Besides this riblet-independent effect, the appearance of the spanwise struc-

tures at roughly the same range of streamwise wavelengths, λ+
x ≈ 100 − 200, can be

observed. The structures extend again for heights below y+ ≈ 15− 20, depending on the

variable considered, with the widest vertical ranges corresponding to wall-normal velocity

and pressure fluctuations, portrayed in figures 6.4 and 6.7 respectively.

On the other hand, while the typical lengths remain the same, there is a slight increase

in the intensity of the spanwise structures, in accordance with the mean increase of the

fluctuations. That is most apparent for the spectral density of v2 and −uv of case 20L,

shown in figures 6.4(c) and 6.6(c). For the intermediate case 13L, this higher intensity

even leads to the structures leaving a ‘footprint’ in the spectral distributions of v2 and

−uv for y+ . 5, which was not present for Reτ ≈ 185, as can be seen in the first panels

of figures 6.4(b) and 6.6(b).

The spectral densities of the new simulations also have an interesting by-product.

Since the size in wall units of the simulation domain is now much larger, L+
x × L+

z of

order 5000×2500 compared to the previous 1000×400, the new spectral densities are not

artificially cropped for the higher wavelengths, at least near the wall, which is the region



6.2. Spectral analysis 87

10
2

10
3

10
1

10
2

10
3

λ
x
+

   
  λ

z+

10
2

10
3

λ
x
+ 10

2
10

3
λ

x
+ 10

2
10

3
λ

x
+

10
2

10
3

10
1

10
2

10
3

λ
x
+

   
  λ

z+

10
2

10
3

λ
x
+ 10

2
10

3
λ

x
+ 10

2
10

3
λ

x
+

10
2

10
3

10
1

10
2

10
3

λ
x
+

   
  λ

z+

10
2

10
3

λ
x
+ 10

2
10

3
λ

x
+ 10

2
10

3
λ

x
+

(a)

(b)

(c)

Figure 6.3: Spectral energy density of the streamwise velocity, kxkzEuu, for cases (a) 7L, (b)

13L and (c) 20L. From left to right, at y+ ≈ 2, 5, 7 and 10, with the contour increments 0.04,

0.09, 0.15 and 0.20u2τ respectively. For comparison, the same contours for the corresponding

cases 7S, 13S and 20S at Reτ ≈ 185 are superimposed as solid lines. The black thick horizontal

line to the left of the plots marks the riblet spacing for the cases at Reτ ≈ 550, and the white

one for those at Reτ ≈ 185.
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Figure 6.4: Spectral energy density of the wall-normal velocity, kxkzEvv , for cases (a) 7L, (b)

13L and (c) 20L. From left to right, at y+ ≈ 5, 10, 15 and 20, with the contour increments 0.005,

0.010, 0.015 and 0.020u2τ respectively. For comparison, the same contours for the corresponding

cases 7S, 13S and 20S at Reτ ≈ 185 are superimposed as solid lines. The black thick horizontal

line to the left of the plots marks the riblet spacing for the cases at Reτ ≈ 550, and the white

one for those at Reτ ≈ 185.
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Figure 6.5: Spectral energy density of the spanwise velocity, kxkzEww, for cases (a) 7L, (b)

13L and (c) 20L. From left to right, at y+ ≈ 2, 5, 7 and 10, with the contour increments 0.020,

0.030, 0.035, and 0.040u2τ respectively. For comparison, the same contours for the corresponding

cases 7S, 13S and 20S at Reτ ≈ 185 are superimposed as solid lines. The black thick horizontal

line to the left of the plots marks the riblet spacing for the cases at Reτ ≈ 550, and the white

one for those at Reτ ≈ 185.
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Figure 6.6: Spectral energy density of the Reynolds stress, −kxkzEuv, for cases (a) 7L, (b)

13L and (c) 20L. From left to right, at y+ ≈ 2, 5, 7 and 10, with the contour increments 0.005,

0.010, 0.025, and 0.030u2τ respectively, starting at half their values. For comparison, the same

contours for the corresponding cases 7S, 13S and 20S at Reτ ≈ 185 are superimposed as solid

lines. The black thick horizontal line to the left of the plots marks the riblet spacing for the

cases at Reτ ≈ 550, and the white one for those at Reτ ≈ 185.
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Figure 6.7: Spectral energy density of the pressure fluctuations, kxkzEpp, for cases (a) 7L, (b)

13L and (c) 20L. From left to right, at y+ ≈ 5, 10, 15 and 20. For comparison, contours for

the corresponding cases at Reτ ≈ 185, 7S, 13S and 20S, are superimposed as solid lines. The

contour increments are 0.4u4τ for the cases at Reτ ≈ 550 and 0.2u4τ for the cases at Reτ ≈ 185.

The black and the white thick horizontal lines to the left of the plots mark the respective riblet

spacings.
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we are interested in. Thus, we have now been able to obtain the full spectral distribution

of the flow variables, and to bound the typical spanwise wavelength of the new structures.

In chapter 5 we could only say that they could be as wide as the simulation domain, while

now we can affirm that they are not longer than λz ≈ 1000 − 2000. Nevertheless, since

λz ≫ λx and λz ≫ λy, with λy ≈ 10− 20 being the typical height above the riblet peaks,

the hypothesis that the structures are elongated in the spanwise direction is confirmed.

Beyond the validation of results for low Reynolds number, we were also interested

in clarifying the scaling of the rollers. As we discussed in §5.2, the absence of sufficient

disparity in Reτ for the simulations of chapter 5 made impossible to establish whether the

size of the rollers scaled with outer or wall units. The evidence for that discussion is now

available. From figures 6.3 to 6.7 it is clear that the structures scale in wall units, but the

scaling can be more clearly appreciated in figure 6.8. The latter figure compares, for cases

13S and 20S at Reτ ≈ 185, and cases 13L and 20L at Reτ ≈ 550, the distribution in y and

in streamwise wavelengths of the additional energy, taking as reference the corresponding

smooth wall, stored in the spectral region that corresponds to the new structures. For

the comparison, the spectral densities are portrayed with the length scales normalized

both with the wall unit, ν/uτ , and the channel half-width δ. The hypothesis of inner

scaling of §5.2 is confirmed, since the figure shows that the spectral densities lie in the

same region for the two different Reynolds numbers when using wall scaling, and that

they do not when outer units are used. Furthermore, there is a ratio of roughly three in

the sizes when scaling with δ, which is what should be expected from the ratio in Reτ ,

550/185 ≈ 3, for structures that scale in wall units.

The drag breakup analysis of §5.2.1 can be repeated for the present simulations to

compare the different contributions to DR. According to the discussion in that section,

the first contribution T1 should be a factor that accounts for the differences in the setup of

the smooth and ribbed channels, both in height and in mass flux, and its definition implies

that it should vanish for Reτ → ∞. That would leave only the terms T2, which represents

the slip velocity at the riblet tips, and T3, which accounts for the extra Reynolds stresses

in the flow over the riblets. These last two terms are the only ones with physical meaning,

since the first one is merely an adjustment parameter to account for a setup constrained

by limited resources, i.e. with low Reynolds number.

The three contributions are shown in figure 6.9 for cases 0L to 20L, compared with

the results for Reτ ≈ 185 of §5.2.1. We can appreciate that the influence of T1 is indeed

reduced. In turn, T3 increases, making up for most of the decrease in T1. This increase is

a direct consequence of the higher intensities found in the −uv cospectrum, portrayed in
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Figure 6.8: Increment in the spectra of the flow variables caused by the presence of riblets, in-

tegrated for λ+
z > 130. (a–b), ∆(kxEu2); (c–d), ∆(kxEv2). (e–f), ∆(kxEw2); (g–h), ∆(−kxEuv).

Figures are scaled in wall units in the first column, and with the channel half-height δ in the sec-

ond. Shaded, case 13S; , 20S; , 13L; , 20L. The isolines drawn have been chosen to

enhance the comparison of the scales in the four cases considered, regardless of their magnitude.
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Figure 6.9: Contributions T1, T2 and T3 to the drag reduction curve, as defined by equations

(5.8)–(5.10). H, T1 for cases 7L, 13L and 20L; ▽ , T1 for Reτ ≈ 185; N, T2 for cases 7L, 13L and

20L; △ , T2 for Reτ ≈ 185; •, total T3 for cases 7L, 13L and 20L; ◦ , total T3 for Reτ ≈ 185;

�, T3 for cases 7L, 13L and 20L, calculated considering only uv within 65 ≤ λ+
x ≤ 290, λ+

z ≥ 50,

and y+ . 35; 2 , the same contributions for Reτ ≈ 185; ×, total drag reduction, T1 + T2 + T3,

for cases 7L, 13L and 20L; , total drag reduction for Reτ ≈ 185.

figure 6.6. Again, most of T3 is produced in the spectral region of the new structures.

The structures appear in the time-evolving flow as rollers, very similar to those ob-

served for low Reτ . To illustrate this, two instantaneous realizations, obtained from

simulations 13L and 20L, of the wall-normal velocity at a y-plane near the riblet peaks,

are portrayed in figure 6.10. In the first one, for ℓ+g slightly larger than the optimum, the

spanwise coherence of the flow seems weak, and the realization resembles greatly one of a

smooth channel, save for the proximity of the riblet peaks, that induces streamwise strips

of very low v, separated from each other by the riblet spacing. In the second realization,

for large ℓ+g , the rollers are fully developed, and their spanwise coherence across several

riblet grooves can be more easily appreciated, overlapped with the background modu-

lation by the larger, outer structures. Again, the presence of the riblet peaks disrupts

the flow with riblet-spacing periodicity, although it does not impede the manifestation

of the spanwise coherence. For comparison with the rollers at Reτ ≈ 185, we have su-

perimposed figure 5.15(b), scaled so the wall units for both visualizations coincide. The

latter image was obtained for case 17S, but in spite of the slightly smaller riblet spacing,

and its smaller associated spanwise-periodic disruption, the rollers have roughly the same

appearance and characteristic streamwise wavelength, λ+
x ≈ 150.
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(a)

(b)

Figure 6.10: Instantaneous realizations of the wall-normal velocity in riblet channels with

Reτ ≈ 550, at the plane y+ ≈ 4. The clear regions represent negative velocities, or flow towards

the wall, and the dark regions positive ones. (a) Case 13L. (b) Case 20L. For comparison with

the channels at Reτ ≈ 185, figure 5.15(b) for case 17S has been reproduced in the lower right

corner, with the same scale for the wall unit of length ν/uτ .





Chapter 7

A linear stability model

In this chapter we propose a simplified model for the Kelvin–Helmholtz-like instability

introduced in chapter 5, which captures the essential physics involved, including the effect

of the riblet geometry on the instability. This model does not intend to capture the precise

stability characteristics of any particular flow over any particular geometry, but rather to

provide a simple tool with which the key features of the instability can be identified in a

general fashion. The precise analysis of a particular case would require a finer model, but

the general character would be lost with the refinement.

Since the spanwise rollers are quasi-two-dimensional in x–y, we restrict ourselves to

two-dimensional solutions of the linearized Navier–Stokes equations. Denoting by prime

superscripts the derivatives with respect to y of the base flow U , we have

∂u

∂t
+ U

∂u

∂x
+ v U ′ = −∂p

∂x
, (7.1)

∂v

∂t
+ U

∂v

∂x
= −∂p

∂y
, (7.2)

where lower-case symbols are perturbations. The viscous terms are omitted for simplicity,

since we are looking for essentially inviscid Kelvin–Helmholtz-like instabilities, on which

viscosity would only have a damping effect. Imposing incompressibility, the Rayleigh

equation for v is, (
∂

∂t
+ U

∂

∂x

)
∇2v = U ′′

∂v

∂x
, (7.3)

for which we seek solutions of the form v = v̂(y)eiα(x−ct).

The problem is solved in a notional domain between the two planes of the riblet tips,

y ∈ (0, 2δ), and the two-dimensionality is preserved by using z-independent boundary

conditions that account for the presence of riblets in a spanwise-averaged sense.

Consider the lower wall. The first step is to describe the flow along the grooves, where

variables will be denoted by the subscript ‘g’. This part of the problem takes place in the
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real groove geometry in y ∈ (−h, 0). Since we are interested in the onset of the instabil-

ity, we will assume that the effective Reynolds number is low, and that the longitudinal

flow along the grooves satisfies approximately the viscous Stokes equations. Note that

this approximation is consistent with the behavior of the conditioned average streamwise

velocity in the direct simulations, as discussed in §5.1. We also assume that the longitu-

dinal velocity gradients within the grooves are small with respect to the transverse ones,

and that the dynamical effect of the transverse velocities can be neglected. In particular,

we neglect the variation across the groove of the streamwise pressure gradient, and the

streamwise contributions of the viscous term. The streamwise momentum equation within

the groove is then,
∂2ug

∂y2
+

∂2ug

∂z2
≡ ∇2

yzug =
1

ν

dpg
dx

. (7.4)

The velocity satisfies ug = 0 at the groove walls, and we will assume that ∂ug/∂y = 0 at the

plane of the riblet tips. Note that the last boundary condition refers to the perturbations,

and is not equivalent to assuming that the mean velocity gradient vanishes at y = 0. The

assumption is that the streamwise pressure gradient is predominantly balanced by the

viscous stresses at the groove walls, rather than by those at the interface with the outer

flow. That assumption is especially adequate for small riblets, but has to be justified

a posteriori. For example, consider the solutions in figure 7.4, which are obtained by

coupling the outer flow perturbations to grooves with the no-slip condition at their top

interface. The length scales of the perturbations at y = 0 scale in wall units, essentially

because the true outer boundary condition for the flow within the grooves, ∂ug/∂y = 0,

should have been applied at y → ∞, and involves the overlying velocity profile. In the

particular case of the figure, (∂u/∂y)+ ≈ 0.10u+|y=0. On the other hand, the gradients

over the walls of the grooves, not shown in the figure, are inversely proportional to the

groove diameter. For a typical groove, (∂ug/∂n)
+ ≈ 4u+|y=0/ℓ

+
g . The assumption that

the shear at the groove top can be neglected with respect to that at the walls is valid

as long as ℓ+g ≪ 40, which is enough to explore the onset of the instability. The same

assumption also allows us to use an inviscid approximation for the outside flow, even while

using a Stokes model for the flow in the groove.

The coupling of the grooves and the body of the channel is made by assuming that

the outside pressure drives the flow along the grooves, and that the transpiration velocity

at y = 0 is due to the longitudinal variations of the volumetric flux of ug.

Since the right-hand side of equation (7.4) is only a function of x and t, we can write

ug = −
(
1

ν

dpg
dx

)
f(y, z) , (7.5)
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where f(y, z) verifies

∇2
yzf = −1, (7.6)

with boundary conditions identical to those for ug, so that f depends only on the groove

geometry. The streamwise variation of ug is related to the z-averaged transpiration ve-

locity v at y = 0 by integrating the continuity equation over the groove cross-section:

∂

∂x

∫∫

Ag

ug dy dz +

∫

s

vg|y=0 dz = 0, (7.7)

v|y=0 = − 1

s

∂

∂x

∫∫

Ag

ug dy dz. (7.8)

Note that s in (7.8) is the distance between neighboring riblets, not the width of the

groove, because v needs to be averaged over the whole y = 0 plane to be used as a

boundary condition for (7.3). Introducing (7.5) into (7.8), and assuming that p|y=0=pg,

we obtain
∂2p

∂x2

∣∣∣∣
y=0

=
ν

L3
w

v|y=0 , (7.9)

where

L3
w =

1

s

∫∫

Ag

f dy dz (7.10)

Using (7.9) to eliminate the pressure from the longitudinal momentum equation (7.1),

yields the boundary condition

(
∂

∂t
+ U

∂

∂x

)
∂v

∂y
= U ′

∂v

∂x
∓ ν

L3
w

v, (7.11)

where the two signs of the last term apply respectively to the upper and lower walls. If

we denote the values of the mean profile at y = 0 by U0 and U ′

0, (7.11) can be rewritten

as

(U0 − c)
∂v̂

∂y
=

(
U ′

0 ± i
ν

αL3
w

)
v̂. (7.12)

Equation (7.12) shows that U0 changes only the real part of the advection velocity by a

fixed amount. From the point of view of the stability characteristics of the flow, it can

be assumed to be zero. The solutions of the system (7.3)–(7.12) depend only on the base

flow profile U(y) and on the characteristic penetration length Lw, which is linked to the

groove cross-section through the integral in (7.10). The viscosity can be eliminated by

expressing everything in wall units. It turns out that, for conventional geometries, Lw is

closely linked to the empirical parameter ℓg =
√

Ag proposed in §2.2. For example, figure

7.1 compiles values of Lw computed for triangular, rectangular, and scalloped riblets, with
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Figure 7.1: Value of the parameter Lw in (7.10), compared with ℓg, for H, triangular, •,
scalloped, and 2, blade riblets. The solid lines connect riblets of the same type with equal

tip width and variable depth-to-width ratio, ranging from h/s = 0.2 to 1.0, while the arrow

indicates decreasing tip width, from tr/s = 0.5 to 0.02.

depth-to-width ratios between 0.2 and 1.0, and tip widths between 2% and 50% of their

spacing. The figure shows that, at least within that range of geometries, ℓg and Lw are

essentially proportional to each other, with the approximation Lw/ℓg ≈ 0.36, or

ℓg ≈ 2.8Lw (7.13)

having less than 10% error for conventional sharp riblets with h/s ≥ 0.4. This result

connects the present stability analysis with the discussion on the scaling of the viscous

breakdown with ℓ+g of §2.2, providing some theoretical justification for that empirically-

deduced scaling.

7.1 The piecewise-linear profile

Before turning our attention to the quantitative analysis of the instability induced by

the riblets on a turbulent velocity profile, it is useful to apply the previous formulation

to a piecewise-linear base flow

U(y) =

{
U∞ y/H for y < H,

U∞ for y ≥ H,
(7.14)

where the basic mechanisms are more easily understood. The solutions of (7.3) can then be

expressed as combinations of exponentials, exp(±αy), which are continuous everywhere,
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vanish at infinity, and satisfy a jump condition for their derivatives at the singularity of

U ′′ at y = H . The wall boundary condition (7.11) becomes a second order equation for

the temporal eigenvalue,

− 2Λσ2 +
[
−2i + Λ

(
1 + 2α̃− e−2α̃

)]
σ + (Λ− i)

(
1− 2α̃− e−2α̃

)
= 0, (7.15)

where α̃ = αH , σ = (c/U∞) α̃, and Λ = (Lw/H)3(U∞H/ν) α̃. Instability requires that

the imaginary part, σI , of the eigenvalue be positive.

The smooth wall is recovered for Λ = 0 and has no unstable modes. For 0 < Λ ≪ 1,

all the wavenumbers are weakly unstable, with a maximum growth rate, σI ≈ 0.081Λ, at

α̃ = 0.80 . In the opposite limit, Λ ≫ 1, the eigenvalues become independent of Λ, and

the unstable modes are restricted to the band 0 < α̃ . 1.83. The maximum growth rate

is σI ≈ 0.25 at α̃ ≈ 1.23. The growth rates and phase velocities of the unstable modes

for intermediate values of Λ are given in figure 7.2.

The limit Lw ≫ H provides a physical interpretation of the nature of the instability. In

this limit, which is essentially ν/L3
wα ≪ U ′

0, the boundary condition (7.9) loses the term

coming from the wall, and the mean velocity profile can be extended anti-symmetrically

to y < 0, to become a piecewise-linear free shear layer. The problem then has symmetric

and antisymmetric eigenfunctions with respect to y = 0, of which the symmetric one,

v̂ = cosh(αy) is the well-known unstable Kelvin–Helmholtz sinuous deformation of the

free shear layer (Drazin & Reid, 1981). The intermediate values of Lw connect these

Kelvin–Helmholtz solutions with the stable ones of the impermeable case.

7.2 The turbulent channel profile

Although the analysis of the piecewise-linear profile provides qualitative information on

the nature of the instability, quantitative comparison with the direct simulations requires

more realistic velocity profiles. Following Reynolds & Hussain (1972), we have used the

approximate profiles of Cess (1958) for turbulent channels at δ+ = 185, 550, 950 and 2000.

The resulting growth rates and phase velocities are portrayed in figures 7.3(a) and 7.3(b)

for different values of Lw. The results for the different Reynolds numbers are virtually

indistinguishable when expressed in wall units, except perhaps for the δ+ = 185 case,

for which the Cess approximation is less accurate. This is consistent with the scaling

in wall units of the spanwise rollers discussed in §6.2. There is a sharp transition in

the flow stability for L+
w ≈ 4, below which the eigenmodes are quasi-neutral, and above

which the maximum growth rate is nearly constant, as shown in figure 7.3(c). Using
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Figure 7.2: (a) Growth rate σI = Im(σ) of the unstable modes given by equation (7.15), as

a function of λx/H = 2π/α̃. (b) Corresponding phase velocities, cR/U∞ = Re(σ)/α̃. Curves

are shown for values of Λ = (L3
w/ν)(U∞α̃/H2) = 10[−2(.2)3] and 106, with the arrows indicating

increasing Λ.
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Figure 7.3: (a) Growth rate σ+
I = α+

Im(c+) of the unstable modes of turbulent profiles with

the boundary condition of equation (7.11). (b) Corresponding phase velocity, Re(c+) = c+R.

•, δ+ = 185; , 550; △, 2000. Curves are shown for L+
w = 2(2)12, with arrows indicating

increasing L+
w . (c) Maximum growth rate as a function of L+

w ; , δ+ = 185; , 550; •,
950; △, 2000.
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Figure 7.4: (a) |û| and (b) |v̂| profiles of the most amplified modes for a turbulent channel

profile with δ+ = 550. , L+
w = 4; , 6; , 8; •, 14. (c–e) u–v perturbation streamlines

of those modes, for (c) L+
w = 4, (d) 8, and (e) 14. The solid lines correspond to clockwise

rotation.

the approximate relation (7.13), this transition roughly corresponds to ℓ+g ≈ 11, which

is close to the limit found in §2.2 for the breakdown of the viscous regime in the riblet

experiments. The empirical collapse for ℓ+g can thus be explained by the theoretical

model for the instability, with the breakdown actually corresponding to the onset of the

instability at L+
w ≈ 4.

The growth rate and phase velocity curves of figure 7.3 are qualitatively similar to

those for the piecewise-linear profile in figure 7.2, except for the shortest streamwise

wavelengths at the largest L+
w , which are stable in the piecewise-linear case, and weakly

unstable in the channels. The reason is probably that those wavelengths are too short in

the piecewise-linear case to interact with the singularity at y = H of the profile of U ′′,

which is the key energy-producing term in the Rayleigh equation (7.3). In the turbulent

channels, U ′′ is non-zero everywhere .

On the other hand, the similarity of the eigenvalues for longer wavelengths suggests

that the channels behave approximately as a piecewise-linear profile in which H+ ≈ 10.

That is interesting, because it is slightly surprising that an instability derived from the

inviscid Rayleigh equation should scale in viscous wall units. In fact, wall units are not

only a measure of the Reynolds number of the perturbations, but they also encode the

shape of the mean profile. Specifically, the energy-producing term, U ′′, has a fairly sharp
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maximum between y+ = 5 and 20 in channels, peaking near y+ = 7, which plays the same

role as the singularity at y = H of the piecewise-linear profile. That peak scales in wall

units and, in all probability, is responsible for the wall-scaling of the observed instability.

The most amplified modes for L+
w in the range of the onset of strong instability are

portrayed in figure 7.4 for δ+ = 550, and are practically identical for the other Reynolds

numbers. The rollers have heights of y+ ≈ 15, which agree well with the observations from

our DNSs, and convection velocities Re(c+) ≈ 6, which are also in reasonable agreement

with the observed U+
C ≈ 6−8. Figure 7.4(c) shows how the perturbations penetrate below

y = 0, as some of the DNS rollers of figure 5.15 do. On the other hand, the predicted

streamwise wavelengths are twice shorter than the observed λ+
x ≈ 150, probably because

viscosity, which is absent in the model, damps the shorter wavelengths in the channel,

shifting the maximum amplification towards longer waves.

7.3 Application to the optimization of fiber riblets

We mentioned in §2.2 that the scaling with ℓ+g should not be expected to hold for

unconventional geometries like the fibers proposed in §4.1.4. Indeed, the experiments

of Bruse et al. (1993) with a single row of fibers, although inconclusive with respect to

the size of breakdown, seem to suggest that s+opt is much smaller than for conventional

riblets. This agrees qualitatively with the scaling proposed in the present chapter with

Lw. For a set of fibers with h/s ≈ 0.2, the results of Bruse et al. suggest s+opt . 10, while

for thin blades with roughly the same ratio ℓg/s ≈ 0.45, the optimum size is s+opt ≈ 25

(Bechert et al., 1997b). This difference is probably related to the disparity of Lw for the

two geometries. The presence of full fences would offer more resistance to the longitudinal

flow within the grooves than the fibers, leading to smaller penetration lengths. However,

more detailed results on the breakdown sizes for fibers would be required to confirm this

hypothesis.

Still, if we assume that the scaling with L+
w holds, we can determine from simple

viscous simulations what the optimum arrangement of the fibers would be, whether they

should be packed more densely in the spanwise or the wall normal direction. We have

shown in §2.2, and illustrated in §4.1.1, that the protrusion height can provide a good

estimate forDRmax when scaled with ℓg, at least for conventional riblets. According to the

present discussion, the quantity to optimize would in fact be ∆h/Lw. This is particularly

useful for unconventional riblets like the fibers now considered, for which the scaling with

ℓ+g is not expected to hold. We can now use ∆h/Lw to improve the gross assumption
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Figure 7.5: Protrusion height ∆h/Lw of fiber riblets as a function of the packing aspect ratio

h/s and the fiber radius R/s.

that the optimum arrangement of the fibers would be for h/s = 0.5, made in §4.1.4 in the

absence of tools for a finer estimation.

Before analyzing the optimum h/s, we must reconsider the optimum number of rows

in the fiber layer. For h/s = 0.5, it was shown in §4.1.4 that ∆h/s remains mostly

unaffected as the number of fiber rows increases, but the same is evidently not true for

∆h/Lw. The pressure gradient of (7.5) would act across the full ‘groove’ cross-section, so

fibers would not be as effective isolating the layer bottom as they are in the case of an

outer shear. The penetration length Lw/s would then increase with the lining depth so,

if ∆h/s remains essentially constant, ∆h/Lw must necessarily decrease. We can therefore

conclude that the number of rows should be small to yield a significant ∆h/Lw. Since a

single row of fibers was shown by Bruse et al. (1993) to give modest drag reductions, we

have assumed that two staggered rows of fibers would be closer to the optimum, and have

restricted our analysis to these setups.

The results for a range of fiber radii R/s and packing aspect ratios h/s are compiled in

figure 7.5. The figure shows that the highest DRmax, which should be directly proportional

to ∆h/Lw, would be achieved for low h/s, and in that case the influence of the fiber radius

is surprisingly small. From our analysis, we conclude that a good compromise between

feasible fibers and good performance would be h/s = 0.4− 0.5 and R/s = 0.1, yielding a

protrusion height ∆h/Lw ≈ 0.30. This would be less than the value for the optimal blades

of Bechert et al. (1997b), ∆h/Lw ≈ 0.42, but similar to that for their optimal trapezes.

However, fibers would not be as sensitive to erosion as conventional sharp riblets, for

which the effect of tip rounding was discussed in §4.1.2.





Chapter 8

Conclusions and future work

The present thesis has analyzed the interaction of a riblet surface with the overlying

turbulent flow, and its impact on drag reduction. It was already known that the reduction

scales with the riblet size, expressed in wall units. The limit of vanishing riblet spacing,

or ‘viscous regime’, in which the drag reduction produced by the riblets is proportional to

their size, had also been well understood. However, the nature of the breakdown of that

regime for larger sizes, which ultimately limits the optimum performance of a given riblet,

had up to now remained an open question. The physics involved in that breakdown have

been the central subject of our study.

To approach the problem, we have first reviewed and reassessed the available experi-

mental data and theoretical understanding. This analysis has led to two conclusions. The

first is that the drag reduction curve of a given riblet is not universal, since it is modulated

by the Reynolds number of the overlying flow. According to the classical theory of turbu-

lence, the direct effect of any surface manipulation on the flow is not a change in friction,

but a shift in the mean velocity profile, provided that the manipulations do not protrude

into the flow a distance comparable to its thickness. The change in the friction is actually

derived from this shift with some elemental algebra. If both are small, as is the case of

riblets, a proportional law can be derived, but the coefficient of proportionality turns out

to depend, though weakly, on the Reynolds number, through the friction coefficient of the

unperturbed flow. This effect should be considered when comparing results from different

experiments, or when trying to reduce laboratory data for its industrial application.

The relationship between the shift in the velocity profile and the drag reduction enables

the connection of experimental results in the viscous regime with the concept of protrusion

height, first proposed by Bechert & Bartenwerfer (1989) and later refined by Luchini et al.

(1991). These authors proposed that, for vanishingly small riblets, their effect on the flow

107
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is an offset between the ‘virtual’ origins that the mean streamwise flow and the secondary

crossflow see. That offset was proven by Jiménez (1994) to be proportional to the shift

in the velocity profile, with a constant of proportionality that can be assumed universal.

The offset, or protrusion height, is a geometrical property of each riblet design, and can be

calculated from two-dimensional, steady, Stokes-flow simulations, which are both simple

and inexpensive.

Thus, the performance of riblets in the viscous regime can be easily predicted solely

from their geometry and the flow Reynolds number. The problem of such predictions

is that they are not directly extrapolable to the regime of optimum performance, which

roughly coincides with the viscous breakdown, and which is after all the interesting regime

from a technological perspective. The reason is that the size of breakdown, traditionally

given in terms of the peak-to-peak spacing s+, varies greatly from one geometry to another.

The second conclusion from the analysis of the data in the literature is that s+ is

probably not the best scale for the riblet size. The wide range of optimum spacings for the

different geometries reviewed, s+ = 10−20, implies that the spacing is only weakly related

to the mechanism of the breakdown. We have examined other possible scales for the

riblet dimension, finding that the scaling with the square root of the groove cross-section,

ℓ+g =
√
A+

g , produces a significantly better collapse of the different regimes in the drag

curves of different riblets. In particular, the optimum is achieved for a common ℓ+g ≈ 11.

This result suggests that the groove cross-section is somehow related to the breakdown,

at least for the conventional geometries for which most experiments are available.

The collapse of the drag regimes with ℓ+g permits the extrapolation of viscous regime

results into the optimum range. For instance, the rounding of riblet peaks can greatly

alter the viscous performance, but it does not modify the groove cross-section significantly.

Therefore, the optimum size of a riblet should be independent of the rounding, and the

variation in the optimum performance would be exclusively due to the variation in the

protrusion height. Surprisingly, blade riblets with thick, flat-top fences experience a slight

improvement in performance when the corners of their tips are eroded.

In general, if the protrusion heights are normalized with ℓg instead of s, they should

be directly proportional to the maximum drag reduction. From the fit of experiments

we propose DRmax ≈ 8.9mℓ, where mℓ is the slope of the drag curve in the viscous

regime, related to the protrusion height by equation (2.10). The new scaling presents a

great advantage from a design perspective, since it enables the approximate prediction

of DRmax solely from Stokes regime computations. For instance, the protrusion heights

∆h/s of trapezoidal and blade riblets increase asymptotically with the aspect ratio of the
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riblets, h/s, while DRmax reaches a maximum for h/s ≈ 0.5. With the rescaling ∆h/ℓg,

the protrusion heights follow closely the behavior of DRmax, and also reach a maximum

for h/s ≈ 0.5. The riblet designer should then simply aim at maximizing ∆h/ℓg.

Beyond the analysis of the available experiments, the DNS of channels with riblet-

covered walls has proven an invaluable tool to unravel the physical processes involved

in the breakdown. Following Choi et al. (1993) and Goldstein et al. (1995), we have

calculated the mean flows conditioned to the position above the riblet unit. From them,

we have obtained some interesting conclusions. The first one is that vortices do not begin

to lodge within the grooves past the riblet size of breakdown. That lodging was proposed

by some authors (Choi et al., 1993; Lee & Lee, 2001) as the cause for the increase in drag

for large riblets. We have found that, although some lodging may appear for very large

riblets, it is clear from our DNSs that it is not the cause of the breakdown, and could rather

be a consequence of it. Nevertheless, we have observed that vortices tend to be localized

above the riblet valleys, and more so with increasing ℓ+g . The localization is only significant

for sizes past the viscous regime, which would contradict the assertion that it is part of the

drag reduction mechanism (Choi, 1989; Goldstein et al., 1995; Goldstein & Tuan, 1998).

The other interesting conclusion is that the crossflow within the grooves is always weak,

and the mean streamwise velocity follows very closely that of the viscous limit. This result

has later been used to develop a linear stability model for the outer flow. Since the flow

within the grooves remains essentially unperturbed throughout the whole drag reducing

range of ℓ+g , all the changes must take place above the riblet peaks. In particular, we have

measured the Reynolds stress immediately above the riblets, and have detected strong

increases once the size is larger than the optimum.

The most interesting conclusions from the DNS results have been obtained by spectral

analysis. We have found coherent spanwise structures, immediately above the riblets

and with y-heights not longer than 20 wall units, that begin to appear for sizes near

the optimum. Once the riblet size is large enough to trigger the appearance of these

structures, they grow in intensity with ℓ+g , but their size is essentially constant and scales

in wall units. The typical streamwise wavelengths are λ+
x ≈ 150, and in the spanwise

direction they extend over several riblets, with wavelengths ranging from λ+
z ≈ 100 to

≈ 2000. These are the structures responsible for the extra Reynolds stress mentioned in

the previous paragraph.

The change in drag can be separated into three contributions. One is related to the

apparent slip at the riblet-peak plane. Because of the self similarity of the flow within

the grooves, this term is proportional to the riblet size, and always produces a drag
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decrease. The second term is a factor owing to the different flow conditions in the different

simulations. Its contribution is small, and should vanish for large Reynolds number. The

final term is related to the additional Reynolds stress across the whole channel due to the

presence of the riblets. This term is negligible for riblet sizes smaller than the optimum,

and increases rapidly for larger ones. The spanwise structures contribute to roughly 70%

of it, suggesting that they are indeed responsible for the viscous breakdown.

The structures appear in the flow as rollers, similar to those reported over plant

canopies (Raupach et al., 1996; Finnigan, 2000), and over permeable (Jiménez et al.,

2001) and porous walls (Breugem et al., 2006). They have been typically attributed to

Kelvin–Helmholtz-like instabilities of the mean streamwise flow, due to the relaxation of

the impermeability condition at the wall.

Based on the above results, we have developed a simplified stability model that at-

tempts to capture the essential physics involved, including the effect of the riblet geometry

on the instability. The details of the method deserve some comment. Since the spanwise

rollers are quasi-two-dimensional in the streamwise and wall-normal directions, the model

omits the spanwise component. The viscous terms are also neglected, because Kelvin–

Helmholtz-like solutions are expected to be essentially inviscid instabilities, on which

viscosity would only have a damping effect. The presence of the riblets is reproduced

in a spanwise-averaged sense by z-independent boundary conditions, thus preserving the

two-dimensionality of the model. The boundary conditions are constructed based on

the character of the flow within the grooves observed in the DNSs, which as we have

mentioned follows very closely the Stokes approximation, even for the larger riblets. We

therefore suppose a Poiseuille-like flow, induced by streamwise pressure oscillations that

are uniform in the groove section. The connection with the outer flow is derived from the

streamwise variation of the mass-flow, which must be compensated by the exchange of

mass at the riblet-peak plane. This plane represents the interface between the flow within

the grooves and the outer one, and is also where the boundary conditions for the inviscid

model are imposed. The exchange of mass, together with the other flow variables, is

averaged over the plane to obtain the boundary condition sought. The resulting equation

introduces a new parameter into the stability equations. The parameter is a ‘penetration

length’ that measures how easily can the flow advance through the grooves.

According to this simplified inviscid model, it would appear that all the viscous effects

are confined to the grooves, but that is not entirely true. The relative importance of

viscosity in the outer flow expresses itself through the mean velocity profile, determining

the length scales of the instability. That is the reason for the scaling of the spanwise
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rollers in wall units.

The model can be applied to a piecewise linear profile which, although unphysical, pro-

duces pseudo-analytical solutions for the instability. These solutions allow for a qualitative

analysis of the system, and provide some interesting general conclusions. Specifically, it is

shown that for very large values of the penetration length the original Kelvin–Helmholtz

equations are recovered. This proves that the instability over the riblets is indeed re-

lated to the canonical free-shear instability. When the model is applied to more realistic

turbulent profiles, the unstable modes obtained agree reasonably well with the observed

wavelengths and shapes of the perturbation.

The most interesting result of the stability analysis is that the onset of the instability

depends critically on the value of the penetration length, measured in wall units. For

conventional riblets, that parameter turns out to be essentially proportional to the em-

pirical parameter ℓ+g , which was previously found to characterize the breakdown. Even

more, the value for which the instability sets on corresponds to the value of ℓ+g observed

in experiments for the viscous breakdown. Such a precise coincidence in the results may

however be accidental, given the simplicity of the instability model that we propose. A

vaguer agreement was to be expected, and would also have been satisfactory.

The identification of the breakdown of the viscous regime as an effect of an instability

of the outer flow, triggered by its ability to penetrate the riblet grooves, and with well

defined streamwise wavelengths, opens some promising paths for the design of novel con-

figurations, with delayed breakdowns and higher DRmax. For instance, geometries that

are relatively permeable to the shear flow that defines the protrusion height, but offer

more resistance to pressure-driven ones, should be investigated.

Another interesting path for research are sinusoidal riblets. So far, such riblets have

not been able to yield better performances than their streamwise-uniform counterparts

(Kramer et al., 2010), but that is probably because they have been designed attempting

to emulate the drag-reducing properties of oscillating walls (Viotti et al., 2009). The

oscillation induced by sinusoidal riblets on the flow is too weak to produce an oscillating-

wall effect. However, sinusoidal riblets could also be designed with shorter wavelengths,

comparable to those of the rollers. That way, they could probably be able to interfere

with the onset of the instability and delay the formation of rollers, and the breakdown of

the viscous regime, with a mechanism completely different to that of the oscillating wall.
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