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The quadrant analysis of the intense tangential Reynolds stress in plane turbulent
channels is generalized to three-dimensional structures (Qs), with special emphasis on
the logarithmic and outer layers. Wall-detached Qs are background stress fluctuations.
They are small and isotropically oriented, and their contributions to the mean stress
cancel. Wall-attached Qs are larger, and carry most of the mean Reynolds stresses.
They form a family of roughly self-similar objects that become increasingly complex
away from the wall, resembling the vortex clusters in del Álamo et al. (J. Fluid Mech.,
vol. 561, 2006, pp. 329–358). Individual Qs have fractal dimensions of the order of
D = 2, slightly fuller than the clusters. They can be described as ‘sponges of flakes’,
while vortex clusters are ‘sponges of strings’. The number of attached Qs decays away
from the wall, but the fraction of the stress that they carry is independent of their
sizes. A substantial fraction of the stress resides in a few large objects extending
beyond the centreline, reminiscent of the very large structures of several authors. The
predominant logarithmic-layer structure is a side-by-side pair of a sweep (Q4) and an
ejection (Q2), with an associated cluster, and shares dimensions and stresses with the
conjectured attached eddies of Townsend (J. Fluid Mech., vol. 11, 1961, pp. 97–120).
Those attached eddies tend to be aligned streamwise from each other, located near the
side walls between the low- and high-velocity large-scale streaks, but that organization
does not extend far enough to explain the very long structures in the centre of the
channel.
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1. Introduction
One of the most ubiquitous properties of turbulent flows is the enhancement of

transport processes, such as mass, heat or momentum, and the success of many
engineering devices depends of our ability to control and predict those processes. Of
particular interest is the transport of momentum, which is responsible for the increased
drag of wall-bounded turbulent flows, and for their characteristically flattened mean-
velocity profiles. The object of the present work is to study the structure of the intense
Reynolds stresses that carry most of the wall-normal flux of momentum, particularly in
the logarithmic and outer layers.
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The study of the statistical properties of the Reynolds stresses began in the late
1960s, with the observation by Kline et al. (1967) that the near-wall low-velocity
streaks undergo a process of lift-up, oscillation, break-up and ejection, which they
called bursting. Kim, Kline & Reynolds (1971) showed that most of the turbulence
production in the near-wall region occurs during those bursts, and several conditional-
sampling techniques were developed to identify the structures involved in the process.
Examples are the u-level detection of Lu & Willmarth (1973), the VITA (variable-
interval time average) of Blackwelder & Kaplan (1976) and the VISA (variable-
interval space average) of Kim (1985). Several of those techniques were surveyed
by Bogard & Tiederman (1986), who concluded that the best compromise between
detection probability and false positives was provided by the quadrant analysis of
Wallace, Eckelman & Brodkey (1972), Willmarth & Lu (1972) and Lu & Willmarth
(1973), in which points of the flow are classified in terms of the quadrant of
the parameter plane of streamwise and wall-normal velocity fluctuations. Q1 events
(outward interactions) have u > 0 and v > 0, Q2 events (ejections) have u < 0 and
v > 0, Q3 events (inward interactions) have u < 0 and v < 0 and Q4 events (sweeps)
have u > 0 and v < 0. Hereafter, Q events will be referred to simply as Qs, and we
will occasionally group the ‘gradient’ Q2s and Q4s as Q−, and the ‘counter-gradient’
Q1s and Q3s as Q+.

Throughout the paper, u, v and w are streamwise, wall-normal and spanwise
velocities, and are usually understood to refer to fluctuations with respect to the mean.
The streamwise and spanwise coordinates are, respectively, x and z. The wall-normal
coordinate, y, is zero at the wall. Overlined (ϕ) and primed (ϕ′) variables respectively
denote averaged values and root-mean-squared (r.m.s.) intensities of the fluctuations,
computed over the homogeneous directions and time. The channel half-width or
boundary-layer thickness is h, and the ‘+’ superscript denotes wall units defined in
terms of the friction velocity uτ and of the kinematic viscosity ν. We often classify
results as relating to the buffer, logarithmic or outer regions, arbitrarily defined as
y+ < 100, 100ν/uτ < y < 0.2h and y > 0.2h, respectively. Varying the limits of the
logarithmic layer within the usual range did not significantly alter the results.

Although most of the early work focused on bursting in the buffer region, studies
during the 1990s began to establish a relationship between near-wall bursting and
outer structures. Antonia, Bisset & Browne (1990) applied a variant of the u-level
method (WAG, window average gradient) to boundary layers with relatively high
Reynolds numbers based on the momentum thickness, Reθ = U∞θ/ν = 1360–9630,
corresponding to h+ = 530–3100. They reported that outer-scale discontinuities in
the streamwise velocity, extending across the whole thickness of the boundary layer,
tend to be located near the upstream end of the near-wall bursts. Wark & Nagib
(1991) applied quadrant analysis to a boundary layer at Reθ = 4650 (h+ = 1500),
and found large conditional events with sizes of the order of h. Using a related
identification technique in the atmospheric boundary layer, Narasimha et al. (2007)
described Reynolds-stress structures with lengths comparable to the distance to the
wall that, because of the high Reynolds number involved, were both very long in wall
units and very short compared with the boundary layer thickness. Hoyas & Jiménez
(2006) showed that the spectral signatures of the very-large motions (Jiménez 1998;
Kim & Adrian 1999), or global modes (del Álamo et al. 2004), characteristic of the
outer region are present at the wall, as well as those of similar smaller structures in the
logarithmic layer, and Hutchins & Marusic (2007b) showed that part of that influence
is a modulation of the intensity of the small-scale buffer-layer fluctuations.
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More recently, Flores & Jiménez (2010a) showed that the hierarchy of structures
of increasing sizes postulated by Townsend (1961) for the logarithmic layer can be
represented numerically in computational boxes of widths proportional to the height
to be studied. Each box contains a single complex structure, including a segment of
a streamwise velocity streak and a cluster of vortices, that bursts quasiperiodically to
fill the box with essentially normal turbulence, with a strong Q2 and Q4 occurring
simultaneously. The existence of a hierarchy of Q2s and Q4s was also conjectured
by Wark & Nagib (1991), and is consistent with the similarity observed by Kailas
& Narasimha (1994) between the conditionally sampled structures extracted from the
near-wall region of laboratory boundary layers and those in the logarithmic region of
the atmospheric boundary layer.

Q2s and Q4s play important roles in most of the structural models proposed to
explain how turbulent kinetic energy and momentum are redistributed in wall-bounded
turbulence. The majority of these models (see the review by Robinson 1991) are
loosely based on the attached-eddy hypothesis of Townsend (1961) and involve wall-
attached vortical loops growing from the wall into the outer region (Perry, Henbest
& Chong 1986). More recently, in order to account for the very large-scale motions
mentioned above, as well as for earlier experimental evidence on the internal structure
of the bursts (Bogard & Tiederman 1986), a variant model has evolved to include
vortex packets (Adrian, Meinhart & Tomkins 2000), in which trains of hairpin vortices
grow from the wall by a process of merging (Tomkins & Adrian 2003) and self-
regeneration (Zhou et al. 1999). The heads of the hairpins are arranged into inclined
shear layers generated by the combined induction of the hairpins of the packet, with
a Q4 upstream and above the packet and a Q2 beneath it. Ganapathisubramani,
Longmire & Marusic (2003) used PIV data on wall-parallel planes in a boundary layer
with Reθ = 2500 (h+ = 1060) to quantify the contribution to the Reynolds stresses by
packets of hairpins. They report that, at y+ = 100, packets covering 4 % of the area
produce 28 % of the total Reynolds stresses.

The hairpin-packet model is usually understood to involve relatively smooth vortex
loops as the structures associated with Townsend’s (1976) attached eddies, although
recent discussions tend to include ‘canes, heads, legs and three-quarter hairpin shapes,
generally asymmetric and distorted’ into the class of ‘hairpin-like’ vortices (Dennis
& Nickels 2011a), making them hard to distinguish from generic vortices. An
alternative, less organized, structure was proposed by del Álamo et al. (2006), who
analysed the statistical properties of clusters of vortices (clusters hereafter) in direct
numerical simulations (DNSs) of turbulent channels with h+ = 550–1880. The clusters
segregate into wall-attached and wall-detached families. The wall-detached clusters
are dissipative objects, with sizes that scale with the local Kolmogorov scale. The
attached ones form a self-similar family of objects that mark strong Q2s. The averaged
flow conditioned to an attached cluster consist on an elongated low-velocity streak
extending downstream of the cluster, flanked by a pair of shorter high-velocity streaks.
While this averaged structure is consistent with the hairpin packet paradigm, del
Álamo et al. (2006) pointed out that the instantaneous clusters are more complex, in
agreement with earlier visualizations by Tanahashi et al. (2004).

The models based on hairpin packets and on attached clusters are roughly equivalent
kinematically, but they are dynamically different. While the hairpin packets grow from
the buffer region, there is evidence suggesting that the wall-normal velocity structures
marked by the clusters do not. Not only are the statistics of the clusters not affected
when the buffer region is completely destroyed by an artificial forcing (Flores, Jiménez
& del Álamo 2007), but their lifetimes are too short to account for their sizes (del
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Álamo et al. 2006). The linear model of Flores & Jiménez (2010b) predicts that the
disturbances of the wall-normal velocity grow little before being dissipated by the
background turbulence, and suggests that the ejections marked by the clusters must be
created at (or close to) their observed heights.

In this paper we study the statistical properties of the coherent structures responsible
for the Reynolds stresses and the momentum transfer, and their possible relationship
with vortex clusters. We generalize to three dimensions the quadrant analysis of
Wallace et al. (1972) and Lu & Willmarth (1973), in a manner analogous to the
method used by del Álamo et al. (2006) to study clusters. To our knowledge, this
is the first time that a full, three-dimensional, characterization of the Qs has been
presented.

The question of the interest of the structural studies to which this paper belongs
was raised by one of the referees and deserves some comment. It is clear that the
most interesting results are not the kinematic description of the structures in individual
flow realizations, but the elucidation of how they relate to each other, and how
and why they evolve in time. For example, how the energy or the momentum are
exchanged among different structures and flow scales. Such dynamical studies have
been difficult in the past, because it has been hard to obtain time-resolved information
of three-dimensional structures, but that limitation is beginning to be relaxed. The
early studies by Robinson (1991) of animations of the simulation of a boundary layer
by Spalart (1988), and the minimal-box simulations by Jiménez & Moin (1991) and
others, continued older experimental work using tracers in the buffer layer. More
recently, it has become possible to extend time-dependent analysis to the logarithmic
layer. Examples are the previously cited small-box simulations by Flores & Jiménez
(2010a), the analysis of the temporal evolution of vortex clusters in Lozano-Durán
& Jiménez (2010) or the recent analysis of vortex packets in a boundary layer by
Lee & Sung (2011). However, in a continuous system such as a fluid, any such
study depends on the choice of which structures to track. Most analyses of the
buffer-layer, which is essentially a one-scale system, centred on vorticity, which is
easily identifiable and representative of other quantities in that region. The initial
extensions to the logarithmic layer followed the same method, although that region
is multiscale and different quantities are associated with different scales. For example,
it soon became clear that neither the vortex clusters in del Álamo et al. (2006) nor
the hairpin packets in Adrian (2007) are single-scale objects. The present paper deals
with the characterization of a different candidate for time-dependent analysis, including
its relation with previously studied structures. As argued above, Qs are important
for the transfer of momentum and for the generation of turbulent energy, and can
be considered as lying at the top of the turbulent cascade. They have also been
studied enough in the past, typically as one-dimensional sections, to provide some
continuity of the present paper with earlier work. The further study of their temporal
evolution, especially in relation to other flow structures, would require different data
and techniques and cannot be tackled at present, but should become easier in the near
future.

The paper is organized as follows. Section 2 describes the numerical database and
the method employed to identify Qs, which are classified in § 3. The statistical
properties of the attached Q2s and Q4s are presented in §§ 4 and 5, and their relative
positions and organization are described in § 6. Finally, the results are discussed in § 7
and conclusions are offered. A preliminary report on the present results is Flores &
Jiménez (2008).
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Case h+ Lx/h Lz/h 1x+ 1z+ Ny NF NQ NV

L950 934 8π 3π 11 5.7 385 21 4.6× 105 9.6× 105

L2000 2003 8π 3π 12 6.1 633 8 8.3× 105 2.1× 106

TABLE 1. Parameters of the simulations. Here Lx and Lz are the streamwise and spanwise
dimensions of the numerical box and h is the channel half-width; 1x and 1z are the
resolutions in terms of Fourier modes before dealiasing; Ny is the number of wall-normal
collocation points; NF is the number of fields used to accumulate statistics and NQ and
NV are the numbers of Q−s and of clusters extracted for the reference values of the
identification thresholds.

2. Numerical experiments and identification method

We use data from the DNSs of turbulent channels by del Álamo et al. (2004)
at h+ = 934 (case L950) and by Hoyas & Jiménez (2006) at h+ = 2003 (case
L2000). Their parameters are summarized in table 1. The incompressible flow is
integrated in the form of evolution equations for the wall-normal vorticity and for
the Laplacian of the wall-normal velocity, as in Kim, Moin & Moser (1987), and
the spatial discretization is dealiased Fourier in the two wall-parallel directions. Case
L950 uses Chebychev polynomials in y and L2000 uses seven-point compact finite
differences. Time stepping is the third-order semi-implicit Runge–Kutta in Moser, Kim
& Mansour (1999). Both channels have large computational domains in the streamwise
and spanwise directions, to ensure that the largest structures of the flow are reasonably
well represented. Note that the Reynolds numbers of the simulations are comparable to
those of most of the laboratory experiments mentioned in the introduction.

To investigate the statistical properties of the intense structures contributing most
to the Reynolds stresses, we extend the one-dimensional quadrant analysis of Lu
& Willmarth (1973) to three dimensions. We define the Qs as connected regions
satisfying

|τ(x)|> Hu′(y)v′(y), (2.1)

where τ(x)=−u(x)v(x) is the instantaneous point-wise tangential Reynolds stress and
the hyperbolic-hole size H is discussed below. Connectivity is defined in terms of
the six orthogonal neighbours in the Cartesian mesh of the DNS, and an object is
classified as belonging to the different quadrants according to the signs of the mean um

and vm, computed over the domain Ω of all of its constituent points,

vm =

∫
Ω

v dV∫
Ω

dV
, (2.2)

with a similar definition for um. It will be shown in figure 4(a) that this classification
is essentially unambiguous. To identify correctly the Qs of the upper channel half, we
change the sign of their vm. That allows connected Q2s and Q4s to extend beyond the
central plane, even if, otherwise, they would be classified as Q3s and Q1s over part of
their volumes. On the other hand, it leads to distortions in the statistics of the quadrant
contributions near the centre of the channel (y/h & 0.7), because some of the stresses
are included with the wrong sign (see figure 2b, discussed in § 3).
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FIGURE 1. (a) Percolation diagram for the identification of Qs. —–, Ratio of the volume of
the largest object to the volume of all identified objects, Vlar/Vtot ; – – –, ratio of the number
of identified objects to the maximum number of objects, N/Nmax . The vertical dotted line
indicates the chosen threshold, H = 1.75. (b) Profiles of the ratios τ/(u′v′) (—–) and τ ′/(u′v′)
(– – –). In both panels, lines without symbols correspond to L950, and those with symbols
correspond to L2000.

Note that the threshold in (2.1) depends on the wall distance. As noted by Nagasoa
& Handler (2003), using an identification method with a constant threshold, such as
|τ | > Hu′(y0)v

′(y0), with some reference y0, is problematic in inhomogeneous flows.
In our case, very few objects are recovered in the outer region if y0 is chosen in the
buffer layer, while choosing a high y0 results in a confusingly cluttered buffer layer.
This behaviour agrees with the observations of Blackburn, Mansour & Cantwell (1996)
and worsens as Re increases. Our choice of the local standard deviation in (2.1) results
in a roughly constant contribution of the Qs to the Reynolds stress and agrees with a
similar choice in del Álamo et al. (2006) for the identification of vortex clusters.

As argued by Bogard & Tiederman (1986), quadrant analysis depends on the
value of the hyperbolic-hole size H. They report that the optimum threshold for
the buffer region is H ≈ 1, based on direct comparisons between the detected events
and instantaneous visualizations of the flow. We choose H based on the percolation
behaviour of (2.1). Percolation theory describes the statistics of the connected
components of a random graph. Here, it is applied to the variation with H of the
volume of the connected objects extracted by (2.1), as first used to identify vorticity
and dissipation structures in isotropic turbulence by Moisy & Jiménez (2004) and in
channels by del Álamo et al. (2006).

Figure 1(a) shows the percolation diagram of (2.1) in the two channels considered
here. The solid lines are the ratio of the volume of the largest identified object, Vlar ,
to the total volume Vtot satisfying (2.1), and the dashed ones are the total number
of identified objects, N/Nmax , normalized with its maximum over H. When H & 3,
the identification only yields a few small objects that correspond to the strongest Qs.
Decreasing H introduces new Qs, while previously identified ones grow in size. At
first, the size of the largest Q changes little, and Vlar/Vtot stays roughly constant, but
eventually the objects start to merge, resulting in a rapid increase of Vlar/Vtot and in a
decrease of the number of objects. Figure 1(a) shows that this percolation crisis takes
place in the range 0.5 . H . 3, independently of the Reynolds number. For lower
thresholds, Vlar/Vtot ≈ 1, and most of the volume satisfying (2.1) belongs to a single
object.
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FIGURE 2. (a) Probability density function of the maximum and minimum wall distances of
the identified Q−s, p(ymin, ymax). The contours are 0.1, 1 and 10, from lighter to darker. Shaded
contours are L950 and lines are L2000. (b) RSτ , fraction of the total Reynolds stresses from:
—– (positive), attached Q2; – – –, attached Q4; . . . . . ., detached Q−; —– (negative), all Q+.
Lines without symbols for L950, lines with symbols for L2000.

The vertical dashed line in figure 1(a) shows the threshold used in the present
work, H = 1.75, chosen to maximize the number of objects. Some of the effects of
changing H are discussed in later sections to illustrate specific points, but, in general,
the results are qualitatively similar within the range 1 . H . 3.

To avoid the high cost of evaluating (2.1) in the full domain for H . 0.5, we
followed del Álamo et al. (2006) and all data points in figure 1 were generated by
applying (2.1) to sub-boxes of size 6h× h× 3h in the three Cartesian directions, rather
than to the full computational domain (25h× 2h× 12h). The low values of Vlar/Vtot at
the chosen threshold (figure 1a), and the agreement between both Reynolds numbers,
give some confidence that the percolation diagram is not strongly influenced by that
simplification. The rest of the data in the paper are obtained applying (2.1) to full flow
fields.

The threshold selected, H = 1.75, compares well with the one recommended by
Bogard & Tiederman (1986) for bursts in the buffer region, but some care is needed
when comparing it with other published values. The Reynolds stresses in (2.1) are
normalized with the r.m.s. of the velocity fluctuations u′ and v′, as in Lu & Willmarth
(1973) and Bogard & Tiederman (1986), but other normalizations are also found in the
literature. The original analysis in Willmarth & Lu (1972) used multiples of the local
mean Reynolds stress,

|τ(x)|> H̃|τ |(y), (2.3)

while the more recent paper by Narasimha et al. (2007) proposes the r.m.s. of the
stress fluctuations,

|τ(x)|> Ĥτ ′(y), (2.4)

together with a more complicated identification algorithm involving the zero crossings
of the instantaneous τ .

Figure 1(b) shows that H, H̃ and Ĥ satisfy approximately τ/(u′v′) ≈ 0.4 and
τ ′/(u′v′)≈ 1.1, at least in y . 0.7h, yielding

H ≈ 0.4H̃ ≈ 1.1Ĥ. (2.5)
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We use those approximations in § 3 to compare our results with others in the
literature.

As mentioned in the introduction, del Álamo et al. (2006) found that wall-
attached clusters of vortices are markers for strong Q2s. Hence, we also apply their
methodology to extract clusters from the same fields used to extract the Qs. Briefly, a
cluster of vortices is a connected region satisfying

D(x) > αD′(y), (2.6)

where D is the discriminant of the velocity gradient tensor, D′(y) is its standard
deviation and α = 0.02 is a thresholding parameter. Connectivity is defined as for the
Qs and α is obtained from a similar percolation analysis. Full details can be found in
del Álamo et al. (2006).

Finally, even if the flow is not isotropic, it will be useful in § 3 to define isotropic
Reynolds numbers and scales to compare the largest with the smallest Qs. We define
the Taylor microscale from λ2 = 10νK/ε and the microscale Reynolds number as

Reλ = qλ/ν = K (20/3νε)1/2, (2.7)

where ε is the kinetic energy dissipation rate and K is the turbulent kinetic energy.
The large-scale velocity q is defined from K = 3q2/2 as an ‘isotropic’ fluctuation
intensity (Batchelor 1953). The three velocity components are available for the two
simulations, and K and ε can be computed directly, but we will use in the next
section experimental data for which only u and v are known. In those cases, ε is
computed from the temporal gradients of u, assuming isotropy of the small scales, and
converting times to lengths using Taylor’s frozen-turbulence hypothesis with the local
mean velocity and the kinetic energy is defined as K = (u′2 + 2v′2)/2. The error of
the latter approximation can be estimated from the simulation data to be ∼5 % in the
logarithmic layer. The Kolmogorov length is η = (ν3/ε)

1/4 and the integral scale is
defined as Lε = q3/ε.

In the logarithmic layer of channels, ε can be approximated by the local turbulent
energy production, ε ≈ u2

τ∂yu ≈ u3
τ/κy, where κ ≈ 0.4 is the Kármán constant, from

where it follows that η+ ≈ (κy+)1/4, and that Reλ ∝ λ+ ∝ y+1/2. In practice, the
maximum Reλ of channels is attained at y ≈ 0.4h, above where it decreases slightly.
Table 3 includes typical values for the two simulations and for some experiments at
higher Reynolds numbers.

3. Wall-attached and detached objects
The above procedure yields about 106 Q−s and clusters for each of the two

Reynolds numbers under study (see table 1). Objects with volumes smaller than
303 wall units are discarded to avoid grid resolution issues and are not included in
the table. Although they account for ∼70 % of the number of originally identified Qs,
they contain less than 1 % of their volume. For clusters, the small discarded objects
are almost 90 % of the total number and contain 1.5 % of the volume. Each object
is circumscribed within a box aligned to the Cartesian axes, whose streamwise and
spanwise sizes are denoted by 1x and 1z. The minimum and maximum distances of
each object to the closest wall are ymin and ymax , and 1y = ymax − ymin.

Figure 2(a) shows the probability density function (p.d.f.) of the minimum and
maximum wall distances for the Q−s, and shows that they separate into two families.
The first one is formed by the narrow vertical band with y+min < 20, and corresponds
to wall-attached objects. The second family is formed by wall-detached objects with
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Case N1 N2 N3 N4 V1 V2 V3 V4

L950 (all) 0.18 0.33 0.19 0.31 0.004 0.056 0.006 0.025
L950 (attached) 0.02 0.15 0.006 0.13 0.000 0.047 0.000 0.015
L2000 (all) 0.19 0.33 0.21 0.28 0.004 0.059 0.008 0.022
L2000 (attached) 0.02 0.14 0.007 0.11 0.000 0.053 0.000 0.014

TABLE 2. The numerical fraction with respect of the total number of objects, Nk, and the
volume fraction with respect to the total channel volume, Vk, for the four different types
of Qs.

Case y+ Reλ τ/u′v′ τ ′/u′v′ Lε/η λ/η `/η LQ/Ltot

L950 (detached) 370 80 0.42 1.15 93 16 20 0.02
L2000
(detached)

800 127 0.39 1.11 187 22 21 0.01

L2000 (all) 800 127 0.39 1.11 187 22 31 0.10
Round jet 415 0.09 0.965 1.1× 103 40 50 0.05
Plane jet (PJ1) 632 −0.12 0.963 2.1×103 49 50 0.03
Plane jet (PJ2) 1090 −0.04 0.962 4.7× 103 65 76 0.04
ASL 4× 104 1910 0.34 1.02 1.1× 104 85 188 0.08

TABLE 3. Characteristic of the Reynolds-stress fluctuations in the channels, and in several
high-Reynolds number flows from Antonia & Pearson (1999). The mean length, `, of the
Q−s is defined for H = 1.75, estimated using Taylor’s advection hypothesis with the local
mean velocity. LQ/Ltot is the time (or length) fraction satisfying the Q− criterion. The
velocities are reduced to zero mean before processing.

y+min > 20, contained in the wider parallel band above the diagonal in figure 2(a). The
p.d.f. of the objects in that family depends only on their vertical size, not on their
distance from the wall, so that p(ymin, ymax) ≈ p(1y). By definition, ymin 6 h, and the
detached Q−s only rise modestly above the channel centre. The attached family, on
the other hand, contains very large Q−s that cross deeply into the opposite half of the
channel. They are not easy to see in figure 2(a) because they are contained in the
narrow band of very small ymin, but some of them reach almost to the opposite wall,
ymax ≈ 2h. For both Reynolds numbers, the number of attached Q2s and Q4s is about
40 % of the total number of Q−s, but they are large enough to account for ∼80 %
of their volume. There are very few attached Q1s and Q3s. They only account for
about 7 % of the total number of Q+s, and for 2 % of their volume. The numerical and
volume fractions for the different kinds of Qs are summarized in table 2.

3.1. Detached structures

A similar separation was reported for clusters by del Álamo et al. (2006). In that
case, the attached clusters are energy-containing eddies, while the detached ones
are dissipative objects with sizes of the order of a few local Kolmogorov scales.
Figure 2(a) suggests that the same is true for the detached Q−s, because the width
of their p.d.f.s appears to scale in wall units. In fact, the circumscribed boxes of
the detached Qs are roughly cubical, with sides of the order of 30η at our Reynolds
numbers. That does not necessarily mean that the Qs are isotropic. A characterization
of the shape of the objects in terms of their smallest, intermediate and largest
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dimensions will be introduced in § 5. For the detached Qs, they are of the order
of 7 × 14 × 45 Kolmogorov units, suggesting that they are isotropically oriented,
rather than isotropically shaped. Those sizes change relatively little from H = 1
to H = 1.75, and make the detached Qs comparable to fragments of the compact
‘worms’ in the dissipative ranges of isotropic turbulence (Jiménez et al. 1993) and
channels (Tanahashi et al. 2004). It is clear, for example, that isotropic turbulence
must have Reynolds-stress fluctuations, even if they cancel in the mean, and figure 1(b)
shows that, even in channels, the standard deviation of τ is 2.5 times larger than
its average. The figures just discussed suggest that the detached Qs are examples of
those fluctuations. For example, figure 2(b) includes the fraction of the total Reynolds
stress carried by the detached Qs. It is never large, and the contribution of the Q+s
essentially cancels that of the Q−s.

The isotropic orientation of the detached Qs is consistent with the classical Corrsin
(1958) criterion that eddies are isotropically oriented when their internal gradients
are larger than the mean shear, `−1 (ε`)1/3 & ∂yu. If we estimate ε in terms of
the production, eddies smaller than about `C = uτ/∂yu should be isotropic. In the
logarithmic layer, that implies `C ≈ κy. The question was studied experimentally
by Saddoughi & Veeravalli (1994), who concluded that the actual threshold for the
Reynolds stress tensor to be approximately isotropic is `C ≈ 0.25y, implying that only
attached structures of size O(y) need to be examined to understand momentum transfer.
We will indeed see in the next section that attached objects are responsible for most of
the mean Reynolds stress.

Table 3 compares the characteristics of the Reynolds-stress fluctuations in several
flows, most at considerably higher Reynolds numbers than ours. It turns out that the
rough equality τ ′ ≈ u′v′ holds in all cases, including the plane jets for which the mean
Reynolds stress is very small and countergradient. The correlation between u and v

is responsible for the non-zero mean stress in the wall-bounded cases, but it is low
enough to act as a second-order effect from the point of view of the intensity of the
fluctuations of τ . Antonia & Atkinson (1973) and Lu & Willmarth (1973) showed
that the p.d.f. of τ can be modelled as a joint Gaussian distribution of u and v, with
the correct correlation coefficient. The resulting distribution is very intermittent, but its
standard deviation differs little from u′v′ if |τ |/u′v′ . 0.5.

The experiments in the table are one-dimensional hot-wire traces, and the
dimensions of their Q−s are estimated from the lengths of the segments in which
τ > Hu′v′, discarding segments shorter than 8η to make them comparable with the
threshold for small objects used in the numerical channels. The results given in
the table for the channels were obtained by mimicking the experimental procedure,
intersecting the Qs detected in the previous section with random streamwise lines.
The average dimensions of the structures in the atmospheric surface layer (ASL) are
longer than in the jets, probably because they include attached objects that cannot
be distinguished in the experimental traces. To clarify that effect, the experiments in
the L2000 channel were repeated taking into account either all the Q−s, or only the
detached ones, which are probably more representative of the case of the jets. The
average lengths of the detached Q−s are shorter than when all the Q−s are taken into
account, but the effect is weaker than the difference between the ASL and the jets.

Even with those uncertainties, it is clear that the lengths of the Q−s do not scale
in Kolmogorov units. The closest match is the Taylor microscale λ, specially for the
lower Reynolds numbers. That would be difficult to interpret, because the dynamical
meaning of λ is unclear, but we will see below that it is the result of trying to define
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FIGURE 3. (a) Histograms of the lengths of the Q−s, measured along streamwise lines.
−-−-−, L2000; – – –, round jet; . . . . . ., PJ2; —–, ASL. The slope of the dashed diagonal
is −4/3. All the histogram are normalized with their value at ` = 15η to compensate for the
truncation of the smaller objects. (b) Spectra of the τ = −uv product. Lines as in (a).The
slope of the dashed diagonal is −5/3. The open circles in both figures mark the integral scale,
Lε/η.

a single length scale for a turbulent phenomenon. Figure 3(a) displays histograms for
the lengths of the one-dimensional Q-intersections for the experimental and numerical
cases. They are very wide, with maxima near ` ≈ 10η in the two cases in which
the resolution is enough to capture that range of scales (L2000 and ASL). To
facilitate comparisons, all the histogram have been redrawn on identical logarithmic
bins, starting from ` = 10η, and normalized to unity in the first bin. They have tails
reaching into the integral length scales, which are marked in both panels of figure 3,
even if the spectra in figure 3(b) suggest that the sample length of the ASL is not
enough to capture the longest structures. The best approximation to the histograms is
a power law n(`) ∝ `−α, with α between 4/3 and 5/3, approaching the former for high
Reynolds numbers. The resulting average length is then

`=

∫
n(`)` d`∫
n(`) d`

, (3.1)

where the two integrals extend over an inertial range of the order of η < ` < Lε . The
integral in the numerator is dominated by its upper limit, and is proportional to L2−α

ε .
The one in the denominator is dominated by its lower limit, and is proportional to
η1−α. The mean length is ` ∝ L2−α

ε ηα−1. For α = 5/3, that average is proportional to
λ ∝ (Lεη2)

1/3, which is the best fit for the lower-Reynolds number data in table 3,
while for α = 4/3 it is proportional to (Lελ)

1/2, which grows somewhat faster, and may
be a better fit for the higher Reynolds numbers. From their derivations, it is clear that
neither average should be considered the length of a ‘typical’ object.

The form of the ` histograms can be related to the spectrum of τ , reinforcing the
argument that the objects that we are discussing are the carriers of the Reynolds-stress
fluctuations. If we assume, from the previous discussion, that those fluctuations are
objects with intensities of the order of the large-scale velocity q, and simplify them to
a distribution of segments in which either τ = ±q2 or τ = 0, the correlation function
Rττ (r) is proportional to the probability that a point falls within an active segment
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with ` > r. For α = 4/3, it can be estimated as

Rττ (0)− Rττ (r)∝
∫ r

0
n(`)` d`∝ r2/3, (3.2)

corresponding to a spectrum Eττ (k) ∝ k−5/3. From purely dimensional arguments, the
spectrum of τ would be expected to behave as ε4/3k−7/3, but figure 3(b) shows that
is not the case. The higher-order spectra of un were documented, among others, by
Van Atta & Wyngaard (1975), who found them to behave as k−5/3 for all orders.
They gave theoretical arguments for the failure of the naive dimensional scaling,
which are essentially that large- and small-scale quantities are statistically independent,
and that the second-order structure function of the increments δ (un)2 is dominated
by terms of the form u2n−2δ (u)2. For example, the spectrum of quadratic quantities
such as u2 has the form q2ε2/3k−5/3. During the preparation of the present paper,
Y. Kaneda (private communication) noted that the same argument should hold for the
second-order quantity τ , and we have used that normalization in figure 3(b).

3.2. Attached structures
Attached Q−s are responsible for around 60 % of the total Reynolds stresses in both
channels, even if they cover less than 8 % of the total area at all heights. As expected,
their contribution in terms of volume and tangential Reynolds stresses increases as H
is lowered. At the same time, there is a transfer from detached to attached objects,
reflecting the percolation process by which small detached units collect into larger
attached ones. For example, the percentage of detached volume with respect to the
total Q−s changes from 60 % at H = 3, to 14 % at H = 1. Interestingly, the percolation
does not proceed at the same pace for the different kinds of structures. While the
detached volume fraction of Q4s changes little from H = 1.75 to H = 1, suggesting
that their percolation is essentially complete, that of the Q2s decreases by 30 % in the
same range.

The contributions to the mean stress mentioned above are in good agreement with
those reported in the literature. Figure 6 in Willmarth & Lu (1972) shows that the
contribution from Q2s and Q4s to the total Reynolds stresses in the buffer region
is ∼60 % when H̃ ≈ 4.5 (H ≈ 1.75), and that those Qs cover roughly 10 % of the
measurements. At the lower end of the logarithmic region, Ganapathisubramani et al.
(2003) report that hairpin packet signatures covering 4 % of the total area contribute
about 28 % of the Reynolds stresses, which also agrees with our data for H = 3 (not
shown). Narasimha et al. (2007) report that Ĥ = 1 yields structures that contains 100 %
of the total Reynolds stresses, while covering roughly 50 % of the measurement time
in the neutral atmospheric boundary layer at h+ ∼ 107 (y+ ∼ 105). When we use H = 1
(Ĥ ≈ 0.9), the contribution to the total Reynolds stresses from attached Qs is also
about 90 %, but they only fill 20 % of the area. The difference in covered area is most
likely due to the eduction scheme used by Narasimha et al. (2007), who identify the
structures by means of Ĥ, but subsequently extend them to the nearest zero crossing of
the Reynolds stress. Note that the covering fractions given in table 3 for our channels
are in reasonable agreement with those for the other high-Re flows, suggesting that Re
number effects can not explain the aforementioned difference between our results and
Narasimha et al. (2007).

The contribution from the different quadrants, at H = 0, has been treated extensively
in the literature, and was discussed in some detail by Jiménez et al. (2010) in the
context of the similarities and differences between internal and external shear flows.
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FIGURE 4. (a) Joint p.d.f. of the wall-normal velocities and the tangential Reynolds stresses
averaged over individual attached objects with 1y in the logarithmic layer. For each case, the
plotted contours contain 50 and 98 % of the data. The straight dashed lines are τ+m = ±2.5v+m .
(b) Mean τ+m for the different objects, as functions of their heights. In both panels, —–, Q2;
– – –, Q4; . . . . . ., clusters. Lines without symbols are L950; those with symbols are L2000.

The reader is referred to that discussion for further details and references, but the
behaviour is roughly as in figure 2(b), including the reversal of the roles of Q2s and
Q4s in the buffer layer, and the decay of the contribution of the Q4s far from the wall.

The picture that emerges from the previous discussion is that relatively few
(25–30 % by number), large and intense wall-attached Q−s are responsible for most
of the momentum transfer, while detached Qs play a secondary role. From now on, we
will focus on the geometry and structure of the attached Q−s, including their spatial
distribution, their associated velocity fields, and their relationship with vortex clusters.

4. Size and intensity of the attached Q−s
The averaged Reynolds stress of an object, τm, is defined in the same way as the

averaged velocities in (2.2), and is a measure of its intensity. Figure 4(a) shows
the joint p.d.f. of vm and τm for the attached Q−s of the logarithmic layer. It
clearly separates into Q2s, with vm > 0, and Q4s with vm < 0, confirming that the
classification of the Qs in terms of their averaged velocities is meaningful. Similar
plots are obtained in the buffer and outer regions, or using um instead of vm.

The p.d.f.s of both kinds of Q−s are roughly aligned along τ+m = 2.5|v+m |, which
is consistent with a simple mixing-length argument in which the Reynolds stress is
generated by displacing the mean velocity profile by an amount proportional to the
eddy size, l∝ y. In the logarithmic region, ∂yu≈ uτ/κy, and

τ+ ∝ v+ (l∂y u )+ ∝ v+. (4.1)

This is a very rough estimate, but it provides a simple explanation for the other
interesting feature of figure 4(a), which is that the Reynolds stresses of the Q4s
are weaker than those of the Q2s with the same |vm|, probably because they can
only draw momentum from the flatter shear in the central part of the channel (see
figures 2b and 4b). The asymmetry between sweeps and ejections has been known
for a long time (Nakagawa & Nezu 1977), and its modelling has been discussed
often. The best-known argument is based on the skewness of the velocity fluctuations
(Raupach 1981; Katul et al. 2006), but it was shown by Jiménez & Hoyas (2008) that
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FIGURE 5. Joint p.d.f.s of the logarithms of the sizes of the boxes circumscribing attached
Q−s. (a) p(1+x ,1

+
y ). (b) p(1+z ,1

+
y ). (c) p(1x/1y,1z/1y) for objects in the logarithmic layer.

(d) p(1x/h,1z/h) for objects with 0.5h < 1y < 0.95h. In all figures, the contours plotted
contain 50 and 98 % of the p.d.f. —–, Q2s; – – –, Q4s. Lines without symbols are L950,
and those with circles are L2000. In all the panels, the solid and dashed straight lines are
1x1y = 312

z and 1x = 31z = 31y, respectively, and the horizontal dashed ones are 2h.

the velocity skewness can itself be traced to the inhomogeneity of the mean velocity
profile.

Figure 4(a) includes the p.d.f. of the vortex clusters, and shows that most of them
are Q2s, in agreement with the conditional velocity fields of del Álamo et al. (2006).
On the other hand, a non-negligible fraction of clusters lie in other quadrants: 14 %
are Q4s, 5 % are Q1s and 1 % are Q3s, showing that their association with the Q2s is
not exclusive. Accordingly, the averaged stress integrated over the attached clusters in
figure 4(b) is weaker than for the Qs.

Figure 5 shows the p.d.f.s of the logarithms of the sizes of the circumscribing boxes
for the Q−s, p(1x,1y) and p(1z,1y). They follow fairly well-defined linear laws,

1x ≈ 31y and 1z ≈1y, (4.2)

except for objects with 1y & 1, crossing the central plane. del Álamo et al. (2006)
reported similar, although slightly wider, laws for the attached clusters, 1z ≈ 1.51y.

Figure 5 shows that the sizes of the boxes of the Q2s and Q4s are similar, but that
the latter are more common below 1+y = 20, which is to be expected because their
negative vm tends to flatten them against the wall. Those flattened Q4s have widths
comparable to the high-speed streaks reported by Jiménez, del Álamo & Flores (2004)
in the buffer region, but they are shorter, in agreement with the conclusion in that
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paper that both the high- and the low-velocity streaks of the buffer layer are composite
objects.

There are other, smaller, differences between the size distributions of Q2s and
Q4s. Figure 5(c) shows that the Q2s are longer and narrower than the Q4s in the
logarithmic region, and the same is true in figure 5(d) for the outer layer, although
to a lesser degree. It is interesting that, although the modes of the size distributions
grow linearly with y, as shown in figures 5(a) and 5(b), the relationship between
1x and 1z in the distributions at a fixed 1y is not linear. Both p.d.f.s are roughly
aligned along 1x1y ∝ 12

z , which recalls the shape of the streamwise energy spectra
in del Álamo et al. (2004). However, the two behaviours are probably unrelated, and
it is even unclear whether the alignments in figures 5(c) and 5(d) are quadratic or
some similar power. What those p.d.f.s measure is the dispersion among the sizes
of structures with similar 1y, and the nonlinear alignment implies that there is more
variation in 1x than in 1z. However, the dispersion is not large, and its amplitude does
not appear to vary with the Reynolds number, making the definition, and relevance,
of a power law uncertain. Most probably, the message of figures 5(c) and 5(d) is
just that the mechanisms that deform the structures along the two coordinates are
different. A possible model is that the deformation along x is due to the shear, while
the weaker dispersion by the background turbulence is responsible for the spanwise
growth (Flores & Jiménez 2010b). On the other hand, an explanation in terms of
longitudinally growing vortex packets may be equally valid (Tomkins & Adrian 2003),
and it would be difficult to distinguish between the two models, or others, until
time-resolved evolutions are analysed.

The ‘overhangs’ of the p.d.f.s in figures 5(a) and 5(b) contain the largest structures,
which are mostly Q2s extending beyond the centreline. Their sizes, 1x ≈ 20h and
1z ≈ 2h, are comparable to the very-large-scale motions of Jiménez (1998) and Kim
& Adrian (1999), or to the global modes of del Álamo et al. (2004). They are the
only parts of the p.d.f.s that change appreciably with the detection threshold H, and
also the only ones that do not satisfy the scaling self-similarity of the smaller objects,
suggesting that the global modes are different from the Qs of the logarithmic and
buffer layer, and are probably formed by percolated juxtapositions of smaller subunits.
Figure 8 includes examples of a cluster and a Q2 from the logarithmic layer, and
of a global Q2, and highlights the differences among them. The appearance of the
latter clearly suggests a composite character, and it is difficult not to remark its
similarity with the large-scale low-velocity streaky structures discussed, for example,
by Hutchins & Marusic (2007a), or in figure 4 of Flores et al. (2007).

The very-large outer objects extending to the centre of the channel carry a
substantial fraction of the Reynolds stresses (Jiménez et al. 2004; Guala, Hommema
& Adrian 2006; Balakumar & Adrian 2007). Figure 6 shows how the total stress
carried by the Q−s is distributed among objects of different heights. In general, the
stress carried by objects of height ymax is maximum near y = ymax/3, although the
distributions are not strictly self-similar, and tend to peak closer to the wall for the
Q4s than for the Q2s. It is striking that about one third of the stress carried by the
attached Q−s is due to objects crossing the centreline. About 70 % of those objects are
Q2s, and the rest are Q4s. The former are larger, accounting for 90 % of the volume.
There are only about 50 very large objects per field (<1 %), but they account for about
60 % of the volume of the attached Qs, or 4 % of the volume of the channel.

To check which fraction of the smaller attached structures are also aggregates of
even smaller ones, we analyse the fragmentation of the Q− as the threshold varies
from H = 1.75 to H = 3.0 by tracking the Cartesian boxes circumscribing them.
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FIGURE 6. Reynolds stress carried by attached Q2s and Q4s with heights in different
bands. Case L950. Lines without symbols, y+max < 100; O, 100ν/uτ < ymax < 0.4h; 4,
0.4h< ymax < h; ◦, ymax > h. Solid lines are Q2s, dashed ones are Q4s.

Intersections of actual objects are forbidden by the clustering procedure, which collects
intersecting objects into single ones, but the boxes may intersect each other, usually
because a large attached Q overlies smaller ones near its base. Those intersections are
not very relevant, and usually involve objects of very different heights. To avoid them,
only boxes whose heights differ by less than a factor of two,

1/2 61(i)
y /1

(j)
y 6 2, (4.3)

are considered as interacting in the rest of this paper. Boxes with no interactions
when H = 1.75, and therefore presumably ‘isolated’ (ranging from 90 % by number
in the buffer layer to 50 % above 0.2h), were tracked when the threshold was
increased to H = 3. Of those that survived (∼35 %), most were still isolated at the
higher threshold, but the rest broke into sub-boxes, and were considered to have
been originally composite. The number of composite Q−s, and the number of pieces,
increases with the distance to the wall; from 10 %, and an average of 2.2 fragments
for boxes originally below y+max = 100, to 20 % and an average of 2.5 fragments when
y+max > 0.2h.

Those percentages depend little on the Reynolds number, but change when the limit
in (4.3) is relaxed from 2 to 4, allowing a wider range of scales between an object and
its fragments. In that case, the percentage of initially isolated objects ranges from 90 %
below y+max = 100 to only 15 % above y+max = 0.2h, and the fraction of surviving Q−s
increases to almost 60 % away from the wall. Not surprisingly, more of those surviving
objects turn out to be composite, ranging from 10 % near the wall to 40 % above 0.2h.

We can now compare the size distributions of the Q−s with other scaling
information about wall-bounded flows. The proportionality 1z ≈ 1y in (4.2) agrees
approximately with the results of Tomkins & Adrian (2003) and Ganapathisubramani
et al. (2003) for hairpin packets in the near-wall region. It should be stressed that
the Qs studied here cover the entire height of the flow, from 1+y ≈ 10 to 1y = 2h,
while ordered hairpin packets have only been observed directly in the buffer and lower
logarithmic layers (y+ . 200), and become disorganized further from the wall (Lee &
Sung 2011; Jiménez 2012).
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FIGURE 7. (a) Number n+a of attached events per unit height and wall area, in wall units.
—–, Q2s; – – –, Q4s. Lines without symbols are L950, those with circles are L2000. The
chaindotted line is na ∝1y

−2, and the two vertical dashed lines are 1y = 2h. (b) Mean τm(y)
of attached Q−s in the logarithmic layer, as a function of y within the object. —–, Q2; – – –,
Q4. Lines without symbols are L950, those with circles are L2000.

del Álamo et al. (2004) and Hoyas & Jiménez (2006) found that the peaks of the
uv-cospectrum of L950 and L2000 align along λz ≈ 3y, which agrees with (4.2) if
we accept, from figure 6, that the maximum stress of the Q−s is at y ≈ 1y/3. It also
agrees with the relation between the width of the minimal logarithmic boxes in Flores
& Jiménez (2010a) and the height to which they maintain turbulence. Moreover, the
proportionality 1x ≈ 31z in (4.2) implies that the peak of the uv-cospectrum should be
around λx ≈ 9y, which is not too far from the ratio, λx/y ≈ 10–15, found by Jiménez
& Hoyas (2008) in boundary layers and channels. In all, those figures reinforce the
conclusion that the structures described here are those responsible for most of the
Reynolds stresses in wall-bounded turbulent flows.

The y dependence of the number of attached Q−s per unit height and wall area
is given in figure 7(a). As we have already seen, Q4s reach closer to the wall than
Q2s, but otherwise their densities are similar and decay with size as n+a ∝ (1+y )−2.
Because the cross-sections of individual Q−s are proportional to 1x1z ∝ 12

y , the
fraction of the area covered by Q−s at a given y within the logarithmic layer is
equally distributed among the 1y of the Q−s crossing that level, which are those with
1y > y. Moreover, since the Reynolds stress averaged over the section of individual
Q−s is also remarkably uniform within each structure, as shown in figure 7(b), the
uniform distribution of areas implies a uniform contribution to the overall Reynolds
stress by each 1y. Integrating over y < 1y < h, the total stress is proportional to
h − y, in agreement with the constant fraction of the total stress carried by the Q−s in
figure 2(b). Note that some such constraint has to be satisfied by any set of structures
carrying the bulk of the Reynolds stress across the channel, because the total stress is
fixed by the mean momentum equation. It implicitly determines the decay law for na

On the other hand, the clusters, which are not constrained by the dynamics to carry
a constant property flux, decay faster with 1y than the Q−s. del Álamo et al. (2006)
showed that their density behaves like n+c ∝ (1+y )−3. As a consequence, attached
clusters are essentially near-wall objects, which can only associate with the smaller
Q−s. We will see in § 6 that the larger Q−s are mostly independent of small-scale
vorticity.
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FIGURE 8. (Colour online available at journals.cambridge.org/flm) (a) Joint p.d.f. of the
logarithms of the volume VQ and the height 1y of attached Q−s. The contours contain 50
and 98 % of the data. The dashed straight line is VQ ∝ 12.25

y . (b) Instantaneous visualization
of an attached cluster. (c) Instantaneous visualization of an attached Q2. The axes of (b) and
(c) are in wall units. (d) Very-large-scale attached Q2, with the axes scaled with h. Note that
the object crosses the centre of the channel. The visualizations are coloured with the distance
to the wall; red (dark) near the wall, and white near the top. Flow is from bottom-left to
top-right.

5. Shape of individual objects
We showed in the previous section that, at least in the logarithmic layer, the

circumscribing boxes of the attached Q−s form a self-similar family with sizes
proportional to y. The same was shown for the vortex clusters by del Álamo et al.
(2006). In this section we study the shape of the objects themselves.

Figure 8(a) is the joint p.d.f. of the volumes and heights of the attached Q−s,
and follows quite well V+Q ∝ (1+y )α, with α ≈ 2.25. A similar law, with α ≈ 2 was
found for the clusters by del Álamo et al. (2006), who interpreted it as an estimate
of their fractal dimension, and as an indication that they were shell-like. Figure 8(a)
implies that the Qs have slightly fuller shapes, which is confirmed by inspection of the
individual cluster and Q2s in figure 8(b–d).

Although the power law in figure 8(a) seems persuasive, it can only be related
to a fractal dimension by assuming that the objects themselves are self-similar. A

http://journals.cambridge.org/flm
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FIGURE 9. (a) P.d.f.s of the aspect ratios r1/r2 and r2/r3 for attached Q−s. —–, Buffer layer;
– – –, logarithmic; . . . . . ., outer. Probability contours include 50 % of the data. ⊕, average
aspect ratios of the detached Qs. (b) As in (a), for attached clusters. (c) Intrinsic lengths of
the attached Qs. −-−-−, r1; – – –, r2; —–, r3. Lines with symbols are L2000; those without
symbols are L950. The lower dashed straight line is 3η, and the upper one 101y. (d) Joint
histogram of the fractal dimension and 1+y , normalized with the maximum at each 1y. —–,
Q2; – – –, Q4, . . . . . .; clusters. Probability contours include 90 % of the data. Figures (a), (b)
and (d) are L2000.

more direct characterization requires estimating the shapes of the individual structures,
to which end we define three ‘intrinsic’ lengths for each object, following the
methodology of Moisy & Jiménez (2004). The outer scale, r3, is the size of the
smallest circumscribing cube, which typically coincides with 1x. The inner scale, r1,
is the side of the largest inscribed cube, and is computed from the inner coverage
fraction, as in the appendix in Moisy & Jiménez (2004). The third scale, r2, is related
to the volume by VQ = r1r2r3.

The inner length, r1, estimates the ‘thickness’ of the object, and is always the
smallest of the three. For smooth objects, one also expects that r1 6 r2 6 r3, and the
two aspect ratios (r1/r2, r2/r3) give an idea of the shape of the object. Ideal spheres,
tubes, sheets and ribbons have aspect ratios of the order of (1, 1), (1, 0), (0, 1) and
(0, 0), respectively (Moisy & Jiménez 2004), but the shapes of non-smooth objects can
be very different from those ideal ones. For example, it is not always true that r2 < r3,
even approximately, as can be seen by considering a large piece of cloth packed into
a small box. The ratio r2/r3 characterizes the amount of ‘wrinkling’ of the object,
but there are relatively few cases among our Q−s and clusters in which the smooth
ordering is not satisfied. The p.d.f.s of the aspect ratios for the attached Q−s and
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clusters are shown in figures 9(a) and 9(b), respectively. Both types of objects change
from being tubes or ribbons in the buffer and lower logarithmic layers, to fuller sheets
in the centre of the channel, although the somewhat larger values of r1/r2 of the Qs
confirm their slightly fuller shapes.

We gave in § 3 typical intrinsic lengths for the detached Qs, which were of the
order of the Kolmogorov scale, presumably making them smooth objects. Their aspect
ratios, (r1/r2, r2/r3) ≈ (0.5, 0.3), put them in the class of elongated ellipsoids, or
‘flakes’, fuller than the attached Q−s or clusters (figure 9a).

Figure 9(c) shows the evolution with height of the average lengths of the attached
Q−s. Somewhat surprisingly, the inner length, r1/η ≈ 5–15, is of the order of the
local Kolmogorov scale, suggesting that even these larger structures of a large-scale
quantity, such as the Reynolds stress, are shells formed from viscous-scale subunits.
The ratio r1/η increases slowly with the distance from the wall, and it can be shown
that its probability distribution is fairly narrow at each wall distance, as opposed
to the wide tails of figure 3(a). The other two lengths grow approximately linearly
with y, except in the buffer layer. The largest one, r3 ≈ 2.51y, agrees roughly with
1x in the logarithmic layer, but the intermediate one, r2 ≈ 0.51y, is smaller than 1z.
The implied shapes change from tubes, or narrow ribbons, in the buffer layer, to
increasingly wrinkled sheets away from the wall. They are moderately elongated
streamwise, of sizes of the order of the integral scale, but their small, perhaps
viscous, thickness suggests that they are formed by connecting subunits similar to
the detached Qs.

The ratio r2/r3 increases with increasing y, suggesting that the wrinkling increases
with increasing size, as expected. That was confirmed by counting the number of
discrete intersections (nI) of random lines aligned with each coordinate axis within the
circumscribing boxes of individual objects. It turns out to be proportional to 1+y

1/2

along the three coordinate axes, implying mean distances between intersections of the
order of 1+y

1/2 ∝ λ+. That recalls the scaling of the detached Qs discussed in § 3.1,
and probably has a similar origin. In fact, if the volume of each subunit is estimated
by dividing the total volume of the Qs, which is proportional to 1+y

2.25, by n3
I , the

result is 1+y
0.75 ∝ η+3, which is consistent with the dimensions given above for the

detached objects. The resulting model for the attached Qs is a sponge-like object
formed by the agglutination of ellipsoidal flakes similar to the detached Q, most of
which are of the order of the Kolmogorov scale, but which span a wide range of sizes.
The examples shown in figure 8(c–d) support this model of a ‘sponge of flakes’, in the
same way that figure 8(b) suggests that vortex clusters are ‘sponges of strings’.

Following Moisy & Jiménez (2004), the fractal dimension of individual objects can
be statistically estimated by box counting within their bounding boxes. Each object is
circumscribed within a cube of side r3, which is then divided into smaller cubes of
size r. The number N(r) of cubes containing at least one point of the object is then
counted. If we can approximate N(r) ∝ r−D for r1 < r < r3, the exponent D can be
considered as the fractal dimension of the individual object.

Figure 9(d) shows the joint histogram of D and 1y, and is roughly consistent with
the discussion above. The dimension increases slightly with the height of the Qs
and clusters, with a wide distribution between D = 1 and D = 2 in the buffer layer,
increasing towards D≈ 2 away from the wall. As above, the dimension of the clusters
is slightly lower than for the Qs. The fractal dimension of the Qs suggests a shell, but
we have just seen that it has to be a very corrugated one. Note that the dimensions
in figure 9(d) are lower than those obtained above from the evolution of the volume
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FIGURE 10. (a) Fraction of clusters (Q−s) whose boxes are intersected by one or more boxes
of a Q− (cluster), as function of their 1y. —–, Qs; – – –, clusters. Lines without symbols are
L950, those with symbols are L2000. (b) Probability density function of the fraction of the
volume of cluster boxes that is filled by intersecting boxes of Q−s. Case L2000, for clusters in
the logarithmic layer. —–, Q2s; – – –, Q4s; . . . . . ., randomized Q−s.

with height. The reason is that the objects become thicker as they become taller. We
showed in § 2 that the Kolmogorov scale increases in the logarithmic layer as y1/4.
The volume of a ‘sheet’ of dimension D, with outer scale 1y and thickness η, is
proportional to 1D

y η
3−D. Substituting η ∝11/4

y , we obtain VQ ∝1α
y , and

α = 3
4(D+ 1). (5.1)

Taking, from figure 9(d), D= 1.7 for clusters, and D= 2 for Qs, we obtain α = 2 and
α = 2.25, respectively, in reasonable agreement with the results of figure 8(a) for the
Q−s, and of del Álamo et al. (2006) for the clusters.

Using a DNS of isotropic turbulence, Bermejo-Moreno & Pullin (2008)
characterized the geometry of eddies of a passive scalar as blobs or tubes for the
larger scales, and as sheets for the smaller ones, which could be construed as being
related to the present results. However, beside referring to a different flow and variable,
the Qs described here are conceptually different from the objects discussed by those
authors. Our Qs coexist in physical space without intersecting each other, while they
filter their fields before analysing them, with the result that their small-scale objects
are engulfed within their large-scale ones. One of the conclusions of the discussion
above should be that different small-scale quantities have different geometries (see
also Moisy & Jiménez 2004), and our results and those of Bermejo-Moreno & Pullin
(2008) are probably unrelated.

6. Spatial organization
We discuss now the relative positions of the objects characterized in the previous

sections. Consider first the relation between clusters and Q2s, which were shown by
del Álamo et al. (2006) to be statistical markers for each other. As in § 4, we only
consider that two objects are related if their heights differ by less than a factor of two.

Figure 10(a) shows that more than 80 % of the clusters intersect with at least one
Q−, at all heights. The converse is not true, and the probability that a Q− intersects
a cluster is only high near the wall. It decays further up, together with the density of
clusters, essentially because there are not enough tall clusters to cover all the tall Q−s.
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Figure 10(b) contains the p.d.f.s of the fraction of the volume of the box of each
attached cluster that is covered by boxes containing Q2s or Q4s, and addresses the
question of how relevant are the intersections between Q−s and clusters. The figure
is drawn for the logarithmic region of L2000, but similar results hold for L950
and for other heights. In theory, the intersected fraction fA can be greater than one,
because the boxes of the Qs may overlap, and some parts of the cluster can be
covered by more than one Q. Figure 10(b) shows that the p.d.f.s drop sharply beyond
fA = 1, indicating that those cases are rare. Note that the discreet peak at fA = 1
is an artifact of considering covering fractions. (Lets consider a system with two
boxes A and B, where the relative positions of the boxes are random and where the
box B is larger than box A. The probability of the box A being completely covered
by box B (fA = 1) is proportional to a triple-infinitude of relative positions. But the
probability of any other covering fraction is proportional to a double-infinitude, the
positions resulting of moving box B over the surface of box A.) It is clear from the
figure that the intersections of clusters with Q2s are more probable than with Q4s, in
agreement with figure 4(b). Moreover, to test whether those intersections are just a
statistical consequence of the areas covered by the different objects, we recomputed
their statistics after randomizing the x–z positions of the centres of the boxes of the
Q−s. The resulting p.d.f. is very close to that of the Q4s, supporting the idea that their
intersections with the clusters are mostly a matter of chance, while those of the Q2s
are not.

We analyse next the relative positions of different objects, defining joint p.d.f.s,
p(ij)(δx, δz), for the position of events of type j with respect to those of type i, where i
and j are 2 for Q2s, 4 for Q4s and C for clusters. The relative distances

δx = 2
x(j) − x(i)

d(j) + d(i)
and δz = 2

z(j) − z(i)

d(j) + d(i)
, (6.1)

are referenced to the position of i-objects, (x(i), z(i)), and are normalized with the
semi-sum of the wall-parallel diagonals of each pair of events,

d(i) =
√
1(i)

x
2 +1(i)

z
2
. (6.2)

The spanwise statistical symmetry of the flow allows us to choose the direction of
the δz axis for each individual reference event. In p.d.f.s involving only Qs, such as
figures 11(a), 11(b) and 11(d), δz > 0 is chosen pointing to the nearest Q of different
kind than the reference. For the p.d.f.s of the positions of clusters with respect to
Qs, such as figures 11(e) and 11(f ), δz > 0 points towards the closest cluster. That
choice weights the p.d.f.s towards the positive δz, but allows us to test the symmetry
of individual groups of events. For example, if Q2s were typically surrounded by two
roughly equivalent Q4s, as in a symmetric trio, the p.d.f. of the positions of Q4s
with respect to Q2s would have a secondary peak with negative δz, in addition to
the primary one with δz > 0. Weaker secondary peaks correspond to statistically more
one-sided associations.

Figure 11 shows the p.d.f.s for reference objects within the logarithmic region, with
probability isolines normalized with p(ij)∞ , which is the averaged value of the p.d.f. for
δ2

x+δ2
z > 9. The three distributions for pairs of objects of the same type, figure 11(a–c),

show that they tend to be aligned in the streamwise direction, and that the objects do
not overlap, as shown by the low probabilities at δx = 0. The Q−s tend to be spaced
longitudinally by |δx| ≈ 1, with the probability of finding another Q of the same kind
in that position being more than twice the probability of finding it anywhere else. The
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FIGURE 11. Probability density functions of the relative positions of clusters, Q2s and Q4s,
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clusters also align longitudinally, but tend to be a little closer than the Qs, |δx| ≈ 0.75.
That means that they almost overlap each other, and is consistent with the discussion
in the previous sections that the Qs are slightly fuller objects than the clusters.

Objects of different kinds tend to align spanwise, rather than streamwise.
Figure 11(d) shows that the most probable position of the Q4s with respect to the
Q2s is to one side of the Q2, and very close to it, suggesting that both events tend
to form parallel pairs. Our choice of the sign of δz requires the closest Q4 to be
at δz > 0, but the lack of any peak at δz < 0 (where the probability of finding a
Q4 is actually lower than the average) strongly implies one-sided pairs, rather than
symmetric hairpins. Although not shown, p(42) is similar to p(24), because the Q2s and
Q4s have roughly the same density and size distribution throughout the logarithmic
layer.

The p.d.f. of the relative position of the clusters with respect to the Q2s is presented
in figure 11(e), and shows that they tend to be embedded within Q2s of similar sizes,
in agreement with figure 4(a), and with the conditional velocity fields in del Álamo
et al. (2006). Figure 11(f ) reinforces that conclusion, because the clusters are in δz > 0
with respect to the Q4s, which is also the preferred location of the Q2s.

The picture that emerges is one of spanwise pairs of Q2s and Q4s, with a
cluster associated with the Q2, and with the groups aligned streamwise. The p.d.f.s
in figure 11, including the existence of pairs and the streamwise distance between
neighbouring Q−s, are robust with respect to the eduction threshold. They change little
in 1 < H < 3, implying that the pairs are distinct units rather than random pieces
of longer objects. The statistical evidence for pairs of Q2s and Q4s is also strong.
Roughly 50 % of the Q−s in the logarithmic region are involved in simple pairs, and
30 % are involved in more complicated trios or groupings. The rest are isolated.
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FIGURE 12. (Colour online) Flow fields conditioned to attached Q2–Q4 pairs in the
logarithmic layer. L2000. (a) P.d.f.s of the points belonging to the Q2 (green), Q4 (blue)
and clusters (grey). The isosurfaces plotted are 0.75 times the maximum value of the
p.d.f.s for the Qs and 0.85 for the cluster. (b) Example of an instantaneous Q2–Q4
pair. Colour code as in (a). (Supplementary material is supplied alongside this article at
http://dx.doi.org/10.1017/jfm.2011.524, the supplementary file is an interactive 3D object,
click in the window to interact with it.) (c) Conditional streamwise perturbation velocity.
The blue object is the low-speed isosurface, u = −0.5uτ . The red one is +0.5uτ . The heavy
parallelepiped is a tight box around the conditional object in (a). The flow in (a–c) is from
bottom-left to top-right. (d) Cross-section of the conditional field in (c) at rx = 0. The arrows
are the cross-flow (v,w), and the shaded map is the streamwise velocity (u< 0 in blue, u> 0
in red). The white dotted lines are 0.75 times the maximum value of the p.d.f. of the points
belonging to the reference Q pair. The white solid line is 0.85 times the maximum value of the
p.d.f. of the points belonging to the cluster.

6.1. Sweep–ejection pairs
Figure 12 shows the averaged flow field conditioned to the presence of a Q2–Q4 pair,
which is defined whenever a Q2 has a neighbouring Q4 that satisfies the relative-height
condition (4.3), and is within

|δx|< 1.25 and |δz|< 0.75. (6.3)

http://dx.doi.org/10.1017/jfm.2011.524
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Very similar results are obtained when the pair is defined as a Q4 with a neighbouring
Q2. The conditional averages are then computed in the reference frame

r= 2 (x− x(24))/1(24)
y , (6.4)

where x(24) is the midpoint of the line connecting the centres of the circumscribing
boxes of the two Qs, and 1(24)

y = (1(2)
y +1(4)

y )/2 is the semi-sum of their vertical sizes.
The axes are chosen so that rz > 0 for the Q4.

Figure 12(a) shows the average shape of the pair and its associated cluster. As
expected, the aspect ratios of this conditional object, approximately 4 × 1 × 1.5 in
the coordinate directions, are consistent with the p.d.f.s shown in figure 5, with two
parallel Q−s. The cluster is mostly lodged within the Q2, but it extends into the shear
layer underneath the Q4. Note that the Q-pair is one-sided. No effort was made to
prevent the formation of a conditional trio involving a second Q4 or Q2, but they did
not appear in the statistics. Even so, and as we have already mentioned, the smooth
conditional shape in this figure is not representative of the individual pairs of the
flow, which are more complex. An example in the form of an interactive 3D object is
supplied as supplementary material at http://dx.doi.org/10.1017/jfm.2011.524, click in
the window to interact with it. It should be stressed again that while the averaged flow
field in figure 12(a) is consistent with an asymmetric hairpin, the instantaneous pair is
not.

Figure 12(c) shows the conditional streamwise velocity perturbation associated with
the Q2–Q4 pairs. It has two streaks, elongated in the x direction, in qualitative
agreement with the conical wakes reported by del Álamo et al. (2006) in the velocity
fields conditioned to attached clusters. However, the figure shows that the two streaks
are very different. For the isosurfaces used in the figure, the low-velocity object is
only about as tall as the Q2, but the high-velocity perturbation is much larger, longer
and taller than its associated Q4. The Q2 and its low-velocity streak seem to be
engulfed within the larger high-velocity region. That is seen even more clearly in the
cross-section in figure 12(d). As mentioned above, the velocity field obtained when
the pair is defined with respect to the Q4, instead of the Q2, is very similar to that
in figures 12(c) and 12(d), and does not differ too much from those obtained when
conditioning on all Q2s or Q4s, confirming that most Q−s are parts of pairs.

Similar findings were reported by Kim (1985) using the VITA technique in the
buffer region, and by Ganapathisubramani (2008) for sinks of momentum, both at
y+ ≈ 100 and at y≈ 0.5h. The low-velocity object lodged underneath the high-velocity
overhang in figures 12(c) and 12(d) is clearly the same phenomenon as the low-
velocity ‘ramps’ seen by many investigators in streamwise sections of the velocity field
(e.g. Meinhart & Adrian 1995). Flores et al. (2007) noted that those ramps are actually
long cylindrical tubes or cones, and figure 12(c) is most probably a conditional picture
of a side wall of such a tube.

It was argued in del Álamo et al. (2006) that the clusters are too small to have
created the low-velocity streak associated with them, and that they are probably a
consequence of the streak, rather than a cause. That should probably now be rephrased
as that they are a consequence of the Q2. Figures 12(c) and 12(d) suggest that even
the low-speed streak is conditioned by the presence of a pre-existing larger sweep,
which either creates it or, more probably, preferentially influences the location of the
Q-pairs and clusters that serve to condition the figures.

http://dx.doi.org/10.1017/jfm.2011.524
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6.2. Large-scale organization

The results presented up to now suggest that the building block of the Reynolds
stresses is a pair of attached Q2s and Q4s, with a vortex cluster embedded within
the Q2. The aspect ratios of those units are of the right order of magnitude for them
to become comparable, when 1y ≈ h, to the large-scale motions defined by Adrian
(2007). They are the best candidates that we have for the attached eddy hierarchy
postulated by Townsend (1961).

On the other hand, they do not hint at a mechanism by which such structures, of
size O(h), can give rise to the very-long coherent structures (1x ≈ 20h) in the central
part of the channel, such as that in figure 8(d). Moreover, the procedure that we
have used to identify them does not make use of the streamwise alignment detected
in figure 11, suggesting that some undetected organization could exist at even larger
scales. The only conditional structure detected up to now longer than a single Q is the
high-velocity streak in figure 12(c).

It is tempting to explore the existence of ‘supergroups’ formed by Qs and clusters
under somewhat laxer relational rules, but our attempts to extract physical meaning
from such groups were not successful. It is very easy to form them by defining
two objects as connected when they satisfy (6.3). Moreover, even if we enforce our
usual rule that two objects can only be related if their heights differ by less than a
factor of two, a supergroup can be formed with objects of many sizes, connected by
intermediate chains of structures that differ little from their neighbours.

Such supergroups are longer and taller than individual Q−s or clusters, and have
statistical properties that can be interpreted as self-similar, although their aspect ratios,
8 × 1 × 2, are only marginally more elongated than the single Q-pairs, and do not
explain the longer global modes. In fact, although figure 11 proves the streamwise
alignment of the pairs, the range of that ordering is not very long. Of the Q−s in the
logarithmic layer, roughly 55 % have another Q in front or behind, but only 13 % have
both.

Moreover, most of the definite properties of the supergroups are retained when
the positions of the Qs and clusters are randomized before they are allowed to
connect, suggesting that the supergroups are little more than random juxtapositions
of unrelated units, whose properties are determined by the volume fractions occupied
by the different objects. They will not be discussed further in this paper.

It is interesting to mention at this point that recent visualization work suggests that
the very-long structures mentioned above may be an exclusive feature of internal flows,
and are not present in turbulent boundary layers (Hutchins et al. 2011; Dennis &
Nickels 2011b; Lee & Sung 2011). Although generally using more limited statistics
than those in the present paper, the three groups find that the longest structures
in boundary layers have 1x ≈ 6h and do not reach above 1y ≈ 0.5h. We have
seen that the largest structures in channels extend well across the mid-plane, but
Jiménez et al. (2010) already noted that boundary layers are shorter than channels and
showed that many of the differences between the two flows are due to the effect of
turbulent/irrotational intermittency in the corrugated edge of the boundary layer. That
the wall-normal extent found in the papers just mentioned roughly coincides with
the lower edge of the intermittent layer suggests that it may also be the interaction
with irrotational fluid that limits the growth of the structures. The largest structures in
boundary layers would not then be much longer than the self-similar attached eddies
discussed in the previous sections and the problem with very-large-scale alignment
would be exclusive to pipes and channels.
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7. Conclusions

We have generalized to three dimensions the quadrant analysis of the intense
Q events that contribute most to the tangential Reynolds stress in plane turbulent
channels, with special emphasis on the logarithmic and outer layers. We have shown
that they separate into wall-attached and wall-detached families.

The detached objects represent background fluctuations of the tangential Reynolds
stress. They are isotropically oriented, and their contributions to the mean Reynolds
stress cancel. Their dimensions and intensities are very similar to the strong
fluctuations of the Reynolds stress in experimental flows with little mean momentum
transport. Even in our turbulent channels, or in the atmospheric surface layer, the r.m.s.
amplitude of the τ fluctuations is 2.5–3 times larger than their mean. Those detached
Qs are small, with sizes that, at least at our Reynolds numbers, are of the order of a
few Kolmogorov lengths.

The wall-attached Q−s are larger, and carry most of the mean tangential Reynolds
stress. At the identification threshold used in this paper, H = 1.75, they only fill 8 %
of the volume of our channels, but they are responsible for roughly 60 % of the total
Reynolds stresses at all wall distances. Most of the wall-attached events are sweeps
or ejections, and form a self-similar family with aspect ratios 1x ≈ 31y and 1z ≈1y,
which agree well with the known dimensions of the uv cospectrum. There are very
few attached ‘countergradient’ Q1s or Q3s.

When the Qs are extracted from one-dimensional sections of either our channels or
experimental shear flows, their lengths appear to scale with the local Taylor microscale,
but closer inspection reveals that they really span a wide range of scales, from the
Kolmogorov to the integral length, and that the average length is not a representative
quantity. In the channels, where objects can be classified in terms of their overall
connected sizes, the thickness of objects in a given size class is more narrowly defined,
suggesting that longer one-dimensional Qs also correspond statistically to larger three-
dimensional objects in the experimental flows.

In fact, the similarities among the distributions of the one-dimensional Q surrogates
in the very different shear flows in table 3 suggest that the fluctuations of the Reynolds
stress are similar for all such flows at sufficiently high Reynolds numbers. In wall-
bounded turbulence, the attached structures would simply be large fluctuations that
reach the wall, because of their size, where they are modified by the inhomogeneity of
the mean velocity profile.

The number of attached Q−s decays away from the wall as 1−2
y . Since their wall-

parallel area increases as 12
y , the area covered by Q−s of a given size is independent

of 1y, and so is the fraction of the Reynolds stress carried by them. On the other
hand, the volume fraction filled by the Q−s increases with their size. Roughly 60 %
of the total volume of the attached Q−s is concentrated in a few very large Q2s that
extend into the opposite half of the channel across the central plane. Those objects,
with lengths of the order of 20h in our simulations, are probably the same as the
very-large-scale structures discussed by several authors. They are visually composite
objects, formed by the concatenation of smaller subunits, and do not form part of the
self-similar family mentioned above.

The dimensions of the self-similar attached Q−s are similar to those of the attached
vortex clusters discussed by del Álamo et al. (2006). Most clusters are associated with
at least one Q2, although the converse is not true. The number of attached clusters
decays faster than the Qs, as 1−3

y , and the taller Qs do not have associated clusters.
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The individual Q−s have fractal dimensions of the order of D = 2, slightly fuller
than the clusters, whose dimension is D ≈ 1.7. The thickness of their shells is
10–15 times the Kolmogorov length, at our Reynolds numbers, and they become
more complicated as their sizes increase, suggesting that they might be described as
‘sponges of flakes’, in the same way that the vortex clusters might be described as
‘sponges of strings’. Examples of both are given in figures 8 and 12.

Most of the Q2s and Q4s are grouped into side-by-side parallel pairs, mostly
one-sided rather than symmetric trios. The predominant structure is formed by one
such pair with a vortex cluster embedded within the base of the Q2 and underneath
the Q4. As with the individual objects, the groups are self-similar, with aspect ratios
1x ≈ 41y and 1z ≈ 1.51y. It is conjectured that those objects are the attached eddies
of Townsend (1961), with which they share the dimensions and the stresses. The
conditional velocity field around them shows that they are preferentially located in the
side walls separating a low-velocity streak lodged underneath a larger high-velocity
structure, which most probably coincides with the low-momentum ramps discussed by
various authors.

The attached eddies tend to be aligned longitudinally with each other, but that
organization does not extend far enough to explain the very long structures in the
centre of the channel. Although roughly 55 % of the Q−s have another Q in front
or behind, only 13 % have both. Attempts to identify larger super-groups that could
explain the formation of the very-large-scale structures failed beyond what could be
expected from purely random associations and did not reach the required aspect ratios,
although some evidence is cited that this might only be a problem in internal turbulent
flows.

Our simulations cover a factor of two in friction Reynolds numbers, in the range
of many of the available experiments. The scalings that we have used in the figures
are those that result in the best collapse of our simulations, and they are usually not
ambiguous. Although it is dangerous to extrapolate beyond the range of the available
data, that collapse suggests that our conclusions may apply to a wider range of Reτ .
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