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(Received 17 February 2013; accepted 10 May 2013; published online 11 September 2013)

The relevance of Orr’s inviscid mechanism to the transient amplification of distur-
bances in shear flows is explored in the context of bursting in the logarithmic layer
of wall-bounded turbulence. The linearized problem for the wall normal velocity is
first solved in the limit of small viscosity for a uniform shear and for a channel with
turbulent-like profile, and compared with the quasiperiodic bursting of fully turbu-
lent simulations in boxes designed to be minimal for the logarithmic layer. Many
properties, such as time and length scales, energy fluxes between components, and
inclination angles, agree well between the two systems. However, once advection by
the mean flow is subtracted, the directly computed linear component of the turbulent
acceleration is found to be a small part of the total. The temporal correlations of the
different quantities in turbulent bursts imply that the classical model, in which the
wall-normal velocities are generated by the breakdown of the streamwise-velocity
streaks, is a better explanation than the purely autonomous growth of linearized bursts.
It is argued that the best way to reconcile both lines of evidence is that the disturbances
produced by the streak breakdown are amplified by an Orr-like transient process draw-
ing energy directly from the mean shear, rather than from the velocity gradients of
the nonlinear streak. This, for example, obviates the problem of why the cross-stream
velocities do not decay once the streak has broken down. C© 2013 Author(s). All ar-
ticle content, except where otherwise noted, is licensed under a Creative Commons
Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4819081]

I. INTRODUCTION

There is widespread agreement that turbulence requires the nonlinearity of the Navier–Stokes
equations. Neither the multiscale inertial energy cascade1 nor the characteristic sensitivity to initial
conditions,2 can exist in a statistically steady linear system. Nevertheless, there is also clear evidence
that at least some aspects of shear turbulence are controlled by linear processes, especially in the
energy-injection range. The best-known examples are the inflection-point linearized instabilities of
the mean velocity profile,3 which are known to represent well many of the properties of the large-
scale structures in fully nonlinear free-shear flows, especially forced ones.4 The mean profiles of
wall-bounded turbulent flows are known to be linearly stable,5, 6 but there have been repeated attempts
to relate their largest scales to linearized instabilities,7–10 even predating the understanding of that
relation in the free-shear case. The general idea is that the ultimate energy source for turbulent
fluctuations in a shear flow is the velocity difference across the mean profile, and that the main
energy-production mechanism, the deformation of the profile by cross-shear velocities, is contained
in the linearized equations. A key breakthrough took place when it was realized in the early 1990s
that even linearly stable perturbations could grow substantially by extracting energy from the mean
flow. For a review of such “transient-growth” mechanisms, see Ref. 11.

In practice, the argument only applies to the largest scales. The condition for linearization is
roughly that the time scale of the fluctuations, O(λ/uλ), where λ and uλ are characteristic length and
velocity scales, should be slow with respect to the mean shear S. If we assume the inertial relation,1

uλ ≈ (ελ)1/3, where ε is the energy dissipation rate, the linearizability condition becomes λ > Lc =
(ε/S3)1/2. The scale Lc was introduced by Corrsin12 as a limit for small-scale anisotropy, and later
confirmed experimentally for boundary layers.13 If we take q′ to be a typical velocity fluctuation
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FIG. 1. Shear parameter in wall-bounded turbulent flows, as a function of the distance to the wall. ——, channel C2000 in
Table I; – – –, channel C950; ◦ , high-Reynolds-number boundary layer.13 (a) Wall scaling. (b) Outer scaling.

intensity in an equilibrium shear flow in which ε can be assumed to be of the order of the turbulent
energy production, ε ≈ q′2S, the Corrsin scale is of the order of the integral energy scale Lε = q′3/ε.
The ratio between the Corrsin and integral lengths is often given in terms of the shear parameter S*
= Sq′2/ε = (Lε/Lc)2/3, which should be large for linearization. That is satisfied in the buffer layer
of wall-bounded turbulence, where S* ≈ 40 (see Figure 1(a)), and the flow in that region is known
to share many features with linearized rapid-distortion theory.14 We will be interested here in the
logarithmic layer farther from the wall (x+

2 � 50 in this context), where the shear parameter is S*
≈ 10 (see Figure 1(b)). In the central part of channels (x2/h � 0.6), where the shear is even weaker,
linearization is unlikely to be relevant.

We denote by x1 to x3 the streamwise, cross-shear, and spanwise directions and by h the thickness
of the flow, usually the half-width of a channel. The “+” superscript refers to quantities normalized
with the kinematic viscosity ν and with the friction velocity uτ .

The key property of the inflection-point instabilities that control free-shear flows is that they
are essentially inviscid, and that, being already present in the inviscid linearized equations, their
evolution time is O(1/S). Viscous instabilities such as the Tollmien-Schlichting waves found in the
transition of wall-bounded flows have much slower characteristic times,15 and cannot compete with
the nonlinear deformation of even the largest turbulent eddies.

If we restrict ourselves to parallel or weakly non-parallel shear flows, there are two main inviscid
linearized growth mechanisms that apply to stable mean velocity profiles. The first one was proposed
by Orr,16 and does not directly inject net energy into the flow. The cross-shear velocity is amplified
when backwards-leaning perturbations are tilted forward by the shear until they are roughly normal
to it, and is damped again as they continue to be tilted past that point. The amplification mechanism
is driven by continuity, and therefore by pressure, which inhibits the cross-shear velocity when
the structures are strongly tilted, and releases that inhibition when they are closer to vertical (see
Figure 2(a)).

(a)

x1

(b)

x3

FIG. 2. (a) Sketch of the Orr mechanism. The shear is parallel to the plane of the figure, and tilts velocity structures to the
right. As it does (solid to dashed lines), the horizontal spacing of the structures does not change, but the vertical one increases,
and continuity requires higher wall-normal velocities. (b) Sketch of the lift-up. The shear is into the page, represented by
the upwards-increasing dashed isolines of the streamwise velocity. The wall-normal velocity perturbations deform the mean
profile to create long streaks of the streamwise velocity. Although both processes are pictured here as two-dimensional,
in the (x1–x2) streamwise plane in (a), and in the (x2–x3) cross-plane in (b), both also act on oblique waves, leading to
three-dimensional perturbations.
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In the second mechanism, usually known as lift-up, the cross-shear velocities deform the mean
profile to create perturbations of the streamwise velocity component, which do not disappear as the
cross-stream perturbations decay (see Figure 2(b)). Because it results in a net creation of turbulent
energy, the lift-up was soon implicated in the maintenance of wall-bounded turbulence,17 and
specifically in the formation of the streamwise-velocity streaks.18

Potentially, the Orr and lift-up mechanisms form a hierarchical pair in which the former generates
a transient cross-shear velocity, which in turn creates a streamwise streak that only decays slowly
by viscosity.

That combination results in a net creation of fluctuation energy, but for linearly stable profiles
such as those in wall-bounded flows, the net result can only be transient. The generation of the
cross-shear velocity in wall-bounded turbulence has more often been associated with the instability
of finite-amplitude streaks.19 That conceptual model, developed mostly for the buffer region, is a
nonlinear cycle in which the cross-shear velocity, in the form of quasi-streamwise vortices, generates
streaks that grow until they are strong enough to become unstable and create new vortices.20–23

Reference 24 showed that this was true for relatively short structures in the buffer layer, in the
sense that inhibiting either the streaks or the vortices results in the decay of the other branch of
the cycle.

However, some issues remain open. It is known that the instability of the streaks is a fast process
that destroys them, after which new streaks take a relatively long time to reform,25 and it is unclear
how the vortices are maintained over the latency period in which the streaks are still too weak to
become unstable again. Correspondingly, Ref. 26 noted that streaks strong enough to be unstable
are relatively rare in the buffer layer, and proposed a transient model for the growth of the vortices
that is much closer to the Orr mechanism than to a modal instability. Moreover, Ref. 27 showed that
the dynamics of the cycle does not hold for near-wall structures longer than about 103 wall units,
for which the relation of the two types of structures is hierarchical: damping the vortices damps
the streaks, but damping the streaks does not damp the vortices. As far as we are aware, the matter
has never been tested above the buffer layer, although it is known that an intermittent cycle similar
to the one near the wall is present in the logarithmic region.28 If we admit that the lift-up is the
main contributor to the formation of streamwise-velocity streaks, the question posed in the title of
this paper is how much can Orr’s mechanism be considered responsible for the dynamics of the
cross-plane velocities in wall-bounded turbulence.

The question has been addressed in the past, specially in meteorology, but mostly in a linear
context linked to transition, to the formation of large-scale atmospheric waves.29–31 or to the gener-
ation of gravity waves in stratified flows.32 We are more interested here in whether a similar process
can be invoked in fully nonlinear turbulent flows.

Since the perturbation energy associated with the Orr mechanism is transient, even in the
inviscid limit, we will be led to consider intermittent flow events that we will denote as “bursts.”
That term was originally introduced in turbulence to describe the fluid eruptions observed near the
wall in the early visualizations of turbulent boundary layers,18, 20 which were hypothesized to be
reflections of the occasional break-up of the near-wall streaks mentioned above. However, even
the original authors later acknowledged that the visualizations could be consistent with permanent
advecting objects,33 and the term eventually became associated with the ejections observed by
stationary velocity probes. When numerical simulations showed that the streaks were long-lived
streamwise velocity structures, and that the sweeps and ejections identified in the analysis of single-
point data were mostly due to the passing of shorter quasi-streamwise vortices, intermittent in
space but not necessarily in time,34 the question of whether the observed temporally intermittent
sublayer events were visualization artifacts or really existed in the near-wall layer was temporarily
abandoned.

Although it has only recently become possible to follow individual turbulent structures for
times long enough to distinguish between the two alternatives,35 minimal and otherwise simplified
simulations showed very early that there were temporally transient events in near-wall turbulence,
with time scales substantially longer than the streak breakdown.21, 24, 36 They were originally denoted
as “blooming,”21 to avoid the controversies current at the time, but the term did not catch. More
recently, as experimental and simulation advances have eroded the reliance of turbulence research on
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one-point measurements, the need for a special name for vortex passing has become less pressing,
and “bursting” has began to be used again for intrinsically transient energetic events in shear
turbulence.25, 28, 37–39 It is in that sense that it is used here.

The organization of the paper is as follows. The linear theory for the Orr mechanism in a uniform
shear is reviewed and extended to turbulent-channel profiles in Sec. II. The evidence for transient
bursting in minimal logarithmic-layer turbulence is analyzed and compared with the linear results
in Sec. III, followed by an explicit analysis of the influence of nonlinearity in Sec. IV. Finally, the
results are discussed and conclusions offered in Sec. V.

II. THE LINEARIZED PROBLEM

A. The equations of motion

The incompressible Navier–Stokes equations for a parallel shear flow can be written as

∂t ui = Ni = −(U j + u j )∂ j (Ui + ui ) − ∂i (P + p) + ν∂ j j (Ui + ui ), (1)

where capitals denote averages, 〈 〉, defined with respect to the two “horizontal” directions (x1, x3)
and time, lower-case symbols are fluctuations with respect to those means, repeated indices denote
summation over 1. . . 3, and the density is absorbed into the kinematic pressure p. The only non-zero
mean quantities are U ≡ U1(x2) and P(x1). The continuity equation is

∂i ui = 0. (2)

For parallel flows, the linearized version of (1) is

∂t ui = Li = −U∂1ui − u2U ′δ1
i − ∂i pL + ν∂ j j ui , (3)

where primed capitals denote derivatives with respect to x2, and δ
j
i is Kronecker’s delta. It can be

reworked40 into the Orr–Sommerfeld equation for the vertical velocity,

∂tφ = −U∂1φ + U ′′∂1u2 + ν∂ j jφ, (4)

where φ = ∇2u2, and the Squires equation for the vertical component of the vorticity,

∂tω2 = −U∂1ω2 − U ′∂3u2 + ν∂ j jω2. (5)

From (2) and (3), the linearized pressure satisfies

∂ j j pL = −2U ′∂1u2. (6)

There is a similar Poisson’s equation for the full pressure in (1),

∂ j j p = −2U ′∂1u2 − (∂i u j )(∂ j ui ), (7)

but the “fast” pressure pL is generally different from p.41 The structure of these equations has
been discussed often.15 The Orr–Sommerfeld equation is autonomous in u2, although continuity
comes into it through the Laplacian in the definition of φ. This is easily seen from its derivation.
Disregarding viscosity, the linearized equation for u2 is

∂t u2 + U∂1u2 = −∂2 pL . (8)

If we had also disregarded the pressure gradient, the only effect of (8) would be to tilt the perturbations
with the shear, but not to change their amplitudes. Any amplification has to come from ∂2pL. This is
taken into account in the Orr–Sommerfed equation by taking the Laplacian of (8), and substituting
(6) into the right-hand side.

The Squires equation (5) is forced by the spanwise derivative of u2, which deforms the mean
shear U′. Note that the Orr–Sommerfeld equation (4) has its own lift-up term, which creates vorticity
fluctuations by deforming the mean vorticity gradient U′′, but we will see below that continuity, and
not this term, is often the main mechanism for fluctuation growth. The solutions of (4) are usually
associated with the Orr mechanism, and those of (5) with the lift-up, but the two are difficult to
separate because they are coupled by the continuity constraint.
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B. Inviscid homogeneous shear flow

Although all solutions to (1)–(3) are eventually modified by viscosity, or, in the case of turbulent
flows, by some variant of an eddy dissipation,9 we have argued in the introduction that only processes
with inviscid time scales are fast enough to be important in fully turbulent flows. Therefore, it is
interesting to study the solutions of (3) in the limit ν = 0. The simplest case is homogeneous shear
flow, for which U = Sx2. If we consider perturbations of the form u j = û j exp(iαk xk), and choose
as the origin of time the moment when the wavefronts are vertical, the two wavenumbers α1 and α3

remain constant, and α2 = −Sα1t varies as the perturbation is tilted forward by the shear.16, 42 The
three velocity components satisfy

∂t û1 = α2
1 − α2

3 − α2
2

α2
Sû2 − να2û1, (9)

∂t û2 = 2α1α2

α2
Sû2 − να2û2, (10)

∂t û3 = 2α1α3

α2
Sû2 − να2û3, (11)

where α2 = α2
0 + S2α2

1 t2 with α2
0 = α2

1 + α2
3. They can be expressed in terms of the dimensionless

variables,

v̂ j = û j (t)/û2(0); γ j = α j/α0; τ = −γ2 = Sγ1t ; Re = Sγ1/να2
0 . (12)

The inviscid solutions for Re = ∞ are

v̂1 = γ1v̂2τ − γ 2
3

γ1
ψ + v̂10, (13)

v̂2 = 1

1 + τ 2
, (14)

v̂3 = γ3(̂v2τ + ψ) + v̂30, (15)

α0 p̂

Sû2(0)
= 2iγ1v̂

2
2, (16)

where the tilting angle with respect to the negative (α1, α3) direction,

ψ = π/2 + arctan(τ ), (17)

rotates from ψ = 0 at t = −∞ to ψ = π at t = ∞, and continuity requires that the perturbation at
t = −∞ satisfies v̂10γ1 + v̂30γ3 = 0.42 Since γ 2

1 + γ 2
3 = 1, the only parameter in (13)–(15) is γ 1,

which is the aspect ratio of the perturbation in the horizontal (x1, x3) plane. It ranges from γ 1 = 0
for perturbations which are infinitely long in the streamwise direction, to γ 1 = 1 for those that are
purely spanwise. In the particular case of purely spanwise structures, ψ is the tilting angle with
respect to −x1.

Reference 43 treats the viscous problem (9)–(11) as one of the optimum amplification of initial
conditions, but that concept is meaningless in the inviscid case. The non-zero initial conditions,
v̂10 and v̂30, are not modified by the shear, and the rest of the solution develops entirely from zero
amplitude at t = −∞. Disregarding any initial perturbation of the two horizontal velocities, v̂2 grows
from v̂2(−∞) = 0 to v̂2(0) = 1 and decays again to zero at t = ∞, but its cumulative effect is to
generate non-zero perturbations for the other two velocity components that survive at t = ∞ except
for purely spanwise waves with γ 3 = 0.

The vorticity lift-up term in (4) vanishes for this flow, because the mean shear is uniform, and
one could expect the part of the flow due to (4), which reduces in that case to the effect of pressure
on the tilting wavefronts, to be mostly potential. That is not exactly true. It turns out that even
vanishingly small initial velocity perturbations need to have some wall-parallel vorticity to give rise
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to a burst, because the infinitely large vertical wavenumber α2 = ∞ implies finite cross-stream
gradients. Even so, the first terms in the right-hand sides of (13)–(15) do not create new vorticity,
and can be considered as the irrotational Orr effect, while the terms proportional to the tilt angle
grow monotonically with time, and represent the velocity lift-up.43

The Orr burst of u2 is an autonomous solution for which the effect of non-zero initial conditions
(̂u2, γ2) is only a rescaling and a shift in time, but its interaction with the pre-existing flow depends
on the additive contributions û10 and û30. In general, û2 is very effective in harvesting energy from
the mean shear into the other two velocity components, but whether that energy reinforces or damps
existing perturbations depend on their relative geometry. For example, the normalized energy in v̂1

tends to

|̂v1|2 = (πγ 2
3 /γ1)2 + |̂v10|2 − 2(πγ 2

3 /γ1)|̂v10| cos(θ ), (18)

for very long times, where θ is the phase angle of the complex initial condition, v̂10 = |̂v10| exp(iθ ),
when normalized with û2(0). If θ is assumed to be random in a turbulent flow, the last term in (18)
can be positive or negative, and cancels on the average. On the other hand, the first term is always
positive, and the net averaged effect of Orr bursts is to add energy to the two horizontal velocities.
The amplification factor (πγ 2

3 /γ1)2 can be large for streamwise elongated structures, for which γ 1


 1. It is well known that, on average, energy in parallel shear flows is initially injected into u2
1

by the interaction of the tangential Reynolds stress with the shear, and that the pressure-strain term
redistributes it to the other two velocity components.44 The details of the instantaneous interactions
in an Orr burst are different. The pressure initially injects energy directly into u2, and indirectly into
u1 and u3. Those are the first terms in the right-hand sides of (13)–(15). At the same time, the lift-up
transfers energy into u1, which in turn transfers some of it through pressure to u3. Those are the
terms proportional to ψ . In the second part of the burst, the energy that had been injected by the
pressure into u2 flows back into the mean profile, although, because of the large amplification factor
in the horizontal velocities, the total energy increases monotonically except for essentially spanwise
perturbations (γ 1 � 0.9). No energy remains in u2. Some examples of the inviscid evolution of
selected aspect ratios are shown in Figure 3(a).

This exchange of energies can be seen more clearly in Figures 3(b) and 3(c), which plot
the pressure terms in the energy equations for the individual velocity components, �j = −uj∂ jp,
where no sum is intended on the repeated indexes. The corresponding Fourier coefficients are
�̂ j = α j Im(̂u∗

j p̂), where the asterisk denotes complex conjugation and Im( ) is the imaginary part.

In Figure 3(b), which is drawn for equilateral perturbations with γ1 = γ3 = 1/
√

2, pressure initially
injects energy into û2 and û3, and draws it away from û1, although the energy in û2 later flows
back into the mean shear. It would appear from Figure 3(b) that the streamwise energy |̂u1|2/2,
which is assumed to be initially zero, decreases and become negative, but the pressure is only part
of the energy production term for that velocity component. The solid line with circles in the figure
is the full production, which also includes the real part of −û∗

1û2, and ensures that the energy stays
positive. That the initial interaction of û2 and û1 is an autonomous property of the Orr–Sommerfeld
equation is seen in Figure 3(c), which is drawn for two-dimensional spanwise perturbations with γ 1

= 1. Squires equation is inactive in this case, no spanwise velocity is created, and the energy given
or taken away from û2 is exactly compensated by the pressure term for û1. No long-term streak is
generated, and the energy production for all the velocity components averages to zero over time,
in spite of which the behavior of û2 is exactly the same in both figures. The switch of sign in its
production term is diagnostic for Orr bursts, and will be compared later with the observations of
turbulent bursts in minimal boxes (Figure 6(d)).

At t = ∞, the two horizontal vorticity components become infinite in an inviscid flow, but
viscosity damps those large gradients before they can develop. The viscous solutions to (9)–(11)
are (13)–(15) multiplied by exp [ − τ (1 + τ 2/3)/Re],42 which in practice limits the burst to τ �
(3Re)1/3. If we interpret ν in a turbulent flow as representing turbulent dissipation, and assume that
the resulting Reynolds number is Re = 10 − 30,44 the limit should probably be taken as τ � 5 for
all but the most extreme wavenumber aspect ratios. Note that the tangential Reynolds stress, −û1û∗

2,
is only active in −5 � τ � 5, where |̂v2| is large, and that the final flow contains only horizontal
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FIG. 3. (a) Normalized solutions of the linearized inviscid equations for a homogeneous shear flow. γ 1 = 0.2(0.2)0.8,
increasing in the direction of the arrow. ——, γ1v̂1/γ

2
3 π ; – – –, v̂2; − · − · −, v̂3/γ3π ; (b) and (c) Terms from the energy

equations for the individual velocity components, as defined in the text. Lines are pressure terms, normalized with S |̂u20|2:
——, �̂1; – – –, �̂2; − · − · −, �̂3; – ◦–, full streamwise energy production; –
–, |̂v2|2, included as reference. (b) γ1 = 1/

√
2.

(c) γ 1 = 1. (d) Viscous solutions for v̂2. ——, Re = ∞; − · − · −, Re = 30; – – –, Re = 15.

velocities and carries no tangential stress. The effect of viscosity on v̂2 is shown in Figure 3(d) for
Reynolds numbers in the range mentioned above. The main difference with the inviscid case is that
viscous solutions require non-zero initial conditions to survive, but their evolution during the active
part of the burst changes little. Note also that, since the main effect of γ 1 is to change the effective
Reynolds number, the relative insensitivity of the solutions to viscosity means that there is no strong
viscous wavelength-selection mechanism, and that we can expect randomly initialized Orr solutions
for u2 to be essentially isotropic in the (x1, x3) plane.

C. The linear Orr mechanism in channels

The problem becomes more complicated in wall-bounded flows because the flow thickness
introduces a length scale that cannot be absorbed into wavenumber ratios, and because the wall-
parallel velocities cannot be analyzed without reference to the no-slip boundary condition or to
viscosity. Nevertheless, since the Orr-Sommerfeld equation (4) is autonomous in u2 and satisfies
impermeability even in the inviscid limit, it is also possible in that case to identify an essentially
inviscid Orr-like behavior for u2. In this section, we study a plane channel with a mean velocity
profile mimicking turbulent channels parametrized by h+. The profile is derived by integrating the
mean momentum equation dU+/dY = h+(1 − Y)(ν/ν t), where Y = x2/h and the total viscosity is6

νt

ν
= 1

2
+ 1

2

{
1 + κ ′2h+2

9

[
2Y − Y 2

]2 [
3 − 4Y + 2Y 2

]2
[

1 − exp

(−x+
2

A

)]2
}1/2

, (19)
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with κ ′ = 0.43 and A = 27.3. That profile, with slightly different constants, was used in
Ref. 9 to analyze the optimum transient growth of perturbations, using the eddy viscosity (19)
in the perturbation equations. Here, since we are interested in approximating an inviscid behavior,
we will maintain the profile and assume a constant viscosity ν0 in the Orr-Sommerfeld equation,
not necessarily equal to ν, to study the solutions in the limit of small ν0. The resulting perturbation
equations are therefore formally inconsistent, and only make sense for phenomena whose lifetimes
are short with respect to the evolution of the profile under the new viscosity. We will see below that
the characteristic time for Orr bursts is approximately 1/U′, where the shear is measured at some
average location of the perturbation intensity profile. Denoting the latter by yg, to be defined below,
and centering on perturbations associated with the logarithmic layer, the viscous decay time for the
profile at that wall distance is O(y2

g/ν0) which should be much slower than 1/U′ = O(yg/uτ ). The
consistency requirement is therefore that yguτ /ν0 � 1, which holds for perturbations peaking outside
the buffer layer, especially if ν0 ≤ ν (or, equivalently, if h+

0 = huτ /ν0 ≥ h+).
The Orr-Sommerfeld equation for a single Fourier mode, φ = φ̂(x2) exp[i(α1x1 + α3x3)], is

∂t φ̂ = iα1(−U φ̂ + U ′′û2) + ν0(∂22 − α2
0)φ̂, (20)

whose solutions can be made independent of α1 by the Squire transformation that absorbs it into the
reduced time uτ α1t and the Reynolds number h+

0 γ1.40 The two remaining parameters are h+, which
determines the mean velocity profile, and α0h. We will scan values of α0h keeping the Reynolds
number γ1h+

0 constant for each scan, thus removing the direct effect of the aspect ratio γ 1.
For each wavenumber, we search the most amplified perturbation using the method in

Ref. 9, adapted from the programs in the Appendix of Ref. 15. However, in this case, the operator
analyzed is only the Orr-Sommerfeld equation, and the energy maximized is that of the wall-normal
velocity, ‖u2‖2 = h−1

∫ h
0 |̂u2|2 dx2. In channels, because the mean profile is symmetric with respect

to the centerline, the eigenfunctions of the linearized evolution equation can be classified into sym-
metric and antisymmetric. For all but the longest wavelengths, the eigenfunctions are localized near
the walls and the two walls interact only weakly (see Figures 4(c) and 4(d)). As a consequence,
eigenvalues come in almost degenerate pairs in which each eigenvalue is almost double, and so do
the most amplified solutions. To remove that near-degeneracy, the analysis is done independently
for perturbations which are even with respect to the channel centerline, û2(2h − x2) = û2(x2), or
odd, û2(2h − x2) = −û2(x2). Two profiles are tested, with h+ = 1000 and 2000, using several nu-
merical viscosities for each case. After some grid refinement tests, a uniform resolution of NT =
1024 Tchebychev modes was used for all cases. With the exception of the very short wavelengths
discussed below, there were no visible differences between computations from NT = 512 to 1536.

Generally speaking, û2 behaves as in a homogeneous shear, evolving from a weak backwards-
tilted perturbation to maximum amplitude when the phase front is roughly normal to the wall, and
weakening again when the shear tilts it further forward. An example is shown in Figure 4(a) at five
stages of its evolution, centered at the moment of maximum amplification. The perturbation has been
normalized so that its imaginary part at maximum amplitude is as small as possible, and the fact
that the Fourier eigenfunction at that moment can be made almost real shows that its phase fronts
are essentially normal to the wall. The perturbation grows and decays over a time of the order of
uτ α1t = 5.

If we consider the Fourier coefficient of any quantity, such as û2 = |̂u2| exp(iθ ), the derivative
∂2θ represents a local vertical wavenumber, and a tilting angle equivalent to the one in (17) can be
defined in terms of the imaginary part of û∗∂2û2,

ψ2(x2) = π/2 − arctan(∂2θ/α0) = π/2 − arctan

(
Im

û∗
2∂2û2

α0 |̂u2|2
)

. (21)

It is plotted in Figure 4(b) for the same cases as in Figure 4(a), and, even if there are obvious
ambiguities near points where |̂u2| ≈ 0, the general trend is for the tilt to increase from zero at the
early stages of the evolution towards ψ2 ≈ π for large times, passing through ψ2 ≈ π /2 at the point
of maximum amplification.
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FIG. 4. Optimum-growth solutions for u2 in channels with a turbulent mean profile. (a) Temporal evolution of an odd
perturbation. h+ = 2000, h+

0 = 9200, λ+
0 = 980. ——, Re(̂u2); – – –, |̂u2|. Time is from left to right, separated between

plots by uτ α1t = 0.95, and centered on the moment of maximum amplification. (b) Tilting angle for the cases in (a), as defined
in (21). (c) Center of gravity of the solutions at the moment of maximum amplification, as a function of λ0. ——, Even
û2; – – –, odd. 
, h+ = 2000, h+

0 = 9200; ◦ , h+ = 2000, h+
0 = 4600; �, h+ = 1000, h+

0 = 2500. The dotted line is λ0 =
4.5yg. (d) Modulus |̂u2| of the solutions at maximum amplification. Cases as in (a), with λ+

0 increasing from 390, 980, 2430,
6060, as solutions move away from wall. ——, Even; – – –, odd. (e) Temporal evolution of the energy of odd perturbations,
against time scaled with the local shear and normalized to maximum amplitude. ——, 15 wavelengths in λ+

0 = 890–2900
for h+ = 2000, h+

0 = 9200; – – –, six wavelengths in λ+
0 = 890–1300 for h+ = 1000, h+

0 = 2500; ◦ , homogeneous shear
from (14). (f) As in (e), plotted as a function of the mean tilt.

If we define the instantaneous “height” of the perturbation as the position of its center of gravity,

x2g =
∫ h

0
x2 |̂u2|2 dx2

/∫ h

0
|̂u2|2 dx2 , (22)

the solution moves slowly and irregularly away from wall, and we can define a characteristic height
for each history as the height, yg, at maximum amplification. For example, the case in Figures
4(a) and 4(b) move from x2g ≈ 0.07 to x2g ≈ 0.12, and is most amplified when x2g = yg = 0.11.
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FIG. 5. (a) Premultiplied two-dimensional spectra of u2. as functions of λ1 and λ3 for x2/h = 0.05−1 increasing towards
the upper-right. Contours are k1k3 E22 = 0.04u′

2
2, and the dashed diagonal is λ1 = λ3. (b) Premultiplied one-dimensional

spectrum of u2, versus λ3 and x2. Contours are k3 E22/u′
2

2 = 0.2(0.05)0.4. The dashed diagonal is λ3 = 2x2. The two vertical
lines are the widths of the channels N1800 and W1800 in Table I, and the horizontal ones are the limits of the respective
averaging bands, as used in Figure 6. Both panels are channel C2000 in Table I.

Figure 4(b) shows that yg grows linearly with λ0 = 2π /α0, at least in the range y+
g � 100, yg/h �

0.2, which corresponds roughly to the conventional limits of the logarithmic layer in channels,39

recalling the similar linear scaling of structures45–49 and spectra in wall-bounded flows (see
Figure 5(b)). The linear behavior extends farther from the wall for even perturbations than for
odd ones, clearly because the latter are constrained by the requirement that they should vanish at
the centerline. The relation between yg and λ0 depends weakly on h+ and h+

0 , with a tendency
to move closer to the wall with decreasing viscosity of either kind. The wavelengths associated
with the linear behavior are in the range from λ+

0 � 400 to λ0/h � 1. If we assume isotropy in the
wall-parallel plane, and take yg as the center of the u2 structures, the wavelengths in Figure 4(c), λ3

≈ 6yg, are about twice wider than the ones given in the above-cited references for the structures in
the logarithmic layer, However, note that the two quantities are not directly comparable, and that
different structures have different widths. Moreover, it was noted in Ref. 27 that spectra tend to
represent the distance between structures, rather than their sizes.

The relation between λ0 and yg is less clear below y+
g = 100, although that range is barely

visible in Figure 4(c). The optimal solution oscillates there between two different types of initial
conditions, depending on the computational parameters. One type continues smoothly the trends of
the logarithmic layer, while the other one stays near x+

2 ≈ 15 during its full lifetime. Curiously, the
difference between the two solutions does not seem to be a viscous effect. Each of them depends
little on the viscosity ν0 or on other numerical parameters, and it is only their relative amplifications
that change. We have noted before that the Orr-Sommerfeld equation has its own lift-up term,
proportional to U′′, which acts independently of the pressure effects responsible for the Orr bursts
in homogeneous shear. This term is active in channels, but peaks sharply around x+

2 ≈ 20, and
decays farther away from the wall,50 suggesting the existence of two different bursting mechanisms
in wall-bounded flows: one in the viscous layer, associated with the vorticity lift-up and presumably
responsible for the peak of the kinetic energy at x+

2 ≈ 15 in wall turbulence,51 and a second one in
the logarithmic layer, driven by pressure effects. The coexistence of the two mechanisms is restricted
to wavelengths shorter than λ+

0 ≈ 500, and we will focus here on the longer outer solutions.
Figure 4(d) shows the modulus of the velocity eigenfunctions at maximum amplification, for

four different wavelengths. For each case, the figure shows the even and odd eigenfunction, but they
can only be distinguished for the two longest wavelengths, λ0 ≈ h and λ0 ≈ 3h. Except for those
two cases, both of which reach their maximum amplitudes well above the logarithmic layer, the
perturbations at each wall behave independently from each other, and there is no difference between
even and odd eigenfunctions. That is also clear in the heights in Figure 4(c).
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Finally, Figure 4(e) shows the temporal evolution of the energy ‖u2‖2. The discussion in
Sec. II B suggests that the bursting time should be scaled with a characteristic shear felt by the
perturbation, such as U′ at yg. That is done in Figure 4(e), which contains 21 different time histories
from two profiles at different Reynolds numbers, with wavelengths ranging from λ+

0 ≈ 850 to λ0/h
≈ 1.3. The collapse is excellent, even if U′(yg) varies almost by a factor of 3 between the different
curves in the figure. The figure also includes the solution (14) for homogeneous shear, which has
the same general shape, but a time scale which is almost exactly twice faster. We can also define a
tilting angle as an averaged version of (21),

〈ψ2〉 = π/2 − arctan

(
Im

∫ h
0 û∗

2∂2û2 dx2

α0
∫ h

0 |̂u2|2 dx2

)
. (23)

It grows smoothly from zero for negative times to π at positive ones, passing through π /2 at the
moment of maximum amplification, strongly recalling the behavior for homogeneous flow. In fact,
since the discussion in Sec. II B suggests that the tilting is the main reason behind the evolution of
the velocity amplitudes, it is tempting to compare the two cases using ψ2 as the evolution variable,
instead of time. That is done in Figure 4(f), which contains all the cases in Figure 4(e). The collapse
is even better than in the former figure, and includes the homogeneous case. There are no adjustable
parameters in Figure 4(f), except perhaps the averaging used in (23) to define ψ2, but even that is
probably not critical, since it is clear in Figure 4(b) that the tilt angle is relatively independent of x2.

The collapse in Figure 4(f) strongly supports the conclusion that all the cases in the figure
are pressure-driven, and do not depend on the vorticity fluctuations generated by the lift-up Orr–
Sommerfeld term. That term is missing from the homogeneous case, and that burst is fully due to the
geometric deformation of the Laplacian in the definition of φ. That deformation is encoded in the tilt
angle, and the excellent collapse of the two cases in terms of the tilt implies that any non-geometric
effect present in the channel is also unimportant.

D. The wall parallel velocities

Analyzing the effect of the bursts on the other two velocity components requires considering
Squire’s equation (5),

∂t ω̂2 + iα1U ω̂2 − ν0(∂22 − α2
0)ω̂2 = −iU ′α3û2, (24)

with homogeneous boundary conditions ω̂2 = 0 at the walls if ν0 �= 0. The inviscid problem loses all
the boundary conditions and can only be approximately analyzed away from the wall. Disregarding
viscosity,

ω̂2(t) = ω̂20e−iα1Ut − iα3U ′
∫ t

0
eiα1U (ξ−t)û2(ξ ) dξ. (25)

Two features of that solution are interesting because they recall similar behaviors in the homogeneous
case. The first one is that the solution can be separated into initial conditions ω̂20, which are
transported without amplification or decay, and a forced part in which û2 injects energy into the flow
independently of the initial conditions. As in the solution (18) for homogeneous shear, the second
part is proportional to α3, and is strongest for streamwise oriented structures, but whether the result
is an increase or a decrease of the total kinetic energy depends on the relative phases of the û2 burst
and the initial condition ω̂20.

The second interesting similarity is that the effect of the burst on the wall-parallel velocities,
û1 and û3, can be separated into bursting and secular parts. Those two velocity components can be
expressed in the usual manner as linear combinations of ∂2û2 and ω̂2.51 The part proportional to
∂2û2 follows the growth and decay of the burst, and only the second one, represented by the integral
in (25), has a long-term effect. Those two contributions correspond to the terms proportional to v̂2τ

and ψ in the constant-shear solutions (13)–(15).



110814-12 Javier Jiménez Phys. Fluids 25, 110814 (2013)

TABLE I. Numerical channels used in the text. The time T is used to compute the correlations.

Case L1/h L3/h h+ uτ T/h Reference

C950 8π 3π 934 52
C2000 8π 3π 2003 53
W950 π /2 π /4 950 77.2 Present
N1800 π /4 π /8 1700 29.1 28
W1800 π /2 π /4 1840 41.3 28

III. BURSTING IN MINIMAL BOXES

While it is possible to study the temporal evolution of individual structures in full-size
simulations,35 it is much easier to do it in minimal boxes, which essentially contain a single structure,
and which have been shown to reproduce well the statistics of full-size turbulence in the buffer21

and logarithmic layers.28 In such computational boxes, structures can be studied in terms of integral
quantities averaged over suitably chosen flow subdomains, avoiding the need to track them and the
ambiguities between the Lagrangian and Eulerian points of view.

The simulations used in the rest of this paper are summarized in Table I. The reference data
are from the turbulent channels C95052 and C2000,53 computed in large doubly periodic boxes
with streamwise and spanwise periodicities L1 and L3. A full description of the simulations can be
found in the respective original publications. The primary minimal box is W1800, with h+ = 1840,
which is minimal with respect to u2 in x2/h ≈ 0.1–0.5. It was shown in Ref. 28 that wall turbulence
remains “natural” as long as x2 � L3/3, corresponding to x2/h � 0.25 in this case. The reason is seen
in Figure 5, which displays spectra of u2 in the larger channel C2000. Figure 5(a) shows that the
spectra are roughly isotropic in the (x1, x3) plane, suggesting that any comparison with the theory in
Secs. II A–II D should use γ1 = γ3 = λ0/λ3 = 1/

√
2. Figure 5(b) shows that the wavelengths of

the spectra grow linearly as λ3 ≈ 2x2. For x2 
 L3/2, the actives scales are much smaller than the
box, and turbulence behaves as in a large box. For x2 � L3/2, the core of the spectrum moves out
of the box, and none of the energy-containing scales fit in the computational domain. In between
those limits, the box is minimal for u2, and approximately contains a single large structure that can
be studied by means of integrated quantities.

We therefore study the temporal evolution of flow variables integrated over such minimal boxes.
For example, [u2

2] is computed by first defining fluctuations of u2 with respect to their long-term
averages at each x2, and averaging their squares over a band of x2 and over the whole wall-parallel
simulation domain. The band considered in the case of W1800 is x2/h = 0.1 − 0.25, centered on
x2b/h = 0.175, and is denoted by B2 in Figure 5(b). Two more simulations were used to determine
scaling. One is the narrower box N1800, at the same nominal Reynolds number as W1800, which is
averaged over the lower band B1 between x2/h = 0.05 − 0.1 (x2b/h = 0.075), and the other, W950,
is a lower-Reynolds number case in the same box as W1800, averaged over B2. The first two of
those channels are the ones used in Ref. 28, extended here to longer times to improve statistics,
while the last one was run for this paper using the same numerical code. Two sample traces of the
band averages of the tangential stress and of the wall-normal energy are shown in Figure 6(a). The
correlation of the two variables is striking, suggesting that there is a cycle of intermittent events
involving more than one individual variable.

The evolution of each variable, and the relationships among them, can be studied by means of
temporal correlations, defined for any two variables a and b as

C(a, b; t) = 〈[a(s)][b(s + t)]〉s

(〈[a]2〉s〈[b]2〉s)1/2
, (26)

where the average 〈〉s is taken over time and over the two sides of the channel.
The temporal autocorrelation function of [u2

2] is shown in Figure 6(b) for the three minimal
boxes. They agree very well when the time is normalized with the mean shear over each box, and
also agree tolerably well with the correlation computed from the linear Orr solution in Figure 4(e).
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FIG. 6. (a) Sample time traces of −[uv] on top, and [v2] at bottom, averaged over band B2 of W1800. (b) Temporal
autocorrelation function of [u2

2]. Time is scaled with the shear, averaged over the respective bands. ——, W1800 in B2;
− · − · −, N1800 in B1; – – –, W950 in B2; – ◦–, linearized solution from Figure 4(e), using γ1 = 1/

√
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Figures 6(c) and 6(d) show the temporal correlations of the different variables during a burst
of u2. Figure 6(c) repeats the autocorrelation of [u2

2], and adds the cross-correlation of [u2
2] with

the other two velocity components and with the energy dissipation rate ε. The streamwise velocity
leads the maximum of [u2

2] by a few shear times, while the spanwise fluctuations, even if almost
coincident with u2, are skewed towards later times, suggesting that the causality is from u1 to u2 to
u3. The dissipation tracks u2 fairly closely, but while u3 dips before the burst, the dissipation dips
after it, suggesting that the burst quietens the flow. The final correlation is of [u2

2] with the shear
of the mean profile, [∂2u1]. Those two quantities are initially almost uncorrelated, but the shear
decreases strongly during the burst, stressing the role of the bursts in flattening the mean velocity
profile.

Figure 6(d) displays the temporal structure of the energy exchanges due to pressure among
the different velocity components. We have already mentioned that the overall effect of pressure
is to redistribute the energy among the different components, and that the overall flux is from the
streamwise velocity to the other two. In fact, the balance outside the buffer layer of the two cross-
stream velocities is almost exclusively between the pressure redistribution term and the dissipation.
That is also true in minimal boxes. Figure 6(d) is keyed to the autocorrelation of [u2

2], and includes its
cross-correlations with the pressure terms [ − uj∂ jp] that appear in the equations of the three kinetic-
energy components [u2

j ]/2, and which were already discussed in Figures 3(b) and 3(c). Figure 6(d)
represents the relative intensities of the energy exchanges due to pressure among components, but
note that it should not be read as an energy balance. The correlations in the figure are computed after
removing the long-term averages of the different quantities, and negative or positive correlations
have to be interpreted as relative to those means. For example, when the time series for [ − u1∂1p]
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is plotted directly, it is always negative, showing that the integrated role of u1 is always to export
energy to the other components. Correspondingly, [u2∂2p] and [u3∂3p] are always positive, showing
that, when integrated over the box, they always receive energy from u1. What Figure 6(d) shows is
that u2 and u1 partially reverse roles during the later part of the burst, and that some energy flows
back from the former into the latter. That should compared to the histories in Figures 3(b) and 3(c),
and was mentioned in Sec. II B as one of the diagnostic features of the Orr mechanism.

A final question is whether it is possible to trace in the minimal boxes the tilting evolution
observed in the linearized solutions. Unfortunately, it is not easy. The inclination angles can easily
be computed by a suitably averaged version of the definition in (23), which can then be related
to the inclination of the short-distance contours of the two-point spatial autocorrelation functions
of the three velocity components. The time series of those three inclination angles are highly
correlated with each other, with correlation coefficients between 0.75 and 0.9, suggesting that
they represent properties of a common structure. They are also correlated with the bursts, with
correlation coefficients with the velocities of the order of 0.5–0.6 at the top of the velocity temporal
autocorrelation peaks, especially for u1 and u2. Unfortunately, except within the buffer layer, they
oscillate relatively little, and stay at values only slightly tilted forward from the vertical, making it
difficult to conclude much about their evolution. The reason is that local angles measure the geometry
over short distances of the smaller structures, of which there are many even in a minimal box. Any
average is therefore most probably near zero, which corresponds to a vertical orientation. Even so, it
is probably relevant that the angle closest to the vertical is the one for the wall-normal velocity, 〈ψ2〉
= 92◦, while the other two velocity components are more inclined, 〈ψ1〉= 99◦ and 〈ψ3〉= 103◦. Over
longer distances, it is known that the correlations of u1 tend to be long, those of u2 tall, and those of u3

wide,54 in agreement with the behavior of the linear models above. The velocity correlation functions
are energy-weighted averages that tend to represent the orientation of the strongest structures. We
have seen that the wall-normal velocity is strongest when the structures are vertical, while the
other two velocities keep growing, while they tilt forward. Moreover, the differences between the
two wall-parallel velocities agree with the ratio between the lift-up contributions to u1 and u3 in
(13)–(15), which is proportional to α3/α1. The streamwise velocity would tend to be stronger for
long structures with small α1, while the spanwise component would be stronger for wide ones with
small α3.

IV. THE EFFECT OF NONLINEARITY

A. How linear is wall-bounded turbulence?

While we have seen in Secs. II and III many similarities between linearized solutions and the
behavior of natural turbulence, the relative magnitudes of the linear and nonlinear terms in the
equations of motion still have to be established directly in the natural case, particularly regarding
the pressure terms that might be expected to contribute to Orr bursting.

The most straightforward way of doing so in full simulations is to compute the root-mean-
squared (r.m.s.) magnitudes of the right-hand sides of the various equations, such as N′2 ≡ 〈N2〉
in the full Navier–Stokes equation (1), or L′2 ≡ 〈L2〉 in the linearized version (3). Those two
accelerations are displayed as functions of x2 in Figure 7(a), which shows that the full nonlinear
acceleration N′ has very nearly the same magnitude as the linearized right-hand side L′. Moreover,
the magnitude of the difference (N − L)′ is much smaller than either of the two, showing that the
agreement of the two quantities is not coincidental, and that the full acceleration N is mostly linear.

Part of the reason is revealed in Figure 7(b), which shows semi-Lagrangian accelerations, such
as Ñ j = N j + U∂1u j , in which the effect of the advection by the mean flow has been removed.
Both in the linear and in the nonlinear case, the residual accelerations are much weaker than those in
Figure 7(a), showing that most of the linear contribution to the Eulerian acceleration is the advection
by the mean flow. Moreover, in this case, the residual linearized terms are substantially smaller than
the nonlinear ones, especially above the buffer layer. It turns out (not shown) that most of the linear
semi-Lagrangian acceleration is viscous, ν∇2u, while the r.m.s. magnitude of the pressure gradient,
∇p, which is part of Ñ , is almost equal to Ñ ′. The different magnitudes of L̃ ′ and Ñ ′ in Figure 7(b)
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FIG. 7. Root-mean-squared accelerations for channel C950, scaled in wall units. (a) Eulerian: ——, fully nonlinear N in
(1); – – –, Linear L in (3); − · − · −, |N − L|. (b) Semi-Lagrangian: ——, Ñ = N + U∂1u; – – –, L̃ = L + U∂1u. Symbols
represent velocity components: ◦ , u1; �, u2; 
, u3.

are therefore consistent with the known result that the pressure terms dominate the viscous ones in
the Lagrangian accelerations in isotropic turbulence,55 and also with the observation that the fast
pressure pL is a relatively small part of the total one.41, 56 However, the magnitude of the terms in
which the acceleration can be decomposed is not additive, because the terms are not necessarily
uncorrelated. Thus, while it can be concluded from the previous discussion that the much smaller
viscous term is not an important part of Ñ , the only reason why N and L can be claimed from
Figure 7(a) to be almost equal is that the magnitude of their difference is independently checked to
be small. The same is not true for Ñ and the pressure gradient. The fact that their r.m.s. magnitudes
are similar does not imply that the nonlinear advective term, −u∇u, which is the remaining part of
Ñ , is negligible. In fact, if we neglect viscosity, −∇p is the full Lagrangian acceleration (∂ t + u∇)u,
while Ñ = (∂t + U∂1)u is its Eulerian counterpart in the frame of reference of the mean flow. It is
known from isotropic turbulent that the latter is typically much weaker than the former57 because of
the sweeping of the small scales by the larger ones, implying substantial cancellation between the
two terms.

That the dominant semi-Lagrangian accelerations are nonlinear could have been expected a
priori because they are small-scale quantities, but inspection of their spectra (not shown) reveals
that, even if the difference between the linear and nonlinear terms becomes smaller for the larger
scales, the nonlinear terms dominate everywhere, except for very wide structures of u2, (λ2 � h), and
for very long ones of u1 (λ1 � 5h). The main conclusion from Figure 7(b) should be that any model
in which linearized pressure is the dominant energy-injection mechanism for u2 is incomplete.

Another interesting observation is that the magnitudes of the semi-Lagrangian accelerations
in Figure 7(b) are similar for the three velocity components above the buffer layer, while the full
acceleration for u1 is substantially smaller than the other two in Figure 7(a). That makes sense for the
pressure terms, which are isotropic, and for the viscous ones, which mostly involve small dissipative
scales, but it is a little surprising for the advective terms, which include the lift-up contribution u2U′

in both L̃ ′
1 and Ñ ′

1. The lower total acceleration of u1 in Figure 7(a) can only be due to weaker
streamwise gradients of that velocity component, even if the intensity of u1 is the highest of the
three.51 That is consistent with the longer streamwise dimensions of the u1 spectra,52, 56, 58 but implies
that part of the streamwise velocity is not only “inactive,” in the Townsend59 sense of not carrying
Reynolds stresses, but “passive” in the sense of evolving much more slowly than the other two
velocity components.

B. A nonlinear Orr mechanism

Given the similarities discussed above between turbulent bursting and the linearized Orr burst,
the realization that most of the acceleration beyond simple advection by the mean shear is nonlinear,
even for the wall-normal velocity involved in the Orr mechanism, is a little puzzling. However, it is
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FIG. 8. Sketch of the vortex street analyzed in the text.

important to realize that the Orr mechanism is not intrinsically linear, even if it is contained in the
linear approximation, and if it is easiest to analyze in a linear context.

In fact, it is easy to construct nonlinear Orr analogs. Consider the simple two-dimensional case
sketched in Figure 8, in which two infinite rows of identical point vortices of circulation γ = −π

slide past each other. Disregarding instability issues, both rows move without internal deformation,
while the inter-row distance changes as the vortices in the upper row slide relative to those in the
lower one. If the pitch of each row is �x1 = π , so that the circulation per unit length of each row
is unity, the velocity jump across the double vortex layer is 2U∞ = 2. Parametrize the problem by
the distance 2H between the rows at the moment in which the vortices pass directly on top of each
other, and the two rows are farthest apart. As the top row moves to the right and the bottom one to
the left along the dashed wavy trajectories in Figure 8, they preserve symmetry about the origin, so
that their positions can be fully described by the coordinates (x10, x20) of an arbitrary vortex in the
upper row. This problem is a variant of the analysis of vortex streets in Ref. 60. Defining a complex
variable, z = x1 + ix2, the velocity is given by

u1 − iu2 = i

2
[cot(z − z0) + cot(z + z0)], (27)

and the motion of the rows is governed by

dz∗
0

dt
= i

2
cot(2z0). (28)

The total kinetic energy is conserved once self-interactions and the free streams are removed,61 but it
is exchanged by the pressure between the two velocity components, as in the Orr mechanism. When
H � π , the two rows interact weakly, and the problem can be considered linear. As it approaches
the critical value H = log(1 + √

2)/2 ≈ 0.44,62 the interaction becomes more nonlinear and the
distance between the rows oscillates strongly. Below that limit, the two rows stop sliding, and the
vortices rotate around each other in pairs. Three sample trajectories are given in Figure 9(a), spanning
those limits.

−0.2 0 0.2
0
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x10/π

x
2
0
/
π

(a)

0 0.5 1

−0.5

0

ψ/π
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2 2
‖

(b)

FIG. 9. (a) Trajectories of a vortex in the upper row of the model problem in Figure 8, as it moves from left to right. (b)
Time evolution of the energy of the vertical velocity, versus the relative angle between the vortices. Lines are different row
separations: ——, H = 0.445; – – –, H = 0.5; − · − · −, H = 0.75; ◦ , homogeneous shear.
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As vortices pass on top of each other, their vertical velocities reinforce one another, and
the integrated magnitude of ‖u2

2‖ has a maximum. At those moments, their horizontal velocities
tend to cancel, and ‖u2

1‖ has a minimum. The opposite is true when the vortices are maximally
staggered, as shown in Figure 9(b). It is difficult in this case to define an appropriate mean shear
with which to normalize time, because the mean velocity profile is formed by two sharp steps at
the average position of the rows, but it follows from the previous discussions of the Orr bursts that
the relevant variable is the inclination angle of the flow features, which can be defined here as the
angle ψ = π/2 + arctan(x20/x10) between neighboring vortices in opposite rows. The three energy
histories in Figure 9(b) are plotted against that angle, which does not span the full range ψ = (0, π )
in this periodic problem. They collapse well over their respective ranges. The figure also includes
the burst (14) in a homogeneous-shear, plotted against the inclination angle of the wavefronts. It
also agrees reasonably well, although that particular agreement should not be taken too seriously.
Although it shows that the temporal scale, measured in terms of the inclination angle, is of the
same order of magnitude in both flows, the ambiguity appears in the scaling of ‖u2

2‖. There is no
well-defined zero-energy level in the case of the double vortex row. The energies in the figure are
given relative to their maxima, and scaled with U 2

∞. Conversely, there is no scaling velocity in the
homogeneous case, which has been plotted in the figure with the energy scaling resulting in the best
fit with the point-vortex case. No adjustment has been made to the angles in the abscissas.

Note that this example, along with others that could be similarly constructed, does not question
the linearity of the mechanism discussed in Sec. III. Rather, the implication is that the linearized ver-
sion is a particular case of a more general nonlinear phenomenon in which the pressure redistributes
energy between the different velocity components whenever two localized structures are carried past
each other by the velocity differences in the sheared flow. The localization of the structures was
represented in Sec. III by the wall-parallel periodicity, and in the case in this section by the vorticity
concentration in the point vortices. In the present two-dimensional case, the energy exchange has
no lasting effect, and the energy history is periodic in time. In the oblique cases in Sec. III (with
γ 3 �= 0) the burst of u2 leaves in its wake a permanent streak of the wall-parallel velocity components.

V. DISCUSSION AND CONCLUSIONS

In summary, we have reviewed the classical theory of inviscid linearized Orr bursts in homoge-
neous shear flow, and extended it to channels with turbulent profiles. We have shown that both cases
share similar dynamics for u2, at least above the buffer layer of the channel, strongly suggesting
that the dominant effect in the channel is the pressure in the Orr–Sommerfeld equation, rather than
the vorticity lift-up, since the latter is missing from the homogeneous shear. We have also observed
that, since the wall-parallel aspect ratio of the fluctuations can be absorbed in the viscosity of the
Orr-Sommerfeld equation, the inviscid character of the Orr mechanism implies that the spectrum of
u2 can be expected to be roughly isotropic in the horizontal plane. That is indeed the case in the
logarithmic layer, in contrast to other velocity components. On the other hand, we have noted in
passing that the mechanism very near the wall might be different. The second wall-normal derivative
of the mean velocity is large in that region,50 and the vorticity lift-up term of the Orr-Sommerfeld
equation might become important. For example, one of the consequences of that term is that the
flow can undergo a Kelvin–Helmholtz instability if U′′ vanishes. That does not happen above the
buffer layer, and is inhibited near the wall by the impermeability boundary condition but, if that
condition is relaxed by porosity63 or by other means,50 the Kelvin–Helmholtz instability reappears,
with vertical eigenfunctions that remain localized below x+

2 ≈ 30.50, 64

We have also analyzed the bursts in simulations of fully turbulent flows in computational
boxes that are minimal with respect to the structures of the logarithmic layer. We have shown that
they share many features with the linearized bursts, especially for the wall-normal velocity u2. For
example, the wall-parallel dimensions of the structures grow linearly with the distance to the wall
in both cases, and, when the temporal correlations of the logarithmic-layer bursts are normalized
with the local shear of the mean velocity profile, their temporal scales agree well with the bursts in
linearized channels. We have noted that shear scaling of the times is equivalent to the proportionality
to the distance to the wall observed in previous studies.28, 35 We have also shown that, during a
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burst, the pressure-redistribution terms in the energy equation act partially in opposite directions to
their normal ones. While, on the average, pressure in parallel shear flows exports energy from u1

into the two cross-stream velocities, the opposite is true during the last part of the bursts, and u2

exports energy into both u1 and u3. The same is not true, for example, of the peaks of u2
3, and is a

diagnostic characteristic of the Orr mechanism. Finally, although we have not been able to track the
temporal evolution of the inclination angles of individual turbulent structures, we have shown that
the linearized model is consistent with the known structure of the two-point correlation functions of
the three velocity components.

Even so, we have argued that a linearized Orr explanation for the observed turbulent bursts cannot
be complete, except in the sense that the main term in the equations of motion is overwhelmingly
the tilting of the structures by the sheared mean profile. The classical model for the generation
of the vortices in the buffer layer is that they result from the break-up of the streamwise velocity
streaks,18, 20 and there is ample evidence that the sequence of events in the bursts of the logarithmic
layer resemble closely that near the wall.28 In fact, the cross-correlations in Figure 6(c) clearly show
that u2

2 follows a previous maximum of u2
1. The inviscid Orr burst is autonomous, and develops over

an infinite time from zero-energy initial conditions, but, in real dissipative flows, it has to be seeded.
The best interpretation of the observations just discussed is that the Orr mechanism is the way in
which the flow implements the growth of the wall-normal velocities initiated by the instabilities
of the streamwise velocity streaks. The interesting point is that, since Orr bursts get their energy
directly from the mean shear, they answer the question of how the vertical velocities are maintained
and amplified even after the original streak has been destroyed. Their time scale, of the order of ten
shear times, is long enough to provide a delay mechanism by which the flow can be reorganized
after the streaks break down, and restarted after a while. The observed length of the bursting cycle,
Tuτ /x2 ≈ 6,28 equivalent to U′T ≈ 15, is consistent with such a delay.

A second reason to reject strict linearity is that, when the accelerations in the flow are measured
directly, they are found to be mostly nonlinear except for the dominant advection by the mean
velocity. In particular, the effect of the linearized “fast” pressure is found to be weak with respect to
the total pressure, in agreement with the relative magnitudes of the two pressure components.41, 56

However, we have shown by a simple example that the Orr mechanism is not necessarily linear. It
occurs whenever a vortical structure, whether weak or strong, overtakes another at a lower level of
a shear flow, and their cross-shear velocities reinforce each other.

The implied model is that, as the streak breaks down, it injects vorticity into the flow, which is
then amplified by the Orr mechanism into strong wall-normal velocities that eventually restart the
streak.
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