
Computers & Fluids 80 (2013) 37–43
Contents lists available at SciVerse ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/ locate /compfluid
A code for direct numerical simulation of turbulent boundary layers
at high Reynolds numbers in BG/P supercomputers
0045-7930/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compfluid.2012.07.004

⇑ Corresponding author.
E-mail address: guillem@torroja.dmt.upm.es (G. Borrell).
Guillem Borrell ⇑, Juan A. Sillero, Javier Jiménez
School of Aeronautics, Universidad Politécnica de Madrid, 28040 Madrid, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Received 16 September 2011
Received in revised form 11 June 2012
Accepted 6 July 2012
Available online 16 July 2012

Keywords:
DNS
Boundary layer
Turbulence
MPI
OpenMP
A new high-resolution code for the direct numerical simulation of a zero pressure gradient turbulent
boundary layers over a flat plate has been developed. Its purpose is to simulate a wide range of Reynolds
numbers from Reh = 300 to 6800 while showing a linear weak scaling up to 32,768 cores in the BG/P
architecture. Special attention has been paid to the generation of proper inflow boundary conditions.
The results are in good agreement with existing numerical and experimental data sets.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Turbulent boundary layers have an undeniable technological
importance. Roughly one third of the energy dissipated by the
movement of vehicles and transport through pipes is caused by
the presence of a turbulent boundary layer. This is the reason
why turbulent boundary layers were among the first flows to be
simulated [1].

Our current research is focused on understanding the flow in
the turbulent regions that are further from the wall, where range
of scales is wider, and the Reynolds number plays a significant role.
Our approach is to analyze data obtained from Direct Numerical
Simulation (DNS). While high Reynolds number simulations exist
for other wall bounded flows (mainly channels), similar data sets
were not available for boundary layers. The present code was
developed to generate them.

We needed a high resolution code that is able to perform a DNS
of a boundary layer that has good performance and excellent sca-
lability. The starting point was the parallel MPI-only code de-
scribed in detail in [2]. It needed severe modifications to satisfy
the additional constraints that the BG/P architecture introduces.
The most relevant change was to add a second level of parallelism
with OpenMP, necessary to achieve the desired degree of scalabil-
ity and performance; and an auxiliary domain to extend the com-
putational box.
Two different simulations using this code were completed in
two BG/P supercomputers using 32,768 cores, a zero pressure gra-
dient boundary layer over a flat plate with a Reynolds number
based on the momentum thickness of Reh = 1100 � 6800 on Intre-
pid at Argonne National Laboratory [3] and a forced boundary layer
with artificial roughness with Reh = 300 � 4200 [4] on Jugene at
Juelich Forschungszentrum.

1.1. Previous DNS of turbulent boundary layers at similar Reynolds
numbers

This is a domain-specific code designed to solve a zero pressure
gradient turbulent boundary layer in a rectangular domain. It is not
comparable to codes like nek5000 [5] that, while also achieving
excellent scalability in the same supercomputer architecture, are
general purpose and are designed to handle more complex
geometries.

One could classify previous simulations of turbulent boundary
layers on how they deal with the inhomogeneity of the streamwise
direction.

It is worth mentioning the pioneering work of Spalart [1], de-
spite covering a low range of Reh. Periodicity in the streamwise
direction was enforced with a multiple-scaling transform of the
coordinates as well as approximate treatment of the Navier–Stokes
equations. This simplification is accurate as long as the streamwise
growth of the boundary layer is small; therefore, it is only valid
when simulating a short domain.

Another technique to deal with the inhomogeneity is to enforce
periodicity by adding a fringe region at the end of the domain,

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.compfluid.2012.07.004&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2012.07.004
mailto:guillem@torroja.dmt.upm.es
http://dx.doi.org/10.1016/j.compfluid.2012.07.004
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


38 G. Borrell et al. / Computers & Fluids 80 (2013) 37–43
where the flow is forced back to the laminar regime. This technique
was applied, for instance, in [6–8], where the simulation ranges up
to Reh = 4060. While this method is useful to study the phenome-
non of laminar-turbulent transition, it requires to start from a lam-
inar flow condition. This may be a limiting factor when the region
of interest is only the one further downstream. It also requires
some perturbation to trigger turbulence, what makes the flow
dependant on the tripping technique. On the other hand, it allows
periodic treatment of the streamwise direction, and simplifies the
algorithm significantly.

Finally, one can generate an inflow boundary condition that is
already turbulent. While [2,9,10] rescale the flow with a scheme
similar to the one proposed by Lund et al. [11] and Ferrante and
Elghobashi [12] extended the cited method. The idea is to pick
one cross-stream plane at an intermediate part of the domain,
and to recycle it as inflow boundary condition. Two aspects must
be taken into account: the separation between inflow and the recy-
cled plane must be wide enough to ensure their independence, and
the rescaling should take into account that the turbulent motion
involves multiple scales, not only boundary layer thickness. In
these simulations, the streamwise direction is non-periodic and a
finite-difference scheme has to be used. While this approach per-
mits the simulation to start at almost any given value of Reh, the
recycling process introduces an artificial inflow. All the scales have
to evolve until they reach their asymptotic state; hence a portion of
the simulation domain has to be discarded. A discussion about this
accommodation length scale can be found in [13].

Compared to the previous related simulations, this code is fo-
cused on achieving the highest Reynolds number possible with
the given computational resources. For example, the target for
the smooth-wall case was to reach a friction Reynolds number
Res = 2000, so that it could be compared with an existing simula-
tion [14]. That comparison introduces additional constraints
regarding box size and resolution. At such Res the flow is fully tur-
bulent, there is no need to simulate the transition, and the recy-
cling scheme of the previous implementation is kept.

Another key difference between the current code and the previ-
ous ones is that, despite running efficiently on any distributed
memory supercomputer, it was tuned for a specific supercomput-
ing architecture that imposes severe constraints on domain
decomposition, communications and I/O.

It was also our intention to design an application as flexible as
possible that was able to generate data sets at even higher Res
without introducing further design modifications in the next gen-
eration of supercomputers. Therefore, one of our goals is also to
share implementation details that can be useful to design similar
large-scale simulations.

The organization of the paper is as follows: A basic description
of the code is given in Section 2, followed in Sections 2.1–2.5 by the
most relevant modifications to its previous version. Scalability is
addressed in Section 3; and parallel Input/Output, a new feature,
is commented in Section 4. Finally, validation and conclusions
are in Sections 5 and 6 respectively.
Fig. 1. Schema of the computational d
2. The numerical code

The boundary layer is simulated in a parallelepiped over a
smooth wall, with spatially periodic boundary conditions in the
spanwise direction, but with non-periodic inflow and outflow in
the streamwise direction. The code uses a well-established frac-
tional-step method [15,16] to solve the incompressible Navier–
Stokes equations expressed in primitive variables, using spectral
expansions in the spanwise direction, and compact finite differ-
ences [17] in the other two. A three sub-step, semi-implicit low
storage Runge–Kutta scheme, in which wall-normal second deriv-
ative terms use a Crank–Nicholson scheme to increase the time
step, is used to evolve the equations in time. A full description of
the algorithm can be found in [2].

For the problem considered, spatial derivatives are tightly cou-
pled operations. Our code is constructed in such a way that only
single data lines along one of the coordinate directions at a time
have to be accessed globally. However, all the three directions have
to be treated in every sub-step.

The code is single precision in the I/O operations and communi-
cations and double precision in the differentiation and interpola-
tion operations where the implicit part of the compact finite
differences and the fast Fourier transform can cause loss of
significance.

2.1. Computational setup

A schema of the computational domain can be seen in Fig. 1.
The x, y, and z axes correspond to the streamwise, wall-normal
and spanwise directions, respectively. The simulation is split in
two concatenated domains with different boundary conditions.
The planes pi and p0i are given inflow boundary conditions, and
outflow boundary conditions are assigned to pe and p0e. The bound-
ary conditions at the top of the boxes, pt and p0t , impose a zero
pressure gradient on the domain. Finally, the spanwise direction
is considered periodic. The purpose of the first boundary layer
(BL1) is to provide accurate inflow boundary conditions to the sec-
ond one (BL2). The inflow of BL1 is obtained from its own plane p1

that is rescaled using a method based on the one proposed by [11].
The physical length of BL1 is chosen to be long enough to let the
large scales recover from an unrealistic initial condition, and once
this asymptotic state has been reached, the plane p2 is used to give
BL2 its inflow boundary condition. As a consequence, a small por-
tion of the BL1 simulation is thrown away.

Given that the goal of BL1 is to allow the large scales to reach
their asymptotic state and, given that the smaller scales reach a
similar condition far more rapidly, BL1 is run at a coarser resolution
than BL2. This setup permits computing a single boundary layer
with significantly less computational work.

The separation between adjacent collocation points is deter-
mined by the resolution of the spatial discretization scheme and
the local Kolmogorov scale. This scale changes depending on the
distance to the wall, so using a non-uniform mesh in the wall
omain and boundary conditions.



Fig. 2. Elemental domains of the domain decomposition.

Table 1
Computational setup for the auxiliary BL1 and main BL2 boundary layers: Nt is the
total number of degree of freedoms in giga points; Time/DoF is the amount of total
CPU (core) time spent to compute a degree of freedom for every step.

Case Reh Nodes Nx � Ny � Nz Nt ðGpÞ Time/DoF

BL1 1100–3000 512 3585 � 315 � 2560 2.89 13.98 ls
BL2 2800–6650 7680 15,361 � 535 � 4096 33.66 18.01 ls

Fig. 3. Predefined (left) and custom (right) node mapping for a 8192 node partition
in a [8, 32, 32] topology. The predefined mapping assigns to BL1 the nodes in a [8,
32, 2] sub-domain. Custom mapping assigns the nodes to a [8, 8, 8] sub-domain. BL2

is mapped to the rest of the domain till complete the partition.

G. Borrell et al. / Computers & Fluids 80 (2013) 37–43 39
normal direction is essential to save memory. To achieve a Rey-
nolds number based on the friction velocity of up to Res = 2000 a
computational box for the second domain of size 15,360 �
535 � 4096 for a total of 35 � 109 points per variable.

2.2. Domain decomposition and MPI communications

To take advantage of the distributed memory architectures, the
computational domain must be partitioned. The only possible
decomposition that guaranteed portability to the Blue Gene/P
architecture was to use cross-stream planes schematized in Fig. 2
as pi.

To compute interpolations and derivatives over the x coordinate
it is necessary to transpose the whole variable. This operation cre-
ates another elemental domain partition formed by lines in the
streamwise direction, labeled in the Fig. 2 as -i. Once these com-
putations are finished the result is transposed back to planes pi.
A more traditional plane-to-plane transpose would be much sim-
pler but it is not possible on the present supercomputer architec-
ture. The low available amount of memory per node and the
need for a large computational domain mandate that no essential
domain decomposition based on planes that includes the stream-
wise direction can be stored as a whole. The -i pencils can be con-
sidered as a secondary partition of such plane.

Each of these two boundary layers is mapped to an MPI group.
The first group runs the auxiliary simulation at coarse resolution
and it consists of 512 nodes while the second MPI group comprises
7680 nodes and runs the main one in high resolution. The first MPI
group is only about 8.5% of the total computational cost. This infor-
mation is shown in Table 1.

The two computational domains communicate with each other
only twice per sub-step, to send the p2 plane from BL1 to BL2 and to
synchronize the time step, using an additional MPI group that in-
cludes all the processes.

The work done by each group must be balanced since each MPI
group must wait for the other one in global operations, otherwise
one group will slow down the other one that must remain idle
waiting for the other group. The worst-case scenario occurs when
the auxiliary simulation slows down the main one. The time taken
by communication for the auxiliary simulation has been improved
using a customized node topology described in Section 2.4.

2.3. Global transposes and collective communications

Roughly 45% of the overall execution time is spent transposing
the variables from planes to pencils and back; therefore, it was
mandatory to optimize the global transpose as much as possible.
Preliminary tests revealed that the most suitable communication
strategy was to use the MPI_ALLTOALLV routine and the BG/P torus
network. This method is twice as fast than our previous custom
transpose routine based on point-to-point communication over
the same network implemented in [2].

The global transpose is split into three sub-steps. The first one
changes the alignment of the buffer containing a variable and casts
the data from double to single precision to reduce the amount of
information to be communicated. If more than one p plane is
stored in every node then the buffer comprises the portion of con-
tiguous data belonging to that node in order to keep message sizes
as big as possible.

The second sub-step is a call to the MPI_ALLTOALLV routine. In
this case the possibility of performing collective communications
with derived datatypes would simplify the algorithm, but unfortu-
nately it is not a feature of the present MPI standard. This is the
reason why the global transpose is split into three sub-steps.

The third and last sub-step transpose the resulting buffer align-
ing the data --wise. This last transpose has been optimized using a
blocking strategy because the array to be transposed has many
times more rows than columns. The whole array is split into smal-
ler and squarer arrays that are transposed separately. The aspect
ratio of those smaller arrays is optimized for cache performance
using collected data from a series of tests. Finally the data is cast
to double precision again.

The procedure to transpose from -i pencils to pi planes is sim-
ilar and is split in three sub-steps too.

2.4. Blue Gene/P node mapping

Mapping virtual processes onto physical processors is one of the
essential issues in parallel computing, a field of intense study in the
last decade. Proper mapping is critical to achieve sustainable and
scalable performance in modern supercomputing systems.

Blue Gene/P has a torus network topology except for allocations
smaller than 512 nodes, in which the torus degenerates to a mesh.
Therefore, each node is connected to six nodes by a direct link. The
location of a node within the torus can be described by three coor-
dinates [X, Y, Z].

Different physical layouts of MPI tasks onto physical processors
are predefined depending of the number of nodes to be allocated.
The predefined mapping for a 512 node partition is a [8, 8, 8] topol-
ogy, while for 8192 nodes it is [8, 32, 32] as it is shown in Fig. 3.

Changing the node topology completely changes the graph
embedding problem and the path in which the MPI message trav-
els. This can increase or decrease the number of hops needed to
connect one node to another, and as a result, alter the communica-
tion time to send a message. Fine tuning for specific problems can
considerably improve the time spent in communications. Table 2
shows different mappings that have been evaluated for our specific
problem size. The custom mapping reduces the communication



Table 2
Time spent in communication during global transposes. Different node topologies are
presented for 10 time steps and for each boundary layer. Times are given in seconds.

Topology Nodes Comm. BL1 Comm. BL2

Predefined [8, 8, 8] 512 27.77 —
Custom [32, 32, 8] 8192 79.59 86.09
Predefined [32, 32, 8] 8192 160.22 85.44

Table 3
OpenMP scalability test performed on 512 nodes. Two efficiencies are given: E is
based on the computation time only (Comp: T .) and g is based on the total time per
step (Total T.) and is lower given that only one of the OpenMP threads is able to
transfer data to other processes. Times are given in seconds.

Nthreads Comp. T E Total T g

1 60.820 1 70.528 1
2 30.895 0.984 38.951 0.905
4 16.470 0.923 24.438 0.721

Table 4
Data collected from the profiled test cases. Time/DoF is the amount of total CPU (core)
time spent to compute a degree of freedom for every step; Nt is the size in GiB of a
buffer of size Nx � Ny � Nz; Comm. is the percentage of the time spent on MPI
communications respect the total.

Nodes Nx � Ny � Nz Nt Time/DoF Comm. Symbol

512 1297 � 331 � 768 0.33 10.6 ls 17.9% I

1024 3457 � 646 � 1536 3.43 17.6 ls 44.7% J

2048 6145 � 646 � 1536 6.10 17.4 ls 46.0% N

4096 8193 � 711 � 1536 8.94 17.6 ls 44.6% .

8192 8193 � 711 � 2048 11.93 19.4 ls 37.4% �

8192 16,385 � 801 � 4608 60.47 19.3 ls 39.7% j

40 G. Borrell et al. / Computers & Fluids 80 (2013) 37–43
time for BL1 by a factor of two. The work load for BL1 is estimated
using this new communication time while the load for BL2 is fixed.
Balance is achieved minimizing the time in which BL1 or BL2 are
idle in the global communications.

The choice of a user-defined mapping is motivated due to the
particular distribution of nodes and MPI groups. The first boundary
layer BL1 runs in 512 MPI processes mapped onto the first 512
nodes, while BL2 runs in 7680 MPI processes mapped onto the
nodes ranging form 513 to 8192. The optimum topology for our
particular problem would be the one in which the number of hops
for each MPI group is minimum since collective communications
occur locally for each group. For a single 512 node partitions the
optimum is the use of [8, 8, 8] topology, in which messages travel
within a single communication switch. We have found the opti-
mum mapping for BL1 to be [8, 8, 8] sub-domain within the prede-
fined [8, 32, 32], as shown in the right side of Fig. 3. BL2 is mapped
to the remaining nodes using the predefined topology and no other
mappings have been further tested. Although a [8, 8, 8] topology is
used for BL1 by analogy with the single 512 node partition,
communication time is nevertheless greater. This is due to the
sub-optimal performance of using a 2D mesh instead of a 3D torus
network, as already discussed. Finally, the reason can be found in
the new hardware connection, since the 512 nodes and 8192 nodes
of the 3D torus network are physically connected in a different
way. This leads to the increase in the number of hops for BL1

collective communications, since messages cannot travel within a
single communication switch anymore.

The methodology to optimize communications for another size
partitions would be similar to the one just described: mapping vir-
tual processes to nodes that are physically as close as possible so
the number of hops is minimized.
2.5. The hybrid MPI-OpenMP approach

Introducing OpenMP adds a second domain decomposition to
the pi and -i used for MPI. The most important non trivial uses
of OpenMP are the parallelization of the compact finite differences
operators for wall-normal derivatives, that require a tridiagonal
solver, and the Fast Fourier Transforms in the spanwise direction.
While threaded versions of both band-diagonal solvers and FFT ex-
ist, our decision was to handle the OpenMP parallel regions by
hand to ensure portability between the different available
platforms.

It is important to state that the reason to mix concurrency and
parallelism was not driven by the need for more performance but
because the small memory capacity of the Blue Gene/P node, which
does not allow a physically-significant block of data to be allocated
to each core. For instance, in the forced boundary layer case, a sin-
gle p plane is stored in every node that has been assigned to BL2.
While very special attention was payed to the collective transpose,
that takes almost half of the runtime, the goal of using OpenMP
was to use all the available resources of the node. Once we
achieved the required scalability and performance, no further tun-
ing was explored.

Some tests were run in a 512 node configuration after porting
the code to OpenMP. The results are shown in Table 3. These
samples suggest that almost no penalty is paid when the computa-
tions are parallelized with OpenMP.

3. Scalability

Extensive data about scalability was collected during the test
runs in a BG/P system. The most relevant cases are listed in the
Table 4.

All the simulations run keep a linear weak scaling up to 8192
nodes (32,768 cores). The same code is expected to scale further
without modifications, although larger node partitions have been
not tested yet.

Fig. 4b. Communication time is typically 40% of the total run
time, and that both computation and communication are scaling
as expected. The global transpose implementation shows excel-
lent scalability in all the test cases shown in Fig. 4a. It is impor-
tant to mention that, in the BG/P supercomputer architecture,
the linear scaling is kept even when the estimated message size
is about 1 kB in size. All our previous implementations of the
global transpose in more conventional high performance net-
works broke the scalability near the 3 kB estimated message size
limit.

4. Parallel I/O

Intermediate stages of the simulation in the form of flow fields
(velocities and pressure) are an important result and are saved
even more often than would be required for checkpointing. An-
other mandatory feature to maintain the scalability with a large
node count is the support for parallel collective I/O operations
when a parallel file system is available. A handful of alternatives
have been tested on parallel file systems, such as the use of raw po-
six calls enforcing the file system block size, sionlib (developed at
Juelich) and parallel HDF5 [19].

HDF5 is a more convenient choice for storing and distributing
scientific data than the alternatives tested because, despite having
better performance [18], they require translating the resulting files
to a more useful format. Unfortunately, sufficient performance
could not be achieved without tuning the I/O process. HDF5 perfor-
mance depends on the availability of a cache in the file system. The



Fig. 4. Latency analysis (a) and scalability of the total and communication time for different test cases. (b) Solid lines are linear regressions computed before taking
logarithms of both axis.

G. Borrell et al. / Computers & Fluids 80 (2013) 37–43 41
observed behavior in the BG/P systems was that writing was one,
and sometimes two, orders of magnitude slower than reading be-
cause in the GPFS used the write cache was turned off. To over-
come this issue, when the MPI I/O driver for HDF5 is used, the
sieve buffer size parameter of HDF5 can be set to the file system
block size. The resulting write bandwidth for 8192 nodes in the Ju-
gene BG/P system was increased up to 16 GiB/s, which is similar to
the read bandwidth 22 GiB/s and closer to the estimated
maximum.
(a) (

(c) (

(e)

Fig. 5. Experiments by [21], �, Reh = 5261; and [22], �, Reh = 5156. Simulations by [
discontinuous straight line in (a). (e) Two-dimensional premultiplied energy spectra kxkz

and boundary layers (dashed), present and [20].
5. Validation

The numerical scheme is identical to the previous version of the
code, which was appropriately validated in [2] and in [20], where it
was also compared with other experiments and simulations at
comparable Reynolds numbers. However, some basic one-point
statistics are presented for the present high Reynolds number sim-
ulation, showing excellent agreement with numerical and experi-
mental data sets too.
b)

d)

8], - -, Reh = 4060; present, —, Reh = 4060, 5261. The law logðyþÞ=0:4þ 5 is the
EuuðkÞ at three Reynolds numbers and 15 wall units height for channels [14] (solid)



Fig. 6. Non dimensional enstrophy contour jx0þj ¼ 0:4 at Reh = 6500, Res ’ 2000.
The contour is colored with the distance to the wall. The stream goes from bottom-
right to top-left. The box corresponds to a small portion of the simulation at the
mentioned Reynolds number, approximately 1.1 boundary layer thickness wide and
1.5 boundary layer thickness long.

42 G. Borrell et al. / Computers & Fluids 80 (2013) 37–43
In Fig. 5a–d are shown the mean and fluctuations of the velocity
profiles of the present simulation compared with other available
experimental [21,22] and numerical [8] data sets for two different
Reynolds numbers. The agreement is excellent.

Fig. 5e presents the premultiplied energy spectrum kxkzEuu

where k stands for the wavenumber k ¼ 2p=k associated to the
wavelength k. Three different Reynolds numbers (Res = 550, 980,
and 2000) at height 15 wall units have been considered. It is a more
complete check than one-point statistics because it shows the en-
ergy contained in eddies of any size at a given distance to the wall.

The inner contour are the wavelengths whose energy is the 54%
of the most energetic modes, while the outer corresponds to the
14% of this peak. The energy spectrum contains information for
all the scales, ranging from the smallest ones at the Kolmogorov
scale, to the largest ones of the order of the edge of the boundary
layer thickness. For example, the new simulation has enough reso-
lution (fine mesh) to resolve the smallest energy-containing eddies
as well as the largest ones where the energy reside. Close to the
wall both channels and boundary layers (including the new simu-
lation) are very similar at small scales, where they are Reynolds
independent. The footprint of the largest structures, which de-
pends on the Reynolds number, appears in the spectrum as a han-
dle in the top-right corner, and the length of those eddies increases
with the Reynolds number (see Fig. 6).
6. Conclusions and future work

A hybrid OpenMP-MPI code has been developed from its origi-
nal MPI version to perform direct numerical simulations of bound-
ary layers over smooth walls at high Reynolds numbers. The code
has been tested in a Blue Gene/P computer using up to 8192 MPI
processes, and four threads per process for OpenMP, showing good
scalability for both MPI and OpenMP.

Some of the changes were necessary because of the architec-
ture, like hybrid parallelism, all-collective communications and
parallel I/O. Others were introduced to correct the somehow
unpredictable influence of the inflow boundary conditions at large
Reynolds numbers in turbulent boundary layers. This coupled the
problem of defining the simulation and tuning the code. The solu-
tion here presented is the result at the end of this process.

The simultaneous use of OpenMP and MPI was relatively
straightforward in our case, and is becoming a common feature
in modern scalable codes. Collective communications are a similar
case; once the global transposed was modified according to the
suggestions of the Blue Gene handbook and system administrators,
performance and scalability were improved significantly.
The approach of simulating two different computational do-
mains, each at a different resolution, has proven to be effective
and can be used in other spatially developing turbulent flows.
However, it became an issue for our communications scheme.
The solution was to separate the auxiliary low-resolution and the
main high-resolution simulation in two different MPI groups and
to define a customized mapping of processes onto physical proces-
sors. While this particular kind of tuning is not necessary when the
process count is low, it is crucial when one is using thousands of
nodes over torus networks.

Parallel I/O had a large impact too, despite its performance
changes depending on the particular hardware configuration of
the platform.

At the time of publication of this paper two simulations using it
have been successfully completed, each one producing valuable
data for the study of wall bounded turbulence and boundary layers
in particular.

Some features of this new code are considered mandatory for
the new generation of supercomputers. We hope that this experi-
ence can be a guideline for porting similar codes. Some implemen-
tation details that are described are particular to the Blue Gene/P
and their applicability to other present supercomputing architec-
tures is arguable. However, it is probable that the next generation
of supercomputers will share important architectural characteris-
tics with the BG/P and that some features of this implementation
are mandatory to push the Reynolds number limit further. This
code is designed to generate large datasets. A snapshot of the big-
ger case, that achieves Res = 2000, requires approximately 0.6 TiB
of disk space. Post-processing this kind of result is a challenge on
itself, for instance, to generate the enstrophy contour of Fig. 6, a
visualization cluster had to be used.
Acknowledgements

This research used resources of the Argonne Leadership Com-
puting Facility at Argonne National Laboratory, which is supported
by the Office of Science of the US Department of Energy under con-
tract DE-AC02-06CH11357. The resources in Juelich Forgschungs-
zentrum were provided by the PRACE initiative. The work by
Guillem Borrell was funded by CICYT under grant TRA2009-
11498. Juan A. Sillero was supported by an FPU fellowship from
the UPM. This work was also funded by Consolider CSD2007-
00050. Fig. 6 was generated with the help of the Barcelona Super-
computing Center.
References

[1] Spalart PR. Direct simulation of a turbulent boundary layer up to Reh = 1410. J
Fluid Mech 1988;187:61–98.

[2] Simens MP, Jiménez J, Hoyas S, Mizuno Y. A high-resolution code for turbulent
boundary layers. J Comput Phys 2009;228:4218–31.

[3] Sillero JA, Borrell G, Gungor AG, Jiménez J, Moser RD, Oliver TA. Direct
simulation of the zero-pressure-gradient boundary layer up to Reh = 6000. In:
Proceedings of the divisional fluid dynamics, EB-4. College Park, MD: Am. Phys.
Soc.; 2010.

[4] Borrell G, Gungor AG, Jiménez J. Direct numerical simulation of a high-
entrainment turbulent boundary layer. APS divisional fluid dynamics meeting.
Baltimore USA, November 20–22 2011.

[5] Fischer PF, Lottes JW, Kerkemeier SG. nek5000 Web page; 2008. <http://
nek5000.mcs.anl.gov>.

[6] Khurajadze J, Oberlack M. DNS and scaling laws from new symmetry groups of
zpg turbulent boundary layer flow. Theor Comput Fluid Dynam
2004;18:391441.

[7] Wu X, Moin P. Direct numerical simulation of turbulence in a nominally zero-
pressure-gradient flat-plate boundary layer. J Fluid Mech 2009;630:5–41.

[8] Schlatter P, Örlü R. Assessment of direct numerical simulation data of
turbulent boundary layers. J Fluid Mech 2010;695:116–26.

[9] Lee JH, Sung HJ. Direct numerical simulation of a turbulent boundary layer up
to Reh = 2500. Int J Heat Fluid Flow 2011;32:1–10.

http://nek5000.mcs.anl.gov
http://nek5000.mcs.anl.gov


G. Borrell et al. / Computers & Fluids 80 (2013) 37–43 43
[10] Pirozzoli S, Bernardini M, Grasso F. Direct numerical simulation of transonic
shock/boundary layer interaction under conditions of incipient separation. J
Fluid Mech 2010;657:361–93.

[11] Lund TS, Wu X, Squires KD. Generation or turbulent inflow data for spatially-
developing boundary layer simulations. J Comput Phys 1998;140:233–58.

[12] Ferrante A, Elghobashi S. A robust method for generating inflow conditions for
direct simulations of spatially-developing turbulent boundary layers. J Comput
Phys 2004;198:372–87.

[13] Sillero JA, Jimnez J, Moser RD, Malaya NP. Direct simulation of a zero-pressure-
gradient turbulent boundary layer up to Reh = 6650. J Phys: Conf Ser
2011;218:022023.

[14] Hoyas S, Jiménez J. Scaling of the velocity fluctuations in turbulent channels up
to Res = 2003. Phys Fluids 2006;18:011702.

[15] Harlow FH, Welch JE. Numerical calculation of time dependent viscous
incompressible flow of fluid with free surface. Phys Fluids 1965;8:2182.
[16] Perot JB. An analysis of the fractional step method. J Comput Phys
1993;108:51–8.

[17] Lele SK. Compact finite difference schemes with spectral-like resolution. J
Comput Phys 1992;103:16–42.

[18] Frings W, Wolf F, Petkov V. Scalable massively parallel I/O to task-local files.
In: Proceedings of the conference on high performance computational
networking, storage and analysis, vol. 17; 2009. p. 17:1–11.

[19] The HDF Group. (2000–2010) Hierarchical data format version 5. <http://
www.hdfgroup.org/HDF5>.

[20] Jiménez J, Hoyas S, Simens MP, Mizuno Y. Turbulent boundary layers and
channels at moderate Reynolds numbers. J Fluid Mech 2010;657:335–60.

[21] De Graaf DB, Eaton JK. Reynolds number scaling of the flat-plate turbulent
boundary layer. J Fluid Mech 2000;422:319–46.

[22] Österlund JM, Johansson AV, Nagib HM, Hites M. A note on the overlap region
in turbulent boundary layers. Phys Fluids 2000;12:1–4.

http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5

	A code for direct numerical simulation of turbulent boundary layers at high Reynolds numbers in BG/P supercomputers
	1 Introduction
	1.1 Previous DNS of turbulent boundary layers at similar Reynolds numbers

	2 The numerical code
	2.1 Computational setup
	2.2 Domain decomposition and MPI communications
	2.3 Global transposes and collective communications
	2.4 Blue Gene/P node mapping
	2.5 The hybrid MPI-OpenMP approach

	3 Scalability
	4 Parallel I/O
	5 Validation
	6 Conclusions and future work
	Acknowledgements
	References


