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One-point statistics are presented for new direct simulations of the zero-pressure-
gradient turbulent boundary layer in the range Reθ = 2780–6680, matching channels
and pipes at δ+ ≈ 1000–2000. For tripped boundary layers, it is found that the eddy-
turnover length is a better criterion than the Reynolds number for the recovery of the
largest flow scales after an artificial inflow. Beyond that limit, the integral parameters,
mean velocities, Reynolds stresses, and pressure fluctuations of the new simulations
agree very well with the available numerical and experimental data, but show clear
differences with internal flows when expressed in wall units at the same wall distance
and Reynolds number. Those differences are largest in the outer layer, independent of
the Reynolds number, and apply to the three velocity components. The logarithmic
increase with the Reynolds number of the maximum of the streamwise velocity and
pressure fluctuations is confirmed to apply to experimental and numerical internal
and external flows. The new simulations also extend to a wider range of Reynolds
numbers, and to more than a decade in wall distance, the evidence for logarithmic
intensity profiles of the spanwise velocity and of the pressure intensities. Streamwise
velocity fluctuations appear to require higher Reynolds numbers to develop a clear
logarithmic profile, but it is argued that the comparison of the available near-wall
data with fluctuation profiles experimentally obtained by other groups at higher
Reynolds numbers can only be explained by assuming the existence of a mesolayer
for the fluctuations. The statistics of the new simulation are available in our website.
C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4823831]

I. INTRODUCTION

Internal and external wall-bounded turbulent flows have been subjects of intensive research be-
cause of their technological importance and fundamental physical interest, and, since the pioneering
work of Kim, Moin, and Moser,1 direct numerical simulations (DNS) have played a fundamental
role in our understanding of their properties. With the increase of computer power, the Reynolds
number of simulations has increased steadily, although initially mainly for channels. The Reynolds
number of numerical boundary layers has increased more slowly because of the difficulties posed
by their streamwise inhomogeneity and the need for high-quality inflow conditions. The same is
true for pipes because of the challenge of finding a suitable representation for the flow near the
pipe axis. Nevertheless, it is becoming possible to compare results for different flows at relatively
high Reynolds numbers. In this paper we present a new simulation of the zero-pressure-gradient
turbulent boundary layer at a Reynolds number, Reθ ≈ 6600 (δ+ ≈ 2000), comparable to those of the
largest available channels,2 and compare the results with the available experiments and simulations
of internal and external flows.
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To correlate different flows we use the Kármán number, δ+ = uτ δ/ν, based on the kinematic
viscosity ν, on the streamwise-dependent friction velocity uτ , and on the flow thickness δ, which
is taken to be the half-width in channels, the 99% thickness in boundary layers,3 and the radius
in pipes.4 The “+” superscript denotes normalization with uτ and ν. The Reynolds number
Reθ = U∞θ /ν is defined for boundary layers in terms of the momentum thickness θ and of the
free-stream velocity U∞.

Our first goal is to characterize the initial development of the velocity statistics in experimentally
or numerically tripped boundary layers. In the careful study by Erm and Joubert5 of the effect of
different experimental tripping devices, the authors conclude that the differences observed in the
mean velocity profile disappear beyond Reθ ≈ 3000. Likewise, Schlatter and Örlü6 analyze the effect
of different low-Reynolds-number trips on their DNS statistics, and show that a well-established
boundary layer is attained at Reθ ≈ 2000. On the other hand, Simens et al.7 proposed that the turnover
length, defined as the distance Lto = U∞δ/uτ by which eddies are advected during a turnover time
δ/uτ , provides a better description than the Reynolds number of how fast boundary layer simulations
recover from synthetic inflow conditions. They found that at least one eddy-turnover is required for
most flow scales to decorrelate from the inlet. Using the new data, we will compare the relative
merits of the Reynolds number and of the turnover length as indicators of recovery, and we will show
that the recovery length of the largest scales is considerable longer than the decorrelation length
mentioned above.

Our second goal is to examine the universality of the mean and fluctuating velocity profiles in
the near-wall and logarithmic regions, and to inquire on the similarities and differences between
internal (channels and pipes) and external (boundary layers) flows. The universality of the velocity
fluctuations in the inner layers has been analyzed before. The early expectations that the fluctu-
ation intensities scale strictly in wall units8 were eventually found to be incorrect,2, 9, 10 and had,
in any case, been shown to be unfounded by Townsend,11 who noted that the wall-parallel veloc-
ities should include a Reynolds-number-dependent “inactive” contribution, associated with outer
structures extending down to the viscous sublayer. The question has been extensively discussed
over the last decade, both numerically and experimentally, but it is still not fully resolved. While
most researchers find an increase of the near-wall intensities with the Reynolds number,3, 4, 12–16 in
agreement with Townsend11 argument, one particular group does not, even at the highest Reynolds
numbers experimentally available.17, 18 The steady increase of the Reynolds numbers of the simu-
lations, which generally have fewer statistical and resolution uncertainties than experiments, will
allow us to update the data on that point and, in the process, to examine the evidence for the log-
arithmic profiles of the intensities of the fluctuating velocities and of the pressure,3, 18 which were
also predicted by Townsend.11

Because these near-wall effects are connected with outer structures,11 they have to be exam-
ined together with the question of the differences between internal and external flows, which are
predominantly outer effects. Jiménez and Hoyas,3 after examining a wide range of experiments and
numerical simulations, identified differences in the fluctuations of the transverse velocities (span-
wise and wall-normal velocity components) and of the pressure. Those differences were confirmed
by Buschmann and Gad-el-Hak14 using additional data, and Jiménez et al.15 later used DNSs of
boundary layers and channels at δ+ ≈ 400–700 to show that they could be explained by the effect of
the large-scale intermittency in external flows. They found that the largest differences between the
two kinds of flows are located just above the logarithmic layer (y/δ ≈ 0.3–0.5), where y is the distance
to the wall, but their limited Reynolds numbers prevented them from establishing the scaling of that
distance. Similar results have been obtained more recently by Lee and Sung,19 who compared DNSs
of boundary layers and pipes at δ+ ≈ 930. We will extend them to the higher Reynolds numbers of
the present simulations, and clarify the behavior of the streamwise velocity fluctuations, which was
unclear in previous studies.

The article is organized as follows. Section II describes the new boundary layer simula-
tions. Section III examines the streamwise development length required for the initial recovery
of boundary layers, while Sec. IV discusses one-point statistics, and compares them to exist-
ing numerical and experimental boundary layers, channels, and pipes. Conclusions are offered in
Sec. V.
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II. NUMERICAL EXPERIMENTS

The boundary layer is simulated in a parallelepiped over a flat plate with periodic spanwise
boundary conditions and non-periodic streamwise and wall-normal directions. The velocity compo-
nents in the streamwise (x), wall-normal (y), and spanwise (z) directions are u, v, and w, respectively.
The numerical code solves the primitive-variable formulation of the incompressible Navier-Stokes
equations, using a fractional step method20 to ensure mass conservation. Staggered three-points
compact finite differences21 are used for the spatial discretization of the derivatives in the x and y
directions, except for the Poisson equation for the pressure, in which second-order finite differences
are used. The representation in the spanwise direction is Fourier spectral, dealiased using the 2/3
rule, and time marching is a semi-implicit three-step Runge Kutta.22 A detailed description of the
problem formulation, the numerical scheme, and its validation can be found in Ref. 7.

Table I summarizes the simulation parameters for the different boundary layers used below.
The simulation BL2100 was discussed in Ref. 15, and is included here to allow comparison with
experiments at lower Reynolds numbers. The simulation BL0 was a first unsuccessful attempt to
increase the Reynolds number up to δ+ ≈ 2000. Its set-up is sketched in Figure 1(a). It is analogous to
the older simulation BL2100, but uses about fourteen times more grid points, over a higher Reynolds
number range. The inflow boundary condition is generated using a version of the rescaling method
in Ref. 23, in which the fluctuating velocities from a reference downstream plane Xrec are used to
create the incoming turbulence. The only minor deviation from the method in Ref. 23 is to use
a y-dependent mapping to rescale the velocities from the reference plane to the inflow, instead of
merging two individually scaled flow fields. The original rescaling method was found to generate
unnatural bimodal fluctuation profiles that delayed the initial flow recovery. The recycling plane is

TABLE I. Parameters of the turbulent boundary layers discussed in the text. Lx, Ly, and Lz are the box dimensions along the
three axes. Nx, Ny, and Nz are the collocation grid sizes. The momentum thickness θ , the edge of the boundary layer δ, and

the friction velocity uτ are taken at the middle of the box. L̃ x = ∫ Lx
0 [ dx/(δU+∞)] is the dimensionless length measured in

eddy turn-overs. T is the total time over which statistics are compiled.

Case Reθ (Lx, Ly, Lz)/θ L̃ x �x+, �y+, �z+ Nx, Ny, Nz Tuτ /δ

BL2100 617–2140 535 × 29 × 88 3.25 6.10 × 0.30 × 4.1 6145 × 360 × 1536 21
BL0 2580–6340 534 × 30 × 67 2.57 6.10 × 0.30 × 4.15 16385 × 711 × 4096 6.9
BLAUX 1100–2970 481 × 47 × 191 2.61 13.00 × 0.32 × 7.28 3585 × 315 × 2560 27.6
BL6600 2780–6650 547 × 29 × 84 2.68 7.00 × 0.32 × 4.07 15361 × 535 × 4096 11.5

(a)

(b)

FIG. 1. Sketches of the numerical simulation set-ups, including the Reynolds numbers achieved, and the nomenclature.
Inflow conditions are generated using a recycled downstream velocity plane {u, v, w} at Xrec, on which a rescaling technique
is employed. (a) Single-domain computational box, used for BL2100 and BL0. (b) Double-domain computational box. The
auxiliary low-resolution simulation BLAUX feeds the main simulation BL6600. A plane located near the end of the first domain
is transferred into the main high-resolution simulation.
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located at Xrec ≈ 50δinlet, far enough downstream to avoid spurious periodicities due to the rescaling
feedback.7

As will be seen below, BL0 was found to be too short to develop completely within the box,
especially for the larger flow scales. The problem was solved using the new computational set-up
sketched in Figure 1(b), consisting of two simulation boxes running concurrently. The first box,
BLAUX, is intended to provide a realistic turbulent inflow for the larger scales of the main simulation
BL6600, and creates its own inflow using the same rescaling technique as BL0. A velocity cross-plane
located near the end of this first box is then transferred at each time step to the inlet of the second
one.

The cost of BLAUX is marginal, because its purpose is to allow the development of the larger
scales, and it does not need to be fully resolved. Even a linear factor of 2 in the two wall-parallel
directions, which has very little influence except in the details of the vorticity dynamics, reduces the
computational cost by a factor of 4, and a further reduction is possible because the boundary layer
is thinner in the upstream part of the simulation, and the top of the domain can be made 25% lower
than in the main box. Even after that reduction, the height ratio at the end of BLAUX is Ly/δ ≈ 3.9,
compared to Ly/δ ≈ 2.5 for BL6600. Both are larger than the ratio, Ly/δ > 2.4, required to ensure that
the free-stream velocity fluctuations are not constrained by the geometry of the computational box.7

The resulting cost of the auxiliary simulation is about 8% of the main one.
The mean pressure gradient is controlled by imposing an x-dependent wall-normal velocity at the

top of the computational box, estimated from the continuity equation as V∞ = U∞dδ∗/dx , where
the displacement thickness δ* is obtained from the empirical correlation in Ref. 24. The resulting
pressure gradient is small, δ∗U+

∞∂xU+
∞ ≈ 10−3. Convective boundary conditions are applied at the

exits of each of the two computational boxes, with minor adjustments to the outflow streamwise
velocities to compensate any mass-flux variations resulting from the time-dependent inflows.7 In
incompressible flows, those adjustments can only occur through pressure pulses that can be shown
to be confined to the largest flow scales. They have wavelengths of the order of the computational
box, and amplitudes �p = −ṁi (Lx/L y), where ṁi is the temporal rate of change of the mass flow at
the inlet. Because the box elongation Lx/Ly is typically large, those pulses can severely contaminate
the pressure statistics, even if their influence on the rest of the flow quantities is usually negligible
because the pressure gradients involved are very weak. To minimize the fluctuations, the mass flux
in BLAUX is kept constant by fixing the mean velocity profile at the inflow to a prescribed empirical
one derived by matching inner and outer approximations across an overlap layer, as in Ref. 25. This
ensures that the mass flux at the transfer plane of BLAUX remains constant, but unfortunately the
same is not true at the inflow of BL6600. That plane is generated by first interpolating the velocities
of the transfer plane to the finer wall-normal grid of the main simulation, and then extrapolating the
free stream to match the height of the new computational box. The first step conserves mass quite
accurately, but the second one introduces small temporal variations because the velocity of the free
stream, even if essentially uniform, varies slightly with time. In our case the flux variations were less
than 1%, but they increased the root-mean-squared pressure fluctuations by more than 20%. This
was avoided by rescaling the inflow profile of BL6600 very slightly at each time step to keep its mass
flux strictly constant.

The final simulation ran for a total of 45 million core hours in 32768 cores of a Blue Gene/P
supercomputer with excellent scalability, using 8192 MPI nodes and four OpenMP threads per node.
A complete description of the implementation and parallelization aspects can be found in Ref. 26.

III. THE INITIAL DEVELOPMENT OF THE MEAN VELOCITY PROFILE

Experimental and numerical turbulent boundary layers are often tripped to avoid the slow natural
transition from laminar flow, and measurements can only be performed after the flow has relaxed
from its initial perturbed state. In experiments, the trip is usually a physical device at a relatively low
Reynolds number, while in simulations it more often takes the form of a synthetic inflow condition
at Reynolds numbers that can be manipulated more freely. In this section, we study the minimum
distance required for turbulent boundary layers to fully recover from the inflows and trips typically
found in the literature.
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FIG. 2. (a) Friction coefficient and (b) shape factor, versus Reθ . Red symbols stand for experiments and blue for DNSs.
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�,41 +,42 ★.43 Lines are: —— (in grey) BL2100 and BL6600; - - - - BL0; — - — BLAUX; —— fit from Ref. 24.

Figure 2(a) displays the evolution of the friction coefficients of our boundary layers,
C f = 2/U+2

∞ , as functions of Reθ . For comparison, it includes numerical and experimental data
in the same range of Reθ , as well as the empirical correlation proposed in Ref. 24. It is seen that,
after a relatively short transient in which Cf increases rapidly, all the simulations tend to converge to
the empirical fit. In particular, the “production” simulation BL6600 agrees well with both numerical
and experimental data, while the recoveries of the feeder simulation BLAUX, and specially of BL0,
are barely complete within their computational boxes. Note that a similar initial behavior is found
in many experiments in which the friction coefficient increases during transition to later decrease
slowly. Although simulations and experiments are very different, that similarity can be traced to a
common mechanism that is also found in simulations of decaying isotropic turbulence from random
initial conditions.44 As turbulence becomes organized from the artificial perturbations introduced
either by the trip, the inflow, or the initial conditions, dissipation first grows to a maximum, that can
be identified as the first moment in which the flow is truly turbulent,5 and subsequently decreases as
turbulence decays or the boundary layer thickens.

Figure 2(b) shows that the shape factor, H = δ*/θ , is more scattered and recovers more slowly
than Cf, both in simulations and in experiments. In our simulations, H decreases at the beginning
of each computational box, and recovers slowly thereafter. The auxiliary simulation BLAUX, and
especially BL0, are not fully relaxed by the end of their computational boxes, but BL6600, which
benefits from the relaxation of its feeder simulation BLAUX, is always within the experimental scatter
and matches the empirical correlation in the second half of its box. In the lower-Reynolds-number
case BL2100, whose inflow is at Reθ ≈ 615, the recovery is masked by the natural transition to
turbulence, but it is probably also fully relaxed in the last third of the box.15 Other experiments5, 27

and simulations show similar trends, and the figure suggests that some of the simulations available
in the literature42, 43 might not be fully converged by the end of their computational boxes. The
difference between the recovery rates of Cf, which measures a near-wall property, and H, which
represents the whole velocity profile, suggests that the problem is the slow convergence of the larger
outer scales.
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(a)

(b)

(c)

(d)

FIG. 3. Comparison of the initial evolution of (a) the maximum Reynolds stress τ+
max , (b) shape factor H, (c) δ/θ , and

(d) wake intensity �. Plotted against Reθ on the left, and against the number of eddy turn-overs x̃ on the right. Quantities
are normalized with empirical fits to remove as much as possible the drift with Reynolds number. Symbols are: experiments
© (red),5 ★ (red),33 and DNS � (blue).36 Lines are: —— (blue) BL2100, ---- BLAUX, ——BL6600, —— (red) BL0, and
— · — empirical fits.

It was argued in Ref. 7 that the proper length scale to characterize the recovery is the turnover
length, Lto = U+

∞δ, which measures how far eddies are advected during a large-scale turnover time
δ/uτ . An effective dimensionless “turnover distance” can thus be defined as x̃ = ∫ x [ dx/(δU+

∞)],
integrated from the numerical inflow or from some other location characterizing the transition to
turbulence. It is more common in experiments to base the relaxation criterion on the boundary layer
thickness,45 such as in x̃δ=

∫ x [ dx/δ]. The two criteria differ by a factor O(U+
∞), which changes by

less than 20% over the range of Reynolds number in Figure 2, so that x̃δ/x̃ ≈ 21–25 at low Reynolds
numbers, but x̃ has a clearer physical interpretation. Note that the boundary layer thickness increases
by a factor of about 4 over the recovery distances discussed below, x̃ ≈ 4–5, so that the thickness
used for normalization becomes important. For example, if the relaxation distance is expressed in
terms of the inflow boundary layer thickness, instead of the running average used above, the recovery
criterion becomes x/δin ≈ (50–60) x̃ .

Whether the scatter with respect to the empirical correlations in Figure 2 is an effect of the low
Reynolds numbers or of an incomplete recovery is tested in Figure 3, which shows the evolution
of several variables in terms of Reθ and of x̃ . It includes the simulations in Table I and other
experimental5, 33 and numerical36 boundary layers for which the relevant data are available. The
maximum Reynolds stress, τ+

max = −〈uv〉+max , displayed in Figure 3(a), is a near-wall quantity
attained at y+

max = O(δ+1/2),46 and is therefore presumably related to the relatively small scales near
the wall, but the other three variables, H, δ/θ , and the wake intensity �, are outer-layer properties
linked to larger scales.

The wake strength is estimated from the usual profile representation,47

U+ = B + 1

κ
ln(y+) + �

κ
W (y/δ), (1)

applied at y = δ, where the wake function is defined as W (1) = 2, and the Kármán and intercept
constants are taken respectively as κ = 0.41 and B = 5.
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FIG. 4. Mean streamwise velocity profiles in inner (a) and outer velocity-defect forms (b). Symbols are: ● (red) CH2000;
♦16 (red) experimental channel at δ+ ≈ 2000; ©57 (blue) experimental pipe at δ+ ≈ 2000; experimental boundary layer �33

at Reθ = 5230 and �28 at Reθ = 5156; —— BL6600 at Reθ = 5160; - - - - 5 + log (y+)/0.41 (a); - - - - 3.3 − log (y/δ)/0.41
(b). (c) and (d) Profiles of Reynolds stresses at Reθ = 5230. BL6600: —— u′2 +, ---- v′2+, — · — w′2+, —— 〈uv〉+. Symbols
are an experiment from Ref. 33 at the same Reynolds number.

All the quantities have been normalized by empirical fits that approximate their evolution with
Reθ , but which should be seen as aids intended to amplify the differences among cases rather than
as theoretical models. The fits used for H and δ/θ are those in Ref. 24, and that for � is from
Ref. 48. The model for the maximum Reynolds stress in Figure 3(a) is obtained by assuming that the
total stress, ∂U+/∂y+ + τ+, is equal to 1 − y/δ, and that the maximum of τ is within the logarithmic
mean velocity profile. The first assumption is only strictly true in pipes and channels, although it
is also a reasonable approximation in boundary layers (see Ref. 15 and Figure 4(c) above), while
the second is questionable at low Reynolds numbers and should only be considered as a modeling
artifice. The result is

τ+
f i t ≈ 1 − 2(κδ+)−1/2, at y+

max ≈ (δ+/κ)1/2. (2)

To unify the definition of the turnover distance, we have used the initial maximum of the friction
coefficient as the origin for the integral defining x̃ . In the experiments for which that point is
reported,5 and in simulations forced at low Reynolds numbers to mimic a physical trip,6, 36 the
maximum friction coefficient is typically attained at Reθ = 400–600. In experiments in which that
point is not reported,33 we have approximated it by Reθ = 500. In our simulations with synthetic
inflows, the maximum of Cf is available and depends on the inflow Reynolds number.

It is clear from Figure 3 that x̃ collapses the initial recovery much better than Reθ , especially
for the fairly wide range of inflow Reynolds numbers of the simulations. Experiments are more
scattered than simulations, but all the results tend to collapse to a common behavior at roughly the
same x̃ .

Reference 7 found that the relaxation of most flow scales requires at least x̃ = 1, in agreement
with the results for the maximum Reynolds stress in Figure 3(a), but the other three variables in
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Figures 3(b)–3(d) reveal that larger scales relax more slowly. The shape factors H and δ/θ do not
converge in our DNSs until x̃ ≈ 3–4 (̃xδ ≈ 90, or x/δinlet ≈ 200), and �, which depends on the
profile far from the wall and may therefore be expected to represent even larger scales than the shape
factors, only recovers after x̃ ≈ 4–5 (̃xδ ≈ 120, or x/δinlet ≈ 250).

Similar trends apply to experiments once the different trips have been taken into account by
using the Cf peak as reference. For example, Ref. 5 tested several tripping devices inducing transition
around Reθ ≈ 500, and concluded that their effects persist to Reθ ≈ 1500, roughly x̃ ≈ 3.5. The
numerical simulations in Refs. 6 and 36, which are tripped at Reθ = 180 and peak at Reθ ≈ 420,
recover at Reθ ≈ 1000 (̃x ≈ 4), and a recent re-analysis of those data and of new simulations tripped
at Reθ = 300 concludes that some differences persist up to Reθ ≈ 2000 (̃x ≈ 5).6

Those relaxation lengths are similar to those of BLAUX + BL6600, even if the inflow of that
simulation is at a higher Reynolds number than the trips of the experiments, so that it only reaches
its Cf peak at Reθ ≈ 1100 and x̃ = 4 at Reθ ≈ 4800. Its agreement with the lower-Reynolds-number
cases reinforces the use of the turnover distance, x̃ , as a recovery criterion.

Unfortunately for the cost of simulations, Lto/δ increases with Reθ , and simulations become
increasingly expensive. For example, the computational box of the high-Reynolds number case BL0

has roughly the same Lx/θ as the lower-Reynolds-number case BL2100, but its x̃ is 20% shorter.
Correspondingly, as shown in Figure 2, it does not reach equilibrium within its box.

IV. ONE-POINT STATISTICS

We next examine the one-point statistics of our boundary layers, and compare them to channels
and pipes at similar Reynolds numbers. In particular, we will use numerical channels from our group
at δ+ = 181 (CH180), δ+ = 550 (CH550),12 δ+ = 934 (CH950),49 δ+ = 2003 (CH2000),2 and
δ+ = 4200 (CH4000)50 to remove some of the ambiguities of previous studies at lower Reynolds
numbers.14, 15 For completeness, we will also use data from recent pipe simulations at moderate
Reynolds numbers.51 It should be noted that the computational box of CH4000, Lx × Lz = 2πδ

× πδ, is smaller than those of the other four channels and, although large enough to contain the
full spectra of the wall-normal and spanwise velocities,52 it is marginal for those of the streamwise
fluctuations. That could suggest some depletion of the fluctuations of the streamwise velocity, but it
has been noted before that the longest scales are not really missing, but aliased into infinitely long
structures,49 with negligible effects on the one-point statistics for boxes of this size.52 For example,
Ref. 53 used a similar computational box for a channel at δ+ = 590 whose fluctuations are known to
agree well with larger boxes, and the same is true for test simulations in our group at δ+ = 2000.54

The mean streamwise velocity in both, inner and outer velocity-defect forms,55, 56 is presented
in Figures 4(a) and 4(b) for BL6600 at Reθ = 5160, along with experimental boundary layers at
Reθ ≈ 4980–5230 (δ+ ≈ 1565–1625), and numerical2 and experimental16 channels and pipes57 at
δ+ ≈ 2000. The agreement among the boundary layers is satisfactory, and the weaker wake of the
internal flows is evident. The wake intensity of the boundary layers, � ≈ 0.57, is already close
to the classical asymptotic value � = 0.55.47, 58 Since it was shown in Ref. 15 that the wake is a
reflection of the entrainment of irrotational fluid at the edge of the boundary layer, this suggests
that the entrainment has reached equilibrium at these Reynolds numbers.58 The profile has about a
decade of visually logarithmic behavior (inferred from the simultaneous overlap of the inner and
outer form of the profile), although it is known that the parameters of the logarithm only reach their
asymptotic values at Reynolds numbers at least an order of magnitude higher than those considered
here.59

The mean-squared fluctuations of BL6600 are presented in Figures 4(c) and 4(d) compared
with experimental results at the same Reynolds number.33 The abscissae of Figure 4(c) is linear,
highlighting the outer region, whereas the abscissae of Figure 4(d) is logarithmic, emphasizing the
near-wall and logarithmic regions. The agreement of the data is satisfactory, even if the experimental
layer appears to be slightly thicker than the simulation, or if the maximum intensity of the streamwise
fluctuations slightly lower.

Figures 5(a)–5(d) show semilogarithmic plots of the intensities, emphasizing both the region
near the wall, and the logarithmic behavior of some of the fluctuation profiles farther away. That
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FIG. 5. Mean-squared profiles of: (a)–(c) the velocity, and (d) pressure fluctuation intensities for wall-bounded flows in
the range δ+ = 180–4000. Boundary layers are in black, channels in red, and pipes in dashed blue. (a)–(c) —— Boundary
layers at δ+ = 550 from BL2100, δ+ = 950,36 and δ+ = 2000 from BL6600; ---- (dashed blue) pipe simulation51 at
δ+ ≈ 685, 1140; —— (red) channels CH550-CH4000; — · — fits for the logarithmic region of u′2 + and w′2+. (a) Fit for
u′2 + as in Ref. 67: u′2 + = 2.3 − 1.26log (y/δ). The open circles mark the region 3δ+1/2 < y+ < 0.15δ+ of CH4000.
(c) Fit w′2+ = 0.8 − 0.45 log(y/δ). (d) Profiles of the pressure fluctuations intensities p′2 +. Data as in (a)–(c), plus boundary
layers68 at δ+ = 173 and δ+ = 280. Channels are CH180–CH4000. Error bars are included for BL6600. — · — fit for p′2 +
= 0.1 − 2.75log (y/δ).

behavior was predicted by Tonwsend11, 60 and, although it has been mostly analyzed in the context of
a particular eddy model,61–63 it is a general property of any self-similar hierarchy of attached eddies.
In essence, “active” eddies of size O(y) are assumed to be responsible for the tangential Reynolds
stress in a logarithmic band of wall distances around y. Since the stress is O(u2

τ ) from momentum-
conservation arguments, this implies that the velocity fluctuations are O(uτ ). Their contribution to the
tangential stress is damped closer to the wall, but their wall-parallel velocities are not. Approaching
the wall therefore results in the accumulation of energy originating from a progressively wider range
of wall distances, which also corresponds to a wider range of wall-parallel sizes.60, 64, 65 The scales
corresponding to structures whose active cores are above the observation point are “inactive” in the
sense of not carrying Reynolds stresses,2, 66 and the ratio between the energy and the stresses, which
is the intensity expressed in wall units, grows as the wall is approached (see Figure 5). It follows
from the self-similar structure in y that the accumulated intensity is logarithmic in y.11

The first clear evidence for logarithmic intensity profiles probably came from w′2 and p′2

in simulations of channels3 and boundary layers,15 and it is evident for those two variables in
Figures 5(c) and 5(d). The parameters of the logarithmic fits for the channel simulations are included
in the figures, as indicated in the corresponding captions.

The logarithmic behavior of the streamwise velocity fluctuations, although easier in principle
to measure, is contaminated by strong viscous effects near the wall and has taken longer to demon-
strate experimentally,18, 67 although earlier indications were available from atmospheric flows.63

Figure 5(a) presents all the available simulations, and includes the logarithmic fit proposed in
Ref. 67, which, for the highest-Reynolds-number case CH4000, should apply between the two open
circles added to the dashed line. Although that fit is quite convincing over the much wider range
of Reynolds numbers in the experimental publication (δ+ ≈ 2×103 − 6×105),18, 67 it is harder
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to discern in the present simulations (δ+ ≈ 4×103), or in previous experiments, highlighting the
difficulties involved in studying a property applying only to a range of very-high Reynolds numbers
that is hard to measure experimentally, and which is out of the reach of the current generation of
numerical simulations.

Figure 5(b) presents the fluctuations of the wall-normal velocity, which are not expected to have
a logarithmic range because they are blocked by the wall.11 They do not behave logarithmically in
the figure, and their slight growing trend towards the wall can be absorbed by normalizing them
with the local mean tangential total stress, instead of with a global friction velocity.69 Since the total
tangential stress decreases linearly in channels with the distance to the wall, but not in boundary
layers, at least near the wall, v′2 is correspondingly much closer to being constant in the latter than
in the former.

The most interesting aspect of Figure 5 is the comparison between boundary layers, channels,
and pipes. It has been known for some time that the transverse velocity components and the pressure
are more intense in boundary layers that in channels when scaled with the friction velocity,15 and
Figure 5 confirms that the difference is between internal and external flows,14 since pipes follow the
same trends as channels. The figure also shows that the differences between the two kinds of flows
concentrate in a “hump” around y/δ = 0.3–0.8, which appears to saturate for the highest Reynolds
numbers. Even the pressure fluctuations seem to be developing such a hump in the outer layer, which
was not present at the Reynolds numbers in Ref. 15, and which is neither found in the internal flows.
That hump is subtle, but it is probably real, because it is present at the two higher Reynolds numbers,
which originate from different groups and different simulation codes, and is much stronger than the
uncertainties of the data. The error bars added to BL6600, defined as in Ref. 70, are comparable to
the thickness of the line.

The difference between internal and external flows is less obvious for the streamwise velocity
fluctuations,14, 15 and it was unclear in previous studies whether there was any difference at all. It
turns out that the problem is a representation artifact due to the different magnitudes of the three
velocity components, which hide increments in Figure 5(a) that are of the same order as those in the
other figures.71

This is shown in Figure 6, which documents that the differences between boundary layers and
channels are very similar for u′2 and v′2, while only those of w′2 are slightly larger. The maximum
differences occur at y/δ ≈ 0.35 for the transverse velocities and at y/δ ≈ 0.5 for u′2, which is in the
same general range as the hump in p′2. The two effects are presumably related, and the fact that
the velocity differences are roughly isotropic, rather than having the same fractional increments, is
consistent with the idea that they are due to the rotational-irrotational intermittency at the edge of

0 0.5 1

−0.2

0

0.2

0.4

y/δ

Δ
u

2
+

500 1000 1500 2000
0

0.2

0.4

δ+

Δ
(u

2
+
) m

a
x

(a) (b)

FIG. 6. (a) Difference of the squared intensities between boundary layers and channels, �u′2+ = u′2+
BL − u′2+

C H , for the three
velocity components. Lines without symbols are BL6600 (δ+ = 1900) compared with CH2000 (δ+ = 2000); and those with
circles are Ref. 36 (δ+ = 1000) compared with C950 (δ+ = 935). (b) Maximum difference of the squared intensities between
boundary layers and channels. � BL2100; © Ref. 36; lines without symbols BL6600. The tick mark at the horizontal axis near
δ+ = 950 is the order of magnitude of the error made in interpolating CH950 from CH550 and CH2000. In both panels:
——u, - - - - v, — - — w.
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the boundary layer. An isotropic acceleration suggests the effect of pressure, which is the only force
able to act on the irrotational flow being engulfed from the free stream into the turbulent layer.15

Figure 6(a) contains two Reynolds numbers that agree well, and Figure 6(b) shows that the maximum
differences for the three velocity components are essentially independent of the Reynolds number.
If we admit that the wake component of the mean velocity, the pressure hump, and the fluctuation
excesses are all consequences of the entrainment of irrotational fluid, Figure 6(b) is consistent with
the observation that the wake component has reached its asymptotic value at the Reynolds number
of BL6600, and suggests that the same should be true for the magnitude of the pressure hump.

A consequence of the logarithmic behavior of the attached flow variables is that they reach their
maximum values near the wall, and that those maxima increase with δ+.

The logarithmic increase of the maximum streamwise velocity u′2+
max , which is attained at

y+ ≈ 15, was first documented experimentally in Ref. 9, and has been confirmed since then as the
Reynolds numbers of experiments and simulations have steadily increased.2, 4, 10, 72, 73 Figure 7(a) is
a compilation of the latest available data for the three canonical flows. A similar compilation for the
pressure at the wall is given in Figure 7(b), which shows both the logarithmic trend with δ+ and the
different additive constants for internal and external flows.

Unfortunately, the experimental confirmation of the logarithmic trend of u′2+
max has not been

free from controversy, most likely because of the difficulty of measuring so close to the wall. The
simulation data represented by heavy lines or by solid symbols in Figure 7(a) follow the logarithmic
trend very well, while the open symbols of the experiments are very scattered, falling mostly below
the simulations. This suggests that the problem is likely due to instrumental limitations brought about
by sensors that filter part of the energy. The problem has long been recognized by experimentalists83
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and it is common to apply corrections to try to compensate for it, some of which may introduce
new errors. This, for example, may be the case for the highest-Reynolds-number cases included in
Figure 7(a), which are the pipe-flow measurements18 represented by the open blue squares around
δ+ = 104. They initially exceed the DNS trend line, and later fall below it as they remain independent
of the Reynolds number, but they have been corrected to compensate for sensor size.84 In fact, a
previous experiment by the same group, using the same facility at somewhat lower Reynolds numbers,
had found uncorrected intensities that were also independent of δ+, but that were lower than their
higher-Reynolds-number ones.17 Those data are included in Figure 7(a), in the range δ+ = 700–
3000, using the same symbols as for the high-Reynolds number case. The two sets differ by about
20% when they overlap around δ+ ≈ 3000 and, although some reconciliation can be achieved by
either correcting the low-Reynolds-number cases or uncorrecting the high-Reynolds-number ones,
substantial differences remain. It is also interesting to note that, when the low-Reynolds number
pipe cases were repeated by a different group in a different facility,4 they were found to increase
logarithmically with the Reynolds number, although at a slightly lower level than the simulations
(� (blue) in Figure 7(a)), and that the open circle at δ+ ≈ 104 in Figure 7(a) is an experimental
boundary layer that follows well the logarithmic trend. Although it is possible that different flows
have different near-wall behaviors, and that pipes are different from other flows, the logarithmic
profile mentioned above for u′2 was identified in pipes,18 and it would have to fail near the wall for
the maximum fluctuations to be independent of the Reynolds number. It is precisely near the wall
where the flow dynamics are expected to be less dependent of the type of flow. In summary, given
the evidence collected in Figure 7(a) from the present and previous simulations and experiments,
it is probably safe to conclude that the inner streamwise-velocity peak increases logarithmically
with the Reynolds number, as predicted by the theory,60 and that the experimental scatter is due to
measurement limitations. That is particularly true below δ+ ≈ 5000, where more than one data set
is available.

In fact, if the location of the maximum fluctuations is known, the logarithmic profiles as a
function of y can be directly related to the evolution of the maximum intensity as a function of δ+.
Thus, the pressure profile for channels in Figure 5(d), p′2 + = 0.1 + 2.75log (δ/y), is approximately
consistent with the behavior of the pressure at the wall in Figure 7(b), p′2+

w = −9.5 + 2.31 log(δ+),
if we assume that the wall pressure is reached at a constant y+ ≈ 50, which has been independently
confirmed. A similar identification can be made for the spanwise velocity component, because in
both cases the coefficient of the logarithm in the formula for the profile as a function of y and in the
one for the peak intensity as a function of δ+ are roughly equal.

The case of u′2+ is more interesting because the coefficients on the logarithmic terms in fits
for u′2+

max ∼ 0.65 log(δ+) (see Fig. 7) and u′2 + ∼ 1.26log (δ/y)67 differ roughly by a factor of two.
Applying the argument above would in this case suggest that in the limit of high δ+, the maximum
intensity is reached at y+ ∼ δ+1/2. This is obviously not true, since experiments and simulations show
that the maximum is reached near y+ = 15, independent of δ+. But it is consistent with the tentative
conclusion in Ref. 67 that the logarithmic fluctuation profile is only found above a “mesolayer”
extending from the edge of the viscous region to y+ ≈ 3 δ+1/2.

The value of u′2+ at the outer edge of this mesolayer must thus scale like 0.63log (δ+) for large
δ+. This accounts for the variation of u′2+

max with δ+ if we assume there is a roughly Reynolds number
independent additive contribution to the u′2+ profile below the mesolayer outer edge. To test this
hypothesis, u′2+ − u2+

max is plotted in Fig. 8, where the outer edge of the mesolayer is indicated with
a circle for each curve. The profiles for all cases collapse reasonably well, except for near the outer
edge of the mesolayer, where the increase with δ+ of the width of the mesolayer, in wall units,
must be accommodated. Note in particular that the value of u′2+ − u2+

max at the outer edge of the
mesolayer (circles in Fig. 8) varies much less with Reynolds number than u2+

max . The three kinds of
flows collapse extremely well in this very-near-wall region. Reference 67 suggests that, at extremely
high Reynolds numbers, the upper end of the mesolayer develops an outer peak of u′2, which is
absent in Figure 8. But, the Reynolds number of the simulations are too low to say anything about
that possibility, and the resolution limits discussed above for those experiments recommend caution.

The reason for the behavior of u′2 + in the mesolayer is not clear. It was originally proposed to
extend below the location of the maximum Reynolds stress,46, 85 because the viscous stress has to
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be taken into account in that region. While that is clearly true for the mean profile, it is harder to
understand how fluctuations can be directly influenced by viscous accelerations. Consider an eddy
of size O(y) and intensity O(uτ ), which undergoes accelerations of order u∇u = O(u2

τ /y) due to
forces per unit mass of the same order. The ratio of those forces to the mean viscous force, ν∂yyU
≈ νuτ /κy2, is O(y+), implying that the mean viscous force, even if important for the mean profile,
is probably always negligible for the fluctuations above the buffer layer. Smaller eddies suffer even
higher accelerations.

An explanation could be that the mesolayer effect on the fluctuations is simply the reflection
of a different scaling velocity, once the average tangential Reynolds stress decreases below u2

τ .
The structure of the flow could still be the same, but the logarithmic argument ceases to hold
once the requirement that −〈uv〉 should be proportional to u2

τ is removed. For example, it can be
shown that the stress-structure coefficient, cuv = −〈uv〉/u′v′, which can be taken as an indication of
the momentum-transferring mechanism of the active eddies, does not change appreciably over the
mesolayer, and neither does w′2+

, suggesting that the structure of the eddies does not change. It is
also suggestive that the edge of the mesolayer is always close to the maximum of v′2, but attempting
to scale v′2 with 〈uv〉 works poorly.

Any further understanding of this region will have to wait until either detailed experimental
measurements or simulations become available at Reynolds numbers high enough for the mesolayer,
if it indeed exists, to become longer and more noticeable than at present.

V. CONCLUSIONS

A new direct numerical simulation of a zero-pressure-gradient boundary layer in the range
Reθ = 2780–6680 has been presented and compared with corresponding channel and pipe flows in
the comparable Reynolds-number range δ+ ≈ 1000–2000.

We have shown that the eddy turn-over length7 x̃ is the appropriate scale to characterize the
recovery of the different flow-scales after the initial trips and inflow conditions typically found in
the literature, rather than Reθ . Parameters linked to the large-scales, such as the shape factor or the
wake parameter of the mean velocity profile, only recover after x̃ ≈ 4–5, which is equivalent to
100–120 mean boundary-layer thickness, or to 250 boundary-layer thicknesses measured at the
inflow. Shorter distances x̃ ≈ 1 are needed for the parameters related to small-scales, such as the
maximum Reynolds stresses. Since the eddy turn-over length increases with the Reynolds number,
simulations initiated at higher Reynolds numbers become increasingly expensive. To avoid this
penalty, we use a double-simulation-box strategy to maximize x̃ within reasonable cost, concluding
that all the scales in our simulation are correctly represented for Reθ > 4800.
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One-point statistics, represented by the mean velocity profile and velocity fluctuations, agree
well with the boundary layers surveyed in this paper. For Reynolds numbers δ+ ≈ 2000, clear
evidence of the existence of logarithmic fluctuation profiles are found for w′2+ and p′2 +, both in
boundary layers and in channels. An attempt was made to confirm the logarithmic profile proposed
by Marusic et al.67 for the streamwise velocity fluctuations, using channels up to δ+ ≈ 4000, but even
that Reynolds number seems too low to corroborate or reject its existence. One of the consequences
of the logarithmic profiles of these attached variables is that the maximum value of their fluctuation
intensities depends on the Reynolds number and is reached near the wall. We have confirmed that
the maximum of u′2 + and the value of p′2 + at the wall are proportional to log (δ+). The same is
true for w′2+

max . In some of those cases, such as in the logarithmic growth of p′2+
w and w′2+

max with δ+,
the behavior is consistent with a fixed location for the maximum at some fixed value of y+. On the
other hand, the maximum of the streamwise velocity fluctuations can probably only be understood
by accepting the conclusion in Ref. 67 that the logarithmic fluctuation profile only exists above a
mesolayer46 extending up to y+ = 3 δ+1/2. In agreement with previous observations,3 no evidence
of a logarithmic profile is observed for the wall-normal velocity.

Comparison of external and internal flows confirms that, when scaled with the friction velocity,
the transverse velocities and pressure fluctuations are more intense in boundary layers, as originally
found by Jiménez and Hoyas,3 and we have shown that the same is true for the streamwise velocity
fluctuations. The excesses of the three velocity components with respect to channels are of the same
order, and reach a maximum around y/δ = 0.35–0.5, essentially independently of the Reynolds
number. This has been argued to be consistent with the notion that those differences originate as
a consequence of the entrainment of irrotational fluid in boundary layers,15 which is absent from
internal flows.
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3 J. Jiménez and S. Hoyas, “Turbulent fluctuations above the buffer layer of wall-bounded flows,” J. Fluid Mech. 611,
215–236 (2008).

4 H. Ng, J. Monty, N. Hutchins, M. Chong, and I. Marusic, “Comparison of turbulent channel and pipe flows with varying
Reynolds number,” Exp. Fluids 51, 1261–1281 (2011).

5 L. Erm and P. Joubert, “Low-Reynolds-number turbulent boundary layers,” J. Fluid Mech. 230, 1–44 (1991).
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50 A. Lozano-Durán and J. Jiménez, “Time-resolved evolution of coherent structures in turbulent channels,” Bull. Am. Phys.

Soc. 57(17), D20.1 (2012); this channel uses the same simulation code as CH2000.
51 X. Wu and P. Moin, “A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow,”

J. Fluid Mech. 608, 81–112 (2008).

http://dx.doi.org/10.1017/S0022112010001370
http://dx.doi.org/10.1063/1.4791606
http://dx.doi.org/10.1017/S0022112009994071
http://dx.doi.org/10.1103/PhysRevLett.108.094501
http://dx.doi.org/10.1063/1.4802048
http://dx.doi.org/10.1063/1.4802048
http://dx.doi.org/10.1016/0021-9991(85)90148-2
http://dx.doi.org/10.1016/0021-9991(85)90148-2
http://dx.doi.org/10.1016/S0021-9991(03)00322-X
http://dx.doi.org/10.1016/0021-9991(91)90238-G
http://dx.doi.org/10.1006/jcph.1998.5882
http://dx.doi.org/10.1063/1.2780196
http://dx.doi.org/10.1098/rsta.2006.1948
http://dx.doi.org/10.1016/j.compfluid.2012.07.004
http://dx.doi.org/10.1115/1.3269343
http://dx.doi.org/10.1063/1.863452
http://dx.doi.org/10.1017/S0022112007006076
http://dx.doi.org/10.1299/jsmeb.41.123
http://dx.doi.org/10.1007/s00348-009-0808-1
http://dx.doi.org/10.1017/S0022112010003113
http://dx.doi.org/10.1017/S0022112088000345
http://dx.doi.org/10.1063/1.3475816
http://dx.doi.org/10.1017/S0022112009006624
http://dx.doi.org/10.1017/S0022112007006465
http://dx.doi.org/10.1017/S0022112007006465
http://dx.doi.org/10.1063/1.1482377
http://dx.doi.org/10.1017/S0022112005006440
http://dx.doi.org/10.1007/s00162-004-0149-x
http://dx.doi.org/10.1103/PhysRevLett.28.76
http://dx.doi.org/10.1103/PhysRevLett.28.76
http://dx.doi.org/10.1016/S0065-2156(08)70370-3
http://dx.doi.org/10.1098/rsta.2006.1944
http://dx.doi.org/10.1017/S0022112056000135
http://dx.doi.org/10.1017/S0022112072000035
http://dx.doi.org/10.1017/S002211200300733X
http://dx.doi.org/10.1017/S0022112008002085
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