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Direct detection of linearized bursts in turbulence
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The relevance of linear transitional mechanisms in fully turbulent shear flows, and in
particular of the Orr-like inviscid transient amplification of disturbances, is explored
in the context of the prediction of bursting behavior. Although the logarithmic layer
of wall-bounded turbulence is used as the primary example, most conclusions should
apply to other flows with linearly stable mean profiles that are dominated by large-
scale streamwise-velocity streaks and intermittent bursts of the cross-shear velocity.
When the linearised problem is solved in the limit of small viscosity, it has previously
been shown that statistical properties, such as the bursting time- and length-scales, the
energy fluxes between components, and the mean inclination angles, are consistent in
linear and nonlinear systems. The question addressed here is whether the individual
structures predicted by the linearised solution can be detected in fully nonlinear
simulations, and whether the linearized approximation can be used to predict their
evolution. It is found that strong bursting of the largest scales is well described
linearly, comprising about 65%—70% of the total time, but that weaker fluctuations
are not. It is also found that adding an eddy viscosity does not substantially improve
predictions. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4921748]

. INTRODUCTION

Turbulence is a nonlinear phenomenon. Linear autonomous model cannot determine the magni-
tude of the turbulent intensities, and it is difficult to imagine how a multiscale cascade! may be
modeled linearly. On the other hand, some particular aspects of shear turbulence are well described
by linear approximations, particularly the energy-production mechanism of the largest flow scales.
The ultimate energy source in a shear flow is the velocity difference across the mean profile, and the
interaction of the mean shear with the fluctuations, rather than of the fluctuations with each other,
can be used as an effective definition of linearity. The best-known example is the Kelvin—-Helmholtz
instability of mean velocity profiles with inflections points, which controls many properties of the
large-scale structures of fully turbulent free-shear flows.” The focus of this paper is the behavior
of wall-bounded flows, whose mean profile typically lacks inflection points and is linearly stable.?
Even in that case, it has been known for some time that the “lift-up” of the mean velocity profile
by the cross-shear velocity, v, is one of the dominant mechanisms for the production of turbulent
energy,*”’ and is contained in the linearized equations.®’

The result of the lift-up is the formation of the streamwise-velocity streaks that dominate the
kinetic energy of wall-bounded flows. There is less consensus about the generation of the required
fluctuations of v, which take the form of intermittent bursts.!®!> The prevailing theory is that
their energy is drawn from the perturbation velocity of strong streaks,'® in a process that, even if
often presented as a linear streak instability, depends on a finite streak amplitude and is therefore
nonlinear. It is known that streaks are required for the generation of v, in the sense that artificially
damping them prevents the generation of new v structures.'* However, while this clarifies how
bursts are initiated, we will be more interested in their subsequent evolution, and on the source
of the energy required for their intensification. Reference 7 argued that the streak-driven model
does not explain the mismatch between the temporal and spatial scales of the long-lived streaks
and of the shorter-lived v bursts. It is furthermore unclear how the streaks survive after transfer-
ring their energy to the bursts.!> A key breakthrough was the realization that even linearly stable
perturbations can “transiently” extract energy directly from the mean flow,>!%!7 and thus give rise
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to transient bursts. The hypothesis that we test in this paper is that the bursts in wall-bounded
turbulence are basically Orr-like events'® in which the transient amplification of the wall-normal
velocity is the result of the tilting of the structures by the mean shear.” This is an inviscid process
in which energy is drawn directly by the perturbation from the mean velocity profile. As such, it
can be considered linear in the sense explained above, even when finite amplitudes are involved.
Inviscid Orr bursts have lifetimes of the order of the inverse of the mean shear. They eventually
return to the mean flow the energy that they have previously borrowed from the mean flow during
the first part of the burst. But they are relevant to the overall energy balance because they couple
with the mean velocity profile to generate longer-lived streamwise velocity streaks that only decay
dissipatively.

The previously cited references have established that some statistical properties of wall-
bounded flows are consistent with the predictions of linear models. For example, the most amplified
linear perturbations of the mean velocity profiles of turbulent channels are similar in dimensions
and geometry to the structures observed in real turbulent flows,>® and so are their bursting period
and the temporal correlations between the different flow variables.”!” However, although these
results are highly suggestive, it is still possible that they may only reflect statistical averages that
are seldom observed in the flow, or that they hide intermittent events that are nevertheless important
for the flow dynamics. Here, we will be interested in going beyond bulk statistics and correlations,
and into the properties of individual events. In particular, we will inquire whether the behavior
predicted by linear models can be identified in fully nonlinear turbulent channels. We will quantify
how closely and how often the flow approaches those models, and explore whether they can be used
to predict the flow behavior at least part of the time. Note that the latter, by itself, would be a useful
tool in flow control.

The ultimate aim of such a program should be the identification and tracking of short-lived
structures in full-scale flows, but this remains a long-term goal. The first steps were taken some
time ago with the characterization of structures as localized regions in which some flow property is
particularly strong,'>?%2! in the spirit of the classical quadrant analysis of sweeps and ejections.?>?3
These objects were then tracked in time, although their interactions, mergers, and splits complicate
their temporal coherence.’* The results provide inestimable information on the kinematics of the
flow, but are difficult to relate to the equations of motion. A more “analytic” approach, although
still kinematic, is the use of simulations in minimal domains that are small enough to contain single
structures of some particular kind.'®!? These domains avoid the problem of structure segmentation,
because the evolution of the flow can be studied by the box-wide integrals of relevant quantities.
It was found in this way that the properties of the v-bursts are approximately the same in min-
imal channels,'""'? segmented structures of large channels,* and equilibrium homogeneous shear
turbulence,”!? strongly suggesting that bursts are general features of shear flows.

Since box averaging is a simple linear operation, it is possible to write equations for its evolu-
tion and for its wall-normal structure. Unfortunately, such equations are unlikely to be closed,
because the equations of motion require horizontal gradients that are hidden by the averaging. For
example, the tilting mentioned above for Orr bursts cannot be defined for functions that depend
exclusively on y. It is usually necessary to include some of the wall-parallel structure of the flow
field, and the next simplest characterization beyond averaging is expansion into individual Fourier
modes.” Here, we will use time-resolved direct simulations of turbulent channels in relatively
small periodic boxes in which the first few wall-parallel Fourier harmonics are taken to repre-
sent the behavior of individual structures. The detailed reasoning behind this choice is deferred to
Sec. II.

The organization of this paper is as follows. Section II introduces the theoretical model to be
tested, the equations of motion, and the choice of variables. Section III describes the numerical
data sets. Section IV reports the results of using different linear models to predict the evolution of
the chosen variables, and Sec. V explores the relation of these predictions to tilting by the shear.
Conclusions are offered in Sec. VI. Sensitivity analyses of the detection scheme are collected in an
appendix.
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Il. THE THEORETICAL MODEL

The streamwise, wall-normal, and spanwise coordinates are x, y, z, the corresponding velocity
components are u,v,w, and we drop from the equations of motion the fluid density p = 1. We use
as primary data sets simulations of turbulent channels whose half-width is 4. Quantities normalized
with the kinematic viscosity v and with the friction velocity u, are denoted by a “+” superscript,
and our primary Reynolds number is A*. Although bursting is not an exclusively linear process,
we have seen in the Introduction that it involves the direct interaction of the perturbations with the
mean shear, and we will simplify our analysis by comparing the flow with solutions of the linearized
perturbation equations for v.

For a parallel shear flow whose mean velocity profile is U(y), small perturbations of the
wall-normal velocity satisfy the autonomous linearized Navier—Stokes (Orr—Sommerfeld) equa-
tion, >

(0, + Ud) V*0 = U" 0,0 + VA(vrV?0) = 2v5(Orx + 0220, (1)

where primes denote derivatives with respect to y. An eddy viscosity vy that includes the molecular
viscosity has been added to the right-hand side of this equation, and will be the only nonlinear
effect considered in our analysis. If we define the shear S = U’, we will test the effect of dissipation
by comparing results using the viscosity required to maintain the observed mean velocity profile,
vy = (1 = y/h)/S*, with those in which the viscosity is turned off. The inviscid problem makes
sense for v, because the boundary condition at the walls, v = 0, is independent of viscosity.

Even when vy is included, its effect on the large scales is weak. The usual rule of thumb in
shear flows is that the equivalent Reynolds number based on the eddy viscosity is relatively large,
0(20 - 30).6 Equivalently, the time scale of the shear, S~!, is typically shorter than the turbulent
dissipation time, g%/, where ¢ is the total velocity fluctuation magnitude and & is the energy dissi-
pation rate. The Corrsin shear parameter S* = Sg?/& measures the ratio of those two scales,?” and is
of the order of S* ~ 10 in most equilibrium shear flows.!” In channels, this is true across the layer
A = (30v/u; < y <0.7h).7 We will use this range as our definition of the shear-dominated “loga-
rithmic” layer, and compute most “bulk” values over it. If we take the shear and dissipative time
scales as measures of the relative magnitude of the inviscid and dissipative terms in (1), the latter are
small with respect to the former, O(1/S*). The decay time associated with the molecular viscosity,
O(y?/v), is even longer than that associated with v7. If we define a viscous shear parameter in the
same spirit as above, S, = Sy?/v, and assume & ~ u3/y and g ~ u,, it follows that S, ~ S*y*, and
that the effect of the molecular viscosity is negligible except in the immediate vicinity of the wall.
Note that the range of wall distances used here is not the usual logarithmic layer. Our estimates only
hold for the structures of size O(y) that are the subject of this paper. They do not necessarily apply
to quantities whose evolution is slower than that of individual structures, and in particular to the
mean profiles.”’®?° On the other hand, the criterion based on the dominance of the shear, which is a
time rather than a length scale, is close enough to the usual definition of the logarithmic layer®® to
justify our borrowing of the name. From the point of view of the large scales above the buffer layer,
the flow can be considered inviscid to a first approximation, both from the molecular and from the
“eddy” point of view. As a sanity check, some of the calculations in the paper are repeated in the
Appendix for a more conventional definition of the logarithmic layer, Ay = (150v/u, < y < 0.4h).

The first term in the right-hand side of (1) is responsible for the Kelvin—Helmholtz instability,
and is not relevant to flows without inflection points. It was shown in Ref. 7 that the solutions
to (1) take the form of bursts that are similar in turbulent channels and in homogeneous shear
turbulence. Since U"” is identically zero for the homogeneous case, this strongly suggests that only
the differential advection in the left-hand-side of (1) is relevant to bursting.

In fact, the best known particular case of (1) is the homogeneous shear U = Sy, for which
analytic solutions are known (e.g., see Ref. 7). If vy is constant and we consider a pure Fourier
mode of wavenumber k, the elementary solutions to (1) take the form

1 —St(1+52¢2/3)/Re+ik (x-S yt)
V= ———c¢ yr, 2
1+ 8%2 @)
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where Re = S/k?vr. They can be interpreted as plane waves whose wavefronts are tilted at an angle
Y = atan(Sr) with respect to y. In the inviscid case, vy = 0, Eq. (2) becomes

v = COSz(l,[/) eik(x—y tanw). (3)

Form (2) of the solution only applies to a uniform shear, but it was shown in Ref. 7 that (3) is
relatively independent of the mean profile if the amplitudes and tilting angles are properly defined.
Equations (2) and (3) represent a pulse of v that grows and decays while the wavefronts are tilted
forward by the shear, from ¢ = —7/2 at t — —oo to /2 at t — oo. In both limits, v — 0, and the
intensity of the wave is maximum at ¢ =~ 0. This is the behavior that we will try to identify in the
turbulent simulations.

Note that this description of the flow is different from the more classical decomposition in
terms of wavetrains of fixed amplitude and phase speed, and is a more natural representation of
intermittent situations dominated by transient growth. For example, the temporal evolution of the
inviscid limit of (2) can be Fourier transformed in terms of wavetrains of phase speed c as

_ Clk(x_syt) _ k /00 e—k|Sy—c\+ik(x—Syt) de (4)
Co1+sr 2 ) '
Each of the elementary wavetrains in this expansion has a corner discontinuity at the “critical layer”
¢ = Sy, but it is clear from the derivation that those layers and those discontinuities are artifacts of
the Fourier transform, and that the solution in physical space has no singularities.
In simulations in a periodic box, the Fourier transform is substituted by a series. We define
Fourier modes labeled by their two wall-parallel wave indexes (m,n), as in

b= Z Dmn(y) exp 21i(mx/Ly + nz/L,). (5)

Individual modes are attractive for the analysis of linearized approximations, but they do not repre-
sent individual flow structures. The structures of v are roughly isotropic in the three coordinate
directions,!” while Fourier modes are periodic and of wall-parallel infinite extent. For example, if
we represent an isolated structure of size A by a single Fourier mode of that wavelength, we obtain
a set of weaker copies of the structure regularly distributed over the simulation box. The linear
behavior of the two representations may be the same, but their nonlinear interactions with the rest
of the flow are completely different. Localized structures can only be represented by wave packets
with a spread of wavenumbers, which complicate their evolution equation. The only exceptions are
the first few Fourier modes in a minimal box, which is defined as containing most of the energy of a
“functional” turbulent structure in the lowest Fourier modes. In that case, the Fourier periodicity is
provided by the simulation box itself.

We therefore restrict ourselves to the analysis of the first few Fourier modes, m = 0,1,2 and
n =0,1, each of which is taken to represent an individual structure of a different type within
some range of wall distances. Mode 7y is an infinitely long streamwise streak (or roller), vyq is
a two-dimensional wave in the (x,y) plane, and vy; and 75, are low-order oblique modes, each
of which includes the two independent coefficients of n = +1. The mean wall-normal velocity
Voo vanishes identically from continuity. For the reasons mentioned in the Introduction, the study
of higher-order modes, potentially representing several structures, is not attempted in this first
approach to the identification problem.

Note that descriptions in terms of transient events or stationary wavetrains need not be exclu-
sive. It is probably true that different phenomena are best represented in different ways. Uniform
wavetrains and their associated critical layers have been shown to be useful in describing some
aspects of turbulence,*” and nonlinear analogs with non-planar critical layers have been developed
for exact steady-wave solutions of the Navier-Stokes equations.?'*?> Intermediate wavelengths in
channels are known to advect with velocities that are very close to the local mean-stream velocity,
and are therefore “critical” everywhere,33’34 as in (4). We will see below that the same is true for
the low Fourier modes considered here. It also holds for wall-attached individual structures in the
logarithmic layer. It was shown in Ref. 24 that individually segmented structures of intense tangen-
tial Reynolds stress are not dispersive, and that the group velocity of their wall-parallel sections is
very close to the advection (phase) velocity of the individual wavenumbers. Although the structures

00
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of v were not specifically addressed in that investigation, the Reynolds stress is carried by the
vertical velocity, and it is likely that the bursts of v behave similarly. Such structures are deformed
continuously by the shear and are likely to be described best by transient models. On the other hand,
structures that are either very large (L, = 2h,L, 2 h/2),34 or restricted to the buffer layer,33 have
advection velocities that are independent of y over some range of wall distances. Those structures
are probably best described as wavetrains with critical layers. In this paper, we will be primarily
concerned with structures of the first kind.

lll. NUMERICAL DATA SETS

We use two simulations of spatially periodic channels at moderate Reynolds numbers with
wall-parallel periods L, = wh/2 and L, = wh/4, and h* = 950 (C950)” and A* = 1850 (C1850).'2
Both have been described before. To improve statistics, they have been extended in time to fu./h
= 139 for C950, and to tu,/h = 69 for C1850, and re-sampled to a common time interval between
frames, Atu./h ~ 0.025. Since we will see below that the typical bursting time is fu./h = 0.5, each
simulation contains a few hundred bursts per wall, and about 20 samples per burst.

Such simulations are minimal within the band of wall distances y/h =~ 0.2-0.5, in the sense
that a non-negligible fraction of the energy of v is contained in the first few largest wall-parallel
Fourier modes.'*!? Closer to the wall, the flow contains a wider range of turbulent scales and cannot
be considered minimal. Farther from it, the simulations are not directly comparable to canonical
turbulence, because some of the largest scales are missing.

Even in a minimal box, the four modes considered here contain only a fraction of the total
v2. Their intensity profiles are given in Fig. 1(a). The total v? is given by the open symbols, and

38.0
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FIG. 1. (a) Intensity of the four Fourier modes considered in the minimal channel C1850. o015 ===, [D10/% —-—-— X
o1 -------- , [521]% x, sum of the four modes; o, |v?| for C1850; ®, |v?| for a channel at 2+ = 2003, simulated in a larger
box.? (b) The lines without symbols are as in (a), compared to the corresponding intensities of the modes in the large-box
channel (with symbols). (c) Advection velocities in defect form for: — — —, Djp; —-—-—, Dy;. Lines with symbols are C950,

those without are C1850. Open circles are the mean velocity profile for C1850. (d) Temporal evolution of the intensities
integrated over the logarithmic layer. The upper trace is the full wall-normal velocity; the middle one is the streak Dp;, and
the lowest one is v79. C1850.



065102-6 Javier Jiménez Phys. Fluids 27, 065102 (2015)

a simulation in a larger box and similar Reynolds number is given by the closed ones. The figure
shows that the combined contribution of our four modes is at most 25%—-30% of the total, attained
around y/h = 0.25 — 0.8. Figure 1(b) is an enlargement of their intensity profiles, compared with
the corresponding profiles for the channel in the larger box. It is seen that the accuracy of the
individual Fourier modes in the minimal simulation is comparable to that of the overall intensity.
Note that there is no unique way of comparing Fourier modes between boxes of different sizes,
because there are several possible associations of blocks of the higher-resolution spectrum of the
larger box with individual modes of the smaller one. Figure 1(b) is drawn by comparing individual
modes of the smaller box with the energy in a uniform tiling of the wavenumber plane of the larger
one, properly chosen to take into account the corresponding spectral resolutions. Other blocking
strategies give qualitatively similar results.

Fig. 1(c) shows the advection velocities of vyy and vy, defined as in Ref. 34. They agree well
with the results in that reference. They follow the mean velocity profile over most of A, implying
that the modes are continuously tilted by the shear. Comparing Figs. 1(b) and 1(c), the advection
velocity changes by approximately Su, over the wall-normal extent of the modes in question. The
top of each mode is therefore shifted with respect to its bottom by a full wavelength (L, = 7/2)ina
fraction of a turnover, u,At/h ~ n/10, suggesting that the bursting time should be of that order.

Note that the linearized interaction of v with the mean shear involves only terms with stream-
wise derivatives. Modes with m = 0 evolve only under the effect of viscosity, and 9,0y, = 0 in the
linear inviscid limit. It is impossible to define either a streamwise advection velocity or tilting for
these modes.

Figure 1(d) displays the evolution of the L, velocity seminorm,

B2 = 17" /A ol dy. ©)

It shows that the individual Fourier modes also burst. Statistically, they are slightly more inter-
mittent than the total velocity. The fourth- and sixth-order flatness of the time evolution of the
amplitude of the modes with m # 0 are F; ~ 4 and Fg ~ 40 — 50, while those of the overall ||v]|
are Fy ~ 3.5 and Fg ~ 20. The corresponding Gaussian values are F, = 3 and Fg = 15. The more
Gaussian behavior of the total energy is in agreement with the central-limit theorem, that predicts
Gaussian distributions for sums of uncorrelated variables, but it is interesting that the moments of
the roller mode vy, are almost exactly Gaussian. This is the only one of our modes that does not
interact with the shear, suggesting again that bursting is shear-controlled. The integrated amplitudes
of the individual modes are only weakly correlated with each other, with correlation coefficients
between the |[v,,,|| of the order of Cjjy|jyp = 0.1. The same is true for the intensities in the two
halves of the channel. The correlation between the intensity of individual modes and that of the
total velocity is somewhat higher, with correlation coefficients of the order of 0.5 for all the modes
considered here.

It is clear from Fig. 1(d) that different modes burst with different periods. The “roller” mode
in the middle trace is the slowest, and follows the behavior of the full velocity (top trace) rather
closely. The bottom trace, |[vo||, has a faster cycle of its own. The same is true for the oblique mode
[o11]], and for |[v21]] (not shown). We saw above that only modes with m # 0 interact “linearly” with
the shear, and it is not surprising that they behave differently from those with m = 0. It has to be
stressed that different Fourier modes may represent different structures, as shown, for example, by
their different profiles in Fig. 1(a). There is nothing against the coexistence of different linear struc-
tures in the same simulation, but even nonlinear ones can coexist. The simplest way is for different
structures to be active at different times, but other arrangements are possible in multiscale turbu-
lence. The situation is similar to the behavior of the different velocity components that, although
presumably related to each other by the equations of motion, have different spectral content and
spatial correlations.?>3 In principle, each of the Fourier modes considered here is the leading term
of the spectral expansion of a nonlinear structure. Even linearly, each of them is the sum of several
y-eigenfunctions, each of which could be interpreted as the leading term of a different structure. We
will see later that, although there are times in which the evolution of each mode is well represented
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by a single vertical eigenfunction that behaves as an independent linearized entity, the situation in
other moments is more complicated and nonlinear.

IV. THE PERFORMANCE OF LINEARIZED PREDICTIONS

The bursting time, defined as the average width of individual bursts, can be measured in mini-
mal boxes by the width of the temporal autocorrelation functions of the box integrals of the relevant
quantities,

_ Al [foll¢r + 1))
(llol»'2
where () is the average over 7 and over ensembles (both walls). The correlations are given for
the different ||v,,,|| in Fig. 2(a). When the integration of the seminorm is done over a narrow
band of wall distances, the correlation time scales with the local mean shear.” Here, because we
are interested in global properties affecting the whole channel, Fig. 2(a) is computed for quan-
tities integrated over the logarithmic layer A, as in (6). The relevant time scale then becomes
h/u., but the bursting time, defined as the width of the autocorrelation at C(¢) = 0.5, depends
on the mode considered and cannot be easily scaled with local quantities. The bursting time is
u:Tp/h =~ 0.4 for ||v1o]| and |[v711]|, which is of the order estimated above from the advection veloc-
ities. The correlation time for |[v21||, whose streamwise wavelength is only half that of |[v14]], is
twice shorter, u,Tp/h ~ 0.2. For ||[vg;||, which does not interact directly with the shear, the bursting
time is u;Tp/h ~ 1.1, longer than for the full velocity, u.T;/h = 0.9. The effect of integrating over
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FIG. 2. (a) Temporal auto-correlation of velocity seminorm (6), integrated over A. Symbols in lines: o, ||vp1l; A, |[D10ll; ¥,
llo11ll; @, |loa1]); -------- , [lv]]. €1850. (b) Root-mean-squared error for the predictions of Dy, as a function of the predicted
time interval, defined as in (8). Vv, using pure advection with the mean velocity profile as a predictor; o, using the inviscid
linearized Navier—Stokes approximation (1); A, Eq. (1) with eddy viscosity. (c) As in (b) for different Fourier modes and
inviscid linearized Navier—Stokes. Symbols for the different Fourier modes, as in (a). (d) As in (c), with time scaled with
the bursting width defined at C =0.5 in (a). The horizontal dashed line in ((b)—(d)) is the relative error, V2, between two
uncorrelated signals of the same intensity. Open symbols, C950; closed, C1850.
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a narrower vertical range is slight, as shown in Fig. 6(a) of the Appendix. The same is true for the
differences between the two Reynolds numbers. The Eulerian decorrelation time for full complex
modes such as 7y is much shorter than the one for their norm, because their phase varies faster than
their amplitude as the flow is carried past a given point by the local advection velocity.

A measure of the decorrelation time more closely related to our present task is the decay of
the accuracy of the flow predictions made using linearized equation (1) as a model. Note that those
predictions need to consider the full channel, with boundary conditions at both walls, but that the
error can be defined over a narrower layer such as A. For consistency with the rest of the paper, the
errors between a mode v and its prediction v, are defined as

err = |[o, = ll/[v]l. ®)

This is an instantaneous value for individual predictions, and Fig. 2(b) shows its ensemble average,
(err), for three predictors as a function of the prediction time. It was shown in Ref. 7 that the
Eulerian acceleration in a channel is mostly contained in the linear terms of the equations, and
that most of it is explained by the advection by the mean flow. Figure 2(b) shows that this is not
true for the evolution of the velocity over non-infinitesimal time periods. The inverted triangles in
the figure use the simple advection predictor v,,(y,t + At) = v(y,t) exp[—ik,U(y)At]. They behave
worse than the other two predictors in the figure at all times, including very short ones. The inviscid
linearized approximation represented by circles behaves well for short times, but degrades for pe-
riods of the order of the bursting time. For longer times, both inviscid predictors approach the error
level between two uncorrelated signals. The triangles in the figure use Eq. (1) with eddy viscosity.
They do not behave better than the inviscid model for short times, but they level off at {(err)~ 1 for
longer times. Unfortunately, this does not reflect an increased long-term accuracy of the viscous
approximation. The amplitude of the viscous prediction tends to zero for times longer than the
bursting time, and the difference between the true velocity and its predictor tends to the value of
the true velocity. The relative error then tends to unity, which is less than the relative error between
two uncorrelated signals of similar magnitude. Note that the collapse of the error curves for the two
Reynolds numbers in Fig. 2 supports the use of the eddy turnover //u, as a time scale.

The predictions for the four Fourier modes used in this paper are compared in Figs. 2(c) and
2(d). In general, the prediction error degrades as the modes become more complex, with the oblique
mode vy, always predicted worst. However, the relative behavior of the four modes can be largely
explained by their different bursting times. While the four modes behave differently when expressed
in terms of a common time scale, as in Fig. 2(c), their errors collapse much better when the predic-
tion interval is scaled with the respective bursting times, as in Fig. 2(d). This is especially true for
the three modes that interact with the shear, for whom linear predictions work reasonably well for
periods of the order of half of the bursting time. The dependence on the choice of A is tested in
Fig. 6(b) in the Appendix. It is relatively minor.

The good scaling of the linear prediction error with 7}, is interesting in view of the shape of
the correlations in Fig. 2(a). Specially for the higher modes, they have two components: a highly
correlated narrow core, and a wider skirt that becomes more prominent as the modes become more
complex. Our definition of the correlation time measures the width of the inner core, and it is tempt-
ing to identify it with linear bursting. The skirt, whose width is closer to that of the full velocity,
would be associated with slower nonlinear interactions among several modes.

V. TILTING

Further insight can be obtained by comparing the detailed temporal evolution of the linear-
ized and full equations. The essence of an Orr burst is that the structures are tilted downstream
by the differential advection of the shear. As the wavefronts become roughly normal to the wall,
the vertical length scale increases, and continuity requires that [v] increases to conserve d,v. As
the wavefronts are tilted past that point, [v] decreases again. If we write v = [v] exp[i(k,x + @)], the
derivative k, = d,¢ is a vertical wavenumber, and ¢ = —atan(k,/k,) is a front inclination angle.
While the wavefronts in a uniform shear are planar, the tilt and the amplitude in a channel are
functions of y, and it was shown in Ref. 7 that the equivalent quantities have to be integrated over
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FIG. 3. (a) Two-dimensional joint probability distribution function of the mean inclination and amplitude of v} in the direct
simulations. , C1850; — — —, C950; —o—, ||Dy0l| = COSZ(J), is the linear inviscid result for a uniform shear, as in (3). The

contours contain 0.1(0.2)0.9 of the total number of samples. (b) As in (a), for the C1850 channel. The arrows indicate the
mean conditional evolution of the two quantities.

the intense part of the wave. Here, we define the mean amplitude as seminorm (6), and the mean
inclination angle as the weighted average v |[0]|> = h™' N [01% dy. It is with those definitions that
relation (3) between tilt and amplitude is approximately universal.

Equation (3) is plotted as a solid line with circles in Fig. 3(a), and has two important properties.
The first is that the amplitude of v is maximum at ¢ ~ 0 and symmetric with respect to . The
second is that the angle is traversed from left to right. The corresponding trajectories in the minimal
channel are too irregular to be analyzed individually, but Fig. 3(a) contains the joint probability
density function (p.d.f.) of the instantaneous mean tilt and amplitude in the minimal channel. It
satisfies the first of the two properties mentioned above. It is approximately symmetric in i, and
maximum at the center. The intensities are low near ¢ = +m/2. Although not being considered in
this paper, neither u nor w share this property: their p.d.f.s are clearly tilted towards positive angles.
The p.d.f.s of the two Reynolds numbers agree within the statistical uncertainty, underscoring the
inviscid nature of the behavior. The p.d.f. for C1850 is repeated in Fig. 3(b), where the arrows
represent the temporal evolution, (d,|[0]|, &), conditioned to each neighborhood of the (|[7]|, ¥)
plane. The upper part of the p.d.f.s of the minimal flows agrees well with the linearized prediction,
and is traversed by the flow in the right direction. This rightwards flow of the angles of the intense
structures is not a statistical artifact. It is shown in Fig. 7(b) of the Appendix that, if the order of the
time series of the angles is randomized before compiling the temporal evolution, the clockwise flow
of the arrows in Fig. 3(b) is destroyed. The Appendix also tests that the general features of the p.d.f.
in Fig. 3 are robust to the choice of A.

The bias of the p.d.f. towards negative angles, and its longer tail towards the right-hand side
of the plot are statistically robust in the sense that they survive after randomly discarding half of
the data points in each experiment. They are also found in both Reynolds numbers, and in an older
experiment at 4" = 950 that is not used in this paper because of its coarser temporal resolution.
Although the bias is relatively small, it is consistent with the effect of dissipation. Any eddy vis-
cosity tends to damp wavefronts that are too tightly packed because they are very tilted in either
direction. Towards the end of the burst, the effect is not important, because it just reinforces the
natural inviscid decay. Its effect on the central part of the burst is also moderate, because the vertical
scale is large. On the other hand, very tilted waves at the beginning of the burst are damped before
they have a chance to grow, setting a limit to the initial negative tilt of the bursts that survive. This
effect can be easily checked in analytic formula (2) for the uniform-shear case, where viscosity
also moves the maximum intensity to slightly negative angles, as in Fig. 3. However, the effect
is too dependent on the Reynolds number and on the eddy viscosity model to allow quantitative
comparisons.

The right-to-left evolution in the lower edge of Fig. 3(b) is contrary to the prediction of linear
models. It needs to be explained, although it should be noted that some kind of return path is
required for the statistical survival of the flow. Two short segments of the temporal evolution of the
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FIG. 4. (a) Two evolution histories of v, corresponding to the trajectories marked in the p.d.f. in (b), both of which start
with a closed circle. The time increment between frames (circles in (b)) is urAt /h = 0.135, from left to right. The upper row
corresponds to the upper trace in (b), and vice versa. Only y < 0.7h is represented. C1850. (b) Tilt-amplitude joint p.d.f. for
)0, as in Fig. 3. The two trajectories correspond to the snapshots in (a).

flow field of vg; are shown in Fig. 4(a). The top row displays three frames along a trajectory near
the upper edge of the joint p.d.f. (upper trace in Fig. 4(b)). It represents a burst, and clearly shows
how the wavefronts are progressively tilted forward by the shear. The trace in Fig. 4(b), in which
the three symbols correspond to the three frames, shows how the wave is strengthened as it becomes
vertical, and then weakens as in the Orr burst.

The lower row in Fig. 4(a) corresponds to the irregular trajectory near the lower edge of
Fig. 4(b), and suggests the reason why only the upper part of Fig. 3(b) follows the linear predictions.
The mean inclination angle and amplitude used here are integrated over the logarithmic layer in
one half of the channel, because it is otherwise difficult to define a unique angle. Figure 4 shows
that some attempts to define an inclination angle are bound to fail because they involve parts of
the channel in which the wavefronts are not well defined. In fact, simple solutions such as (2)
depend on simple initial conditions, which in the case of (2) are pure Fourier modes whose vertical
wavenumber is a function of time. In the channel, each wall-parallel wavenumber has an associated
eigensolution in y whose form also changes with time. It is very tightly packed at the beginning of
the burst, unwinds as ¥ ~ 0, and winds up again after that. Because of the variable vertical structure,
the linear superposition of several bursts with different time origins results in more complicated ver-
tical structures. The lower row of Fig. 4(a) suggests that the flow contains such multiple structures
at the times of low fluctuation intensity, and cannot be easily described in terms of a single tilt or
amplitude.

This is quantified in Fig. 5(a). The inclination angle ¢ is a function of y, and the flow can
only be expected to be well described by a single inclination angle if the standard deviation of
¢ with respect to its mean is reasonably small. This standard deviation is computed, as before,
using the squared perturbation amplitude as a weight. It is shown in Fig. 5(a) as a map over the
angle—amplitude parameter space of Fig. 3. The standard deviation is only small in the upper half
of the p.d.f., which corresponds to wavefronts such as those in the upper row of Fig. 4(a). This
well-represented region spans 30%—50% of the time in our sample. The lower row of Fig. 4(a)
corresponds to the lower part of the (|[7]],) map, where the standard deviations of v are large, and
the attempt to describe the flow in terms of coherent wavefronts fails.

More interesting than whether the flow can be qualitatively described by models inspired by
linearized approximations is whether the linearized equations can be used to predict it. We saw
in Fig. 2 that the average error of such predictions remains reasonable over times of the order
of a fraction of the bursting period, but it was unclear at the time whether the accuracy of those
predictions was in any way connected to bursting. This is tested in Fig. 5(b), which presents the
distribution over the tilt—amplitude plane of the relative error of the predictions of vy, using the
inviscid version of Eq. (1). For the particular prediction time chosen, u;At/h = 0.135, the average
relative error is approximately 0.5, but it is clear from Fig. 5(b) that strong events are better pre-
dicted, while weaker ones are predicted worse. Comparison with Fig. 5(a) reveals that the poorly
predicted cases correspond to flows in which the wave fronts are not well defined, even if linearized
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FIG. 5. (a) Colors represent the standard deviation of the wavefront inclination angle with respect to its mean, in the same
parameter space as Fig. 3. (b) Same as (a), but colours represent the relative error of the inviscid linearized prediction
from vyo(z — At) to v10(2), with urAt/h =0.135. C1850. (c) As in (b), but colors represent the absolute error of the inviscid
linearized prediction, (|0, — 0|[)/{||7]]). (d) Fraction of time in which the instantaneous relative error of the inviscid linearized
prediction is smaller than its mean, err < {err). o, |[Do1|%; A, [D10l%: V. [D11]%: 0, [021]%

equation (1) does not explicitly depend on a simple flow structure. The prediction time interval used
to draw Fig. 5(b) is the one between frames in Fig. 4(a), or between symbols in Fig. 4(b). It is a
sizable fraction of the bursting time. The average change of the inclination angles over that period
is Ay ~ 0.45, close to one third of the total range of angles in the figure. Results similar to the ones
discussed here for v} are obtained for the oblique modes v1; and 3;. Because a tilt angle cannot be
defined for mode vy, an analysis such as the one in Fig. 5(b) cannot be made for that mode, but it is
also true that its relative prediction error decreases with increasing amplitude.

A somewhat different view of the prediction error is Fig. 5(c), in which the colors represent
the absolute error (|[v, — v]|)/{|[v]|). Its range of values is much narrower than for the relative error
in Fig. 5(b), (|[v, — v||/I[v]]), and is actually slightly higher for the more intense perturbations than
for the weaker ones. The simplest interpretation of these two figures is that there is an “irreducible”
nonlinear component of the flow evolution that cannot be predicted linearly. When a linear burst is
not active, as in the lower part of Fig. 5(b), it dominates the flow and the prediction is poor. When
bursting is active, as in the upper part of Fig. 5(b), the predictable linear component represents most
of the perturbation and the relative error is small. A consequence of this behavior is that the shape
of the p.d.f. of the relative error is mostly controlled by the intermittency of its denominator, |[v]]. It
is fairly independent of the prediction time and, up to a point, of the particular mode involved.
This is seen in Fig. 5(d), which shows the fraction of time in which the relative error of a given
prediction is below its mean, err < (err). It is relatively constant, at 65%—70% for the four modes
considered, and remains so for all the prediction times, including those in which Fig. 2(c) shows that
the prediction is essentially uncorrelated to the real flow.

VL. CONCLUSIONS

We have shown that some large-scale modes of the wall-normal velocity in a fully nonlinear
turbulent minimal channel can be well described as transient Orr bursts, at least part of the time.
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This leads to their linearized predictability over times which, in our channels, are O(0.15 h/u.).
This corresponds to advection lengths of a few boundary-layer thickness. The degradation of
predictability over longer times has been shown to be a consequence of the appearance of more
complex flow fields that cannot be described by simple wall-normal eigenfunctions, and which
cannot be described linearly. On the other hand, nonlinearity is overwhelmed by the linear bursting
process while the latter is active. Bursts appear to be essentially inviscid, and the addition of an
eddy viscosity does not improve the predictions appreciably. It is tempting in this respect to recall
the criterion for the relevance of nonlinear effects in forced shear layers,?” which is that nonlinearity
only matters when the growth of the layer pushes the prevailing wavenumber outside the instability
range of the linear Kelvin—Helmholtz mechanism. The argument in that case is a comparison of
time scales similar to the one used here to justify linearity. As long as the shear time is the fastest
one, nonlinearity is irrelevant. Only when the flow decouples from the shear has nonlinearity time to
act.

Prediction is probably one of the more practical consequences of conceptual understanding,
even if the two do not always go together. From the above discussion, it is clear that they do in
this case. The strong events that can be described as shear-controlled Orr bursts fill about 65-70%
of the total flow history in the logarithmic layer, in the sense that the error of a linear prediction is
less than the average error for a given time interval. At those moments, the flow can be predicted
over relatively long times. The weaker events that cannot be described in this way are also predicted
worse. It is remarkable that any linearized model is able to describe the flow reasonably well over
times of the order of a substantial fraction of the bursting time, and it is striking and contrary to
common intuition that the strongest events are those best described by linearized models. However,
it should be emphasized that the conclusions of this paper refer to the dynamics of a few Fourier
modes in minimal channels, chosen as simplified representations of single coherent structures for
which identification methods could be developed. It is clear from Fig. 2(c) that higher modes are
only linearly predicted for short times. That is specially clear for vy;. There is probably little hope
that the full flow field can be predicted linearly for any amount of time relevant to the larger scales.
The small scales are nonlinear over those times.

These conclusions remain to be extended to larger simulations in which structures are localized
both in space and in time.'>?%>* We have argued that the representation in terms of transient events
is more natural than expansions in term of permanent wavetrains for temporally intermittent flow
structures. The spatial Fourier analysis used here might be as unnatural for spatially intermittent
cases as the temporal Fourier analysis has proved to be in the present one.
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APPENDIX: CONSISTENCY CHECKS

This appendix collects consistency and independence checks for our numerical detection algo-
rithms. Figure 6(a) tests the dependence of the correlation width of the different Fourier modes on
the domain over which identifications are performed and errors integrated. This domain is loosely
referred in the paper as the logarithmic layer, using the criterion that it is the region over which
the large scales are dominated by the shear.” But, because this is only loosely connected with the
conventional definition of logarithmic layer, some of the calculations are repeated here for the more
restricted integration interval, A; = (150v/u,; < y < 0.4h). The bursting widths measured over the
narrower range of wall distances in Fig. 6(a) are slightly shorter than over the wider one, but the
difference is small.

Figure 6(b) displays the effect of the narrower integration domain on the errors of the linear
predictions, and should be compared with Figure 2(d). Again, the results do not change qualita-
tively. There is a slight deterioration of the prediction accuracy for the narrower range, which is
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FIG. 6. (a) Correlation widths at C =0.5. o, C1850; A, C950. (b) As in Figure 2(d). Root-mean-squared error for the
predictions of different Fourier modes using the inviscid linearized Navier—Stokes model. The time is scaled with the
bursting width. Case C1850. o, |[vo1]l; A, |[D10ll; ¥, [011ll; T, [[021]]. In both panels, the open symbols are integrated over
A=30v/ur <y <0.7h), as in the body of the paper; closed symbols, Ay = (150v/u, < y <0.4h).
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FIG. 7. (a) As in Figure 3(b). Two-dimensional joint probability distribution function of the mean inclination and amplitude
of vy in case C1850. The arrows indicate the mean conditional evolution of the two quantities. Angles and amplitudes are
defined over the “short” logarithmic layer A. (b) As in (a), but the time stamp of the angles is randomized before compiling
the joint p.d.f. Scale of arrows is the same in both panels.

associated with its upper limit. It can be shown that the error is largest near the wall, where the shear
is strongest, while the outer layer contributes mostly to the velocity norm used as normalization.

Figure 7 tests the robustness of the angle-amplitude correlation. Figure 7(a) is equivalent to
Figure 3(b) in the body of the paper, but the average inclination angle and the amplitude are inte-
grated over the short logarithmic layer A;. Although there are some differences in detail between
the two figures, the shape of the p.d.f. and the direction of evolution is the same. Figure 7(b) is also
integrated over A, but the order of the time series of the angles is randomized before compiling the
joint p.d.f. The marginal probabilities of the angles and amplitudes are identical to those in Fig. 7(a),
since the time series involved are the same in both cases. But the joint p.d.f is completely different,
the correlation between the two quantities has disappeared, and the orderly time evolution has been
destroyed.
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