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Abstract

This thesis studies the characteristics of the outer region of zero-pressure-gradient turbu-

lent boundary layers at moderate Reynolds numbers. Two relatively established theories

are put to test. The wall similarity theory states that with the presence of roughness,

turbulent motion is mostly affected by the additional drag caused by the roughness, and

that other secondary effects are restricted to a region very close to the wall. The consensus

is that this theory is valid, but only as a first approximation. At the edge of the boundary

layer there is a thin layer caused by the interaction between the turbulent eddies and the

irroational fluid of the free stream, called turbulent/non-turbulent interface. The bulk of

results about this layer suggest the presence of some localized shear, with properties that

make it distinguishable from the rest of the turbulent flow. The properties of the interface

are likely to change if the rate of spread of the turbulent boundary layer is amplified, an

effect that is usually achieved by increasing the drag. Roughness and entrainment are

therefore linked, and the local features of the turbulent/non-turbulent interface may ex-

plain the reason why rough-wall boundary layers deviate from the wall similarity theory

precisely far from the wall.

To study boundary layers at a higher Reynolds number, a new high-resolution code for

the direct numerical simulation of a zero pressure gradient turbulent boundary layers

over a flat plate has been developed. This code is able to simulate a wide range of

Reynolds numbers from Reτ =100 to 2000 while showing a linear weak scaling up to

around two million threads in the BG/Q architecture. Special attention has been paid to

the generation of proper inflow boundary conditions. The results are in good agreement

with existing numerical and experimental data sets.

The turbulent/non-turbulent interface of a boundary layer is analyzed by thresholding

the vorticity magnitude field. The value of the threshold is considered a parameter in

the analysis of the surfaces obtained from isocontours of the vorticity magnitude. Two

different regimes for the surface can be distinguished depending on the threshold, with a

gradual topological transition across which its geometrical properties change significantly.

The width of the transition scales well with δ+
99 when u2

τ/νδ
+
99

1/2
is used as a unit of

vorticity. The properties of the flow relative to the position of the vorticity magnitude

isocontour are analyzed within the same range of thresholds, using the ball distance

field, which can be obtained regardless of the size of the domain and complexity of the
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interface. The properties of the flow at a given distance to the interface also depend on

the threshold, but they are similar regardless of the Reynolds number. The interaction

between the turbulent and the non-turbulent flow occurs in a thin layer with a thickness

that scales with the Kolmogorov length. Deeper into the turbulent side, the properties

are undistinguishable from the rest of the turbulent flow.

A zero-pressure-gradient turbulent boundary layer with a volumetric near-wall forcing

has been simulated. The forcing has been designed to increase the wall friction without

introducing any obvious geometrical effect. The actual simulation is split in two domains,

a smaller one in charge of the generation of correct inflow boundary conditions, and a

second and larger one where the forcing is applied. One-point and two-point statistics

do not collapse beyond the logarithmic layer, but those differences can be explained as

a consequence of the geometrical complexity of the intermittent region, and by the fact

that the scaling with the wall-normal coordinate is no longer dominant. The geometrical

effects can be avoided using the turbulent/non-turbulent interface as a reference frame,

and the minimum distance respect to it. The conditional analysis of the vorticity field

with the alternative reference frame recovers the scaling with δ99 and ν/uτ already present

in the logarithmic layer, the only two length-scales allowed if Townsend’s wall similarity

hypothesis is valid.
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Resumen

Esta tesis estudia el comportamiento de la región exterior de una capa ĺımite turbulenta

sin gradientes de presiones. Se ponen a prueba dos teoŕıas relativamente bien estable-

cidas. La teoŕıa de semejanza para la pared supone que en el caso de haber una pared

rugosa, el fluido sólo percibe el cambio en la fricción superficial que causa, y otros efectos

secundarios quedarán confinados a una zona pegada a la pared. El consenso actual es

que dicha teoŕıa es aproximadamente cierta. En el extremo exterior de la capa ĺımite

existe una región producida por la interacción entre las estructuras turbulentas y el flujo

irrotacional de la corriente libre llamada interfaz turbulenta/no turbulenta. La mayoŕıa

de los resultados al respecto sugieren la presencia de fuerzas de cortadura ligeramente más

intensa, lo que la hace distinta al resto del flujo turbulento. Las propiedades de esa región

probablemente cambien si la velocidad de crecimiento de la capa ĺımite aumenta, algo

que puede conseguirse aumentando la fricción en la pared. La rugosidad y la ingestión de

masa están entonces relacionadas, y el comportamiento local de la interfaz turbulenta/no

turbulenta puede explicar el motivo por el que las capas ĺımite sobre paredes rugosas no

se comportan como en el caso de tener paredes lisas precisamente en la zona exterior.

Para estudiar las capas ĺımite a números de Reynolds lo suficientemente elevados, se ha

desarrollado un nuevo código de alta resolución para la simulación numérica directa de

capas ĺımite turbulentas sin gradiente de presión. Dicho código es capaz de simular capas

ĺımite en un intervalo de números de Reynolds entre Reτ = 100 − 2000 manteniendo

una buena escalabilidad hasta los dos millones de hilos en superordenadores de tipo Blue

Gene/Q. Se ha guardado especial atención a la generación de condiciones de contorno a

la entrada correctas. Los resultados obtenidos están en concordancia con los resultados

previos, tanto en el caso de simulaciones como de experimentos.

La interfaz turbulenta/no turbulenta de una capa ĺımite se ha analizado usando un valor

umbral del módulo de la vorticidad. Dicho umbral se considera un parámetro para analizar

cada superficie obtenida de un contorno del módulo de la vorticidad. Se han encontrado

dos reǵımenes distintos en función del umbral escogido con propiedades opuestas, sepa-

rados por una transición topológica gradual. Las caracteŕısticas geométricas de la zona

escalan con δ+
99 cuando u2

τ/νδ
+
99

1/2
es la unidad de vorticidad. Las propiedades del fluido

relativas a la posición del contorno de vorticidad han sido analizados para una serie de um-

brales utilizando el campo de distancias esféricas, que puede obtenerse con independencia
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de la complejidad de la superficie de referencia. Las propiedades del fluido a una distancia

dada del inerfaz también dependen del umbral de vorticidad, pero tienen caracteŕısticas

parecidas con independencia del número de Reynolds. La interacción entre la turbulencia

y el flujo no turbulento se restringe a una zona muy fina con un espesor del orden de

la escala de Kolmogorov local. Hacia el interior del flujo turbulento las propiedades son

indistinguibles del resto de la capa ĺımite.

Se ha simulado una capa ĺımite sin gradiente de presiones con una fuerza volumétrica

cerca de la pared. La el forzado ha sido diseñado para aumentar la fricción en la pared

sin introducir ningún efecto geométrico obvio. La simulación consta de dos dominios, un

primer dominio más pequeño y a baja resolución que se encarga de generar condiciones

de contorno correctas, y un segundo dominio mayor y a alta resolución donde se aplica

el forzado. El estudio de los perfiles y los coeficientes de autocorrelación sugieren que

los dos casos, el liso y el forzado, no colapsan más allá de la capa logaŕıtmica por la

complejidad geométrica de la zona intermitente, y por el hecho que la distancia a la

pared no es una longitud caracteŕıstica. Los efectos causados por la geometŕıa de la zona

intermitente pueden evitarse utilizando el interfaz como referencia, y la distancia esférica

para el análisis de sus propiedades. Las propiedades condicionadas del flujo escalan con

δ99 y ν/uτ , las dos únicas escalas contenidas en el modelo de semejanza de pared de

Townsend, consistente con estos resultados.
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Chapter 1

Introduction

Turbulence is a fundamental phenomenon in fluids. It is the most common and resilient

mechanism for which a fluid dissipates its kinetic energy, and turns it into heat. Tur-

bulence has been into intense research since its key role was discovered, and it is now

a fundamental part of engineering. Despite turbulence modeling is ubiquitous in many

practical applications of Computational Fluid Dynamics, many details of the nature of

turbulent motion remain uncovered.

This thesis deals with some aspects of a particular instance of turbulent flow, the zero-

pressure-gradient turbulent boundary layer, that have not been yet understood. Despite

it is one of the many realizations of turbulence, it is of great interest in aeronautics,

turbomachinery and meteorology.

1.1 The turbulent motion of fluids

Turbulence has been a relatively obvious phenomenon to the observation of nature. There

has always been a word for the disordered motion of wind and water in the chaos an

turmoil of adverse weather, called turbare by Gonzalo de Berceo (1197-1264). The first

experiments explicitly targeted to test turbulence were due to Leonardo da Vinci (1452-

1519), although they were aimed to a pictorial purpose. He famously sketched the whirls

of a current of water, describing it as tangled hair.

The scientific study of Turbulence in fluid started with Hagen (1854), and Darcy (1857),

with the goal of understanding the pressure drop of fluids moving in closed ducts. The

first precise phenomenological description is due to their research. They found that the

1



1. Introduction

drag force suffered by the fluid had two components, one proportional to the velocity of

the fluid, and a second one proportional to the square of the velocity. This was then a

paradox, because the observation implied that the drag force does not vanish even when

the viscosity is nominally zero.

Reynolds (1895) contributed the fundamental parameter for the appearance of disordered

motion in fluids, named after him. He also pioneered the mathematical treatment of the

problem. He found that the small features of the motion were not measurable at that

time, and he proposed to decompose the Navier-Stokes equation as a temporal average

(the Reynolds average), and a fluctuating term. This formulation became the foundation

of turbulence modeling. The first approximate description of the nature of turbulent

motion is due to Richardson (1922), who proposed a hierarchy of structures, or eddies,

of different sizes. The largest ones contain a significant amount of kinetic energy, but

the gradients within are not strong enough to produce any dissipation. Kinetic energy

dissipation therefore not direct. The big eddies transfer the kinetic energy to smaller

eddies, and those to even smaller eddies until the gradients are strong enough for the

kinetic energy to be dissipated by viscosity. This description is not necessarily accurate,

but it provides the essential concepts needed to solve the previously mentioned paradox.

An eddy can be defined as a coherent region of the fluid with size ` that contains a velocity

difference of u`. The rate of energy dissipated for unit mass and time by each eddy follows

necessarily the law ε ∼ u3
`/`. The Navier-Stokes equations for an incompressible fluid can

be written as

∇ · u = 0 (1.1a)

∂u

∂t
+ u · ∇u = −ρ−1∇p+ ν∇2u, (1.1b)

where u is the velocity vector, ∇ is the gradient vector operator, ρ is the density of the

fluid, p is pressure, ν is the kinematic viscosity, and ∇2 is the Laplace operator. An

equation for ε = ∂(V −1
∫
V
|u|2/2 dx3)/∂t can be obtained multiplying (1.1b) by u, and

integrating over a volume V :

ε =
−∆p

ρV

∫
A

u d2x− ν

V

∫
V

|∇u|2 d3x, (1.2)

where A is the boundary of V , and x is the coordinate vector. When ε becomes indepen-

dent of viscosity in the limit of ν = 0, |∇u|2 has to become almost singular. Turbulence

is the mechanism for those strong gradients to appear far from a solid boundary.
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1.2. Turbulent wall bounded flows.

Turbulence is a multiscale phenomenon that ranges from the largest possible scale present

in the phenomenon to the probably microscopic scale where the energy is dissipated by

viscosity. Assuming that the eddies mentioned earlier can develop without the influence

of any boundary, they can be classified from their characteristic length.

The integral scale L represents the largest scale that can be defined in the phenomenon,

the characteristic size of the forces that produce the motion of the fluid. In the case of a

pipe, it could be the radius or the diameter. The Reynolds number associated to those

eddies is usually very large. A pipe of radius L = 0.1m that transports fresh water at a

velocity of U = 10m/s has a characteristic Reynolds number of UL/ν ' 106.

The Kolmogorov’s length η is the scale where the gradients of velocity are important, and

the viscous dissipation of kinetic energy is relevant. The Reynolds number of the eddies

of size η has to be of the order of (εη4/ν3)1/3 ∼ 1, and the Kolmogorov scale is therefore

η = (ν3/ε)1/4. Note that the characteristic velocity associated with eddies of size η is

uη = (νε)1/4, and the characteristic velocity gradient is uη/η = (νε)1/2.

If L and η are different enough, there is a range of intermediate scales l that are not

influenced by the mechanism of energy injection nor dissipation, and the eddies have no

characteristic length-scale, meaning that any length between L and η can be found on the

flow, but none will be particuarly relevant. Kolmogorov (1941) deduced from dimensional

arguments that the associated one-dimension energy spectrum follows

Euu(k) ∼ ε2/3k−5/3, (1.3)

which is widely known as Kolmogorov’s 5/3 law, with k ∼ 1/l the wavenumber. It

quantifies the amount of energy that, on average, the eddies of size l transfer to those

immediately smaller. Despite this is a relatively simplistic description, it is one of the

most successful results in the field.

1.2 Turbulent wall bounded flows.

The previous classification, despite it roughly describes any turbulent flow, is not accurate

in the presence of an inhomogeneity. Particularly in the case of a solid wall where a no

slip (u = 0) boundary condition is applied. The presence of a solid boundary introduces

another fundamental length-scale in the flow, the distance along its perpendicular direc-

tion y. The other two fundamental coordinates are x, in the direction of the free stream

3



1. Introduction

Figure 1.1: Sketch of the coordinates based on the position of the wall. The turbulent eddies
are represented by whirls of different sizes

and z, perpendicular to the previous two. The components along each coordinate are u, v

and w respectively, and the magnitude of the velocity of the free stream is U∞. A sketch

of the previous definitions is presented in figure 1.1.

We can define the Reynolds average as the operation φ = 〈φ〉 + φ̃, where an arbitrary

variable φ is decomposed as a mean term 〈φ〉, and a fluctuations term φ̃. In the partic-

ular case of a wall-bounded flow, the averaging of 〈·〉 occurs along the three statistically

homogeneous dimensions x, z and time. In consequence 〈φ〉 is only a function of y. If

we apply the Reynolds average to equation (1.1b), assuming the presence of the wall and

homogeneity along the z coordinate, we obtain

∇ · 〈u〉 = 0 (1.4a)

〈u〉 · ∇〈u〉+ ρ−1∇〈p〉 = ν∇2〈u〉 − ∇ · 〈ũũ〉, (1.4b)

Very close to the wall, viscosity has to be dominant over the rest of the terms, and equation

(1.4b) is trivially integrable to

〈u〉 = y
∂〈u〉
∂y

∣∣∣∣
y=0

. (1.5)

With the expression of the shear stress at the wall

τw = ν
∂〈u〉
∂y

∣∣∣∣
y=0

, (1.6)

and defining the friction velocity as uτ =
√
τw, the non-dimensional identity

〈u〉
uτ

= y
uτ
ν

(1.7)
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1.2. Turbulent wall bounded flows.

defines the characteristic scales for velocity and length in the near-wall region, the friction

velocity uτ and the viscous length ν/uτ respectively. Equation (1.7) can be written as

〈u〉+ = y+, where the superscript + denotes the use of wall units. Note that a character-

istic time can also be defined as ν/u2
τ . The zone where the mean velocity profile fits this

description, and viscosity is the dominant feature of the flow, is called viscous sublayer.

The separation of scales is a fundamental requirement for some properties of turbulence to

emerge, as it was mentioned in §1.1. A similar argument can be done about the separation

between the small scales close to the wall, of length ν/uτ , and the characteristic length of

the outer scales of the flow like the radius of the pipe in the example in §1.1, that it will be

generally called δ. According to Townsend (1976), the eddies in a wall bounded flow have

a characteristic velocity of uτ and a size proportional to the distance to the wall y. In

consequence, using the previous dimensional argument given by Kolmogorov, the energy-

dissipation rate is ε ∝ u3
τ/y. In addition, the amount of kinetic energy injected by the

largest scales into the turbulent motion, also called production of turbulent kinetic energy,

is1 Π = u2
τ∂〈u〉/∂y. If the scale separation is sufficiently large, meaning ν/uτ � y � δ,

there is local equilibrium between the amount of energy introduced by the shear and the

energy dissipated by the turbulent eddies, therefore

u2
τ

∂〈u〉
∂y

= κ
u3
τ

y
, (1.8)

where κ is the Kármán constant, the ratio between the local production and dissipation.

If equation (1.8) is integrated, one obtains a logarithmic solution for the mean velocity

profile

〈u〉+ =
1

κ
log y+ + C, (1.9)

where C is an additive constant that depends on the details of the flow near the wall. While

the deduction of the presence of a logarithmic region in the mean profile of the streamwise

component of velocity is subject to strong assumptions, it has been repeatedly observed

in a wide range of wall bounded flows with sufficient separation between the viscous and

the largest scales (see figure 1.2). The separation between ν/uτ and δ is therefore crucial,

and the ratio between these two quantities defines the Reynolds number of a wall-bounded

flow Reτ = δuτ/ν, called friction Reynolds number. The properties of the turbulent flow

in this region were recently reviewed by Jiménez (2013).

1The proof of this identity is omitted for brevity
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Figure 1.2: Evidence of the existence of the logarithmic layer described in equation (1.9) in
turbulent channels within a range of Reτ . Figure from Lozano-Durán & Jiménez (2014 a).

.

Below the logarithmic layer, where y � ν/uτ , and above the viscous sublayer, where

y+ ∼ 1 there is an overlap region where the two scales (y and ν/uτ ) are relevant. That

region is frequently called buffer layer, and it is visible at y+ = 10 − 100 in figure 1.2.

The turbulent structures in the buffer layer are nonlinear and moderately chaotic, but

their configuration is simple enough to be fully described by Jiménez & Moin (1991) and

Jiménez & Pinelli (1999).

We have examined two of the three characteristic regions of a wall-bounded flow. The

viscous sublayer and the logarithmic layer are relatively universal, since they are strongly

influenced by the presence of a wall. They have been under intense research, and they have

been modeled with relative success. These two zones correspond to roughly the 95% of

the energy dissipation, but only the 25% of the volume. The region where the influence of

δ is important is not particularly intense, but it is much less understood. The influence of

large scales depend strongly on the configuration of the largest structures that carry most

of the kinetic energy. In the case of the turbulent channels and pipes, those structures are

at the center, and they are pushed by the pressure gradient. In the case of a boundary

layer, the largest scales appear naturally as the byproduct of the interaction between the

turbulent motion and the free stream. In any case, it has been repeatedly observed that

these largest scales are not universal, and depend on the geometrical configuration of the

problem.
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1.3. Turbulent boundary layers.

Figure 1.3: Regimes of the evolution of a boundary layer. The solid line that originates at the
edge of the plate represents the far edge of the boundary layer. Beyond that line the free stream is
not perturbed. At the right side of the figure there is a sketch of the average streamwise velocity
profile, and the graphical interpretation of the displacement thickness δ∗, and the boundary
layer thickness δ99.

.

1.3 Turbulent boundary layers.

A turbulent boundary layer is a turbulent bounded flow that occurs when there is a relative

motion between a solid boundary and a fluid at a sufficient speed. Turbulent boundary

layers are particularly relevant in aeronautics. Roughly 20% of the drag of a plane flying

at cruise speed is contributed by the skin drag, that occurs within the turbulent boundary

layer. They are also important in meteorology. The interaction between the winds and

the terrain often forms a turbulent boundary layer, that characterizes the lowest region

of the troposphere.

Assume a free stream at a velocity U∞ and a flat plate with infinitesimal thickness aligned

with the direction of the current, like the ones sketched in figure 1.3. The interaction

between the edge of the plate and the flow forms a stagnation point, followed by a laminar

region that concentrates the gradients between the free stream (at a velocity of U∞) and

the solid wall (at u = 0), a laminar boundary layer. This phenomenon was first described

by Prandtl (1904), and an analytic solution in absence of external pressure gradients was

found by Blasius (1950). If the boundary layer is let to evolve, it eventually transitions

to a turbulent regime. The transitional behavior of boundary layers is one of the main

topics in the field of linear stability analysis of fluids, but it is out of the scope of this

work.

The turbulent regime of a boundary layer is usually characterized by the following pa-

rameters. A common measure for the thickness of the boundary layer is δ99, which is

also a good estimation of the size of the largest scales L. It is defined as the wall-normal

coordinate where the average streamwise velocity is equal to the 99% of the free stream

7



1. Introduction

Figure 1.4: Example of intermittent signal obtained by a hot wire in the outer region of a
turbulent boundary layer. From Corrsin & Kistler (1955)

.

〈u〉|y=δ99 = 0.99U∞. The second parameter is the displacement thickness δ∗, defined as

the distance by which the wall would have to be moved in the wall-normal direction to

give the same flow rate in an unperturbed stream as occurs in the real fluid:

δ∗ =

∫ ∞
0

(
1− 〈u〉

U∞

)
dy. (1.10)

A graphical interpretation of this equation is presented in the rightmost part of figure

1.3. The displacement thickness evaluates the streamwise growth of the boundary layer,

since dδ∗/ dx is the amount of mass that the boundary layer entrains per unit length. A

similar quantity can be defined with the momentum of the free stream and of the real

fluid, called momentum thickness θ, defined as

θ =

∫ ∞
0

〈u〉
U∞

(
1− 〈u〉

U∞

)
dy. (1.11)

This quantity is also relevant to characterize the streamwise evolution of the boundary

layer. The integration of (1.1b) in absence of pressure gradients along the streamwise

direction yields to the Kármán momentum integral equation

cf
2

=
dθ

dx
, (1.12)

where cf = u2
τ/ρU

2
∞ is the friction coefficient. Equation (1.12) links he two phenomena

studied in this thesis, the friction that occurs at the near-wall region, and the entrainment

that occurs in the outer region of the boundary layer.

1.4 Turbulent entrainment of irrotational fluid.

The outer region of a boundary layer is also called intermittent region, because of the

characteristic signal produced by a hot wire when it is placed there (see figure 1.4). A

wall-parallel plane sufficiently far from the wall, say y = δ99, contains roughly the same

8



1.4. Turbulent entrainment of irrotational fluid.

amount of turbulent flow than irrotational flow in the free stream. In consequence, a

hot wire placed at that height would output an intermittent signal made from smooth

and fast-changing sections. This opens an important question about the characteristics

of boundary layers in comparison to other other wall-bounded flows. Does the presence

of irrotational flow affect the turbulent motion? In other words. Are the turbulent eddies

in the outer region of the boundary layer aware that there is irrotational fluid nearby? If

the answer is affirmative, the local dynamics of the interaction between the turbulent and

the non-turbulent flow have to be described. If the answer is negative, the free stream is

just a boundary-less condition for the turbulent eddies, that keep their collective behavior

unaltered until they are dissipated.

This interaction does exist. The mass acquired by the boundary layer during its spa-

tial evolution has to be obtained from the free stream. Entrainment is the process for

which the turbulent motion propagates by giving vorticity (and any other fluctuation

that is characteristic of the turbulent motion) to fluid that was previously irrotational.

Entrainment is present in any external turbulent flow like jets and mixing layers, and its

importance in the dynamics of turbulence in the outer region of the boundary layer are

not yet determined.

The question is therefore how entrainment affects turbulent motion. One defining property

of turbulence is vorticity ω = ∇∧u, where∇∧ is the rotor operator. Within the turbulent

flow vorticity can be created, advected amplified or damped. On the other hand, the

irrotational free stream has no mechanism to produce vorticity from scratch. It is clear

that in the last term, the non-turbulent flow becomes turbulent by direct interaction, the

question is whether an additional process promotes vorticity diffusion.

If vorticity propagation is purely local, a concept that has been frequently called nibbling,

the interaction between the turbulent and the non-turbulent can be simple. On the other

hand, if entrainment is a multi-scale process that involves the transmission of momentum

from the large coherent structures to the non-turbulent flow, called engulfment by some

authors, it is less probable that the interaction between the two states of the fluid can be

given a simple description. This questions motivate a thorough analysis of the intermittent

zone and the thin layer where vorticity diffuses out to the non-turbulent region, the

turbulent/non-turbulent interface.
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1. Introduction

1.5 Boundary layers over rough walls.

Many boundary layers of practical interest happen over rough walls. The atmospheric

boundary layer, driven by the geostrophic component of the wind, flows over a wide variety

of roughness patterns. Large ships accumulate significant amounts of fouling, that can

affect the properties of the boundary layer around the vessel and reduce its performance.

The most important effect of roughness is, with little exceptions, to increase the friction

coefficient. At the present moment there is no widely accepted model to predict the

friction coefficient from a given roughness pattern, an indication on how complex the

interaction between a non-smooth solid wall and the structure of turbulent motion can

be. There are, however, relevant theories about the mentioned interaction, like the wall

similarity hypothesis by Townsend (1976). According to that hypothesis, with sufficient

scale separation, and if the roughness does not interact directly with the logarithmic layer,

the effect that the roughness has on the turbulent motion in boundary layers is confined

within a region with a thickness of the order of the height of the roughness. Above that

region of influence, the rest of the flow only perceives the change in the friction coefficient.

Given the conditions, the range of application of this hypothesis may seem small, but a

relevant amount of atmospheric and industrial flows occur within this parameter range.

Townsend’s hypothesis is relevant for the modeling of boundary layers over rough surfaces,

and determining its limitations is of practical interest.

The consensus nowadays is that Townsend’s hypothesis is valid, but only as a first ap-

proximation. Boundary layers with shallow roughness behave almost like boundary layers

over smooth walls, but when friction is increased by a relevant amount, some of the basic

statistics do not scale with the corresponding friction coefficient. It is significative that

the similarity between rough and smooth walls is lost precisely far from the wall, in the

intermittent region. If we remember equation (1.12), the friction coefficient is roughly

proportional to the rate of growth of the boundary layer, that is related to the amount

of mass that is entrained per unit length. This connection between roughness and inter-

mittency suggests another explanation for the lack of accuracy of Townsend’s similarity

hypothesis, that was suggested by Robert Antonia in a private conversation with Javier

Jiménez. The differences between smooth and rough-wall boundary layers in the inter-

mittent region could be explained by the additional entrainment, and roughness would

be only indirectly involved in the mentioned lack of agreement.
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1.6. Turbulence as a fractal.

The characteristic scale of the intermittent region is δ (δ99 in this case), and there is no

particular reason to think that the distance to the wall y is the most important scale of

length past y = 0.5δ99. In consequence, the differences in the mean profiles between the

two cases may be caused by y not being a suitable variable, neither 〈·〉 a suitable ensemble

average.

The detailed analysis of the intermittent region confronts us to a particularly hard ge-

ometrical problem. The direct observation of the region shows that the arrangement of

eddies is complex, featuring overhangs with no particular orientation. It is not clear how

to measure the geometrical properties of turbulence without a trivial reference frame, like

a symmetry axis, a wall, or a simple surface. The study of the intermittent region will

require the development of new measurement techniques.

1.6 Turbulence as a fractal.

Fractals appear in nature when two aspects of the same phenomenon have to balance, but

an apparent singularity is required for that to happen. The amount of oxygen required by

an organism scales with its volume, but the transport of mass between two fluids across

a membrane scales with the area. To be able to grow to larger sizes, mammals evolved

to have fractal lungs, and fish to have fractal gills. The same way, a fluid motion at a

high Reynolds number with vanishing viscosity would dissipate almost no kinetic energy

unless velocity gradients become almost singular. Two popular introductions to fractals

are Mandelbrot (1983) and Schroeder (2012).

The early description of turbulence given by Richardson (1922) is compatible with the

notion of fractal, but that does not mean that turbulence is a fractal in the strict sense.

The velocity field in a turbulent flow is smooth at scales comparable to η, and large

scales are seldom self-similar. However, some of the aspects of fractal surfaces in three-

dimensional spaces are found in an enstrophy (the norm of the vorticity vector ω = |ω|)
isocontour like the one presented in figure 1.5.

The flow in the intermittent region involves multiple scales, and since we do not know

which of those are important in entrainment, it is crucial that the analysis does not

discard any. It is possible that entrainment is vorticity being diffused across a fractal

surface, and that the turbulent/non-turbulent interface ingests irrotational flow similarly

to how oxygen is diffused into the blood stream across gills. If that surface is simplified
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1. Introduction

Figure 1.5: Enstrophy contour ω+ = 0.4 of a boundary layer at Reτ ' 2000. The contour is
colored with the distance to the wall. The stream goes from bottom-right to top-left. The box
corresponds to a small portion of the simulation at the mentioned Reynolds number, approxi-
mately 2δ99 wide by 3δ99 long.

and processed, the measurements of its properties may not be accurate. If the complexity

of gills was ignored, the conclusion would be that all the fish that there is should be dead.

1.7 Direct Numerical Simulation of turbulent flows.

Equations (1.1a) and (1.1b) can be integrated numerically. Computational fluid dynam-

ics is nowadays a relatively mature discipline, and some of its achievements have been

relevant to the comprehension of the structure of turbulent flow. The field has steadily

evolved since Moin & Mahesh (1998), and new simulation codes and more powerful su-

percomputers have provided a wealth of interesting results.

Direct Numerical Simulation (DNS) is the numerical resolution of the Navier-Stokes equa-

tions with sufficient spatial and temporal accuracy to obtain a solution that contains all

the relevant scales of the flow. It is now widely known that these simulations require a

significant amount of computational resources. It has been mentioned previously that

the separation between the smallest and the largest scales of a turbulent flow is crucial

to understand its properties. The verification of Townsend’s wall similarity hypothesis
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1.7. Direct Numerical Simulation of turbulent flows.

requires that δ � ν/uτ , and an even more demanding condition is required to study

the intermittent region, δ � η. Therefore, the target Reynolds number for a boundary

layer simulation is the largest possible. The parameter that quantifies scale separation

in wall-bounded flows is Reτ , and the amount of information contained in a turbulent

boundary layer scales as Re
9/4
τ . This means that increasing the Reynolds number by a

factor of 2 requires almost 5 times more memory and storage, and almost 8 times more

computational resources.

The evolution of supercomputer resources has followed Moore’s law (Schaller, 1997) quite

consistently for the last two decades (see figure 1.6), but that does not mean that it is

trivial for users to obtain the same speedup for their applications. The most powerful

supercomputers have experimented a series of architectural changes during the last 20

years. For instance, the fastest supercomputer in the early 2000, the Earth Simulator,

had a shared-memory architecture; the fastest supercomputer in 2010, Jaguar, was a

distributed-memory CPU-only cluster; and the fastest at the time of writing this docu-

ment, Tianhe-2, is a distributed-memory accelerated cluster. In consequence, the code for

a DNS simulation has on average a longer life than the architecture of the most powerful

supercomputer.
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Figure 1.6: Evolution of the performance of the aggregation of the 500 most powerful super-
computers (dots), the most powerful supercomputer (triangles) and the 500th most powerful
supercomputer (squares), with their respective temporal fits. Giga FLOPS (GF) is a unit of
performance, and corresponds to the billions of floating point operations one supercomputer is
able to perform per second. Source: (http://top500.org)
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Porting to the current supercomputer architecture is not a trivial task. In the case of the

Blue Gene, the family of supercomputers used in this work, the interconnection mesh is

not conventional, and the amount of memory per per computation unit (usually a core)

is a serious constraint for the design of the domain decomposition and the inter-process

communication strategy.

Once the simulation has run, it usually generates a huge amount of data, of the order of

hundred terabytes in the present case. A relatively simple operation, like moving those

data out from the supercomputer center, can be a challenging exercise. In this case, it

even required the use of fast wide area connections between supercomputer centers, and

to send around 50 TiB storage physically across Spain.

1.8 Goals

The goals of the work described in this thesis are the following:

• To design and to implement the new generation of DNS code able to run turbulent

boundary layers at Reτ > 2000 in the most powerful contemporary supercomputers.

• To simulate a turbulent boundary layer at a sufficient Reτ , with a forcing able to

increase entrainment by a significant amount. That forcing should be similar enough

to the presence of a rough wall to put to test Townsend’s wall similarity hypothesis.

• To develop the tools necessary to analyze the intermittent region of a boundary

layer. Those tools should include as few assumptions about the geometrical aspects

of the flow as possible.

• To determine the properties of turbulent motion in the intermittent region, with

special emphasis on the interaction between the turbulent eddies in the outer part

of the boundary layer and the free stream.

• To determine if the deviation from the collapse predicted by Townsend’s wall simi-

larity hypothesis is due to a change in the structure of the turbulent motion, or to

a geometrical effect caused by the additional entrainment.
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1.9 Structure of this thesis.

This document is separated in three relatively independent chapters. Chapter 2 describes

the development of a novel turbulent boundary layer simulation code able to run and

scale in the most recent supercomputer architectures. Chapter 3 describes the inter-

mittent region of a boundary layer, presents a novel set of tools needed to analyze the

turbulent/non-turbulent interface in full detail, and determines the fundamental scales

present in the outer region of the boundary layer. Chapter 4 describes the simulation of

a turbulent boundary layer with accelerated entrainment and its relationship with actual

roughness. The structure of that forced boundary layer is then compared with an almost

identical case without any forcing. Finally, the tools developed in Chapter 3 are applied to

the forced boundary layer to analyze the validity of Townsend’s wall similarity hypothesis

in the intermittent region. Chapter 5 concludes and proposes some ideas for future work.
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Chapter 2

Direct numerical simulation of

turbulent boundary layers at high

Reynolds numbers

2.1 Introduction

Our current research is focused on understanding the flow in the turbulent regions that

are further from the wall, where range of scales is wider, and the Reynolds number plays

a significant role. Our approach is to analyze data obtained from Direct Numerical Simu-

lation (DNS). While high Reynolds number simulations exist for other wall bounded flows

(mainly channels), similar data sets were not available for boundary layers. The present

code was developed to generate them.

We needed a high resolution code that is able to perform a DNS of a boundary layer

that has good performance and excellent scalability. The starting point was the parallel

Message Passing Interface (MPI)-only code described in detail in Simens et al. (2009). It

needed severe modifications to satisfy the additional constraints that the BG/P architec-

ture introduces. The most relevant change was to add a second level of parallelism with

OpenMP, necessary to achieve the desired degree of scalability and performance; and an

auxiliary domain to extend the computational box.

Two different simulations using this code were completed in two BG/P supercomputers

0Some content of this chapter was published as Borrell et al. (2013), A code for direct numerical
simulation of turbulent boundary layers in BG/P supercomputers.
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using 32768 cores, a zero pressure gradient boundary layer over a flat plate with a Reynolds

number based on the momentum thickness of Reθ = 1100 − 6800 on Intrepid at the

Advanced Leadership Computing Facility (ALCF) (Sillero et al., 2013) and a forced

boundary layer with artificial roughness with Reθ = 300− 4200 (Borrell et al., 2011) on

Jugene at the Jülich Supercomputing Center (JSC).

Previous DNS of turbulent boundary layers at similar Reynolds

numbers

This is a domain-specific code designed to solve a zero pressure gradient turbulent bound-

ary layer in a rectangular domain. It is not comparable to codes like nek5000 (Fischer

et al., 2008) that, while also achieving excellent scalability in the same supercomputer

architecture, are general purpose and are designed to handle more complex geometries.

One could classify previous simulations of turbulent boundary layers on how they deal

with the inhomogeneity of the streamwise direction.

It is worth mentioning the pioneering work of Spalart (1988), despite covering a low range

of Reθ. Periodicity in the streamwise direction was enforced with a multiple-scaling trans-

form of the coordinates as well as approximate treatment of the Navier-Stokes equations.

This simplification is accurate as long as the streamwise growth of the boundary layer is

small; therefore, it is only valid when simulating a short domain.

Another technique to deal with the inhomogeneity is to enforce periodicity by adding

a fringe region at the end of the domain, where the flow is forced back to the laminar

regime. This technique was applied, for instance, in Khujadze & Oberlack (2004), Wu &

Moin (2009) and Schlatter & Örlü (2010), where the simulation ranges up to Reθ = 4060.

While this method is useful to study the phenomenon of laminar-turbulent transition, it

requires to start from a laminar flow condition. This may be a limiting factor when the

region of interest is only the one further downstream. It also requires some perturbation

to trigger turbulence, what makes the flow dependant on the tripping technique. On the

other hand, it allows periodic treatment of the streamwise direction, and simplifies the

algorithm significantly.

Finally, one can generate an inflow boundary condition that is already turbulent. While

Simens et al. (2009), Lee et al. (2011) and Pirozzoli et al. (2010) rescale the flow with a
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scheme similar to the one proposed by Lund et al. (1998), Ferrante & Elghobashi (2004)

extended the cited method. The idea is to pick one cross-stream plane at an intermediate

part of the domain, and to recycle it as inflow boundary condition. Two aspects must be

taken into account: the separation between inflow and the recycled plane must be wide

enough to ensure their independence, and the rescaling should take into account that the

turbulent motion involves multiple scales, not only boundary layer thickness. In these

simulations, the streamwise direction is non periodic and a finite-difference scheme has to

be used. While this approach permits the simulation to start at almost any given value

of Reθ, the recycling process introduces an artificial inflow. All the scales have to evolve

until they reach their asymptotic state; hence a portion of the simulation domain has to

be discarded. A discussion about this accommodation length scale can be found in Sillero

et al. (2010).

Compared to the previous related simulations, this code is focused on achieving the highest

Reynolds number possible with the given computational resources. For example, the

target for the smooth-wall case was to reach a friction Reynolds number Reτ = 2000, so

that it could be compared with an existing simulation (Hoyas & Jiménez, 2006). That

comparison introduces additional constraints regarding box size and resolution. At such

Reτ the flow is fully turbulent, there is no need to simulate the transition, and the recycling

scheme of the previous implementation is kept.

Another key difference between the current code and the previous ones is that, despite

running efficiently on any distributed memory supercomputer, it was tuned for a specific

supercomputing architecture that imposes severe constraints on domain decomposition,

communications and I/O.

It was also our intention to design an application as flexible as possible that was able to

generate data sets at even higher Reτ without introducing further design modifications

in the next generation of supercomputers. Therefore, one of our goals is also to share

implementation details that can be useful to design similar large-scale simulations.

The organization of this section is as follows. A basic description of the code is given in

section 2, followed in sections 2.1 to 2.5 by the most relevant modifications to its previous

version. Scalability is addressed in section 3; and parallel Input/Output, a new feature,

is commented in section 4. Finally, validation and conclusions are in sections 4 and 5

respectively.
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2. DNS of turbulent boundary layers at high Re

Figure 2.1: Schema of the computational domain and boundary conditions

2.2 The numerical code

The boundary layer is simulated in a parallelepiped over a smooth wall, with spatially

periodic boundary conditions in the spanwise direction, but with non-periodic inflow

and outflow in the streamwise direction. The code uses a well-established fractional-step

method (Harlow & Welch, 1965; Perot, 1993) to solve the incompressible Navier-Stokes

equations expressed in primitive variables, using spectral expansions in the spanwise di-

rection, and compact finite differences (Lele, 1992) in the other two. A three sub-step,

semi-implicit low storage Runge-Kutta scheme, in which wall-normal second derivative

terms use a Crank-Nicholson scheme to increase the time step, is used to evolve the

equations in time. A full description of the algorithm can be found in Simens et al.

(2009).

For the problem considered, spatial derivatives are tightly coupled operations. Our code is

constructed in such a way that only single data lines along one of the coordinate directions

at a time have to be accessed globally. However, all the three directions have to be treated

in every sub-step.

The code is single precision in the I/O operations and communications and double pre-

cision in the differentiation and interpolation operations where the implicit part of the

compact finite differences and the fast Fourier transform can cause loss of significance.

Computational Setup

A schema of the computational domain can be seen in Figure 2.1. The x, y, and z axes

correspond to the streamwise, wall-normal and spanwise directions, respectively. The

simulation is split in two concatenated domains with different boundary conditions. The
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2.2. The numerical code

planes πi and π′i are given inflow boundary conditions, and outflow boundary conditions

are assigned to πe and π′e. The boundary conditions at the top of the boxes, πt and

π′t, impose a zero pressure gradient on the domain. Finally, the spanwise direction is

considered periodic. The purpose of the first boundary layer (Boundary Layer (BL)1)

is to provide accurate inflow boundary conditions to the second one (BL2). The inflow

of BL1 is obtained from its own plane π1 that is rescaled using a method based on the

one proposed by Lund et al. (1998). The physical length of BL1 is chosen to be long

enough to let the large scales recover from an unrealistic initial condition, and once this

asymptotic state has been reached, the plane π2 is used to give BL2 its inflow boundary

condition. As a consequence, a small portion of the BL1 simulation is thrown away.

Given that the goal of BL1 is to allow the large scales to reach their asymptotic state

and, given that the smaller scales reach a similar condition far more rapidly, BL1 is run

at a coarser resolution than BL2. This setup permits computing a single boundary layer

with significantly less computational work.

The separation between adjacent collocation points is determined by the resolution of

the spatial discretization scheme and the local Kolmogorov scale. This scale changes

depending on the distance to the wall, so using a non-uniform mesh in the wall normal

direction is essential to save memory. To achieve a Reynolds number based on the friction

velocity of up to Reτ = 2000 a computational box for the second domain of size 15360 ×
535 × 4086 for a total of 35×109 points per variable. In the case of the forced boundary

layer of Borrell et al. (2011), the domain size of the main simulation is about half as big,

7860 × 545 × 4086.

Domain decomposition and MPI communications

To take advantage of the distributed memory architectures, the computational domain

must be partitioned. The only possible decomposition that guaranteed portability to the

Blue Gene/P architecture was to use cross-stream planes schematized in Figure 2.2 as πi.

To compute interpolations and derivatives over the x coordinate it is necessary to trans-

pose the whole variable. This operation creates another elemental domain partition

formed by lines in the streamwise direction, labeled in figure 2.2 as $i. Once these

computations are finished the result is transposed back to planes πi. A more traditional

plane-to-plane transpose would be much simpler but it is not possible on the present su-
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Figure 2.2: Elemental domains of the domain decomposition.

Case Reθ Nodes Nx ×Ny ×Nz DoF (Gp) Time/DoF

BL1 1100-3000 512 3585× 315× 2560 2.89 13.98 µs
BL2 2800-6650 7680 15361× 535× 4096 33.66 18.01 µs

Table 2.1: Computational setup for the auxiliary BL1 and main BL2 boundary layers in Sillero
et al. (2013): Degrees of freedom (DoF) in giga points; Time/DoF is the amount of total CPU
(core) time spent to compute a degree of freedom for every step.

percomputer architecture. The low available amount of memory per node and the need

for a large computational domain mandate that no essential domain decomposition based

on planes that includes the streamwise direction can be stored as a whole. The $i pencils

can be considered as a secondary partition of such plane.

Each of these two boundary layers is mapped to an MPI group. The first group runs the

auxiliary simulation at coarse resolution and it consists of 512 nodes while the second

MPI group comprises 7680 nodes and runs the main one in high resolution. The first MPI

group is only about 8.5% of the total computational cost. This information is shown in

Table 2.1.

The two computational domains communicate with each other only twice per sub-step, to

send the π2 plane from BL1 to BL2 and to synchronize the time step, using an additional

MPI group that includes all the processes.

The work done by each group must be balanced since each MPI group has to wait for

the other one in global operations, otherwise one group will slow down the other one that

must remain idle waiting for the other group. The worst-case scenario occurs when the

auxiliary simulation slows down the main one. The time taken by communication for the

auxiliary simulation has been improved using a customized node topology described in

section 2.2.
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2.2. The numerical code

Global transposes and collective communications

Roughly 45% of the overall execution time is spent transposing the variables from planes

to pencils and back; therefore, it was mandatory to optimize the global transpose as much

as possible. Preliminary tests revealed that the most suitable communication strategy was

to use the MPI ALLTOALLV routine and the Blue Gene/P supercomputer (BG/P) torus

network. This method is twice as fast than our previous custom transpose routine based

on point-to-point communication over the same network implemented in Simens et al.

(2009).

The global transpose is split into three sub-steps. The first one changes the alignment

of the buffer containing a variable and casts the data from double to single precision to

reduce the amount of information to be communicated. If more than one π plane is stored

in every node then the buffer comprises the portion of contiguous data belonging to that

node in order to keep message sizes as big as possible.

The second sub-step is a call to the MPI ALLTOALLV routine. In this case the possibil-

ity of performing collective communications with derived data types would simplify the

algorithm, but unfortunately it is not a feature of the present MPI standard. This is the

reason why the global transpose is split into three sub-steps.

The third and last sub-step transpose the resulting buffer aligning the data $-wise. This

last transpose has been optimized using a blocking strategy because the array to be

transposed has many times more rows than columns. The whole array is split into smaller

and squarer arrays that are transposed separately. The aspect ratio of those smaller arrays

is optimized for cache performance using collected data from a series of tests. Finally the

data is cast to double precision again.

The procedure to transpose from $i pencils to πi planes is similar and is split in three

sub-steps too.

Node mapping in the Blue Gene family of supercomputers.

Mapping virtual processes onto physical processors is one of the essential issues in parallel

computing, a field of intense study in the last decade. Proper mapping is critical to achieve

sustainable and scalable performance in modern supercomputing systems.
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2. DNS of turbulent boundary layers at high Re

(a) (b)

Figure 2.3: (a) Predefined and (b) custom node mapping for a 8192 node partition in a [8, 32, 32]
topology. The position of the nodes assigned to BL1 is highlighted with a different color and
a thicker line. The predefined mapping assigns to BL1 the nodes in a [8, 32, 2] sub-domain.
Custom mapping assigns the nodes to a [8, 8, 8] sub-domain and. BL2 is mapped to the rest of
the domain till complete the partition.

Blue Gene/P has a torus network topology except for allocations smaller than 512 nodes,

in which the torus degenerates to a mesh. Therefore, each node is connected to six nodes

by a direct link. The location of a node within the torus can be described by three

coordinates [X, Y, Z].

Different physical layouts of MPI tasks onto physical processors are predefined depending

of the number of nodes to be allocated. The predefined mapping for a 512 node partition

is a [8, 8, 8] topology, while for 8192 nodes it is [8, 32, 32] as it is shown in Figure 2.3.

Changing the node topology completely changes the graph embedding problem and the

path in which the MPI message travels. This can increase or decrease the number of hops

needed to connect one node to another, and as a result, alter the communication time

to send a message. Fine tuning for specific problems can considerably improve the time

spent in communications. Table 2.2 shows different mappings that have been evaluated

for our specific problem size. The custom mapping reduces the communication time for

BL1 by a factor of two. The work load for BL1 is estimated using this new communication

time while the load for BL2 is fixed. Balance is achieved minimizing the time in which

BL1 or BL2 are idle in the global communications.

The choice of a user-defined mapping is motivated due to the particular distribution

of nodes and MPI groups. The first boundary layer BL1 runs in 512 MPI processes

mapped onto the first 512 nodes, while BL2 runs in 7680 MPI processes mapped onto
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2.2. The numerical code

Topology Nodes Comm BL1 Comm BL2

Predefined [8, 8, 8] 512 27.77 —
Custom [32, 32, 8] 8192 79.59 86.09
Predefined [32, 32, 8] 8192 160.22 85.44

Table 2.2: Time spent in communication during global transposes. Different node topologies
are presented for 10 time steps and for each boundary layer. Times are given in seconds.

the nodes ranging form 513 to 8192. The optimum topology for our particular problem

would be the one in which the number of hops for each MPI group is minimum since

collective communications occur locally for each group. For a single 512 node partitions

the optimum is the use of [8, 8, 8] topology, in which messages travel within a single

communication switch. We have found the optimum mapping for BL1 to be [8, 8, 8] sub-

domain within the predefined [8, 32, 32], as shown in the right side of figure 2.3. BL2 is

mapped to the remaining nodes using the predefined topology and no other mappings

have been further tested. Although a [8, 8, 8] topology is used for BL1 by analogy with

the single 512 node partition, communication time is nevertheless greater. This is due to

the sub-optimal performance of using a 2D mesh instead of a 3D torus network, as already

discussed. Finally, the reason can be found in the new hardware connection, since the

512 nodes and 8192 nodes of the 3D torus network are physically connected in a different

way. This leads to the increase in the number of hops for BL1 collective communications,

since messages cannot travel within a single communication switch anymore.

The methodology to optimize communications for another size partitions would be similar

to the one just described: mapping virtual processes to nodes that are physically as close

as possible so the number of hops is minimized.

The network architecture was upgraded for the following generation, the Blue Gene/Q

(Chen et al., 2012). The new network, with a 5-D torus architecture, presumably avoids

those kind of blockages because the routing algorithm has more physical connections avali-

able, but node mapping is a relatively simple technique that improves locality and reduces

the amount of hops per message, and therefore improves performance. These issues are

not present in other network topologies, like a full fat tree, since every node has a direct

connection with the rest. Fat networks are seldom found in very large supercomputers,

since the cost per node does not scale linearly like torus networks, but is the most common

in small and middle sized supercomputers.
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Nthreads Comp. T. E Total T. η
1 60.820 1 70.528 1
2 30.895 0.984 38.951 0.905
4 16.470 0.923 24.438 0.721

Table 2.3: OpenMP scalability test performed on 512 nodes. Two efficiencies are given: E
is based on the computation time only(Comp. T.) and η is based on the total time per step
(Total T.) and is lower given that only one of the OpenMP threads is able to transfer data to
other processes. Times are given in seconds.

The hybrid MPI-OpenMP approach

Introducing OpenMP adds a second domain decomposition to the πi and $i used for MPI.

The most important non trivial uses of OpenMP are the parallelization of the compact

finite differences operators for wall-normal derivatives, that require a tridiagonal solver,

and the Fast Fourier Transforms in the spanwise direction. While threaded versions

of both band-diagonal solvers and FFT exist, our decision was to handle the OpenMP

parallel regions by hand to ensure portability between the different available platforms.

It is important to state that the reason to mix concurrency and parallelism was not driven

by the need for more performance but because the small memory capacity of the Blue

Gene/P node, which does not allow a physically-significant block of data to be allocated

to each core. For instance, in the forced boundary layer case, a single π plane is stored in

every node that has been assigned to BL2. While very special attention was payed to the

collective transpose, that takes almost half of the runtime, the goal of using OpenMP was

to use all the available resources of the node. Once we achieved the required scalability

and performance, no further tuning was explored.

Some tests were run in a 512 node configuration after porting the code to OpenMP. The

results are shown in Table 2.3. These samples suggest that almost no penalty is paid

when the computations are parallelized with OpenMP.

2.3 Scalability and portability

Extensive data about scalability was collected during the test runs in a BG/P system, and

a later scalability system in a Blue Gene/Q supercomputer (BG/Q). The most relevant

cases are listed in the Table 2.4.

All the simulations run keep a linear weak scaling up to 8192 nodes (32768 cores). There
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Figure 2.4: (a) Efficiency and (b) performance of the code in the BG/P (squares) and the BG/Q
(triangles and circles) versus the number of computation threads. There are 4 threads per node
in the BG/P, and 64 threads per node in the BG/Q The data of this figure is presented in
table 2.4. Each curve of efficiency represents one of the tests, that is presented in a different
color. There are strong scalability tests (lines with crosses), and weak scalability tests (lines
with triangles). The line with squares corresponds to the scalability tests in the BG/P, that
follow no pattern in particular.

is only one supercomputer with a higher node count than the BG/Q used in these tests.

We are pretty much confident that this code is as scalable as any code could be.

Communication time is typically 40% of the total run time, and that both computation

and communication are scaling as expected. The global transpose implementation shows

excellent scalability in all the test cases shown in Figure 2.4(a). It is important to mention

that, in the BG/P supercomputer architecture, the linear scaling is kept even when the

estimated message size is about 1 kB in size. All our previous implementations of the

global transpose in more conventional high performance networks were not successfully

scaling with an estimated message size below 3kiB. Some of the cases tested in the BG/Q

are far beyond the limit of a realistic simulations with the present technology. A case of

size 458753× 1024× 8192 corresponds to Reτ ∼ 1000− 30.000, it would consume around

1010 CPU hours, and require 0.5 PiB of storage.

This code has also run successfully and with perfect scalability figures in small x86-

64 clusters with a fat-tree Infiniband network; Hermit, a CRAY XE-6 system in HLRS

(Stuttgart); SuperMUC, a large Beowulf cluster with x86-64 processors and an Infiniband

network in Munich; Intrepid and Jugene, two BG/P systems in the Argonne National

Laboratory and in Juelich Supercomputing Center; and Juqueen, a BG/Q system also
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2. DNS of turbulent boundary layers at high Re

at Juelich. This makes us confident that all the performance optimizations are portable

across different supercomputer architectures.

2.4 Parallel I/O

Intermediate stages of the simulation in the form of flow fields (velocities and pressure)

are an important result and are saved even more often than would be required for check-

pointing. Another mandatory feature to maintain the scalability with a large node count

is the support for parallel collective I/O operations when a parallel file system is avail-

able. A handful of alternatives have been tested on parallel file systems, such as the use

of raw POSIX calls enforcing the file system block size, sionlib (developed at Juelich) and

parallel HDF5 (Group et al., 2014).

HDF5 is a more convenient choice for storing and distributing scientific data than the

alternatives tested because, despite having better performance (Frings et al., 2009), they

require translating the resulting files to a more useful format. Unfortunately, sufficient

performance could not be achieved without tuning the I/O process. HDF5 performance

depends on the availability of a cache in the file system. The observed behavior in the

BG/P systems was that writing was one, and sometimes two, orders of magnitude slower

than reading because in the GPFS used the write cache was turned off. To overcome

this issue, when the MPI I/O driver for HDF5 is used, the sieve buffer size parameter of

HDF5 can be set to the file system block size. The resulting write bandwidth for 8192

nodes in the Jugene BG/P system was increased up to 16GiB/s, which is similar to the

read bandwidth 22GiB/s and closer to the estimated maximum.

2.5 Validation

The numerical scheme is identical to the previous version of the code, which was appro-

priately validated in Simens et al. (2009) and in Jiménez et al. (2010), where it was

also compared with other experiments and simulations at comparable Reynolds numbers.

However, some basic one-point statistics are presented for the present high Reynolds num-

ber simulation, showing excellent agreement with numerical and experimental data sets

too.

In figures 2.5, a-d are shown the mean and fluctuations of the velocity profiles of the

28



2.5. Validation

present simulation compared with other available experimental (De Graaff & Eaton, 2000;

Österlund et al., 2000) and numerical (Schlatter & Örlü, 2010) data sets for two different

Reynolds numbers. The agreement is excellent.
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Figure 2.5: Experiments by De Graaff & Eaton (2000), •, Reθ = 5261; and Österlund et al.
(2000), �, Reθ = 5156. Simulations by Schlatter & Örlü (2010), - -, Reθ = 4060; present, —,
Reθ = 4060, 5261. The law log(y+)/0.4 + 5 is the discontinuous straight line in (a). (e) Two-
dimensional premultiplied energy spectra kxkzEuu(k)at three Reynolds numbers and 15 wall
units height for channels Hoyas & Jiménez (2006) (solid) and boundary layers (dashed), present
and Jiménez et al. (2010)

Figure 5e presents the premultiplied energy spectrum kxkzEuu where k stands for the

wavenumber k = 2π/λ associated to the wavelength λ. Three different Reynolds numbers

(Reτ =550, 980 and 2000) at height 15 wall units have been considered. It is a more

complete check than one-point statistics because it shows the energy contained in eddies

of any size at a given distance to the wall.

The inner contour are the wavelengths whose energy is the 54% of the most energetic
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modes, while the outer corresponds to the 14% of this peak. The energy spectrum contains

information for all the scales, ranging from the smallest ones at the Kolmogorov scale, to

the largest ones of the order of the edge of the boundary layer thickness. For example, the

new simulation has enough resolution (fine mesh) to resolve the smallest energy-containing

eddies as well as the largest ones where the energy reside. Close to the wall both channels

and boundary layers (including the new simulation) are very similar at small scales, where

they are Reynolds independent. The footprint of the largest structures, which depends

on the Reynolds number, appears in the spectrum as a handle in the top-right corner,

and the length of those eddies increases with the Reynolds number.

2.6 Conclusions and future work

A hybrid OpenMP-MPI code has been developed from its original MPI version to per-

form direct numerical simulations of boundary layers over smooth walls at high Reynolds

numbers. The code has been tested in a Blue Gene/P computer using up to 8192 MPI

processes, and four threads per process for OpenMP, showing good scalability for both

MPI and OpenMP.

Some of the changes were necessary because of the architecture, like hybrid parallelism,

all-collective communications and parallel I/O. Others were introduced to correct the

somehow unpredictable influence of the inflow boundary conditions at large Reynolds

numbers in turbulent boundary layers. This coupled the problem of defining the simu-

lation and tuning the code. The solution here presented is the result at the end of this

process.

The simultaneous use of OpenMP and MPI was relatively straightforward in our case,

and is becoming a common feature in modern scalable codes. Collective communications

are a similar case; once the global transposed was modified according to the suggestions

of the Blue Gene handbook and system administrators, performance and scalability were

improved significantly.

The approach of simulating two different computational domains, each at a different res-

olution, has proven to be effective and can be used in other spatially developing turbulent

flows. However, it became an issue for our communications scheme. The solution was

to separate the auxiliary low-resolution and the main high-resolution simulation in two
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different MPI groups and to define a customized mapping of processes onto physical pro-

cessors. While this particular kind of tuning is not necessary when the process count is

low, it is crucial when one is using thousands of nodes over torus networks.

Parallel I/O had a large impact too, despite its performance changes depending on the

particular hardware configuration of the platform.

At the time of publication of this thesis two simulations using it have been successfully

completed, each one producing valuable data for the study of wall bounded turbulence

and boundary layers in particular.

Some features of this new code are considered mandatory for the new generation of su-

percomputers. We hope that this experience can be a guideline for porting similar codes.

Some implementation details that are described are particular to the Blue Gene/P, but

the code has been tested successfully in many other supercomputer architectures, and it

has been able to efficiently scale up to an entire Blue Gene/Q supercomputer with 458752

cores.
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(a) Blue Gene/P (�)

Cores Nx ×Ny ×Nz Nt Time/DoF

4096 3457× 646× 1536 3.43 17.6 µs
8192 6145× 646× 1536 6.10 17.4 µs

16384 8193× 711× 1536 8.94 17.6 µs
32768 8193× 711× 2048 11.93 19.4 µs
32768 16385× 801× 4608 60.47 19.3 µs

(b) Blue Gene/Q. Test 1 (+)

Cores Nx ×Ny ×Nz Nt Time/DoF

4096 8193× 315× 2048 5.29 11.14 µs
8192 8193× 315× 2048 5.29 9.56 µs

16384 8193× 315× 2048 5.29 9.30 µs
32768 8193× 315× 2048 5.29 10.29 µs

(c) Blue Gene/Q. Test 2 (×)

Cores Nx ×Ny ×Nz Nt Time/DoF

16384 4096× 711× 4096 47.71 10.05 µs
32768 4096× 711× 4096 47.71 9.71 µs

(d) Blue Gene/Q. Test 3 (H)

Cores Nx ×Ny ×Nz Nt Time/DoF

8192 2048× 315× 2048 5.29 9.56 µs
16384 4096× 315× 2048 10.57 8.97 µs
32768 8192× 315× 2048 21.13 9.06 µs
65536 16384× 315× 2048 42.27 10.80 µs

(e) Blue Gene/Q. Test 4 (J)

Cores Nx ×Ny ×Nz Nt Time/DoF

32768 8192× 711× 2048 47.71 9.71 µs
65536 16384× 711× 2048 95.43 10.76 µs

(f) Blue Gene/Q. Test 5 (N)

Cores Nx ×Ny ×Nz Nt Time/DoF

65536 16384× 1024× 8192 137.45 11.44 µs
131072 32768× 1024× 8192 274.89 13.35 µs
262144 65536× 1024× 8192 547.76 11.25 µs
458752 114688× 1024× 8192 962.08 12.44 µs

Table 2.4: Data collected from the profiled test cases. Time/DoF is the amount of total CPU
(core) time spent to compute a degree of freedom for every step; Nt is the size in GiB of a buffer
of size Nx ×Ny ×Nz (the lower the better). In the BG/Q, the number of threads is four times
the number of cores.
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Chapter 3

Properties of the intermitent region and

the turbulent/non-turbulent interface

3.1 Introduction

It has been known since the early days of turbulence research that the near-wall region

of boundary layers follows the law of the wall, but that the outer region is influenced by

the interaction between turbulence and the free stream (Klebanoff, 1955), whose most

obvious consequence is the ‘wake’ component of the mean velocity profile (Coles, 1956;

Jiménez et al., 2010). Early work by Corrsin (1943) revealed the presence of a sharp

but irregular boundary between turbulent and non-turbulent flow, and the intermittent

character of the flow near that boundary. It is also known that, although the outer part

of boundary layers has some similarities to a wake (Coles, 1956), intermittency does not

behave identically in different flows (Gartshore, 1966). This is true even if the extent of

the intermittent region, as quantified by the fraction of time during which the flow at a

given point is turbulent (Townsend, 1948), is found to be similar in many flows.

Much of the research on the turbulent/non-turbulent (T/NT) interface has dealt with

the entrainment process by which the irrotational flow acquires vorticity. An important

early result was that the surface area of the T/NT interface is much larger than its pro-

jected area in the direction normal to the wall, and that it is intensely folded (Fiedler &

Head, 1966). This observation was the origin of two conjectures summarized in Townsend

(1976). The first one is that the interface itself has similar mass transfer per unit area in

0Most of the content of this chapter is drafted for publication as Borrell & Jiménez (2015), Properties
of the turbulent/non-turbulent interface in boundary layers.
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all turbulent flows, and that the different entrainment rates (stronger in jets and wakes,

weaker in boundary layers and in plane mixing layers) are due to different folding inten-

sities. The other conjecture deals with the mechanism of entrainment. It is clear that

irrotational fluid can only acquire vorticity by viscous diffusion. But if the interface is

folded enough, large pockets of irrotational flow can be trapped by large coherent struc-

tures and driven deep into the turbulent region before acquiring vorticity. To add some

nomenclature to the argument, small-scale entrainment is usually called nibbling, while

the process by which large blobs of irrotational fluid are swallowed by the turbulent flow

before becoming vortical is called engulfment (Mathew & Basu, 2002). This engulfment

hypothesis is alternative to the view by Corrsin & Kistler (1955), which assumed that

entrainment is only a small scale process. This discussion made clear that understanding

the geometry of the T/NT interface is an important step previous to clarifying what is

the most relevant mechanism for entrainment.

Capturing the geometry T/NT interface is challenging in both experiments and simula-

tions, partly because of its complexity. The thickness of the intermittent zone is compa-

rable to the boundary layer thickness δ99 (Corrsin & Kistler, 1955), while we will see that

the strong gradients present in the interface contain scales of the order of the Kolmogorov

length η. The interface inherits the fractal-like properties of the underlying turbulent flow

(Sreenivasan et al., 1989) and, since turbulent flows typically contain eddies of all possi-

ble sizes between the smallest and largest scales, all of them have to be considered when

the interface geometry is studied. As a result, important questions about entrainment in

turbulent flows had to wait for the necessary data to be available.

Some experimental techniques can capture the interface with considerable detail, and the

methods described in Prasad & Sreenivasan (1989) are still used today. The properties of

the flow surrounding the interface were not measured until more recently, with the advent

of Particle Image Velocimetry (PIV) (Westerweel et al., 2002) and Particle Tracking

Velocimetry (PTV) (Holzner et al., 2008). However, experiments are typically restricted

to two-dimensional sections of the flow, and the three-dimensional description of the field

requires direct numerical simulations (DNS).

Just as experiments, simulations have their limitations. The range of available scales

is the most obvious, and is crucial if the scaling properties of a phenomenon are to be

studied. Direct numerical simulations at Reynolds numbers large enough to observe a
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reasonable scale separation are a recent achievement. While there have been boundary

layer simulations at moderate Reynolds numbers for some time (Jiménez et al., 2010; Lee

& Sung, 2013; Schlatter & Örlü, 2010), a domain size sufficiently large to obtain a deep

T/NT interface requires state-of-the-art in DNSes (Pirozzoli & Bernardini, 2013; Sillero

et al., 2013). The Reynolds numbers of these newer simulations is comparable to that of

most experiments for which the interface can be analysed in any detail.

These larger and more accurate representations of the flow field, and better analysis

tools, have called into question the consensus of what is the dominant mechanism of

entrainment. Dahm & Dimotakis (1987), Ferre et al. (1990), Mungal et al. (1991) and

Dimotakis (2000) suggested that engulfment is the dominant process, but later works like

Mathew & Basu (2002), and Westerweel et al. (2005) emphasized again the importance of

nibbling. The dichotomy may have something to do with the level of description desired,

since it is clear that viscosity is the ultimate mechanism for vorticity diffusion, but it is

equally clear that the complex geometry of the interface has to be taken into account in

determining the rate of diffusion.

To determine which scales are most relevant to entrainment requires the study of the

turbulent structures present at the vicinity of the interface, which implies the analysis

of the properties of the flow in a reference frame linked to the interface itself. Fiedler &

Head (1966) presented results obtained from hot wires, but it was not until the work of

Bisset et al. (2002), Westerweel et al. (2002), da Silva et al. (2011) and van Reeuwijk

& Holzner (2014) that conditional profiles relevant to the scaling of the interface were

shown. Bisset et al. (2002) mentioned that the T/NT interface could contain at least

two layers with different scaling properties: a turbulent region where the major exchanges

between the irrotational fluid and the fully turbulent core occur, and an extremely thin

viscous superlayer at its outer boundary, already conjectured by Corrsin & Kistler (1955).

A recent review of the state of the art is da Silva et al. (2014 a).

The length scales of the interface provide information about the configuration of the

nearby eddies, and about how they are affected by the irrotational flow. An important

question is whether the interface is different in any respect from the rest of the turbulent

flow or, on the contrary, the eddies near the interface are representative of the bulk of the

flow with no major influence from the outer stream. The main candidates for the scaling

of the T/NT interface are the Kolmogorov viscous length η and the Taylor microscale λ.
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3. Properties of the T/NT interface

The interface thickness of a DNS temporal jet was computed by da Silva & Taveira (2010)

for a single Reynolds number. They found it to be of the order of the Taylor microscale.

This result did not imply scaling, because the ratio λ/η depends on the Reynolds number,

but Gampert et al. (2013) were able to scale with λ the average thickness of the interface

of a passive scalar in a jet over the range Reλ = 61−141. This would agree with the theory

described in Hunt & Durbin (1999), based on the hypothesis that the interfaces are subject

to relatively strong shear. As a consequence, eddies are blocked and squeezed instead of

escaping to the irrotational side. The interface would then have different dynamics from

the rest of the flow, and a characteristic length of λ, although it should be noted that the

scalar and vorticity interfaces are not necessarily identical.

The goal of this paper is to obtain the properties of the T/NT interface, with emphasis

on the relatively large-scale interactions across the fractal intermittent layer rather than

on the thinner viscous superlayer. We also analyse the consequences of the threshold used

for interface detection. New methods are developed for the geometric characterisation of

large surfaces of arbitrary complexity in three-dimensional space, and for the conditional

analysis of scalar fields with respect to those surfaces. These methods are used to describe

the properties of the flow depending on its position relative to the T/NT interface, and

to determine the characteristic thickness of the interface layer. The choice of the iden-

tification threshold is given special attention, as well as the choice of the variable being

thresholded.

The paper is organized as follows. The next section is a short description of the data set

used in this research. The characteristics of the intermittent zone that are relevant for the

T/NT interface detection criteria, based on a vorticity isocontour, are presented in §3.3,

followed in §3.4 by a quantitative analysis of the geometrical properties of the interface

and its dependence on the threshold. Section 3.5 presents the conditional analysis of the

flow using the interface as a reference frame. In particular, §3.5 contains the description

of the structure of vorticity in the T/NT interface layer, and the determination of its

thickness. Section 3.6 explores an alternative definition of the interface as an isosurface

of the rate of strain, and the conditional properties of quantities other than the vorticity,

such as the rate of strain and the mean velocity gradient. Finally, §3.7 concludes.
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3.2. Description of the data.

3.2 Description of the data.

The boundary layer is simulated in a rectangular box over a no-slip smooth wall. The

spanwise boundary conditions are periodic, while inflow and outflow conditions are im-

posed in the streamwise direction. A transpiration velocity in the boundary opposite

to the wall keeps the pressure gradient very close to zero. The simulation code and its

implementation are thoroughly explained in Simens et al. (2009), and the modifications

to achieve higher Reynolds numbers are presented in Borrell et al. (2013). The axes

in the streamwise, wall-normal and spanwise directions are x, y, and z respectively. The

velocity vector is u, with components along each axis u, v, and w, respectively. Wall units

are defined in terms of the fiction velocity uτ and of the kinematic viscosity ν, and are

denoted by a ‘+’ superscript. The brackets 〈·〉 denote the average at a given wall-normal

location, and primes denote root-mean-squared values. Both are functions of x and y.

The boundary layer thickness is δ99, defined as the distance to the wall at which 〈u〉 is

99% of the free-stream velocity. The Kolmogorov length is η= (ν3/〈ε〉)1/4, where

〈ε〉 = ν
〈
|∇u|2

〉
(3.1)

is the turbulent kinetic energy dissipation rate. A third relevant length is the Taylor

microscale λ

λ =

√
15ν|u′|2
〈ε〉 . (3.2)

Table 3.1 and figure 3.1 summarize the important parameters and characteristics of the

simulation, which was designed to achieve convergence of all the scales of the flow in

the domain labeled BL, over a range of Reynolds numbers as wide as possible. Two

simulations are run simultaneously with a synchronized time step, but the purpose of the

auxiliary simulation BLaux is just to provide inflow boundary conditions for BL. Only

data from BL are used in this paper. A detailed discussion of the effects of the inflow

and the convergence of the flow properties to their asymptotic behaviour can be found in

Sillero et al. (2013).

The simulation agrees excellently with previous experiments and direct numerical simu-

lations (Sillero et al., 2013). The Taylor microscale Reynolds number, Reλ = λu′/ν '
O(100), is comparable to those of most experiments and simulations used in the analysis

of the T/NT interface in free shear flows, and higher than those in the boundary layers

used for that purpose. The friction Reynolds number δ+
99 ranges over a factor of two (see
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3. Properties of the T/NT interface

Case Nx, Ny, Nz δ+
99 Reλ δ99/η δ99/λ Tuτ/δ99

BLaux 3585× 315× 2560 630− 1100
BL 15361× 535× 4096 1000− 2000 75− 109 242− 440 14.2− 21.4 11.5

Table 3.1: Summary of important parameters of the simulation. Nx, Ny and Nz are the size of
the computational grid. The Taylor-microscale Reynolds number Reλ is the maximum observed
for the given station, and is attained at y/δ99 ' 0.4− 0.6. The thickness of the boundary layer
is given using the Kolmogorov length and Taylor microscale as units. In both cases, η and λ are
estimated at y = 0.6δ99. The running time T is normalised with properties at the middle of the
BL box.

Figure 3.1: Sketch of the simulation and the boundary conditions. The inflow boundary con-
ditions for BL are obtained from BLAUX , copying the plane π2 to to the first plane of BL at
π′2. The streamwise location of π2 is chosen so that the flow has recovered from the recycling
scheme (π1 is recycled to π′1) used to start BLAUX from a turbulent inflow condition.

table 3.1), allowing it to be used as a parameter in the analysis. The resulting ratio of

δ99/η ranges over a factor of 1.8, easily allowing the distinction between outer (δ99) and

viscous (η) scaling. The corresponding range of the ratio λ/η between the Taylor and

Kolmogorov microscales is narrower (approximately 1.2), and the direct differentiation of

scaling with the two quantities is harder to establish with the present data. The averaged

properties of the data set have been accumulated during the complete history of the sim-

ulation, while some of the more detailed results have been obtained from at least eight

flow snapshots, sufficiently separated to ensure statistical independence.
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3.3. The turbulent/non-turbulent interface detection criterion.

3.3 The turbulent/non-turbulent interface

detection criterion.

The first step to study the T/NT interface is to define a criterion to discriminate between

turbulent and non-turbulent flow. Unfortunately, we will see that different methods pro-

duce different interfaces, and that the criteria found in the literature are variable enough

to be difficult to compare consistently. Historically, the first interface detections were

based on a cut-off frequency for the one-point streamwise-velocity signal, in the expecta-

tion that turbulent fluctuations could be easily distinguished by their faster time scales.

As better descriptions of the flow became available, the interface came to be defined by

an indicator function with two components: a scalar field related to the turbulent fluctu-

ations, and a threshold. Prasad & Sreenivasan (1989) use the concentration of a passive

scalar injected in the turbulent side, and threshold it at the least probable value of the

concentration. Da Silva et al. (2011) and Bisset et al. (2002), use the spanwise vorticity

and a particularly low vorticity value as the threshold. In boundary layers, Jiménez et al.

(2010) use the vorticity magnitude, and a threshold based on a sharp jump in the vorticity

probability density function (PDF) at y = δ99. Chauhan et al. (2014) use the streamwise

velocity as their scalar, and choose the highest velocity threshold for which the PDF of

the height of the interface above the wall can be fitted by a gaussian.

Our criterion is based on the vorticity magnitude, ω = |ω|, which has several desirable

properties as a turbulence indicator. In the first place, the incompressible identity

∇2u = −∇ ∧ ω (3.3)

implies that the characteristic turbulent dissipation of energy requires vorticity. Secondly,

while velocity gradients can be created by pressure fluctuations in potential flow, there is

no inviscid mechanism to create vorticity fluctuations. As a consequence, even if vorticity

is not conserved, any vorticity in the boundary layer is ultimately linked to the wall. The

vorticity magnitude can be easily obtained from DNS, and has been used in studies of

the T/NT interface for boundary layers (Jiménez et al., 2010), jets (da Silva et al.,

2011) and wakes (Bisset et al., 2002). Note that some of these properties of the vorticity

magnitude do not extend to its individual components.

We will define a point as turbulent if

ω(x, y, z, t) > ω0, (3.4)
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3. Properties of the T/NT interface

(a) (b)

Figure 3.2: Vorticity magnitude isosurfaces of the same region of the present data at δ+
99 ' 2000,

of size 3δ99×2δ99 in the streamwise and spanwise directions, respectively. (a) ω+
0 = 5×10−4 (ω∗0 =

0.022). (b) ω+
0 = 5×10−3 (ω∗0 = 0.22). For the definition of ω∗, see (3.7). The flow is from top-left

to bottom right, but note that the spanwise and streamwise directions are barely distinguishable.

so that the T/NT interface is defined by ω = ω0. The remaining task is to determine

an optimum threshold ω0, either from the properties of the resulting interface or from

comparisons with previous investigations.

The simplest tool is three-dimensional visualization, preferably of a relatively large part

of the interface. Figures 3.2(a,b) show the interface in a domain whose wall-parallel

size is several boundary layer thicknesses, for two thresholds separated by an order of

magnitude. The two figures are clearly different. Figure 3.2(a) can be described as a

moderately complex envelope with scattered small regions of low vorticity within the

turbulent side, while figure 3.2(b) has a large number of handles and contortions that

span a significant fraction of the boundary layer thickness.

Another useful tool is the joint PDF of the vorticity magnitude and of the vertical distance

to the wall, which is presented in figure 3.3(a) as a premultiplied PDF, ωΓω,y, to account

for the logarithmic scale of the vorticity. It has two well-defined regions. The high-

vorticity near-wall points of the turbulent core of the boundary layer are in the lower

right-hand corner. Points far from the wall with very low vorticity, representing the

ideally irrotational non-turbulent free stream, are in the top left corner. Their residual

vorticity is due to the finite accuracy of the inflow condition, but it is about four orders

of magnitude weaker than the turbulent values, and easily distinguished from them. In

the present data set, the details of the joint PDF depend only weakly on the Reynolds
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Figure 3.3: (a)Premultiplied joint PDF, ωΓω,y, of the wall-normal distance and the vorticity
magnitude. Contours contain 50%, 90%, and 99% of points, respectively. Two vorticity scales are
provided, wall units ω+, and the ω∗ defined in (3.7). The line with open circles is ω+ = (y+)−1/2.
The horizontal and vertical lines correspond to the one-dimensional sections in (b, c), using the
same markers. (b) Sections of ωΓω,y at four different distances to the wall: ◦, y/δ99 = 0.4; 4,
0.7; �, 1; O, 1.3. (c) One-dimensional PDF, Q(yI), of the vertical position of the interface when
its average position is: �, 〈yI〉/δ99 = 1 (ω∗0 = 0.022); 4, 0.9 (ω∗0 = 0.09); O, 0.8 (ω∗0 = 0.2);
�, ω∗0 = 2.0. The vorticity threshold of the first and third curves are those of the isosurfaces
in figures 3.2(a,b), respectively. The dashed line fitting each curve is the gaussian distribution
with the same mean and standard deviation. (d) Intermittency factor for the four thresholds in
(c). δ+

99 ' 1500.

number.

On the turbulent side of the PDF, the mode of the vorticity distribution follows closely

the expected y-dependence of its root-mean-squared value, ω′, which can be estimated

from the approximate balance between the production and the pseudo-dissipation of the

turbulent kinetic energy,

νω′2 ' −〈uv〉∂〈u〉
∂y
' u3

τ

κy
, (3.5)
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3. Properties of the T/NT interface

where κ ' 0.4 is the von Kármán constant. Equation (3.5) holds above y+ ' 50 (Jiménez,

2013), and provides a characteristic magnitude for the vorticity fluctuations,

〈ω+〉 '
(
κy+

)−1/2
. (3.6)

We will use this value, particularised at the edge of the boundary layer, to define dimen-

sionless star units for the vorticity,

ω∗ = ω(δ+
99)1/2ν/u2

τ , (3.7)

which are linked to the interface. The usual scaling ω+ = ων/u2
τ is linked to the wall.

The ratio ω∗/ω+ varies in our data by a factor of 1.4, and we will see below that star

units collapse most properties of the interface substantially better than wall units.

The definition of ω∗ can be adapted to flows other than the boundary layer by normalising

the vorticity with the root-mean-squared value of the enstrophy fluctuations just within

the interface. We will occasionally do this for the purpose of comparison.

There is a band connecting the turbulent and non-turbulent regions of figure 3.3(a) that

spans several orders of magnitude of the vorticity and extends over y/δ99 = 0.3 − 1.5.

Four horizontal sections of ωΓω,y are presented in figure 3.3(b) at different y. The PDF at

y = δ99 is particularly interesting, because it shows the separation between the two regions

of the flow. Its two mild peaks bracket a plateau three orders of magnitude wide, from

the expected turbulent value ω∗ ' κ−1/2 on the right, to the free-stream residual vorticity

on the left. Any vorticity within this plateau could in principle be used as a threshold

for the interface but, even with generous safety margins at both ends, this leaves a full

order of magnitude of possible choices. This would not be a problem if thresholds within

this range produced similar results, but they do not. The two isosurfaces in figure 3.2

are obtained with thresholds within the plateau. They correspond to the first and third

left-most vertical lines in figure 3.3(a).

Other quantities frequently used to analyse the properties of the edge of boundary layers

can be obtained from Γω,y. The intermittency parameter γ

γ(y;ω0) =

∫ ∞
ω0

Γω,y dω
/∫ ∞

0

Γω,y dω, (3.8)

is the probability that a point at a given distance from the wall is turbulent according

to (3.4). The sections of Γω,y at constant ω provide the marginal probability distribution
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Case Symbol 〈yI〉/δ99 σ(yI)/δ99 ω∗0
Jiménez et al. (2010) ◦ 0.92 0.033 0.077
Kovasznay et al. (1970) � 0.83 0.044 0.155
Corrsin & Kistler (1955) 4 0.82 0.047 0.178
Murlis et al. (1982) O 0.8 0.052 0.221
Klebanoff (1955) � 0.78 0.055 0.256
Chauhan et al. (2014) � 0.71 0.063 0.395

Table 3.2: Properties of Q(yI) for the different values of 〈yI〉 found in the literature. The values
of σ(yI) and ω∗0 are obtained from the present data set, and correspond to the threshold required
to match 〈yI〉 for each entry, and to its standard deviation.

Q(yI) of the height yI of the interface above the wall,

Q(yI ;ω0) = −∂γ/∂ω0 = Γω0,y

/∫ ∞
0

Γω0,y dy. (3.9)

Four examples of Q(yI) and γ(y) are presented in figures 3.3(c,d). The thresholds of the

first three are chosen so that the average height of the T/NT interface is 〈yI〉/δ99〉 = 1,

0.9, and 0.8, respectively, and are within the plateau in figure 3.3(a). We have already

mentioned that the first and third ones are used in figure 3.2. This confirms that the

threshold has an important effect on the geometrical properties of the T/NT interface,

even for properties that are easily measurable. Note that, although Q(yI) and γ(y) are

linked by the first equality in (3.9), γ is not very sensitive to the changes in Q, and

always looks approximately gaussian. The fourth line in figures 3.3(c,d), marked with

open squares, is ω∗0 = 1.6, and corresponds to the right-most end of the plateau in figure

3.3(a). It behaves differently from the other three PDFs, and neither Q(yI) nor γ(y) can

be approximated as gaussian. This threshold does not represent the interface any more,

and can best be understood as describing the internal structure of the turbulent vorticity.

The mean value 〈yI〉 and the standard deviation σ(yI) of the interface height are presented

in figure 3.4 as functions of ω0. Three regimes can be distinguished. The first one, below

ω∗0 = 2 × 10−3, reflects the vorticity fluctuations in the free stream, and therefore is

basically a numerical artifact. In the second one, between ω∗0 = 2 × 10−3 and ω∗0 = 0.1,

the average position of the interface is 〈yI〉 ' δ99. The tails of Q(yI) are symmetric in this

range (figure 3.3c), and the PDF is well approximated by a normal distribution. Above

ω∗0 = 0.1, the left tail of Q(yI) is influenced by the turbulent core flow, 〈yI〉 drops faster

with the threshold, and the standard deviation increases slightly.

The values of 〈yI〉 available in the literature are compiled in table 3.2 and marked with

their corresponding symbols in figure 3.4. They can be used as guides in choosing our
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Figure 3.4: The solid line and left vertical axis are the average of the height, yI , of the vorticity
isosurface, and the dashed line and right vertical axis are its standard deviation, both as functions
of ω∗0. The values of 〈yI〉 in table 3.2 are marked by their corresponding symbols, with an arrow
pointing to the matching ω∗0. Both curves change very little within our range of Reynolds
numbers.

threshold. There is a fairly large spread between the choices of Jiménez et al. (2010)

and of Chauhan et al. (2014) which, if translated to vorticity thresholds using figure

3.4, would imply half an order of magnitude in ω∗0. The thresholds in figures 3.2(a,b)

corresponds to 〈yI〉 ≈ δ99 and 0.8δ99, respectively.

Figure 3.3(b) suggests that ω∗0 = 0.022, for which 〈yI〉 = δ99, should be a reasonable

threshold, since it is at this height that the vorticity PDF is widest and bimodal. However,

figure 3.4 and table 3.2 show that this threshold is an order of magnitude lower than most

values used in previous works.

The definition in Prasad & Sreenivasan (1989) can be adapted to cases without a passive

scalar, using the vorticity magnitude as a tracer (Gampert et al., 2014; da Silva et al.,

2014 b). Applying this criterion to the present data would imply ω∗0 = 0.05 and 〈yI〉 =

0.95δ99, which is again lower than the values found in the literature, and comparable to

figure 3.2(a).

Chauhan et al. (2014) define the interface as the highest isocontour of the streamwise

velocity field for which the PDF of yI can be fitted by a gaussian. In trying to apply a

similar criterion to the vorticity, we find that Q(yI) is approximately gaussian for ω∗0 ∈
(2 × 10−3– 0.1). This corresponds to 〈yI〉/δ99 ∈ (1.1–0.9). Although the lowest end of

this range agrees with the mean interface height in Jiménez et al. (2010), it is very far
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3.3. The turbulent/non-turbulent interface detection criterion.

from the value 〈yI〉 = 0.71 obtained by Chauhan et al. (2014). This shows that the

vorticity and velocity interfaces are different, and that the criterion in Chauhan et al.

(2014) should not be used for the vorticity.

In summary, since neither the intermittency properties of the interface nor previous studies

provide guidance on a unique vorticity threshold, we defer our decision until we study the

evolution of the interface over the rather wide range ω∗0 ∈ (0.001− 10).

Alternative scalars other than vorticity magnitude

Another difference between this study and Chauhan et al. (2014) is that the latter uses

a scalar quantity different than vorticity, equivalent to

k̃ =
(u− U∞)2 + v2

U2
∞

, (3.10)

to study the T/NT interface.

We have seen that interfaces obtained with different identification criteria do not neces-

sarily match. Two different scalar quantities related with the turbulent fluctuations (like

vorticity and k̃), also provide different descriptions of the structure of the intermittent re-

gion. A Joint PDF of ω and k̃ is presented in figure 3.5(a), showing that the two quantities

are not strongly correlated. One condition fulfilled by vorticity of practical importance for

the study of the T/NT interface is the clear separation between the characteristic values

of the turbulent and the non/turbulent sides. We can see that k̃ does not fulfill that

condition. The shape of the premultiplied joint PDF ωPω,k̃ shows a continuous change of

k̃. While a threshold of vorticity (at around ω∗ = 0.01) can be used to separate between

high and low k̃, the reciprocal is not true. A threshold of k̃ at 0.05 corresponds to a range

of vorticities almost five orders of magnitude wide.

This behaviour is not particular to boundary layers, and it is also present in other turbu-

lent flows like temporal jets. The scalar

k̂ = (u− U∞)2 + v2 + w2 (3.11)

is defined to overcome the issue that k̃ is singular if U∞ = 0, which is one of the usual

characteristics of temporal jets. In the premultiplied joint PDF of k̂ and vorticity, pre-

sented in figure 3.5(b), it is clear that the separation between the two states of the flow,

turbulent and non-turbulent, is given by vorticity. On the other hand, the square of
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Figure 3.5: (a) Premultiplied joint PDF of vorticity magnitude and k̃ (see equation (3.10)) ωPω,k̃
in the present boundary layer at δ+

99 = 1900. (b) Premultiplied joint PDF of vorticity magnitude

and k̂ (see equation (3.11)) ωk̂Pω,k̂ in a temporal jet. Contours contain 50%, 90% and 99% of
points respectively.

the velocity fluctuations is much less intermittent. Any possible threshold of k̂ crosses

the non-marginal contours of the premultiplied joint PDF of the boundary layer and the

temporal jet.

This does not mean that velocity fluctuations are not meaningful to study the intermittent

region or the T/NT interface, but it suggests that k̃ and k̂ lack one particularly desirable

property as turbulence indicators.

3.4 The geometry of the T/NT interface.

In this section we study directly the geometry of the T/NT interface. Since our interface

is an isosurface separating the vortical turbulent fluid from the irrotational free stream,

it inherits some of the geometrical characteristics of both. Moreover, since changing the

vorticity threshold moves the isosurface towards one or the other of those two regions,

we can use its dependence on ω0 to explore the geometry of the two flow regimes and,

incidentally, to decide which threshold is likely to behave best as an interface for a par-

ticular purpose. For example, figure 3.2(a) appears to represent better the free stream,

while figure 3.2(b) is more representative of the interior of turbulence.
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(a) (b) (c)

Figure 3.6: Sketch of the three basic geometrical features in the vorticity isosurface: (a) handles,
(b) pockets and (c) bubbles.

Bubbles and drops

The first task is to precisely define the interface separating the flow into turbulent and

non-turbulent regions. This is not as straightforward as the previous section may suggest.

Figure 3.2(b) shows that the vorticity isocontour is not usually a singly connected sur-

face. Depending on the threshold, there may be a few individual components, or several

thousands, but one of them is typically much larger than the rest and spans the whole

computational box. The smaller components can be classified as interior bubbles of low

vorticity within the turbulent region (figure 3.6c), or drops of high vorticity in the free

stream. It will be shown in §3.5 that, although there may be a large number of bubbles,

they are too small to contribute significantly to most quantities related to the T/NT in-

terface, and that there are generally very few drops. In consequence, the rest of the paper

defines the interface as the largest singly connected component of the vorticity isosurface

that separates ‘smoothed’ irrotational and vortical regions from which drops and bubbles

have been eliminated.

The method to obtain this largest component is sketched in figure 3.7. We first decompose

the computational domain into a structured set of computational cells (voxels). The flow

properties are defined at the vertices of these cells. We next obtain the set Ωω> of voxels

for which at least one vertex has a vorticity higher than the threshold (figure 3.7a). This

set contains the drops and the bulk of the turbulent flow. Similarly, we obtain the set

Ωω< for which at least one vertex has a vorticity lower than the threshold, containing

the bubbles and the bulk of non-turbulent flow (figure 3.7b). Each of these sets has a

connected component many times larger than the rest (about seven orders of magnitude

larger in our data). In the case of Ωω>, this largest set represents the bulk of the turbulent

flow, Ωt. In the case of Ωω<, it represents the bulk of the free stream, Ωn. The sets of

voxels containing the drops, Ωd, and the bubbles, Ωb, are obtained by subtracting these

largest components from their respective sets. Thus, Ωd = Ωω>−Ωt and Ωb = Ωω<−Ωn.
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3. Properties of the T/NT interface

(a) (b) (c)

Figure 3.7: (a) Set Ωω> of voxels where ω > ω0. (b) Set Ωω< of voxels where ω < ω0. (c) The
set Ωi of voxels that contain the interface, obtained from (3.12).

The final step is to define the set of voxels of the cleaned T/NT interface as (figure 3.7c)

Ωi = (Ωt ∪ Ωb)︸ ︷︷ ︸
Turbulent side

∩ (Ωn ∪ Ωd)︸ ︷︷ ︸
Non-turbulent side

. (3.12)

Note that each term of this equation is a practical definition of the smoothed turbulent

region (the bulk of the turbulent flow plus the bubbles), and of the smoothed non-turbulent

region (the bulk of the non-turbulent flow plus the drops).

Drops and bubbles should not be confused with other possible complications of the in-

terface, also represented in figure 3.6(a,b) as handles, and overhangs or ‘pockets’. The

former complicate the topology of the flow, and are unavoidable. The latter are topolog-

ically neutral, but may be important from the experimental or dynamical point of view.

They hide part of the surface to some observational procedures, and may be precursors

for large-scale engulfing. At this point, the interface is still a set of voxels that has to be

converted into a surface, but this representation is sufficient for the analysis in the next

two sections.

Fractal dimension

Mandelbrot (1975) was the first to suggest that the hierarchy of turbulent eddies can be

approximated by a fractal when the Reynolds number is large enough. This was first

verified by Sreenivasan & Meneveau (1986) for the bulk of the flow, and by Sreenivasan

et al. (1989) for the T/NT interface. The latter also proposed a simple theory to relate

both results. The fractal dimension of the vorticity isosurface measures how contorted it

is, and is a useful statistical measure of its complexity. The most widely used definition

is the box-counting Kolmogorov capacity: if Nb is the number of boxes of size r required

to cover a set S, such as the interface, the fractal dimension D is defined by Nb ∝ rD.
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3.4. The geometry of the T/NT interface.

In practice, the computation of fractal dimensions is complicated because turbulence is

only self-similar in a limited range of scales. Vorticity is smooth at scales of the order of

the Kolmogorov microscale, and the largest eddies responsible for the energy input are

not self-similar. In cases in which an extended power law is not immediately obvious, a

reasonable redefinition of the box-counting dimension is

dimb = − lim
r→ς

logNb

log r
, (3.13)

where ς stands for the smallest possible box size at which the data set remains self-similar

or, in the present case, for the computational voxel size. This last requirement is difficult

to define, and it is hard to speak of a fractal unless the self-similar range extends over a

reasonably wide range.

Sreenivasan et al. (1989) found a clear power law from two-dimensional sections of the

interface, and measured a constant dimension D away from the saturation caused by the

shortest and longest scales. They concluded that the interface is a monofractal in that

range. Moisy & Jiménez (2004) computed the fractal dimension of three-dimensional

enstrophy isosurfaces in homogeneous turbulence, using the full three-dimensional field

instead of cross sections, and three-dimensional boxes instead of two-dimensional ones.

They found that the self-similar range observed by Sreenivasan et al. (1989) is only an

approximation, and defined a local dimensional exponent to account for the dependence

on the box size

Db(r) = −d logNb

d log r
. (3.14)

This definition includes the previous two. If Db(r) is constant and the T/NT interface is

a monofractal, dimb = D = Db(r).

The local dimensional exponent (3.14) of our interface is presented in figure 3.8 as a

function of ω∗0 for several Reynolds numbers. Figure 3.8(a) plots Db for the smallest

possible value of r, and tries to approximate (3.13). Figure 3.8(b) plots the maximum

value Db across r. The differences between the two figures quantify how far from a

monofractal is the T/NT interface. All the data in figure 3.8 refer to the dimension of

the ‘cleaned’ interface. The dimension of the full vorticity isosurface is dominated by the

cloud of very small low-vorticity bubbles, and is usually D < 2. Note the good collapse

of the different Reynolds numbers when parametrised with ω∗0. The black horizontal bar

near the peaks of both figures is the variation of ω∗/ω+ in the range of Reynolds number

of our data set. A similar bar is included in all later figures that make a Reynolds number
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Figure 3.8: (a) Estimation of the box-counting fractal dimension obtained from the local fractal
exponent in the limit of small box size, and (b) the maximum of the local exponent over r.
Symbols are δ+

99: ◦, 1100; ×, 1300; 5, 1500; 4, 1700; ?, 1900. The horizontal bar is the
variation of ω∗/ω+ in our range of δ+

99.

comparison, and measures how much the collapse of the different curves would deteriorate

if the data had been normalised with ω+
0 instead of with ω∗0.

The dependence of Db on ω∗0 confirms the visual impression from figure 3.2 that the thresh-

old has a dramatic effect on the interface. At low thresholds, the dimension approaches

the smooth limit D = 2 but, at higher ones, the T/NT interface is significantly more

convoluted. Sreenivasan et al. (1989) predict D = 7/3 for the T/NT interface, which is

within the range of the present results; it would correspond to ω∗0 ' 1 in figure 3.8(a),

and to the lowest possible dimension in figure 3.8(b).

Regardless of the differences in their absolute values, the two estimations of the fractal

dimension in figure 3.8 behave similarly with respect to ω∗0. There is a transition between

ω∗0 = 0.2 and ω∗0 = 2, across which the geometrical complexity of the interface increases

significantly. The threshold ω∗0 ' 0.2 already appeared in the analysis of figure 3.4, and

corresponds to the vorticity where the average location of the interface 〈yI〉 decreases

fastest as the threshold increases. This suggests that for ω∗0 & 0.2, the surface begins to

move inside the turbulent core, where it reflects the geometrical features of the turbulent

vorticity itself.

The decrease of the dimension beyond ω∗0 ' 2 was already observed by Moisy & Jiménez

(2004), who used thresholds of the order of ω∗0 ' 2 − 12 to study the geometry of the

volume of the vorticity in isotropic turbulence. There is no simple relation between the
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3.4. The geometry of the T/NT interface.

fractal dimensions of a set and of its surface, but Moisy & Jiménez (2004) noted that

in the limit of very high thresholds the vorticity would be reduced to a discrete cloud of

points for which D ' 0. A similar argument can be applied to the interface.

Genus

The geometric complexity of an object can also be characterized by its topological prop-

erties. The genus g is a topological invariant of any connected orientable surface, and

measures the number of its ‘handles’ (figure 3.6a). A sphere has genus zero, a torus has

genus one, and two connected tori have genus two. To our knowledge, the genus was

first used to characterize turbulent structures in homogeneous turbulence by Leung et al.

(2012), who cite instances of its earlier use in disciplines such as astrophysics. In most

of those cases, the genus is obtained by integrating the mean and gaussian curvatures

over the interface, which requires a careful triangulation of the surface. This step is time

consuming and prone to errors, and we bypass it by computing the genus directly from

the Euler characteristic χ of the numerically defined contour. The algorithm is described

in Lozano-Durán & Borrell (2015), and is adapted to exploit the structure of discrete data

in structured grids.

Any numerical isosurface in a cartesian grid is a polyhedron of stacked parallelepipeds. If

V is the number of vertices, E the number of edges, and F the number of faces, its Euler

characteristic is given by the Euler–Poincaré formula,

χ = V − E + F, (3.15)

and the genus is

g = 1− χ

2
. (3.16)

The genus is a measure of complexity, like the fractal dimension, but the two are not

equivalent. A wrinkled piece of paper has genus zero, independently of the amount of

wrinkling. A regular Brownian surface is defined as a fractal single-valued map on the

real plane. It has a fractal dimension D = 2.5, but no handles (Russ, 1994).

As in the previous section, we compute the genus for the largest connected component

of the vorticity isosurface. It is shown in figure 3.9(a) normalized by its maximum over

ω0. There is a topological transition in which handles begin to appear over roughly the

same range, ω∗0 ' (0.2 − 2), as the growth of the fractal dimension. Around ω∗0 ' 1,

51



3. Properties of the T/NT interface

(a)

10-2 10-1 100 101

ω ∗
0

0.0

0.2

0.4

0.6

0.8

1.0

g/
m

ax
(g

)

(b)

1000 2000

δ +
99

102

103

m
ax

(g
)/
δ

3 99

Figure 3.9: (a) Genus normalized with its maximum over ω0. The horizontal bar is the variation
of ω∗/ω+ in our range of δ+

99. The horizontal bar is the ratio of ω∗/ω+ over the present range of δ+
99

(b) Maximum genus per cubic boundary-layer thickness, occurring in all cases at ω∗0 ' 2. Markers

as in (a). Both axes are logarithmic. The solid line is a power law fit, max(g)/δ+
99

3 ∝ δ+
99

1.6
. The

dashed one is the Kolmogorov limit, max(g)/δ+
99

3 ∝ δ+
99

9/4
. Symbols are δ+

99, as in figure 3.8.

handles are the dominant feature of the surface, and there are hundreds or thousands of

them in a volume O(δ3
99). We suggested in the discussion of the fractal dimension that the

T/NT interface at these high thresholds is basically a reflection of the internal geometry

of the turbulent vorticity, and the reasons for the decrease of the dimension beyond the

end of the transition also apply here. Some turbulent features disappear for very large

thresholds, causing the genus to decrease. The maximum genus occurs at the end of the

topological transition ω∗0 ' 2, and figure 3.9(b) shows that it increases with the Reynolds

number as max(g)/δ+
99

3 ∝ δ+
99

1.6
. This exponent is somewhat smaller than for the number

of Kolmogorov-size structures per cubic integral scale δ+
99

9/4
, which sets an upper bound

for the scaling of the possible complexity. Note again the good collapse provided by ω∗0

for the Reynolds number dependence of the genus.

This predominance of handles will become important for the conditional analysis of the

flow in the next section. When the analysis of a surface with handles is carried out using

a lower-dimensional section, such as a two-dimensional plane or a line, the results can

be subject to interpretation artefacts. For example, the planar section of a torus across

its principal axis is two circles, giving the impression of two disconnected geometrical

objects. Up to a point, the same is true for pockets such as those in figure 3.6(b). For

example, the interface shown below in figure 3.13(b) is a section of a singly-connected

isosurface, although it appears to contain many unconnected irrotational bubbles within
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3.5. Conditional analysis of the vorticity field.

the turbulent region. Another effect of the handles has to do with values conditioned to

the direction normal to the interface. The usual assumption in this case is that a normal

defined from high towards low vorticity values points into the the free stream. In a handle,

or in a narrow pocket, this is only true over distances of the order of the feature thickness,

and becomes an issue if handles and pockets are dominant. The problem is less pressing

when the threshold is chosen below ω∗0 ' 0.2, where the T/NT interface is smoother, but

figure 3.4 shows that a lot of the published work uses thresholds within the topological

transition, characterised by non-trivial fractal dimensions and, presumably, large genera.

The main conclusion from this section is that the properties of the fully turbulent flow

appear gradually in the geometry of the interface as the threshold traverses the topological

transition, and that the handles, folds, and high fractal dimensions are probably the

reflection of the internal structure of the flow.

3.5 Conditional analysis of the vorticity field.

In this section we study the properties of the vorticity field as a function of the distance to

the T/NT interface. Given the geometrical complexity of the interface, it is to be expected

that different definitions of distance produce different conditional results. To allow us to

differentiate between genuine flow properties and possible measurement artefacts, we will

study the cases in which the results of two alternative distance definitions that are not

equivalent.

Consider first the vertical distance ∆v. Given a surface Ω, ∆v is the distance between a

point p and the topmost intersection with Ω of a line normal to the wall going through

p. A sketch is given in figure 3.10(a), emphasizing that even if the line used to measure

distance crosses the interface multiple times, only the highest intersection is taken into

account. Note that discarding the lower intersections hides part of the complexity of the

interface, and that some handles and pockets might not be captured. This criterion has

been used to study the T/NT interface in boundary layers by Chauhan et al. (2014)

using normals to the wall, and in jets by Westerweel et al. (2009) and da Silva & Taveira

(2010) using normals to their symmetry plane.

Our second definition of distance is the separation between the point p and its closest

point in Ω. We will call it ball (or minimum) distance ∆b, and has a simple geometrical

interpretation as the radius of the sphere tangent to the interface and centred at p. It
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Figure 3.10: (a) Sketch of the vertical distance ∆v, and (b) the ball distance ∆b, between a
point p and a surface Ω. In the case of ∆v, the wall-normal line may intersect Ω multiple times,
but only the top one is kept. Here, the surface has a pocket and the line crosses it three times.
In the case of the ball distance, there is usually only one point where the sphere centred at p
with radius ∆b is tangent to Ω, marked here with a small circle.

is sketched in figure 3.10(b). Some properties of this distance are particularly convenient

for a conditional analysis. Regardless of the complexity of the surface, there is always

a closest surface point to any point in space, and the ball distance is always uniquely

defined. If the point p is close to the interface, ∆b is equivalent to the distance measured

along the local normal. It also has a relatively simple mathematical formulation, since ∆b

satisfies the Eikonal equation |∇(∆b)| = 1 with ∆b = 0 at the interface. This equation has

a solution regardless of the complexity of the boundary condition, and can be integrated

by several fast methods (Jones et al., 2006).

The relation between the two distance definitions depends on the local orientation and

complexity of the surface, particularly in the case of handles and pockets. Referring to

figure 3.11(a), when the T/NT interface is mostly horizontal, simple and smooth, the two

definitions produce similar results. When the interface is more complex or not parallel

to the wall, as in figure 3.11(b), their results are different. For example, point p in figure

3.11(b) is very close to the interface in terms of ∆b, but relatively deep into the turbulent

side in terms of ∆v.

Our algorithm to obtain the ball distance starts from the set Ωi of interface voxels defined

in (3.12). The vorticity within each voxel is approximated by a trilinear interpolation of

the values at the vertices, so that the T/NT interface is approximated by a polyhedron of

which each interface voxel contains a planar face. Finally, the point of each face closest

to the center of the voxel is picked, and the interface is approximated by the set Ωp of

these points. The sets Ωi and Ωp are illustrated in figure 3.12.
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(a)

p

(b)

p

Figure 3.11: (a) Sketch of simple almost horizontal surface for which ∆v ' ∆b. (b) Example of
a case in which both distances are very different. Here, point p is very close to the interface and
∆b ' 0, but it lies underneath a pocket and a handle, and ∆v � ∆b

(a) (b)

Figure 3.12: (a) Set Ωi of voxels that contain the interface. (b) Set Ωp of points used to
approximate the T/NT interface.

The ball distance between p and Ω is approximated by the distance between p and its

nearest neighbour in Ωp. The nearest-neighbour search (NNS) is a common problem

in optimization. If Np is number of elements in Ωp, a fast solution requiring O(logNp)

computations was found by Arya et al. (1998). Most data analysis packages and toolkits

provide implementations of some variant of NNS, and free libraries are available (Muja &

Lowe, 2014).

In our analysis, the distance to the interface is treated as a field, and computed for all

the points in the computational domain. Assuming a total number N of field points,

obtaining the field of ball distances requires O(N logNp) operations. For our data, Np is

of the order of 108, and N of the order of 109 for each snapshot.

The signed distance field

The two distance criteria are evaluated for every collocation point of the computational

domain. The discrete fields obtained with the minimum and vertical distance are called

the ball-distance field ∆b(x, y, z), and the vertical-distance field ∆v(x, y, z), respectively.
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Figure 3.13: Cross-stream sections of the signed distance fields for the lowest and highest avail-
able thresholds, and for the two definitions of distance. (a) ∆b and ω∗0 = 0.01; (b) ∆b and
ω∗0 = 0.5; (c) ∆v and ω∗0 = 0.01; (d) ∆v and ω∗0 = 0.5. All sections correspond to the same
flow field at δ+

99 = 1500. The thicker solid line represents the T/NT interface for each distance
definition, and always corresponds to a single connected surface. The isolated spots are due to
three-dimensional contortions. Other contour levels are separated by 50η for ∆b, and by 100η
for the ∆v. Negative contours are dashed.

The symbol ∆ denotes distance regardless of a particular definition. The isosurface ∆ = 0

is the effective representation of the interface, but the two definitions of distance generate

different isosurfaces. By convention, the distance to the interface is defined as positive

or negative depending on whether the point is in the turbulent or in the non-turbulent

region. Note that, because the distance is computed with respect to the cleaned interface

defined in §3.4, turbulent and non-turbulent points refer to the smoothed flow regions.

Bubbles are counted as turbulent, and drops as non-turbulent.

The concept of a distance field is also found in the study of the T/NT interface by Mellado

et al. (2009), who use the length of the trajectories along lines of maximum gradient of

an advected scalar to measure the distance with respect to the interface. While their

definition can also be used regardless of the complexity of the surface, the gradient lines

of the vorticity magnitude are very contorted in the turbulent side, and less suitable for

conditional analysis than any of the definitions mentioned above.

Sections of the two distance fields of the same snapshot of the flow are shown in figure
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Figure 3.14: (a) Mean position of the T/NT interface as a function of the vorticity threshold.
No symbols, vorticity isosurface as in figure 3.4; 4, interface defined as ∆b = 0; ◦, ∆v = 0.
The threshold in (b) is the vertical dashed line. (b) PDFs of the vertical position of the three
interfaces for ω∗0 = 0.19. Lines as in (a). δ+ = 1500.

3.13, each one computed for two different thresholds. They are normalized with the

Kolmogorov length η at y = 0.6δ99, which will be used as a reference length scale from

now on. The first observation is that the two distances give fairly different results in

the turbulent side, particularly for the higher vorticity thresholds. In the non-turbulent

side, where the interface is more convex, the differences are not as important. When the

threshold is within the topological transition, such as ω∗0 = 0.5 in figures 3.13(b,d), the

contortions of the ball-distance interface are so intense that there are very few points in

the turbulent side for which ∆b > 100η. We emphasize that ∆b = 0 in figure 3.13(b)

corresponds to a single connected surface from which bubbles have been removed, and

that the apparently isolated contours within the turbulent side are artefacts of the two-

dimensional section. Comparison of the results of the two thresholds for each distance

definition shows that the vertical distance field in figures 3.13(c,d) is less sensitive to the

contortions than the ball distance in figures 3.13(a,b), and also less sensitive to the choice

of the threshold. Because of this, it misses most of the interface complexity and the

existence of a topological transition.

Note that none of the interfaces defined by the distance criteria just mentioned exactly

coincides with a vorticity isosurface. In the case of ∆b the only difference is the absence of

the bubbles and drops discarded in the smoothing step, and the deviations are relatively

small. The vertical distance misses substantial parts of the isosurface, and may deviate

a lot from it. For example, figure 3.14(a) shows the mean position of the two interfaces
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3. Properties of the T/NT interface

as a function of ω∗0, compared with the mean position of the vorticity isosurface. The

mean 〈yI(∆b)〉 deviates little from the position 〈yI〉 of the vorticity isosurface (figure 3.4),

but 〈yI(∆v)〉 remains close to the edge of the boundary layer even when the vorticity

isosurface moves closer to the wall. This is confirmed by the PDFs of the height of the

three isosurfaces, given in figure 3.14(b). For low thresholds (not shown), the PDFs of

the two interfaces and of the vorticity isosurface roughly coincide, and are approximately

gaussian (Corrsin & Kistler, 1955). But for the higher threshold in figure 3.14(b), yI(∆b)

follows the isosurface into the core of the boundary layer substantially better than yI(∆v).

As a consequence, yI(∆b) results in a much better representation of the intermittency

parameters of the boundary layer, such as γ. Note that the vorticity threshold used

in figure 3.14(b), ω∗0 = 0.09, although relatively high, is below the beginning of the

topological transition, and in the range of most of the studies collected in table 3.2.

Conditional analysis of distance and vorticity.

The properties of the vorticity conditioned to its position with respect to the interface

can be analysed using the joint PDF of the vorticity magnitude and of the distance, Fω,∆.

Figure 3.15 shows four examples corresponding to the thresholds and distance definitions

in figure 3.13. They are part of a more complete set of five Reynolds numbers in the range

δ+
99 ∈ (1100− 1900), and ten thresholds in ω∗0 ∈ (0.01− 0.5), each of them computed for

the two distance definitions mentioned above. Similar PDFs were obtained in Taveira &

da Silva (2014) for planar jets and ∆v, but only for a limited range of distances.

The joint PDF can be divided into four quadrants, separated by the axes ∆ = 0 and

ω = ω0, marked with dashed lines in figure 3.15. Given that the flow field is the same in

the four figures, the differences in Fω,∆ are due to the different distance definitions and

thresholds. We will order the quadrants in the usual counterclockwise way.

The first quadrant, which contains turbulent points of relatively high vorticity, represents

the core turbulent flow. As already seen in figure 3.13, the minimum and vertical distances

behave similarly for low thresholds (figures 3.15a,c), but very differently for thresholds

within the topological transition. The field of vertical distances depends only slightly on

the threshold (figures 3.15c,d), but there are few points at distances beyond ∆b = 100η

for the higher threshold in figure 3.15(b).

The second quadrant contains different geometrical objects depending on the distance
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Figure 3.15: Premultiplied joint probability density function of vorticity and distance, ωFω,∆.
Each subplot corresponds to the thresholds, Reynolds number, and distance definitions in figure
3.13 (top row ∆b; bottom row ∆v; left column ω∗0 = 0.01; right column ω∗0 = 0.5). Contours
contain 50%, 90%, and 99% of points, respectively.

definition. It contains bubbles for ∆b, and bubbles, handles, and pockets for ∆v. For the

ball distance, the weight of the second quadrant is always small compared with the first

one, and contributes little to the averaged vorticity in the free-stream side of the interface

(figures 3.15a,b). This is not the case for the vertical distance, and it is clear from figures

3.15(c,d) that the weight of this quadrant increases as the threshold increases and the

interface becomes more complex. This quadrant, with especial reference to the properties

of the pockets, will be studied in more detail in §3.5.

The third quadrant contains points of low vorticity classified as non-turbulent. It repre-

sents the bulk of the free stream which, in the case of ∆b, also includes the irrotational

pockets. It depends only weakly on the threshold and on the distance definition, except

for ω ≈ ω0.

59



3. Properties of the T/NT interface

(a) (b)

10-1 100

∆v/δ99

0.00

0.05

0.10

0.15

0.20

0.25

0.30

∆
v
F
ω
− 0
,∆

v

Figure 3.16: (a) Sketch of the discontinuity of the vertical distance at the edge of a pocket.
The hatched line represents points where ω = ω0 and ∆b = 0, but ∆v > 0. The non-turbulent
region just outside A has ∆b ' 0 but ∆v < 0. (b) Premultiplied PDF, ∆vFω−0 ,∆v

, of the vertical

distance of the non-turbulent points with ω∗ = 0.25–0.5, whose vorticity is close to the threshold
ω∗0 = 0.5. ◦ (blue), δ+

99 = 1100; × (green), 1300; 4 (red), 1500; O (black), 1700; ? (magenta),
1900 .

The fourth quadrant, with ω > ω0 and negative distances, corresponds to the objects

defined in §3.4 as drops. It is almost empty for all the cases considered in this study,

confirming that the smoothing of the free stream described in §3.4 does not affect the

results of the conditional analysis.

The influence of the distance definition on the joint PDF is most visible in the neigh-

bourhood of the vertical axis, ω = ω0. These are points in which the vorticity is close to

the identification isosurface, but that may be incorrectly identified as being far from the

interface. The range of possible ball distances for ω ' ω0 (figure 3.15a,b) is very narrow,

|∆b| < 30η, especially in the second quadrant, and can be interpreted as a typical posi-

tion of the irrotational bubbles that have been mislabelled as turbulent by the smoothing

process. On the other hand, the vertical distances in the same region can be as large

as 200η to both sides of the interface (figure 3.15c,d). Denote by ω−0 the vorticities just

below the threshold. The wide ∆v tails of Fω−0 ,∆v
have several causes, sketched in figure

3.16(a). On the positive side, ∆v > 0 in Q2, all the points represented with a hatched line

in that figure are in the vorticity and ∆b isosurfaces, but not in the ∆v interface, which

is only the top of the overhang. Points near the hatched line have vorticities close to ω0,

but they are counted as being deep within the turbulent region by ∆v. The ∆v < 0 tail

of Fω−0 ,∆v
in Q3 contains points whose vorticity is slightly below than the threshold, but
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3.5. Conditional analysis of the vorticity field.

which are classified by ∆v as being far within the irrotational region. They correspond to

points such as A in figure 3.16(a), in which the orientation of the interface is vertical and

induces a discontinuity in the height of the ∆v interface. Such discontinuities are clearly

visible in figures 3.13(c,d). These tangencies are less common than the overhung surfaces,

and the mass in the negative tail of Fω−0 ,∆v
is typically smaller than in the positive one,

especially in the convoluted interfaces at the higher thresholds (15% in the case of figure

3.13d).

It is clear from 3.16(a) that the negative tail of Fω−0 ,∆v
contains information about the

‘depth’ of the pockets, rather than about the thickness of the interface. The premultiplied

probability distribution ∆vFω−0 ,∆v
, integrated over the band ω ∈ (ω0/2, ω0), is presented

in figure 3.16(b) for a relatively high threshold. It is well approximated by a power law

Fω−0 ,∆v
∝ ∆−1

v for ∆v . 0.2δ99. Although the reason for this particular power is not

completely clear, it suggests a regular structure for the ∆v interface. That interface has

no overhangs, and represents pockets as holes with steep sides. If we assume pockets of

size ∆, the contribution of each hole to the PDF in figure 3.16(b) would be proportional

to the O(∆) length of its lip. Their number would be proportional to ∆−2 and the total

lip length would be proportional to ∆−1, as in the figure.

In any case, the fact that the distribution of pocket heights satisfies a power law is

consistent with the fractal nature of the interface, and suggests that the discontinuities are

a consequence of a self-similar hierarchy of overhangs. For the threshold in figure 3.16(b),

the self-similar range ends around ∆v ≈ 0.2δ99, and the probability of finding pockets

deeper than that limit is very low. This is about three times the standard deviation of

the position of the vorticity isosurface for this threshold (figure 3.4). At lower thresholds,

such as those in figures 3.15(a,c), the self similar range disappears, and the ‘pocket’

distribution in concentrated into a peak near ∆v = 10η.

Conditional averages

The averaged vorticity conditioned to the distance to the interface can be computed from

Fω,∆ as

ω(∆) =

∫∞
0
ωFω,∆ dω∫∞

0
Fω,∆ dω

. (3.17)

It is given by the solid lines with squares in figures 3.17(a-d), and is equivalent to the

conditional vorticity profiles in Bisset et al. (2002), Westerweel et al. (2002) and da Silva

61



3. Properties of the T/NT interface

(a)

100 50 0 50 100
∆b/η

10-4

10-3

10-2

10-1

100

101

102

ω̄
∗ 0 10 20 30 40

0.0

0.5

1.0

1.5

2.0

(b)

100 50 0 50 100
∆b/η

10-4

10-3

10-2

10-1

100

101

102

ω̄
∗

0 10 20 30 40 50
0

2

4

6

8

10

(c)

200 150 100 50 0 50 100 150 200
∆v/η

10-4

10-3

10-2

10-1

100

101

102

ω̄
∗ 0 20 40 60 80

0.0

0.4

0.8

1.2

(d)

200 150 100 50 0 50 100 150 200
∆v/η

10-4

10-3

10-2

10-1

100

101

102
ω̄
∗

0 20 40 60 80
0.0

0.5

1.0

1.5

2.0

Figure 3.17: Conditional profiles: −�−, ω; −−◦−−, ω1; −−4−−, ω2. The figures follow the
same arrangement as in figure 3.13 (top row ∆b; bottom row ∆v; left column ω∗0 = 0.01; right
column ω∗0 = 0.5). The black dashed lines correspond to the value of the threshold (vertical)
and zero distance (horizontal). The inset in each figure correspond to the same plot, using linear
coordinates for the vorticity magnitude.

et al. (2011). Note the use of the bar over the symbol to distinguish (3.17) from the more

usual mean profile 〈ω〉 at a given distance from the wall, defined as

〈ω〉(y) =

∫∞
0
ωΓω,y dω∫∞

0
Γω,y dω

. (3.18)

We will be use the notation ω(∆b) and ω(∆v) to distinguish between conditional profiles

obtained with each definition of distance.

The conditional vorticity in all the panels of figure 3.17 increases to its expected fully

turbulent level, ω∗ = O(1), within a few Kolmogorov lengths from the interface. This rise

is monotonic, except perhaps for the plateau at ∆v/η = 15–40 in figure 3.17(d), which

starts at a distance to the interface of the order of the diameter of a single turbulent
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3.5. Conditional analysis of the vorticity field.

vortex (10η, see Jiménez et al., 1993).

The existence of a plateau or of a maximum in the conditional vorticity profile near the

T/NT interface has been mentioned in wakes (Bisset et al., 2002; Townsend, 1976) and

reported in jets (da Silva et al., 2011; Westerweel et al., 2009). Its presence has sometimes

been used to define the thickness of the interface layer (da Silva & Taveira, 2010), and

taken as the basis for theoretical models in which the interface is maintained by the

presence of a strong localised shear (Hunt & Durbin, 1999). Similar models have been used

to suggest similarities between the T/NT interface in jets (Westerweel et al., 2009) and

strong internal vortex layers in homogeneous turbulence (Ishihara et al., 2013). Chauhan

et al. (2014) report a strong conditional vorticity peak in boundary layers, but their

interface is defined in terms of the streamwise velocity, and is probably unrelated to the

one discussed here. Moreover, not all these papers use the same definition of the interface

or even the same thresholded scalar. In fact, when da Silva et al. (2014 a) compile

conditional vorticity statistics for a variety of flows, the only obvious peak is found at the

early stages of the evolution of a shearless mixing layer (da Silva & Taveira, 2010). Bisset

et al. (2002) also find strong vorticity peaks for some high vorticity thresholds in their

wake, but attribute them to the presence of isolated vorticity patches, and discard them in

favour of a lower threshold (ω∗ ≈ 0.1) for which the maximum is barely noticeable. Note

that, if the vorticity were particularly intense close to the interface, a plateau analogous

to the one in figure 3.17(d) should also appear in the ω(∆b) profile in figure 3.17(d), but

this is not the case. An alternative explanation is that the vorticity close to the interface

is not really particularly intense but that, when the conditional profiles are obtained as

a function of ∆v at a sufficiently high threshold, some non-turbulent flow is counted as

being turbulent within the inner part of the interface, lowering the local average vorticity.

To differentiate between the two hypotheses we split the conditional profile ω(∆v) into

contributions from the high-vorticity first quadrant, Q1, and the mislabeled non-turbulent

points in Q2. Equation (3.17) can be split into

ω = W1ω1 +W2ω2, (3.19)

where

ω1 =

∫∞
ω0
ωFω,∆ dω∫∞

ω0
Fω,∆ dω

, ω2 =

∫ ω0

0
ωFω,∆ dω∫ ω0

0
Fω,∆ dω

, (3.20)
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Figure 3.18: (a) Conditional vorticity profiles for δ+
99 = 1900, computed as in figure 3.17, as

functions of the threshold. ◦, ω∗0 = 0.17; 2, 0.29; 4, 0.52; 5, 0.88. (a) ∆v. (b) ∆b.

are the conditional averages for Q1 and Q2, and

W1 =

∫∞
ω0
Fω,∆ dω∫∞

0
Fω,∆ dω

, W2 =

∫ ω0

0
Fω,∆ dω∫∞

0
Fω,∆ dω

, (3.21)

are the corresponding weights. The profiles of ω, ω1, and ω2 are given in figure 3.17. In

the case of low thresholds (left column of the figure), ω1 ' ω, and the contribution of the

second quadrant is small, regardless of the distance definition.

The only case in which ω1 is clearly different from the overall average is figure 3.17(d),

in which the contribution of the handles and pockets is significant. In this figure, the

maximum relative weight of Q2 is W2 ' W1/4 at ∆v = 20η. At the even higher thresholds

at which the interface reaches its maximum geometrical complexity near the end of the

topological transition, the weights of the two quadrants are comparable. This has a

noticeable effect on the conditional profiles at the higher thresholds, and it is clear from

figure 3.17(d) that the plateau is a consequence of the negative contribution from ω2. If we

consider this contribution as a spurious effect of ∆v, the ‘true’ conditional vorticity ω1 in

figure 3.17(d) increases monotonically near the the interface. In essence, the conditional

vorticity remains constant or decreases away from the interface because ∆v misclassifies

some weakly vortical pockets as part of the turbulent flow.

This effect is clearer in figure 3.18, which presents conditional vorticities for several in-

terface thresholds. Figure 3.18(a) is computed with ∆v, and develops a plateau and

eventually a peak as the threshold increases. As in figure 3.17(d), it can be shown that

this is a due to the increasingly negative contribution from the pockets as the complexity
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3.5. Conditional analysis of the vorticity field.

Figure 3.19: Sketch of the geometrical meaning of equation (3.22). The ball distance between
any point with vorticity ω1 and the T/NT interface corresponds to the distance along the local
normal. The angle theta θ is measured from the local normal to the vertical direction. This
figure is a simplification of the three-dimensional case.

of the interface increases. Figure 3.18(b) presents the same cases computed for ∆b, and

shows no trace of an interface peak.

Note that the distances in figure 3.18(b) are much lower than in figure 3.18(a), while the

conditional vorticities are higher. In fact, similar conditional vorticities are found when

the horizontal axis of figure 3.18(a) is extended to ∆v ' 400, carrying the plot to the

neighbourhood of the wall. The plot of ω(∆v) for these large distances is very similar to

a shifted version of ω′(y) (figure 3.3a). The vorticity isosurface at these high thresholds

permeates the whole boundary layer, and occasionally comes very close to the wall. The

ball distance recognises this fact and brings the strong near-wall vorticity closer to the

interface, while the vertical distance misses that complexity.

This discussion suggests that the apparent strongly vortical interface layer observed in

some of the studies mentioned above is an artefact of how a one-dimensional definition

of distance interacts with a fully three-dimensional geometry, whether that definition is

linked to the normal to the wall or to some other arbitrary direction. In particular, it is

due to the neglect of the effect of irrotational pockets on the conditional quantities. We

will discuss the relevance of these pockets in the entrainment process in §sec:pockets.

Practical similarity between ∆b and ∆v

Under some assumptions, minimum and vertical distance can be related. At short dis-

tances from the interface, and assuming that the ball distance is equivalent to the distance

along the local normal to the surface,

∆b ∼ ∆v cos(θ), (3.22)
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3. Properties of the T/NT interface

where θ is the angle between the local normal and the vertical direction. The geometrical

meaning of equation (3.22) is sketched in figure 3.19. The average ratio between the two

distance measurements can be estimated with

∆b

∆v

∼ cos θ =

∫ π/2

0

cos θP (θ) dθ. (3.23)

In the previous equation, P (θ) is the PDF of the local orientation of the surface, the angle

between the local normal and the vertical direction. Looking at the magenta line with

crosses in figure 3.17(c), ∆b/∆v = 1/π fits the conditional profiles for a low threshold

with remarkable accuracy, even for relatively long distances respect to the interface. This

resemblance is lost when the threshold is chosen within the topological transition (figure

3.17(d)), where the profiles are no longer similar and the approximation of the equation

(3.22) is not valid. This ratio of 1/π cannot be obtained with a simple shape. A cylinder

with the axis parallel to the wall is oriented as P (θ) = 2/π, hence cos θ = 2/π. The

orientation of a sphere corresponds to P (θ) = sin θ, and cos θ = 1/2. The relatively low

ratio suggests that the interface is seldom oriented parallel to the wall, and in consequence,

the simplified picture of the T/NT interface as a wavy, slightly contorted surface, would

be conceptually wrong.

The relevance of pockets

We saw in figure 3.16 that pockets form a self-similar hierarchy of many different sizes,

and it has been conjectured that their formation signals the large-scale engulfment of

irrotational fluid before it is finally entrained by small-scale ‘nibbling’. Their abundance

has been used to quantify the relative importance of the two processes (Mathew & Basu,

2002; Sandham et al., 1988).

We can define pockets as regions identified by the ball distance as part of the free stream,

∆b < 0, and by the vertical distance as turbulent, ∆v > 0. For the purpose of this

section, they include the underside of handles as well as simple folds of the interface.

Figure 3.20(a) shows the joint PDF of the two distances in the range corresponding to

pockets. The figure is drawn for the relatively high vorticity threshold of figures 3.13(b,d),

guaranteeing both the presence of abundant pockets and the possibility of observing how

the vorticity diffuses into the irrotational flow. It includes the two extreme Reynolds

numbers in our simulation, allowing some scaling comparisons. It turns out that the size

of pockets, as measured by the maximum ∆b, scales best in terms of the Kolmogorov
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Figure 3.20: Flow within pockets of the interface at ω∗0 = 0.5. , δ+
99 = 1100; , δ+

99 = 1900
(a) Joint PDF of ∆v and ∆b within the region. The two contours for each Reynolds number
contain 60% and 98% of the points, respectively. (b) Average vorticity within the pockets as a
function ∆v and ∆b within the region that contains 98% of the points. Contours are ω∗ = 0.15,
0.25, 0.35. The two diagonal red lines are ∆v = ∆b.

viscous length, while their depth within the layer, as measured by ∆v, scales better with

the boundary-layer thickness. The joint PDF is roughly triangular. It is bounded on the

left by the trivial limit ∆b ≤ ∆v, plotted for each Reynolds number as a thick inclined

straight line, and on the right by a roughly hyperbolic curve that can be interpreted to

mean that deeper pockets (large ∆v) tend to be smaller (small ∆b), presumably because

they have been broken down by the turbulence while being entrained into the layer.

The question of whether being entrained into a pocket also promotes the diffusion of

vorticity is tested in figure 3.20(b), which shows the distribution of the conditionally

averaged vorticity in the same parameter space as figure 3.20(a). Note that all the vorticity

levels in this figure are below the interface threshold, so that the band of higher vorticities

along the top of figure 3.20(b) portrays how vorticity diffuses into the irrotational fluid. Its

width, approximately 5–10η, strongly suggest a viscous origin (van Reeuwijk & Holzner,

2014), and it is clear from the figure that the vorticity is correlated with the ball distance,

but not with the vertical position with respect to the interface. The only exceptions are

points near the line ∆v = ∆b, where both measures coincide.

The implication is that the fluid within pockets is sensitive to how close it is to the

interface, but not to how deep it is within the turbulent layer. If engulfment were an

important mechanism to promote the diffusion of vorticity into the irrotational fluid, for

example by preferentially straining it, one would expect some correlation between ∆v and
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3. Properties of the T/NT interface

the width of the diffusion band at the top of figure 3.20(b), but there is little evidence

for that. Apparently, whether the fluid is within a pocket or not is immaterial to its

behaviour, although the break-up of the deeper pockets into smaller sizes should enhance

the overall effect of viscous diffusion. We will only use ∆b from now on in our analysis.

The thickness of the interface layer.

While the previous sections deal with the properties of the interface surface, it is also

interesting to characterise the properties of the interface layer, understood as the part of

the turbulent flow that is directly influenced by its proximity of the free stream. As a

first step, figures 3.21(a,b) reproduce the first and second (turbulent) quadrants of the

joint PDFs of the vorticity and distance in figures 3.15(a,b). The distance axis is now

logarithmic, to emphasize the region close to the interface, and each figure includes the

two extreme Reynolds numbers in our data set.

Three regions can be distinguished in order of increasing distance from the interface. The

first and closest to the interface contains the strongest vorticity gradients. If we define

the limit of this layer by the intersection of two straight lines tangent to the probability

isocontours near and far from the interface, its thickness scales well in Kolmogorov units

for the different Reynolds numbers, implying a viscous origin. It is approximately 10η in

figure 3.21(a) (ω∗0 = 0.01), 5η in figure 3.21(b) (ω∗0 = 0.09), and almost vanishes at the

beginning of the topological transition, ω∗0 = 0.2 (not shown). In the cases in which this

region can be identified in the joint PDF, its limit is roughly ω∗ = 1, which we have seen

above to be the level of fully developed turbulence.

The viscosity-dominated region just outside the interface has been recently studied by

van Reeuwijk & Holzner (2014) and Taveira & da Silva (2014) in temporally evolving

turbulence fronts. They identify it with the ‘superlayer’ conjectured by Corrsin & Kistler

(1955), and find that its characteristic thickness is the Kolmogorov microscale computed

with the energy dissipation rate of the core flow. The enstrophy level in this viscous layer

depends somewhat on the definition, but is typically very low. The viscous region in

figure 3.21 is probably not the superlayer, whose observation requires a higher numerical

resolution and a quieter free stream than those in our simulation (van Reeuwijk & Holzner,

2014). We will see later that both the rate of strain and the vortex stretching remain high

in the viscous layer of figure 3.21, and that region is probably best interpreted as part of

the ‘buffer layer’ defined by van Reeuwijk & Holzner (2014) in the range ω∗ ∈ (0.1− 1).
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Figure 3.21: Premultiplied joint probability density function of the vorticity and ball distance
in the turbulent side of the interface (ωFω,∆b

) for: (a) a low threshold, ω∗0 = 0.01, and (b) a
moderate one at the beginning of the topological transition, ω∗0 = 0.09. Two Reynolds numbers
are presented in each figure, δ+

99 = 1100 ( black), and δ+
99 = 1900 ( blue). The vertical

solid line is ω∗0. (c,d) Same as (a,b), but with the vorticity in wall units and the distance
normalized with the boundary layer thickness. The horizontal bar is the variation of ω∗/ω+ in
our range of δ+

99. The curves with markers correspond to the average vorticity magnitudes for
each Reynolds number, δ+

99 = 1900 (green M), and δ+
99 = 1100 (magenta ◦). Contours contain

50%, 90%, and 99% of points, respectively.
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In analogy to the similarly named layer in wall-bounded turbulence, both nonlinear and

viscous effect are important that region. It is interesting that such a hybrid mechanism

was proposed by Townsend (1976), who noted that viscous diffusion of vorticity and its

tangential transport should be of the same order close to the interface. The predicted

result of this mechanism is also a thickness O(η). Note that both viscous mechanisms,

but especially the latter one, extend to the neighborhood of the interface the intuitive

idea that the small scales of turbulence are universal (Kolmogorov, 1941).

The region beyond the viscous interface layer is self similar, in the sense that both the

conditionally averaged vorticity and the probability isocontours follow power laws in ∆b.

That implies that there is no intrinsic length or vorticity scale, which is consistent with

the intuitive idea of an inertial layer but is a little difficult to interpret dynamically. In the

first place, different parts of the PDF scale differently. The strong-vorticity isocontours to

the right of figure 3.21(a) are almost vertical (ω ∝ ∆0
b), but those corresponding to weak

vorticity on the left of the figure follow ω ∝ ∆1
b , and the conditional mean enstrophy

approximately satisfies ω ∝ ∆
1/2
b . In the second place, those slopes change with the

detection threshold, and it is hard to distinguish any power law in figure 3.21(b) or at

higher thresholds. We mentioned in (3.6)–(3.5) that 〈ω〉 ∝ y−1/2 is a consequence of

the self-similarity of the logarithmic layer, but the same argument cannot be used here.

The interface is not an impermeable boundary that limits the size of eddies as the wall

does, although it could be argued that the size of the eddies defines the position of the

interface. The trend in figure 3.21(a), that the larger eddies have more intense vorticity,

is contrary to the inertial relation of homogeneous turbulence, ω ∝ ∆−2/3 (Kolmogorov,

1941), and the most plausible explanation is that larger eddies reach closer to the wall

and are therefore stronger. The self-similarity in the figure may be coincidental.

The width of this intermediate region depends on the identification threshold, but scales

with the boundary layer thickness. It extends to the hockey-stick at the top of the PDFs,

which contains the points with the highest vorticity and farthest from the interface. This

last region is mostly formed by points near the wall. When ω is scaled in wall units and ∆b

is normalized with the boundary-layer thickness, as in figures 3.21(c, d) the two Reynolds

numbers collapse well for long distances and high vorticities. At the two Reynolds numbers

in figure 3.21, δ99/η ≈ 250 and 450, respectively.
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Figure 3.22: Premultiplied joint PDFs: (black), SΓy,S ; (blue), ωΓy,ω. Contours
contain 50%, 90%, and 99% of points, respectively. The dashed diagonal is the exponential
decay of the Fourier modes of irrotational strain with a wall-parallel wavelength 2δ99.

3.6 Other velocity gradients

In the previous sections, we have discussed the properties of the vorticity field near a

vorticity isosurface, and it is perhaps not surprising that they may be special. For example,

an interesting question is whether the vorticity within the interface layer has different

properties from the core of the turbulent flow, such as perhaps being weaker because it

is less strained, but such questions are hard to answer if the interface is defined by the

magnitude of the vorticity itself. It is useful for that purpose to determine the conditional

properties of quantities other than the one being thresholded. In this section we will study

the properties of the strain rate tensor S in the neighbourhood of the vorticity interface,

as well as the behaviour of the vorticity in the neighbourhood of an interface defined in

terms of the strain. Define S as the euclidean norm of the rate-of-strain tensor, S = ‖S‖.
In analogy to equation (3.7), and taking into account that

〈ω2〉 = 2〈S2〉 (3.24)

in homogeneous flows, the star units for the S are defined as

S∗ = S
ν
√

2δ+
99

u2
τ

. (3.25)

Equation (3.24) then becomes 〈ω2〉∗ = 〈S2〉∗, and suggests that ω∗ and S∗ should be of

the same order. The joint PDFs of S and y, and of ω and y, are presented in figure 3.22.

Both PDFs agree within the turbulent region in the right-lower corner of figure 3.22,

supporting the normalisation (3.25), but the vorticity in the free stream on the left-
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Figure 3.23: (a) Fractal dimension and (b) genus of an interface defined by thresholding the
norm of the strain-rate tensor. Five different values of δ+

99 are presented: ◦, 1100; ×, 1300; O,
1500; M, 1700; and ?, 1900. The horizontal bar is the variation of ω∗/ω+ in our range of δ+

99.

hand side of the figure is almost two orders of magnitude lower than the rate of strain.

This is not unexpected in a nominally irrotational part of the flow but, since (3.24) is

a kinematic relation whose only condition is spacial homogeneity, the mismatch between

the two magnitudes implies that the strain in the free stream has to be an inhomogeneous

residual effect of the vortical flow within the boundary layer.

Any solenoidal velocity field can be written as

u = ∇ ∧B +∇φ, (3.26)

where the potentials satisfy, ∇2φ = 0 and ∇2B = −ω (Batchelor, 1967). In the irrota-

tional free stream, both potentials satisfy Laplace’s equation and, if they are expanded in

terms of wall-parallel Fourier harmonics, decay away from the wall as exp(−ky), where

k2 = k2
x+k2

z is the magnitude of the wall-parallel wave vector. All the velocity components

and the rate-of-strain tensor decay exponentially at the same rate, and the slowest decay

corresponds to the largest horizontal wavelengths. The thick dashed diagonal in figure

3.22 is S ∝ exp(−πy/δ99), corresponding to the decay of irrotational velocity fluctuations

due to structures within the boundary layer whose shortest dimension is O(2δ99). This is

the order of magnitude of the largest structures in boundary layers (Sillero et al., 2014).

The vorticity is unrelated to the velocity potentials, and decays much faster than the rate

of strain as it enters the free stream. In fact, this was one reason why we originally chose

vorticity over other quantities to characterise the T/NT interface.
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Note that the vorticity also decays exponentially with y in the free stream, although at

a much lower level than S. This is not a kinematic result, but a consequence of the

numerical inflow conditions, which are used to determine the three velocities at the inflow

but cannot control their derivatives with respect to x. As a consequence there is a residual

vorticity in the free stream due to terms like ∂xv, which inherits the exponential decay of

the velocity potentials at the inflow plane.

A consequence of the relatively high strain levels in the free-stream is that the separation

between its characteristic values in the turbulent and the non-turbulent sides is not as

clear-cut as in the case of the vorticity. Even so, the topological transition happens for

comparable thresholds. The geometrical properties of the strain interface are presented

in figure 3.23. The fractal dimension in figure 3.23(a) should be compared to figure 3.8(b)

for the vorticity interface. The strain isosurface is smoother, with minimum values close

to the non-fractal value, D ≈ 2. The maximum dimension is also somewhat lower than for

the vorticity, in agreement with the observation by Moisy & Jiménez (2004) that strong

dissipation structures are less fractal (plate-like) than those of vorticity (string-like). The

evolution of the genus in figure 3.23(b) is also similar to the case of the vorticity, although

the maximum genus and fractal dimension are reached for slightly higher thresholds than

for the vorticity, S∗0 ≈ 2.5 instead of ω∗0 ≈ 1.5. The topological transition is also narrower

for the strain interface, especially for the genus in figure 3.23(b), which starts to increase

at S∗0 ≈ 1 instead of at ω∗0 ≈ 0.3, as it did in figure 3.9(a). The reason is probably that

while the maximum dimension and genus mark the threshold for which the interface has

fully moved into the core turbulent flow, the slower decay of the strain fluctuations with

y means that low-strain isosurfaces are much farther from the wall than similar enstrophy

thresholds, and the corresponding interfaces becomes regular much faster.

The evolution of the conditional statistics of the flow across the vorticity and strain

isosurfaces are compared in figure 3.24. The two thresholds chosen are S∗0 = 0.1 and

ω∗0 = 0.01, both of which are within the plateau that separates the values of turbulent

and non-turbulent flow in their joint PDFs, and well below the beginning of the respective

topological transitions. The average height of the resulting interfaces is similar, 〈yI〉 ≈ 1.

Figure 3.24 shows the conditionally averaged enstrophy and strain for each of the two

interfaces. They are plotted as functions of the respective ball distances, which we will

denote by ∆ω
b and ∆S

b , respectively.
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Figure 3.24: Conditional mean profiles of the vorticity and rate of strain, as functions of the
distance ∆ω

b to the ω∗0 = 0.01 interface, or of the distance ∆S
b to S∗0 = 0.1. δ+

99 = 1900. , S;
, ω. Lines without symbols are with respect to ∆ω

b . Those with symbols are with respect
to ∆S

b .

The interesting question to be answered is whether the sharp vorticity gradient across the

vorticity interface is a statistical artefact of the thresholding procedure, or a true physical

effect. The former is a possibility, because enstrophy is fixed at the interface while moving

slightly away from the geometrically complex isosurface could sample flow regions that

are unrelated to it and representative of the bulk of the turbulent and irrotational regions.

In a related example, Chauhan et al. (2014) find a sharp velocity jump across an interface

defined in terms of the velocity magnitude, raising similar questions. In both cases, the

sharp jump at the interface is what makes the criterion useful, and the reason to believe

that an interface can be defined at all (Corrsin & Kistler, 1955). The lines without

symbols in figure 3.24 refer to the vorticity interface. Within ∆b = O(10η) of ∆ω
b = 0 the

conditional vorticity (dashed) drops by three orders of magnitude, and a similarly sharp

gradient is seen for the conditional strain (solid).

The behaviour is different for the strain interface, represented by the lines with circles in

figure 3.24. Both the vorticity and the strain cross relatively smoothly the level ∆S
b = 0.

The difference between the two behaviours strongly suggest that while a sharp vorticity

jump is a dynamically significant feature separating distinct regions of the flow, that of

the strain is not. By inference, it is also probably true that the sharp velocity jumps in

Chauhan et al. (2014) are true features of the flow, although it is unclear whether they

are related to the enstrophy interfaces discussed here.
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Figure 3.25: (a) Premultiplied joint PDFs at δ+
99 = 1900, with respect to the interface ω∗0 = 0.01:

(blue), ωFω,∆b
; (black) SFS,∆b

. The two symbol lines are: ◦, ω∗; •, S∗. The vertical
line is ω∗ = S∗ = 1. (b) Premultiplied joint PDF of ∆b and: (blue), vortex stretching;

(black), vortex compression. The two horizontal lines: , ∆b = 100η; , ∆b = 7η
are used in (c,d). Contours in (a,b) contain 50%, 90%, and 99% of points, respectively. (c)
Premultiplied PDF of: M, normalised vortex stretching; �, compression. (d) Premultiplied
PDFs of the absolute values of the normalised individual eigenvalues of the rate-of-strain tensor:
�, largest; O, smallest; M, positive intermediate; �, negative intermediate. The abscissae in
(c,d) are normalised with S. In both cases, the PDFs are compiled at: , ∆b = 7η; ,
∆b = 100η.

As a conclusion from the previous results we are now ready to define a ‘natural’ interface

as an enstrophy isosurface below the topological transition, such as ω∗0 ≈ 0.01. This

threshold is somewhat lower than most of those compiled in table 3.2, with the result

that the turbulent region contains part of the buffer and viscous superlayers defined by

van Reeuwijk & Holzner (2014).

The structure of the flow with respect to this interface is displayed in figure 3.25. The

joint PDFs of the vorticity and rate of strain with ∆b are shown in figure 3.25(a). The
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3. Properties of the T/NT interface

sharp decay of the vorticity below ω∗ = 1 is clearly visible, spanning a thickness of about

20η. The strain decays slowly as it gets closer to the interface and far from the wall, but

shows no especial behaviour within the buffer region. The vorticity in the buffer layer,

even if subject to viscous effects, lives in a straining environment that is essentially the

same as in the core turbulent flow.

This is seen more clearly in figure 3.25(b) which shows the PDF of the vortex stretching

component of the strain, ωSω/ω2. The positive (stretching) and negative (compression)

PDFs are plotted separately to allow a logarithmic representation. Both decays slowly and

apparently self-similarly as they approach the interface, but do not change appreciably as

they enter the buffer layer. Figure 3.25(c) shows the same result more quantitatively in the

form of one-dimensional PDFs of the stretching term at two distances from the interface,

one within the buffer region and another one in the core of the flow. The stretching has

been normalised with the corresponding S, which acts as a scaling parameter and absorbs

most of the differences between the two levels. An even more detailed comparison is figure

3.25(d), which shows the PDFs of the individual eigenvalues of the rate of strain tensor.

The PDFs at the two distances also collapse well. In both cases, the implication is that

the straining environment within the buffer layer is essentially the same as in the core of

the flow. Enstrophy is viscously diffused into the free stream, but it is stretched into core

turbulence as it does so, in agreement with the model proposed in Townsend (1976). Note

that the thickness of the region in which this takes place (∆b = 10− 20η) is comparable

to the diameter of the individual Kolmogorov vorticity worms (Jiménez et al., 1993).

3.7 Conclusions.

The T/NT interface of a turbulent boundary layer has been studied in the range of

Reynolds numbers δ+
99 = 1000 − 2000. The emphasis is on the statistical description of

the relatively large-scale interactions between turbulent and non-turbulent fluid in the

fractal intermittent zone, rather than on the details of the small-scale structures where

the interface can be considered smooth. This requires the introduction of a new definition

of (ball) distance between a point and a general surface, which is compared with the

more usual wall-normal (vertical) distance from the top of the interface. It is shown

that the correct scale for the interface vorticity is the root-mean-squared magnitude of

the enstrophy fluctuations at the edge of the boundary layer, u2
τ (δ

+
99)−1/2/ν, rather than
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wall units. The properties of a enstrophy isosurfaces scaled in this way, ω∗0, are relatively

independent of the Reynolds number.

The geometric complexity of the interface is explored as a function of the vorticity thresh-

old. The ball and vertical distance generate different interfaces. Only the former captures

the increase of interface complexity between ω∗0 ≈ 0.1 − 2, as the interface gradually

moves from the free stream into the core turbulence. This transition manifests itself as

an increase of the fractal dimension and of the topological genus of the interface, and

reflects the appearance of a large number of surface corrugations, handles and pockets.

The vertical distance is relatively insensitive to such features, and misses the transition.

It is argued that this limitation of the vertical distance is responsible for some of the pre-

viously reported properties of the T/NT interface, such as the proposed layer of localised

high vorticity at the edge of the turbulent region. That feature disappears with the new

definition of distance, and can be reproduced with the old one.

What remains is a narrow layer of thickness O(10η) in which the enstrophy decays from

its core value, ω∗ ≈ 1, to that of the free stream. To ascertain whether this sharp

transition is a statistical artefact of the thresholding procedure or a true physical feature,

an interface based on thresholding the norm of the rate-of-strain tensor is also studied.

It is found that, whereas both the enstrophy and the strain change sharply across the

vorticity interface, neither of them does so across the strain interface. It is concluded that

enstrophy thresholding represents a physical feature, while thresholding the strain does

not. The conditionally averaged properties in the neighbourhood of an enstrophy interface

with a threshold (ω∗0 = 0.01) below the topological transition is studied in some detail.

It is found that even within the O(10η) layer in which the vorticity decays sharply, the

properly scaled straining structure of the flow is essentially identical to core turbulence.

This fractal ‘buffer’ layer, even if controlled by viscous diffusion, retains most of the

structure of the interior of the flow. There is no evidence of an intermediate length scale

between η and δ99, such as the Taylor microscale conjectured by Hunt & Durbin (1999)

and found by Gampert et al. (2013). However, the range of Reynolds numbers in our

simulation is not wide enough to completely discard that possibility.

The analysis of the conditional vorticity distribution with respect to the two definitions

of distance throws some light on the controversy between entrainment by engulfing or

by nibbling. The rate at which vorticity diffuses into irrotational pockets within the
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3. Properties of the T/NT interface

turbulent region is independent of their position within the layer, but pockets closer to

the wall tend to be smaller than those closer to the edge of the layer, presumably because

they are broken down as they are entrained. This should enhance entrainment. The size

of the entrained pockets scales in viscous units, but they are found at depths that scale

with the boundary layer thickness.
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Chapter 4

The effect of increased entrainment

4.1 Introduction

Turbulent boundary layers over rough walls have an undeniable technological interest.

Many engineering flows, and the majority of geophysical flows, happen over rough surfaces.

It has been studied since the beginning of research in turbulence (Colebrook & White,

1937; Nikuradse, 1933), and it is still a subject of intense research. This chapter is focused

on a particular topic related with wall-bounded flows over rough walls, the effect that

roughness has on the structure of the turbulent motion. This problem has been reviewed

by Raupach et al. (1991), Jiménez (2004), and Flack & Schultz (2014).

Turbulent boundary layers over smooth walls can be characterized with a limited set

of length scales. Above 100 wall units from the wall, the majority of the properties of

the turbulent motion can be described only with the distance to the wall y, and the

boundary layer thickness δ99. The analysis in Chapter 3 shows that the influence of the

presence of the irrotational free stream is contained within a thin interface layer, while

the rest of the turbulent flow remains apparently not affected. This does not mean that

the geometrical characteristics of the intermittent region are simple or not relevant. The

turbulent/non-turbulent interface (T/NT) interface is a fractal-like surface that contains

all the possible length-scales from the Kolmogorov microscale, where turbulence is smooth,

to the boundary layer thickness. But none of those intermediate scales seems to be

particularly relevant.

The presence of a rough wall may introduce other length scales, like the average height of

the roughness elements k, or other features of the roughness pattern Li. One particularly
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relevant simplification of the problem is to assume that δ99 � (ν/uτ , k, Li), meaning that

that there is sufficient separation between the boundary layer thickness and the wall-

related scales for a log-layer to appear (Raupach et al., 1991). This simplification is one

of the fundamental assumptions of this chapter.

Clauser (1954) showed that the primary effect of surface roughness is to cause a downward

shift of the mean streamwise velocity profile. Equation 1.9 becomes

〈u〉+ = κ−1 log y+ + C0 −∆U+(k+, L+
i ), (4.1)

where ∆U+ is the roughness function, equal to zero for a smooth wall, y is the wall-

normal coordinate, and κ is the Kármán constant. There are two important limits in

the roughness function depending on k+. When the height of the roughness elements is

small, and for some particular roughness geometries, ∆U = 0. This particular case is

called hydrodynamically smooth roughness, and the flow around the roughness elements

is dominated by viscous effects. When k+ → ∞, the skin friction is independent of the

Reynolds number δuτ/ν, where δ can be the boundary layer thickness δ99 in boundary

layers, or the semi-height h in channels. When that condition is fulfilled, additional

shear stress is dominated by the form drag on the roughness elements, and the roughness

function reaches an asymptote. This is the fully rough regime, that introduces another

simplification to the list of relevant lengths. According to Flack & Schultz (2014), there is

a mapping between the roughness function ∆U+ and the equivalent sand roughness k+
s ,

defined as

〈u〉+ = κ−1 log
y+

k+
s

+ C1, (4.2)

regardless of the geometrical details of the roughness pattern. Note that equation (4.2)

is a rearrangement of equation (4.1). This suggests that the set of parameters Li are not

relevant in the limit of large k+
s . This reduces the previous set of lengths in the case of the

fully rough regime to ∆, ν/uτ , and ks. The upper limit of the hydrodynamically smooth

regime is k+
s ∼ 5, while the lower limit of the fully rough regime is k+

s ∼ 70.

Between those two limits there is the transitionally rough regime, where the Reynolds

number of the roughness elements k+ is moderate, and the flow around them has no

particularly dominating term. In consequence, the macroscopic effect of a particular

roughness geometry, the additional friction, is hard to predict. In this regime, the presence

of the roughness may be contained within a region with a thickness of the order of k, called

roughness sublayer, while the rest of the flow may not be sensitive to the details of the
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geometrical characteristics of the rough wall. There is one particularly relevant hypothesis

about the characteristics of the turbulent motion above the roughness sublayer (in case

it exists as described) due to Townsend (1976). Outside the roughness sublayer, the

turbulent motions in a boundary layer at high Reynolds number is independent of the

wall roughness and the viscosity, except for the role of the wall in setting the velocity

scale uτ . Considering the previous list of the possibly relevant length scales, ν/uτ , k, and

Li are important in the roughness sublayer, while the rest of the boundary layer can be

described only with δ and ν/uτ . This means that under the described conditions, and if

the wall similarity hypothesis is valid, uτ is a similarity parameter for roughness.

This hypothesis is supported by several facts. The roughness sublayer occurs below the

lower bound of the logarithmic layer at y+ ' 100, and may not affect its dynamics that are

characterized by the friction velocity and the distance to the wall. The Kármán constant

κ is not affected by the presence of roughness in almost every experiment and simulation

of boundary layers over rough walls, which is an indirect but strong evidence that the

turbulent structure in the logarithmic layer is roughly independent of the nature of the

wall. This independence was studied by Flores & Jiménez (2006), and Mizuno & Jiménez

(2013), that confirmed that the dynamics of the near-wall region can be modified without

changing the properties of the logarithmic layer.

One challenge to the wall similarity hypothesis is the existence of d-roughness (Perry

et al., 1969), where the height of the roughness layer observed in the average streamwise

velocity profile is proportional to the boundary layer thickness. It has been observed

only in the limit of what could be considered large k/δ99, for a specific kind of roughness,

transverse square rods, and with a given separation between rods (Bandyopadhyay, 1987).

This geometry has the particular property of causing one of the highest amounts of addi-

tional drag for a given k. d-roughness could be caused by the strong interaction between

the flow in the grooves that separate the rods, and the large-scale coherent structures of

velocity of the flow. This mechanism was already sketched by Townsend (1976). How-

ever, the experiments where this behavior has been observed have not been successfully

reproduced.

There is another case where the wall similarity hypothesis has been challenged. Krogstad

& Antonia (1994) set up a boundary layer at a reasonably high Reynolds number, and

a roughness pattern made with transverse square rods with δ99 � k. This particular
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roughness geometry is “strong”, in the sense that for a given k, the ratio ks/k is the largest

known. They found that the one-point correlation times for all velocity components are

almost twice shorter for rough than for smooth boundary layers below y/δ99 = 0.5, where

y is the wall-normal coordinate. While this effect was not strong enough to be visible in

the scaling of the average profile like in d-roughness, the structure of the velocity field

seemed to be affected in all the thickness of the boundary layer. Interestingly, other

roughness patterns had a weaker effect, and one-point correlation times were similar to

the smooth wall’s. The same case was explored by Lee et al. (2011); Lee & Sung (2007);

Schultz & Flack (2005); Volino et al. (2011); Wu & Christensen (2007), and a weaker but

measurable change in the streamwise section of the correlations was found. More recently,

Krogstad & Efros (2012) concluded that the strong differences in the temporal correlations

of the Krogstad & Antonia (1994) experiment may be due to the small Reynolds number,

and one of the conditions of applicability of the wall similarity hypothesis was therefore

not fulfilled. The general consensus is that the effect of the roughness exists and it is

measurable, but that it is not strong enough to discard the validity of the wall similarity

hypothesis. On the other hand, there is no explanation to what causes the differences in

the one- and two-point statistics. Similar experiments have been carried out in internal

flows by Flores & Jiménez (2006); Krogstad et al. (2005), where the influence of roughness

is even smaller, suggesting that roughness may affect boundary layers differently than

channels and pipes.

The main difference between internal and external wall-bounded flows is entrainment,

the ingestion of irrotational fluid during the streamwise evolution of the turbulent flow.

Entrainment is related to the streamwise growth of the thickness of the boundary layer

by the Kármán equation

dθ

dx
=

u2
τ

U2
∞
, (4.3)

where x is the streamwise coordinate, θ is the momentum thickness, U∞ is the velocity of

the free stream, and uτ is the friction velocity. It is also known that the ingestion of mass

involves a thin interface layer that separates the turbulent flow from the non-turbulent

free stream, the turbulent/non-turbulent interface , that was thoroughly described in

Chapter 3. The goal is to test if the wall similarity hypothesis is valid in the T/NT

interface too, which would would suggest that it is valid across the whole thickness of the

turbulent boundary layer, and whether the differences in the one- and two-point statistics

caused by the presence of roughness are due to a different arrangement of the turbulent
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eddies in the intermittent region, or to the fact that the structure of turbulent motion is

affected by some additional friction.

The strategy is to simulate two very similar turbulent boundary layers without external

pressure gradients and with the usual no-slip boundary condition at the wall. The first,

also used in Sillero et al. (2013) and Sillero et al. (2014), can be considered a canonical

simulation, while the second adds a forcing that increases the effective friction coeffi-

cient. The aim of the forcing is not to mimic actual roughness, but to increase the rate

of entrainment without introducing any secondary effects that may cause a geometrical

footprint on the flow. The comparison of these two cases should provide some quantita-

tive evidence of the validity of the wall similarity hypothesis. At the same time, if the

volumetric force affects the characteristics of the boundary layer similarly to the wealth

of experiments with actual rough walls, the results will argue in favor of the validity of

Townsend’s similarity hypothesis.

This chapter is structured as follows. The next section contains a description of the

numerical experiment designed to test the wall similarity hypothesis. Section 4.3 contains

the one-point statistics of the experiment, that are compared with other relevant data sets.

The following §4.4 discusses in detail the two-point three-dimensional spatial correlations

of the velocity components, and pressure. Section 4.5 analyzes in detail the properties of

the intermittent region, and discusses the validity of the wall similarity hypothesis in the

T/NT interface. Finally, §4.6 summarizes the most relevant results, and concludes.

4.2 The numerical experiment

A boundary layer is simulated in a parallepiped over a flat plate with periodic spanwise

boundary conditions and non-periodic streamwise and wall-normal directions. The veloc-

ity components in the streamwise (x), wall-normal (y), and spanwise (z) directions are

u, v, and w respectively. The velocity vector is u, brackets 〈·〉 denote the average profile

along the wall-normal direction, and primes denote root-mean-squared values. The +

superscript is used to express wall units, where uτ is used as the unit for velocity, and

ν/uτ as the unit for length, where ν is the kinematic viscosity. Another important length

is the boundary layer thickness δ, that corresponds to δ99 in the case of boundary layers,

and the semi-height h in the case of channels. The Reynolds number used to compare

the two type of flows is δ+
99 = δ99uτ/ν and h+ = huτ/ν in boundary layers and channels
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Figure 4.1: Sketch of the twin box configuration. The auxiliary boundary layer, shorter and with
coarser resolution, is sufficiently long to recover from the incorrect initial boundary conditions
generated by the recycling of the plane π1 to the plane π′1. The plane π2 is copied as the inflow
boundary conditions of the main simulation, that introduces a volumetric force, represented as
the arrows pointing towards the inflow, close to the wall.

Case δ+ δ+ profiles Label Symbol
present 460-1675 1500 BLf — (red)

Sillero et al. (2013) 980-2025 1500 BLs - - (blue)
Del Alamo et al. (2004) 934 934 C1 � (magenta)
Hoyas & Jiménez (2006) 2003 2003 C2 O (green)

Table 4.1: Summary of the important parameters of the four simulations used more often in
this study.

respectively.

The numerical code used in this simulation is described in Simens et al. (2009), and in

Chapter 2. The configuration, practically identical to Sillero et al. (2013), is sketched in

figure 4.1. It exploits the fact that the code is able to run two synchronized simulations in

a tandem configuration, where an auxiliary low-resolution simulation provides the inflow

boundary conditions to a second domain by copying the plane π2 to π′2 each time step.

The main different between the present simulation and Sillero et al. (2013) is the addition

of a volumetric force in the near-wall region of the second domain, expressed in figure 4.1

as an array of arrows at the wall, and the intensity of the suction at the top face of the

domain to preserve the zero-pressure-gradient condition. The twin domain configuration

is of particular importance in this case, since the forcing is not allowed interact with the

recycling process that changes the plane π1 to build π′1, creating the turbulent inflow for

the auxiliary domain.
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The simulation has been run for approximately 14uτ/δ99, where both uτ and δ99 are

evaluated at the end of the computational domain. This unit of time is equivalent to the

characteristic turnover time of the largest scale in a boundary layer, and it is commonly

called eddy turnover (Simens et al., 2009). In this case, an eddy turnover is roughly

equivalent to the time a virtual particle in the outer free stream needs to cross through

the complete domain with a velocity of u = U∞. This simulation consumed about 40

million CPU hours in the Jugene BG/P supercomputer at the Juelich Supercomputing

Center, and produced around 70 TiB of raw data.

The force is introduced as an additional term in the streamwise component of the mo-

mentum equation
∂u

∂t
+ u · ∇u = −∂p

∂x
+ ν∇2u− u0g/T, (4.4)

that also contributes to the total shear stress

τw = ν
∂〈u〉
∂y

+
1

T

∫ δ

0

u0g dy, (4.5)

and the friction velocity uτ =
√
τw. This near-wall forcing has three components. The

velocity u0 is the streamwise component of the velocity averaged in the spanwise direction,

and it is a function of the streamwise, and wall-normal directions. The mean profile 〈u〉
is the temporal average of u0. The weight g is a function of the distance to the wall

g =
1

2

(
− tanh

(
y − y0

y1

)
+ 1

)
, (4.6)

where the additional parameters y0, and y1 control the thickness of the forced region, and

the smoothness of the transition to the outer, non forced flow. Since the goal is to restrict

the forcing to a layer very close to the wall, those parameters are set to y0 = 20+, and

y1 = 5+. The third component T has units of time, and it is adjusted to keep the overall

effect of the forcing equal to the average wall shear stress of an unforced boundary layer

τ 0
w

T =
1

τ 0
w

∫ δ

0

u0g dy (4.7)

for each location in the streamwise direction. The determination of T is a calibration

process, that requires u0, and τ 0
w to be known previously. Fortunately, two simulations

are available within this range of Reynolds numbers, Jiménez et al. (2010), and Sillero

et al. (2013). The forcing has the projected effect of doubling the wall shear stress, but

since its presence changes the flow, the practical effect is τw ' 1.75τ 0
w. This forcing does
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not alter the no-slip boundary condition at y = 0, and does not require the definition of

a virtual wall location.

A similar strategy is often used in meteorology to model the effect of an arbitrary surface

roughness like the vegetal canopy (Belcher et al., 2003), where the forcing is proportional

to the square of the streamwise velocity, and the magnitude is controlled by a constant with

units of length (Wood & Mason, 1993). This allows us to emphasize that the main goal of

the present forcing scheme is not to model any particular kind of roughness, but to increase

entrainment avoiding any kind of geometrical feature. This forcing fulfills several design

goals. It is computationally cheap, and simple to implement in the numerical simulation,

since u0 corresponds to the zero mode of the Fourier decomposition in the spanwise

direction. In consequence, this simulation has practically the same computational cost as

its unforced counterpart, and the performance and scalability figures given in Chapter 2

are valid as well. The fact that the forcing is proportional to the averaged instantaneous

velocity also means that detachment is very unlikely. If if a significant portion of the

boundary layer detaches, u0 < 0 at that section, and the forcing will favor the local

reattachment regardless of the value of T . The eventual detachment is also taken into

account in the various models of the vegetal canopy, and the quadratic dependence with

the streamwise component of velocity is often introduced as u|u|.

If this forcing is compared with actual roughness, the following parameters are obtained.

The height of the roughness elements k can be approximated as the wall-normal coordinate

where the weight g = 0.5, therefore k = 25+. This value is not arbitrary, and it is discussed

in §4.3. The ratio between the boundary layer thickness and the roughness height δ99/k is

comprised between 50 and 70, fulfilling the condition for application of the wall similarity

hypothesis. The equivalent sand roughness, defined by equation (4.2), is ks ' 70, at the

limit between the transitionally and the fully rough regimes. Another interesting quantity

is ks/k, which was previously described as the strength of a given roughness geometry.

The present forcing achieves ks/k ' 2.8. Packed graded sand has a ks/k ' 1. This

implementation of forcing has a value of ks/k similar to the 3-D staggered cubes of Volino

et al. (2011). The transverse square rods, a particularly strong kind of roughness, achieve

values of ks/k between 8 and 14 (Efros & Krogstad, 2011; Krogstad & Antonia, 1994;

Volino et al., 2011).
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4.3 Average properties.

Streamwise evolution of a boundary layer after a step change in

the friction coefficient.

The forcing described in equations (4.4)-(4.7) is introduced only in the second domain,

meaning and the flow overcomes a sudden change in the friction coefficient. The transient

caused in a turbulent boundary layer by the sudden change of surface roughness is an

interesting phenomenon, since it is relatively common in the case of the atmospheric

boundary layer, and has been studied extensively since Colebrook (1939). The main tool

of this study is the comparison of the present simulation with Sillero et al. (2013) and

Sillero et al. (2014), therefore it is important that the forced boundary layer has reached

its equilibrium configuration in all its thickness.

Sillero et al. (2013) analyzed the recovery of a turbulent boundary layer from incorrect

inflow boundary conditions, and they used the eddy turnover distance x̂

x̂ =

∫ x

0

uτ
δ99U∞

dx, (4.8)

that measures how far eddies are advected during a large-scale turnover time, to study

the streamwise evolution of quantities such as the friction coefficient, the shape factor

H or the wake intensity Π. They also mention that the larger outer scales may take

a long time to converge, and that the recovery distance depends on Reynolds number.

One important feature of the turnover distance is that it is able to collapse the evolution

of the previously mentioned parameters regardless of the initial Reynolds number. If it

is compared to other units of length, like the initial boundary layer thickness, the eddy

turnover distance has a clearer physical interpretation. Assume an imaginary particle

originating from the wall y = 0 with a wall-normal velocity of v = uτ and a streamwise

velocity of u = U∞. When the particle has reached the outer edge of the boundary layer

y = δ99, it has been advected one eddy turnover length x̂ = 1.

The next step to analyze the streamwise evolution of the boundary layer is to choose

a meaningful quantity. Efros & Krogstad (2011) studied the transient caused by the

presence of cross-stream square rods in a comparable yet higher Reynolds number, and

proposed the Clauser wake parameter G

G =

∫ ∞
0

(
U∞ − 〈u〉

uτ

)2

dy

/∫ ∞
0

U∞ − 〈u〉
uτ

dy (4.9)
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Figure 4.2: (a) Spatial evolution of the Clauser wake parameter G. The two arrows mark the
stages of BLs and BLf where δ+

99 = h+ = 1500. (b) Average profile of the wall-normal flux of

turbulent kinetic energy 〈v′q′2〉 for the three reference cases in table 4.1.

Following Coles (1956), the shape of the wake should be more or less constant in equilib-

rium flows. It is plausible that once the Clauser wake parameter is no longer changing,

the whole extent of the flow is in equilibrium. The turnover length that seems to collapse

reasonably well the evolution of a variety of properties of the mean profile for a wide range

of initial Reynolds numbers.

The streamwise evolution of the Clauser wake parameter G for three different boundary

layers is presented in figure 4.2(a). The eddy-turnover distance in Efros & Krogstad

(2011) has been estimated from the data provided. The smooth-wall boundary layer used

as the baseline for the comparison can be considered converged, but the wake parameter

grows slightly from 6.6 and 7.2. This suggests that the hypothesis that G is constant

for boundary layers in equilibrium is only an approximation. In all the cases the final

value for the wake parameter after x̂ = 2.5 is G = (7 − 7.5) regardless of the fact that

the wake of rough boundary layers is stronger. The effect of roughness and the forcing is

similar, reducing G almost by a half. The rough and the forced boundary layers converge

at different rates, but according to this criterion, both reach some level of convergence

around x̂ = 1. At the point where BLf is compared with BLs (where δ+ = 1500 in

both cases), the boundary layer has evolved for more than three eddy turnovers, and it

is plausible that the comparison is consistent at that point.

Given the amount of data provided by the present DNS, it should possible to characterize

the effect of a sudden change in the friction coefficient with more detail. The effect has
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been described by many experiments (Antonia & Luxton, 1971; Bradley, 1968; Cheng

& Castro, 2002; Townsend, 1966), as an internal boundary layer that propagates within

the bulk of the turbulent flow with a given wall-normal speed until a new equilibrium

configuration is reached. It should be possible to design a tracking method for the internal

boundary layer from the its known characteristics. It is reasonable to think that the

turbulent kinetic energy contained within the internal boundary layer is higher due to the

additional friction. It is also known by the Kármán equation that the internal boundary

layer has to grow faster than the original, outer one. In consequence, a suitable variable to

track the internal boundary layer should be the wall-normal turbulent flux of streamwise

velocity fluctuations 〈v′q′2〉, where q′2 = (u′2 + v′2 + w′2)/2, and it is presented in figure

4.2(b) for the cases listed in table 4.1. This quantity was used by Jiménez & Simens (2001)

to characterize the independence of the small and the large scales in turbulent channels

and boundary layers, and a similar quantity was used by Flores & Jiménez (2006) to

show that the mentioned independence exists in channels regardless of the presence of

roughness. A similar quantity is also available for experimental studies of boundary

layers like Fernholz & Finley (1996).

The profile of 〈v′q′2〉 depends on the flow and the Reynolds number. In the case of

turbulent channels at a low Reynolds number C1, the profile features only a maximum

close to the wall at the same location as the peak of turbulent kinetic energy y+ = 15.

A second maximum emerges closer to the center of the channel of C2, at h+ ' 2000

number, while the near-wall peak lowers its intensity. The profile of 〈v′q′2〉 for boundary

layers features a similar near-wall peak, but a second and stronger maximum appears in

both BLf and BLs closer to the edge of the boundary layer. According to the data of

Fernholz & Finley (1996) shown in figure 1(b) of Jiménez & Simens (2001), the magnitude

of the outer peak grows with the Reynolds number. The streamwise evolution of 〈v′q′2〉
in boundary layers, normalized with the value of the second maximum, is shown in figure

4.3.

The profile 〈v′q′2〉 of BLs, in figure 4.3(a), evolves only slightly given the limited range of

Reynolds numbers. The most remarkable characteristic is the widening of the separation

between the inner and the outer peak, already described in Jiménez & Simens (2001).

Note that, given the normalization used in figure 4.3, the value of the map at the second

peak is 1. The same quantity in the case of BLf , in figure 4.3(b). The evolution of the

internal boundary layer is clearly visible. The additional drag creates a third maximum as

89



4. The effect of increased entrainment

(a)

0.0 0.5 1.0 1.5 2.0 2.5

x̂

0.0

0.2

0.4

0.6

0.8

1.0

1.2
y/
δ

0.00

0.14

0.29

0.43

0.57

0.71

0.86

1.00

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

x̂

0.0

0.2

0.4

0.6

0.8

1.0

1.2

y/
δ

0.00

0.14

0.29

0.43

0.57

0.71

0.86

1.00

Figure 4.3: Spatial evolution of the wall-normal term of the turbulent kinetic energy velocity
budget for (a) BLf , and (b) BLs, using the local turnover length as a distance unit. The two
dashed lines in (a) correspond to a trajectory of an ideal particle traveling a wall-normal speed
of uτ (left), and 0.5uτ (right). The dash-dotted vertical line in (a) corresponds to x̂ = 2, the
approximate end of the transient caused by the forcing. The solid vertical lines in (a), and (b)
mark the streamwise location of δ+

99 = 1500, where the two boundary layers are compared.

soon as it is introduced, stronger than the one coming from upstream. The fact that only

the internal boundary layer is visible is caused by the chosen normalization of 〈v′q′2〉.
The peak coming from the layer is still present, but it is hidden by the fact that the

energy flux of the internal boundary layer is much stronger. The two peaks have merged

at x̂ = 1, which is approximately the stage at which the wake is comparable according to

the previous study of the G parameter.

One useful feature of the (x̂, y) plane in figure 4.3 is that a theoretical particle with

streamwise velocity u = U∞, and wall-normal velocity v = cuτ , where c is an arbitrary

constant, follows a straight line. The left and right diagonal lines in figure 4.3(b), that
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Figure 4.4: (a) Profiles of turbulent kinetic energy production and dissipation for the cases
specified in table 4.1. The additional black dash-dotted line is the shape of the weighting
function g normalized with the maximum value of Π. (b) Profiles of turbulent kinetic energy
production an dissipation premultiplied by the distance to the wall y.

correspond to wall-normal velocities of uτ and uτ/2 respectively, are particularly useful to

quantify the growth of the internal boundary layer. Given that uτ is precisely the velocity

at which coherent structures are advected from and towards the wall (Lozano-Durán &

Jiménez, 2014 b), it is reasonable to expect that the convergence after a change of the

conditions at the wall is of the order of a few turnover length units. We can roughly

estimate that after x̂ = 2, the majority of eddies that existed before the sudden change of

the conditions at the wall have either decayed or have directly interacted with the forcing

(or the roughness). The estimation of x̂ = 2 is purely qualitative, and the exact length

most likely depends on the details of the sudden addition of drag.

Mean velocity and turbulence profiles.

We now examine the one-point statistics of the two boundary layers, BLf and BLs,

and compare them with channels at similar Reynolds numbers C1 and C2. Despite the

outer zone of boundary layers and channels is not strictly comparable, channels are useful

baseline to evaluate the effects of the additional entrainment, given that channels have

no entrainment at all.

The profiles of production and dissipation of turbulent kinetic energy, 〈Π〉, and 〈ε〉, pre-

sented in figure 4.4(a). There is an important deficit of production and dissipation below

y+ = 20, precisely at the upper limit of the forcing y = y0. Despite only one set of values
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of y0 and y1 have been tested, this correlation between the point of maximum production

and the limit of the forcing suggests that the that y0 + y1 is roughly comparable to k.

The peak of production of turbulent kinetic energy at y+ = 15, one of the important

features of turbulent flows over smooth walls, is not present in BLf . This means that the

dynamics of the turbulent motion close to the wall are strongly affected by the forcing.

The same quantities in figure 4.4(a) are presented in figure 4.4(b) premultiplied by the

distance to the wall y. This technique was already used in Jiménez et al. (2010) with

the same purpose, to zoom into the outer region of the boundary layer. The profiles

of production and dissipation show that the effect of the forcing is confined within a

relatively thin region close to the wall. The shape of the profile is recovered roughly past

y0 + y1, still within the buffer layer. The profiles of BLs and BLf are similar in the

logarithmic layer. This was somewhat expected, given that the Kármán constant κ (see

figure 4.5a), the ratio between production and dissipation, and one of the arguments that

support the validity of the wall similarity hypothesis, is almost identical in both cases.

Production and dissipation of BLf are higher from the lower limit of the intermittent

region (roughly at y/δ99 = 0.4) to the edge of the boundary layer. The other terms in

the turbulent kinetic energy equation that are important in the intermittent region (not

shown), like pressure strain, turbulent transport, and turbulent convection, are also more

intense in the forced case.

The average profile of the streamwise component of velocity (figure 4.5a) suffers the usual

offset reported in practically all boundary layers over rough walls. The Kármán constant

used to fit approximately the logarithmic profile is 0.41. When the mean profiles of

BLs and BLf are compared in defect coordinates (not shown) BLf presents a slightly

stronger wake. The most perceivable difference in the streamwise velocity fluctuations

(figure 4.5b) is the height of the peak, considerably weaker in BLf . The forcing is acting

on the streamwise component velocity, and it is proportional to it. It is to expect that

the most visible effect happens in u. The other two components of the velocity vector do

not show significant changes close to the wall. The spanwise component w′ even shows

its characteristic peak close to the wall, slightly damped and shifted at y = 20+.

Apart from the near-wall peak of u′, the differences between BLf and BLf intensify above

y/δ99 = 0.2, the approximate upper limit of the logarithmic layer. Beyond that point,

and particularly past y/δ99 = 0.6, the differences between the two boundary layers are
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Figure 4.5: Comparison of the wall-normal profiles for the cases given in table 4.1. (a) Average
streamwise velocity 〈u〉+. The straight line of dots corresponds to a fit using equation (4.2). (b)
Streamwise velocity fluctuations u′+. (c) Wall-normal velocity fluctuations v′+. (d) Spanwise
velocity fluctuations w′+. (e) Pressure fluctuations p′+. (f) Reynolds shear stresses −u′v′+

.
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of the order of the deviation between BLs and the two channels. This one of the main

motivations of this work. The effect of the forcing is contained within the buffer layer, and

the logarithmic layer seems to forget about its presence. Since those differences are within

the intermittent region, entrainment is probably the cause. But we saw in Chapter 3 that

the T/NT interface layer is also a very thin region that faces the irrotational free stream,

and that the bulk of the turbulent flow is not noticeably affected by its presence. These two

observations cannot be trivially connected. The T/NT interface is microscopic (happens

at the Kolmogorov scale), while the differences in the mean profiles are macroscopic.

Pressure is a particularly interesting variable because it is likely to be relevant in the

entrainment of non/turbulent fluid. According to §3, the turbulent/non-turbulent inter-

face layer, the region where entrainment actually takes place, is characterized by strong

vorticity gradients. In consequence, the non-turbulent flow carries almost no vorticity,

but relatively intense pressure gradients caused by the relatively high level of strain.

In addition, most data sets of boundary layers over rough walls at a moderate or high

Reynolds number are obtained with experimental techniques, where the determination of

the pressure field is very hard or not possible.

The pressure fluctuations profile is shown in 4.5(e), where a logarithmic axis is used to

emphasize the existence of a logarithmic profile above y+ = 30. A logarithmic profile is

usually interpreted as the footprint of the additive contribution of elements that scale with

the inverse of the distance to the wall. For instance, the logarithmic profile that appears

in the velocity fluctuations profile is commonly interpreted as the aggregated contribution

of self-similar eddies with the same characteristic velocity, a characteristic size of y, and

a population proportional to 1/y. This is the Townsend’s attached eddy hypothesis. A

similar argument can be applied to pressure in channels. Knowing that log y =
∫

1/y dy,

the logarithmic profile could be caused for example by the addition of structures with equal

intensity and size y, or by structures with intensity 1/y and constant size. Either way, the

logarithmic profile involves a single length-scale, the distance to the wall. The turbulent

pressure intensity profile in channels is well approximated by a logarithm between y+ = 50

to y/δ99 = 0.5. Above that height, the profile deviates from the trend in a more subtle

way in boundary layers.

Jiménez et al. (2010) observed that boundary layers present a logarithmic pressure fluc-

tuations profile with the same exponent as in channels, but consistently higher, and
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concluded that the additional intensity is caused by the presence of intermittency and

entrainment, and propagated down to the wall by the global character of pressure. Sillero

et al. (2013) found that, with a Reynolds number δ+
99 > 1000, a hump appears between

y/δ99 = (0.3 − 0.8). If the additive process suggested by the logarithmic profile exists,

the hump indicates the presence of a second length scale. This length is most likely the

boundary layer thickness, given that the deviation from the logarithmic trend is only

clearly visible when the Reynolds number is large enough, and also given that the extent

of the hump seems scales precisely with δ99.

Comparing the pressure intensities of the two boundary layers, the fluctuations of the

forced case close to the wall are lower, and more intense at the hump. This change of

tendency occurs at the same distance from the wall for every velocity fluctuations profile,

as well as pressure, approximately at the end of the logarithmic layer y/δ99 = 0.2. The

shape of the profiles, together with the fact that the stronger fluctuations appear past the

logarithmic layer, favors the hypothesis that the forcing is only indirectly the cause of the

stronger turbulence levels on the intermittent region.

The logarithmic region in the pressure profile of BLs is incipient at δ+
99 = 1500, and more

evident around δ+
99 = 2000. The same profile in BLf , is slightly more tilted, and seems

to have a different slope where the logarithmic region should appear. Given that this

region appears once the separation of scales is sufficient, a possible explanation for this

difference is that the ratio between ν/uτ and δ must be higher in the forced case to observe

an equivalent scale separation than in the smooth case. Unfortunately, δ+
99 = 1500 is the

largest Reynolds number available in this case, and the available experiments at a higher

Reynolds number were not able to measure the pressure fluctuations profile.

The conditions for scale separation were also studied by Krogstad & Efros (2012), where

a boundary layer with the same roughness geometry than Krogstad & Antonia (1994)

(cross-stream rods), but at a significantly higher Reynolds number, was analyzed. They

found that the effect of the roughness on the turbulent statistics diminished with the

Reynolds number and δ99/k, and mentioned that the significantly shorter u coherent

structures in Krogstad & Antonia (1994) could be a low Reynolds number effect.

The previous results can be interpreted as follows. The intensity of the pressure and ve-

locity fluctuations at the outer region become more intense with the presence of roughness

or forcing. The range of influence of the intermittent region, with a characteristic length
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of δ99, increases reducing the extent of the region that is characterized by the distance

to the wall. The mechanism that increments the rate of spread of the boundary layer,

with a characteristic length of ks, does not leave a direct footprint on the flow, that can

be described with the same two characteristic lengths as a smooth boundary layer. In

consequence, roughness could be a tool to amplify the effect of the intermittent region

over the rest of the flow.

Comparison between the present forcing and actual roughness.

Another important question whether this particular forcing is similar to actual roughness.

The most similar cases are Lee et al. (2011) and Lee & Sung (2007), two direct numerical

simulations of two common roughness patterns at a lower Reynolds number, probably

too low to fulfill the previously mentioned conditions for scale separation, but with a

precise description of the characteristics of the flow close to the roughness elements. Their

staggered array of cubes has a k+
s ' 60, similar than the present case, while the cross-

stream rods was designed to reproduce Krogstad & Antonia (1994), with k+
s = 211.

The effect on the turbulent profiles is similar to the observed in figure 4.5, with good

support for the wall similarity hypothesis. Both roughness patterns lower considerably

the peak of u′ at y+ = 15 similarly to the present case. The effect on the other two

components is similar too, the wall-normal component is only slightly damped, while the

peak in the spanwise component is unaltered or even enhanced with the presence of a

three-dimensional roughness pattern. The most remarkable difference can be seen in the

Reynolds shear stress profile, flatter in the present case, and without the inflection point

that appears in the present case, that does not seem to affect the other components of

the Reynolds stress tensor. This suggests that the effect of the forcing is comparable to

actual roughness. The described behavior is analogous to other forcing schemes like the

suction pattern of Flores & Jiménez (2006).

The comparison with experiments is not straightforward because to measuring the prop-

erties of the flow very close to the roughness elements is particularly hard. The measure-

ments obtained far from the wall, above y/δ99 = 0.2, should be accurate for hot wires

and PIV. For cases with ks > 40, a similar deviation from the behavior of smooth walls

is seen in the majority of experiments for the three components of velocity, as it can be

seen in the review by Flack & Schultz (2014). It is therefore reasonable to think that,
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regardless of the validity of Townsend’s wall similarity hypothesis, the effect of the present

volumetric forcing is similar to the effect of actual roughness.

4.4 Velocity field structure

The goal of the two-point statistics is to determine the spatial organization of the flow.

All the results shown previously have been obtained as an ensemble average of a quantity

φ in a given point x. This provides little information about how the value of φ in x

depends on its environment. Important events in wall bounded flows are known to be

coherent, like ejections and sweeps. The most frequent tool to quantify that coherency is

the autocorrelation coefficient Cφφ defined as

Cφφ =
〈(φ− 〈φ〉)(φ1 − 〈φ1〉)〉

φ′φ′1
, (4.10)

where φ is the value of the scalar in the point x, and φ1 is the value of the same field in

an alternative position x1. The brackets denote the ensemble average, and the primes are

the standard deviations. Note that the autocorrelation coefficient is a real scalar quantity

defined for every point in space x1, and that the point from which the autocorrelation is

computed x is a parameter. Therefore the complete parameter space for the autocorrela-

tion Cφφ has five dimensions, since only the spanwise direction is homogeneous. A single

autocorrelation for a single variable for a given position x has a size of the order of a com-

plete flow field. Computing, managing and processing the results of the autocorrelations

is a relatively challenging task for the present data sets due to their volume.

The autocorrelation measures how much the value of φ in x is correlated with its environ-

ment. If a strong and frequent event is very localized its imprint in the autocorrelation

will be small. On the other hand, if a strong and frequent fluctuation is coherent in

space, it has to be visible in Cφφ, and the extension of this coherence should appear in the

correlation levels. This quantity does not capture coherence between that is very weak

or intermittent. Assume that the value of phi at x is 1, and the value φ1 in x1 is 1 or

-1 intermittently, each one half of the time. The value of Cφφ at x1 will be 0, because

the average is smoothing out that intermittency. On the other hand, if the correlation

is conditioned to positive or negative values, Cφφ at x1 will be 0.5. Sillero et al. (2014)

obtained conditional correlations of the velocity field, but that result is considered beyond

the goals of this work.
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Figure 4.6: Sections of Cuu; left top, section over the XY plane; left bottom, section over the XZ
plane; right, section over the YZ plane. Three different distances from the wall are presented,
(a) y/δ99 = 0.2, (b) 0.6 and (c) 1.0. The two sets of contours correspond to BLf (solid), and
BLs (dashed). Five black contours for positive correlation are presented, regularly spaced from
0.9 to 0.1. The thicker blue contour is line of zero correlation. Contours of negative correlation
are red.

Townsend’s wall similarity hypothesis is often formulated as an expression of the auto-

correlation coefficient. According to Raupach et al. (1991), the hypothesis is valid if the

shape of Cuiui (where ui represents any of the three components of u) is not affected by

the presence of roughness. Note that the definition is given with the covariance Rij, but

it is equivalent because u2
τ is contained in the standard deviations of equation (4.10).

Autocorrelation coefficients for each component of the velocity vector are presented in fig-

ures 4.6, 4.7 and 4.8. The two available boundary layers are used at the usual streamwise

location where δ+
99 = 1500. A comprehensive study of this quantity, and a thorough com-

parison of BLs to C2 can be found in Sillero et al. (2014). The following discussion tries

to determine if this anomaly in the shape of the autocorrelations invalidates Townsend’s

hypothesis.

The three heights used to compute the autocorrelation (y/δ99 = 0.2, 0.6, 1.0) are not

arbitrarily chosen. We saw in Chapter 3 that at the first stage y/δ99 = 0.2, the presence

of irrotational flow is almost impossible, and the average profiles are still dominated by

the properties of the logarithmic layer. In the second stage, the level of intermittency is

important, but it is not dominant, and the mode of vorticity that corresponds to the fully
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Figure 4.6: (continued)

(c)
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Figure 4.6: (continued)
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Figure 4.7: Sections of Cvv. The definitions are the same as figure 4.6.
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Figure 4.7: (continued)
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Figure 4.7: (continued)
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Figure 4.8: Sections of Cww. The definitions are the same as figure 4.6.
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Figure 4.8: (continued)

(c)
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Figure 4.8: (continued)
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4.4. Velocity field structure

turbulent flow is still clearly visible (see figure 3.3). At the edge of the boundary layer

the level of intermittency is the highest, and the amount of turbulent and non-turbulent

flow is similar. Note that the autocorrelation coefficient has not been conditioned in any

way, and the results of Cφφ also contain the influence that the turbulent flow may have

on the non-turbulent region and vice-versa.

The autocorrelation coefficient in BLf has a very similar shape than BLs, but it is

consistently larger. This means that strong and coherent events in the velocity field are

larger in BLf . Many other cases of slightly longer autocorrelations with the presence of

roughness can be found, like Lee et al. (2011), Volino et al. (2011) and Wu & Christensen

(2010). In this case, and like many other experiments and simulations, the correlations

are much less affected by the additional friction than in Krogstad & Antonia (1994).

The differences between BLs and BLf are similar to the differences between BLs and

channels at the same Reynolds number, and those differences are interpreted as an effect

of the large scales more than as an indication than the two flows are entirely different.

It is also important to note than the shape of the contours of Cuu that mark relatively

high correlation levels are similar, while the contours of Cvv and Cww are equal within a

reasonable range. The differences in the three components of the velocity are more visible

when the autocorrelation is centered at y/δ99 = 1, where the geometrical properties of

the intermittent region have to be more relevant.

This result does not confirm Townsend’s wall similarity hypothesis, but suggests a similar

explanation for the differences in the mean profiles. The influence of the large scales is

distinguishable in BLf and BLs, the same way it is distinguishable between boundary

layers and channels. The differences can be explained by the fact that entrainment in-

fluences the layout of the turbulent structures in the intermittent region. The next step

is to find if turbulence, regardless of having a slightly different organization in the forced

case, is measurably different. The entrainment rate in BLf is almost twice higher than

BLs, and it is important to determine if turbulence is different in any way close to the

T/NT interface.
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Figure 4.9: Premultiplied PDF of vorticity magnitude ω∗ and distance to the wall y/δ99,
ωΓω,y. Two different scales have been used in the vertical axis: (a) logarithmic to zoom into
the logarithmic layer, and (b) linear to zoom into the intermittent region. The two contour sets
correspond to BLf ( black), and BLs ( blue). Each contour level contains 50%, 90%
and 99% of points.

4.5 The effects of the additional entrainment in the

intermittent zone

What follows is the study of the intermittent region analogous to §3.3-3.5, with the tools

described and tuned for the data in Sillero et al. (2013), which is the base of the com-

parison.

We saw that most of the information about the intermittent properties of the flow could

be summarized in the joint PDF of vorticity ω∗ and wall-normal distance y (Γω,y in figure

4.9). Other results that are more often found in the literature, like the intermittency

parameter γ, are implicitly included in this analysis since they can be obtained from the

joint PDF.

Representing the premultiplied joint PDF ωΓω,y with a logarithmic vertical axis (figure

4.9a), one can clearly see the effect of the forcing below y+ = 20. Vorticity is significantly

damped by the forcing, but the most probable values recover below y+ = 40, and the

complete shape of the joint PDF is recovered before reaching the logarithmic layer. Above

y+ = 100 the values of vorticity for the two boundary layers are almost identical, following

the expected trend until the beginning of the intermittent region. This trend is derived

from the approximation that at a given y dissipation is proportional to u3
τ/y, which
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4.5. The effects of the additional entrainment in the intermittent zone

assumes that it exists a logarithmic layer. The fact that both boundary layers follow the

expected trend is not an additional validation of Townsend’s wall similarity hypothesis

because it is redundant with the fact that both cases have the same Kármán constant κ,

but it confirms that star units u2
τ/ν
√
δ99 are also suitable to compare the two boundary

layers. Note that star units include the dependence with the Reynolds number and the

fundamental scaling parameter uτ . The wall similarity hypothesis will be valid if the

properties of the intermittent region and the T/NT interface are identical in star units.

The agreement is worse far from the wall, and differences between BLf and BLs can be

seen again when ωΓω,y is represented with a linear vertical axis (figure 4.9b). The fully

turbulent flow with the vorticity characteristic of the logarithmic layer reaches deeper into

the free stream, and farther from the wall. The differences in the intermittent region are

measurable, but not important. We saw in §3.3 that the geometrical details are hidden

by operating using the wall-normal distance as a parameter, and that the analysis of the

T/NT interface is necessary to determine scales associated to entrainment. This difference

in the intermittent region is consistent with the conclusions of the previous section §4.4.

The properties of the turbulent motion are not necessarily different due to the additional

friction, but its geometrical configuration beyond the logarithmic layer is.

The geometrical properties of the T/NT interface of BLf are shown in figure 4.10. The in-

terfaces of BLf and BLs similar complexity and topological properties. They experiment

the same topological transition at a similar range of thresholds ω∗0 = 0.2−2, affecting both

estimations of the fractal dimension (figures 4.10 a,b) and the genus (figure 4.10c ). The

joint PDF Γω,y shows that there is some more vorticity at the edge of the boundary layer

in BLf , which is consistent with the fact that the fractal dimensions and the maximum

genus per unit volume (figure 4.10 d) are measurably higher. However, the precise value

of these two quantities in the forced case is difficult to interpret.

The next step is the conditional analysis of the vorticity field, analogous to the one in

§3.5 for BLs. We have repeatedly mentioned that one possible explanation for the lack of

agreement of the wall-normal profiles is the fact that y is probably not a suitable parameter

to study the intermittent zone. The characteristic scale for the intermittent region is δ99,

and the geometrical configuration of the turbulent structures is not necessarily oriented

with the wall, one condition that is fulfilled indeed in the logarithmic layer. In addition,

the analysis of the two-point statistics suggest that the geometrical configuration of the
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Figure 4.10: (a) Lower estimation of the fractal dimension (see equation (3.13). (b) Higher
estimation of the fractal dimension (see equation (3.14). (c) Genus of the interface surface
normalized with its maximum value for any threshold g/max(g). (d) Maximum genus per unit
volume δ3

99, for ω∗0 ' 2 for the rough interface surface (square). The additional points and the
regression correspond to the smooth boundary layer (see figure 3.9). The thick lines in figures
(a-c) correspond to the ratio ω∗/ω+ for the smooth case.
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4.5. The effects of the additional entrainment in the intermittent zone

turbulent flow of BLf is different from BLs.

The premultiplied joint PDF of vorticity and minimum distance to the T/NT interface

ωFω,∆b
, presented in figure 4.11.

It is useful to recall the expressions for the wall normal average

〈ω〉(y) =

∫∞
0
ωΓω,y dω∫∞

0
Γω,y dω

, (4.11)

the conditional average

ω(∆b) =

∫∞
0
ωFω,∆b

dω∫∞
0
Fω,∆b

dω
(4.12)

despite these quantities will not be commented in detail in this section. F and Γ are

the result of an identical computation set with a different reference frame. While Γ uses

the distance to the wall y, F uses the distance to the interface ∆b. They have indeed

complementary properties. The wall is a suitable frame of reference to study the events

that occur close to the wall. Above the logarithmic layer, where intermittency is relevant,

the scaling respect to y is not necessary the most suitable.

The T/NT interface is a suitable reference frame to study the intermittent region because

it is able to abstract the geometrical complexity, and the conditional analysis is easier to

interpret. In other words, F is just a way to look at the boundary layer from the top to

the bottom.

The premultiplied joint PDF ωFω,∆b
for BLf and BLs are presented in figure 4.11 for

two different thresholds at the usual Reynolds number. The most evident feature of the

joint PDF is the good agreement between the two cases regardless of the threshold ω∗0.

The same three regions described in §3.5 are found: an interface layer close to the T/NT

interface with a thickness that scales in Kolmogorov units, the bulk of the turbulent flow

that is not affected by the presence of the free stream, and the near-wall region at the end

of the hockey-stick-shaped region. The agreement is almost perfect in the regions where

it is expected to occur, any point that is relatively far from the wall or has a vorticity

ω∗ > 1. The conditional averages ω∗ of BLf and BLs are hard to distinguish below

∆b/η < 100.

The value of the slope if the contours of the premultiplied joint PDF and the conditional

profile is particularly hard to explain, as it was mentioned in §3.5, but the fact that the

power law is observed is consistent with the geometrical properties of the T/NT interface,
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Figure 4.11: Premultiplied joint PDF of vorticity and minimum distance ωFω,∆b
at (a) ω+

0 =
0.01, and (b) ω+

0 = 0.09. Each contour set corresponds to BLf (solid) and BLs (dashed).
The vertical red dashed line highlights the value of the threshold. The two dotted lines are
the conditional average ω∗ for BLf (empty blue squares) and BLs (solid black circles). (c,d)
correspond to (a,b) with δ99 as the unit of length. Each contour line contains 50%, 90% and the
majority (99.9%) of points respectively.
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4.5. The effects of the additional entrainment in the intermittent zone

the surface ∆b = 0. It has been determined that the vorticity magnitude is proportional

to y−1/2. Furthermore, there is practically no relationship between the two reference

frames y = 0 and ∆b = 0. ∆b = 0, is a fractal-like surface that contains all the possible

lengths between δ99 and η, while the distance to the wall y has only a weak influence

on the average orientation of the interface. In consequence the fully turbulent flow (with

vorticity higher than ω∗ = 1) should be scale-independent of ∆b.

When Fω,∆b
is scaled with the boundary layer thickness (figure 4.11c-d), we see that

the differences between the BLf and BLs arise in the hockey-stick shaped region that

corresponds to points that are closer to the wall. Vorticity is lower in the forced case,

which is caused by the forcing, and the maximum ∆b is also slightly longer, which is

consistent with the fact that the arrangement of the turbulent eddies in the intermittent

region is different. The fact that the maximum distance from the interface is longer in

the forced case adds some more information about how turbulence is arranged. The ball

distance is the minimum distance, therefore, the maximum ∆b is the minimum distance

between the wall and ∆b = 0, which is obtained after cleaning all the bubbles and drops

(see §3.4) of a vorticity isocontour ω(x, y, z) = ω0. The maximum ball distance is the

distance between the lowest edges and overhangs and the wall, and it has little to do with

the average location of the interface. The average vertical location of BLs and BLf is

very similar, like the differences of the contours at the intermittent region in figure 4.9(b),

while the maximum ball distance of the two cases differs by more than 10%. Handles and

pockets, that were studied in detail in §3.5, are one of the consequences of the geometrical

complexity of the interface. The T/NT interface of BLf is therefore more complex (with

more handles and a higher fractal dimension), but it is farther from the wall than in BLs.

At the same time, the T/NT interface layer seems to be identical in both boundary layers.

One of the consequences of this result is that the force boundary layer is apparently

less intermittent, in the sense that the fully turbulent flow fills more volume between

y/δ99 = 0 − 1. There are more handles and pockets in BLf than in BLs, but the ones

in the former do not reach as close to the wall as the latter. Another consequence is

that it strengthens the conclusions of §3.5. The vertical location of handles and pockets

is immaterial to the amount of non-turbulent fluid they entrain. The forced boundary

layer entrains 75% more fluid per unit length in the streamwise direction, but handles

and pockets are further from the wall. If engulfment was an important mechanism in

entrainment, the case should be the opposite.
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4. The effect of increased entrainment

The mean conditional profiles of BLs and BLf are also different beyond ∆b = 0.3δ99,

although this limit changes with the threshold. The differences are due to he combined

effect of the forcing, that shrinks the tip of the hockey-stick-shaped corner of ωFω,∆b
, and

the differences in the location of handles and pockets, that extends ωFω,∆b
towards higher

ball distances.

This result recovers the scaling predicted by Townsend’s wall similarity hypothesis above

y/δ99 = 0.4. Once the geometrical effects in the intermittent region are subtracted, the

scaling with uτ is found in the turbulent/non-turbulent interface layer as well.

4.6 Conclusions

A zero-pressure-gradient turbulent boundary layer with a volumetric near-wall forcing

has been simulated. The forcing has been designed to increase the wall friction without

introducing any obvious geometrical effect, and to keep the performance and scalability

figures of the DNS code. The actual simulation is split in two domains, a smaller one in

charge of the generation of correct inflow boundary conditions, and a second and larger

one where the forcing is applied.

The streamwise evolution of the transient caused by the sudden addition of the forcing is

analyzed. The evolution of the Clauser parameter G as a function of the eddy turnover

distance x̂ of the present case is comparable to a similar experiment. The boundary layer

reaches its final state in about x̂ = 2. While the precise quantity is difficult to interpret,

and it may depend on the details of the forcing or the roughness pattern, the order

of magnitude is consistent with the current knowledge about streamwise convergence of

boundary layers. The stage at which the present boundary layer is compared with its

smooth-wall counterpart, at δ+
99 = 1500, is far enough from the end of the transient, at

x̂ = 3.3, and the comparison between the two cases is very likely to be correct.

The one-point statistics of the forced boundary layer show that the effect of the forcing

is similar to actual roughness. The most visible effect is that the peak of production of

turbulent kinetic energy y+ = 15 is damped and shifted further from the wall, where the

effect of the forcing is significantly weaker. The streamwise component of the velocity

fluctuations is also strongly affected, while the other two components preserve their qual-

itative features. The agreement between the forced and the smooth-wall boundary layers

is relatively good at the logarithmic layer, but one-point statistics above y/δ99 = 0.4
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present differences that are of the order of he ones between boundary layers and channels.

These differences are caused by entrainment, that affects the intermittent region and the

geometrical configuration of eddies in the outer part of the boundary layers.

The two-point statistics of the velocity components support the previous conclusion. The

shape of the three dimension autocorrelation of the three velocity components of the forced

boundary layer is similar than the smooth-wall case, but the correlation lengths are con-

sistently longer, particularly in the case of the streamwise component. Similar differences

in the autocorrelation coefficient have been reported in practically every experiment and

simulation of boundary layers over rough walls. Those differences are stronger when the

point at which the autocorrelation is computed is further from the wall.

The geometrical complexity of the T/NT interface has an important role in the inter-

mittent region and in entrainment. The results also suggest that the differences in the

one-point statistics between the forced and the smooth boundary layers may be caused

by the mentioned geometrical complexity. After changing the frame of reference from

the wall (the y = 0 surface) to the T/NT interface (the ∆b = 0 surface), the scaling

predicted by Townsend’s wall similarity hypothesis is recovered. Despite the agreement

in the one-point statistics is excellent in the T/NT interface layer, some geometrical de-

tails of the interface are different. The genus and the fractal dimension are higher in

the forced boundary layer, suggesting that the T/NT is a more complex surface. The

maximum ball distance is also higher, meaning that the forced boundary layer is slightly

less intermittent.

This result also strengthens the conclusions derived from the analysis of the turbulent/non-

turbulent interface layer in Chapter 3. A different boundary layer with an entrainment

rate 75% higher exhibits exactly the same properties regarding its interaction with the

non-turbulent free-stream, suggesting that entrainment is mostly a local phenomenon that

occurs at the edge of the most external vortices of the boundary layer. It also confirms

that engulfment, defined as the process for which large patches of non-turbulent flow are

digested by the coherent structures of the turbulent motion, is not particularly relevant.

Finally, we conclude that the validity of Townsend’s wall similarity hypothesis has been

confirmed for one-point statistics covering the entire thickness of the boundary layer, but

not for two-point statistics, where it can only be considered a good first approximation.
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Chapter 5

Conclusions and future work

Townsend’s wall similarity hypothesis is useful and relatively successful at modeling rough-

wall turbulent boundary layers at sufficiently high Reynolds numbers, but this hypothesis

was not fully backed by the available experimental data beyond the logarithmic layer.

There was the belief that entrainment could play an important role in an accurate de-

scription of boundary layers, and that the additional friction caused by the presence of

roughness was indirectly causing those differences. It was necessary to understand en-

trainment to study Townsend’s hypothesis.

Average entrainment and friction are coupled by the Kármán momentum equation, but

the actual mechanism for which entrainment occurs was not clear, neither its connection

with what happens at the wall. It was not that the coupling between two models was

particularly hard, but that those two models did not even exist.

The first step as been to understand entrainment and the region where it takes place, the

turbulent/non-turbulent interface. One of the significant findings of this thesis is that

the intermittent region is geometrically complex, and that complex plays an important

role in the description of the properties of the outer region of boundary layers. One

facet of this role is purely mathematical. The ensemble average operation requires that

the direction across it is computed is statistically homogeneous. This is the reason why

homogeneous and isotropic turbulence, and turbulent channels and pipes, have been such a

successful tool. The geometrical complexity is significantly reduced when the large-scale

configuration is simple. Intermittency is an indication that statistical homogeneity is

probably lost, but in the case of turbulent boundary layers, the tools used in its analysis

have been the same as in channels and pipes. Maybe because of the lack of a better
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alternatives.

This is the reason why most of this thesis deals with the development of new tools. Sim-

ulations at higher Reynolds numbers, and algorithms to deal with the turbulent motion

regardless of its geometrical complexity. Developing new tools is always hard, and inter-

preting results that no one has ever seen before is sometimes harder. In addition, some

tools can be better than others if they their building blocks are already available, are

particularly efficient to compute, or easier to interpret. If we could build a computer that

gave us the ultimate answer to Turbulence, and its answer was 42, our efforts would be

practically useless.

A new DNS code for the simulation of turbulent boundary layers has been developed. It

is based on a previous code that provided the fundamental tools and algorithms, but the

changes needed for the required levels of scalability and performance were substantial. Its

scalability is particularly remarkable. Being able to use almost two million threads while

keeping almost constant performance levels is a remarkable achievement, even when the

supercomputing architecture is the best available1. The implementation is also relatively

simple, given the complexity of the algorithms. The twin box configuration, used in the

two main data sets of this thesis, was developed in less than a month.

We have made an important effort to characterize on a simple way the geometrical features

of the intermittent region. A fractal-like highly contorted surface has been characterized

with three simple components: bubbles, handles and pockets of different sizes. This sim-

plification is one of the achievements of this work, the identification of abstract quantities,

like the fractal dimension and the genus, with actual structures that exist in the flow.

The ball distance field (called minimum distance field in other applications) is also another

tool that has been proven itself useful. We have shown repeatedly that any measurement

involving a distance includes its reference frame as a fundamental assumption. The verti-

cal distance, one of the most common tools in the study of the T/NT interface, is not able

to capture the geometrical complexity of the T/NT interface. As a consequence, some of

the important properties of the interface that are relevant to understand entrainment are

not properly measured. This was not known before this new tool, the ball distance, was

1The present OpenTBL code is in the HighQ club, a series of featured tools that were able to use the
whole Juqueen supercomputer: http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/

_node.html. We are grateful with the Juelich staff, that offered us the chance to look for the limits
of this code.
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developed. The lack of accuracy of the predictions made by Townsend’s wall similarity

hypothesis in the outer region of the boundary layer is a similar case. If the outer region

of the boundary layer is measured using a more intrinsic reference frame than the wall,

the agreement is recovered with great precision.

At the time of the elaboration of this thesis we can say that the behavior of the different

coherent structures in the logarithmic layer is more or less understood. This study com-

pletes a relatively simple portrait of the dynamics of turbulence close to the edge of the

boundary layer. The fully turbulent flow far from the wall behaves like in the logarithmic

layer, dissipating energy at a rate of u3
τ/y. The environment that vortices find at the edge

of the boundary layer is the same as in the rest of the flow, there is no local effect caused

by the presence of the free stream like some impact pressure or some sort of local activity,

and vortices have a peaceful death. They are still stretched, since strain within the T/NT

interface layer is relatively intense, but not more than any other vortex. Entrainment is

mostly a local effect, caused by strong vorticity gradients, and the rest of the turbulent

flow evolves ignoring its existence. If roughness is added to the equation the mechanism

is essentially the same. The vorticity gradients are stronger by a factor that scales with

the friction coefficient, and in consequence, entrainment is amplified.

The connection between roughness (or additional friction) and entrainment is that the

spatial arrangement of eddies in the outer region of the boundary layer is affected by

the changes at the wall. Boundary layers over rough walls are less intermittent, and

correlation lengths are longer for any velocity component. But the properties at each

particular point fulfill Townsend’s wall similarity hypothesis. This is the final statement

about the validity of Townsend’s hypothesis. The average properties of any point within

the boundary layer, from the lower bound of the logarithmic layer to the T/NT interface,

follow the scaling predicted by the hypothesis. On the other hand, the structure of the

turbulent motion is affected by the additional friction.

There are sound arguments to support these conclusions, that are a model for the proper-

ties of the intermittent region of boundary layers, and of the effect of rough walls within

in the transitionally rough regime.

This portrait has implications on LES modeling. The dynamics of the turbulent flow

are not fundamentally different in the intermittent region, and most formulations should

obtain a flow that is correct considering the limitations of the models. The T/NT interface
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5. Conclusions and future work

would be of course filtered, and in consequence thickened, but mostly correct, since LES is

theoretically capable to capture the differences in the large-scale features of the turbulent

motion.

The tools developed in this thesis are already having a meaningful impact within the

turbulence research community. The OpenTBL boundary layer code is now used by

other research groups. At the time this thesis is written, we know of two other versions

of this OpenTBL, one aimed to simulate boundary layers with adverse pressure gradients

after laminar-turbulent transition, and a second one designed to simulate boundary layers

with strong adverse pressure gradients. When we implemented this code, we tried to make

it as future-proof as possible. It seems that, at least in some extent, we succeeded in our

goal. Ball distance can be useful to study other aspects of turbulent flows. It is efficient,

fast, and allows to formulate approximate gradients close to complex surfaces. It can be

applied to study the T/NT interface of other external turbulent flows with close to no

modification.

There are some questions that are left unanswered. In boundary layers, friction controls

entrainment like a throttle. At this point we understand how entrainment works, and

why Townsend’s hypothesis is valid also at the T/NT interface. But the link between the

wall and the T/NT interface, the spatial arrangement of eddies beyond the logarithmic

layer, is far from being understood. There is also a resilient question in any work based on

results from DNS. The practical scale separation found in the T/NT interface and in the

forced boundary layer is marginal, and these conclusions have to be verified for boundary

layers at higher Reynolds numbers.

Finally, I’d like to say that the time and effort invested in the development of new tools

is never properly rewarded. Results are the fundamental outcome of any research and

tools only pay off from the moment in which they are finished and correctly tuned. The

OpenTBL code took almost two years of development. Some parts of it, like the I/O

system that is responsible to write the raw results, had to be written four times from

scratch. Some bugs took weeks to catch, and sometimes threatened the whole project.

Babysitting the simulation was also an interesting experience too.

Data management was a constant issue. If developing tools is never properly rewarded,

moving data around is not rewarded at all. The tools required to compute and to analyze

the ball distance required a similar amount of effort. One of the most challenging bits of
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this thesis was to interpret the results of a brand new tool, and to discover its potential.

One of the personal conclusions of this thesis is that tools are never properly rewarded

by themselves, but the development of things that are completely brand new is probably

what hast taught me the most during the time I have devoted to this work.
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Jiménez, J., Hoyas, S., Simens, M. P. & Mizuno, Y. 2010 Turbulent boundary

layers and channels at moderate reynolds numbers. J Fluid Mech 657, 335–360.

Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. Journal

of Fluid Mechanics 225, 213–240.
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Österlund, J. M., Johansson, A. V., Nagib, H. M. & Hites, M. H. 2000 A

note on the overlap region in turbulent boundary layers. Phys Fluids 12 (1), 1–4.

Perot, J. B. 1993 An analysis of the fractional step method. J Comput Phys 108 (1),

51–58.

Perry, A. E., Schofield, W. H. & Joubert, P. N. 1969 Rough wall turbulent

boundary layers. J Fluid Mech 37 (02), 383–413.

Pirozzoli, S. & Bernardini, M. 2013 Probing high-reynolds-number effects in nu-

merical boundary layers. Phys. Fluids 25 (2), 021704.

Pirozzoli, S., Bernardini, M. & Grasso, F. 2010 Direct numerical simulation of

transonic shock/boundary layer interaction under conditions of incipient separation.

JFluid Mech 657, 361–393.

Prandtl, L 1904 Verhandlungen des dritten internationalen mathematiker-kongresses.

Heidelberg, Leipeizig pp. 484–491.

Prasad, R.R. & Sreenivasan, K.R. 1989 Scalar interfaces in digital images of tur-

bulent flows. Exp. Fluids 7 (4), 259–264.

125



Bibliography

Raupach, MR, Antonia, RA & Rajagopalan, S 1991 Rough-wall turbulent bound-

ary layers. Applied Mechanics Reviews 44 (1), 1–25.

van Reeuwijk, M. & Holzner, M. 2014 The turbulence boundary of a temporal jet.

J. Fluid Mech. 739, 254–275.

Reynolds, O. 1895 On the dynamical theory of incompressible viscous fluids and the

determination of the criterion. Phil Trans Roy Soc Lon A pp. 123–164.

Richardson, L. F. 1922 Weather prediction by numerical process . Cambridge Univer-

sity Press.

Russ, J. C 1994 Fractal Surfaces . 233 Spring Street, New York, N.Y. 10013: Plenum

Press.

Sandham, N. D., Mungal, M. G., Broadwell, J. E. & Reynolds, W. C.

1988 Scalar entrainment in the mixing layer. In Proc. Summ., pp. 69–76. Center for

Turbulence Research.

Schaller, Robert R 1997 Moore’s law: past, present and future. Spectrum, IEEE

34 (6), 52–59.
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