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ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS
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Resumen

El objetivo de esta tesis es estudiar la dinámica de la capa logaŕıtmica de flujos tur-

bulentos de pared. En concreto, proponemos un nuevo modelo estructural utilizando dife-

rentes tipos de estructuras coherentes: sweeps, eyecciones, grupos de vorticidad y streaks.

La herramienta utilizada es la simulación numérica directa de canales turbulentos.

Desde los primeros trabajos de Theodorsen (1952), las estructuras coherentes han

jugado un papel fundamental para entender la organización y dinámica de los flujos tur-

bulentos. A d́ıa de hoy, datos procedentes de simulaciones numéricas directas obtenidas en

instantes no contiguos permiten estudiar las propiedades fundamentales de las estructuras

coherentes tridimensionales desde un punto de vista estad́ıstico. Sin embargo, la dinámica

no puede ser entendida en detalle utilizando sólo instantes aislados en el tiempo, sino que

es necesario seguir de forma cont́ınua las estructuras. Aunque existen algunos estudios

sobre la evolución temporal de las estructuras más pequeñas a números de Reynolds mo-

derados, por ejemplo Robinson (1991), todav́ıa no se ha realizado un estudio completo a

altos números de Reynolds y para todas las escalas presentes de la capa logaŕıtmica. El

objetivo de esta tesis es llevar a cabo dicho análisis.

Los problemas más interesantes los encontramos en la región logaŕıtmica, donde resi-

den las cascadas de vorticidad, enerǵıa y momento. Existen varios modelos que intentan

explicar la organización de los flujos turbulentos en dicha región. Uno de los más exten-

didos fue propuesto por Adrian et al. (2000) a través de observaciones experimentales

y considerando como elemento fundamental paquetes de vórtices con forma de horqui-

lla que actúan de forma cooperativa para generar rampas de bajo momento. Un modelo

alternativo fué ideado por del Álamo & Jiménez (2006) utilizando datos numéricos. Ba-

sado también en grupos de vorticidad, planteaba un escenario mucho más desorganizado

y con estructuras sin forma de horquilla. Aunque los dos modelos son cinemáticamente

similares, no lo son desde el punto de vista dinámico, en concreto en lo que se refiere

a la importancia que juega la pared en la creación y vida de las estructuras. Otro pun-

to importante aún sin resolver se refiere al modelo de cascada turbulenta propuesto por

Kolmogorov (1941b), y su relación con estructuras coherentes medibles en el flujo.
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Para dar respuesta a las preguntas anteriores, hemos desarrollado un nuevo método

que permite seguir estructuras coherentes en el tiempo y lo hemos aplicado a simulaciones

numéricas de canales turbulentos con números de Reynolds lo suficientemente altos como

para tener un rango de escalas no trivial y con dominios computacionales lo suficientemen-

te grandes como para representar de forma correcta la dinámica de la capa logaŕıtmica.

Nuestros esfuerzos se han desarrollado en cuatro pasos.

En primer lugar, hemos realizado una campaña de simulaciones numéricas directas a

diferentes números de Reynolds y tamaños de cajas para evaluar el efecto del dominio

computacional en las estad́ısticas de primer orden y el espectro. A partir de los resultados

obtenidos, hemos concluido que simulaciones con cajas de longitud 2π y ancho π veces

la semi-altura del canal son lo suficientemente grandes para reproducir correctamente las

interacciones entre estructuras coherentes de la capa logaŕıtmica y el resto de escalas.

Estas simulaciones son utilizadas como punto de partida en los siguientes análisis.

En segundo lugar, las estructuras coherentes correspondientes a regiones con esfuer-

zos de Reynolds tangenciales intensos (Qs) en un canal turbulento han sido estudiadas

extendiendo a tres dimensiones el análisis de cuadrantes, con especial énfasis en la capa

logaŕıtmica y la región exterior. Las estructuras coherentes han sido identificadas como

regiones contiguas del espacio donde los esfuerzos de Reynolds tangenciales son más in-

tensos que un cierto nivel. Los resultados muestran que los Qs separados de la pared

están orientados de forma isótropa y su contribución neta al esfuerzo de Reynolds medio

es nula. La mayor contribución la realiza una familia de estructuras de mayor tamaño y

autosemejantes cuya parte inferior está muy cerca de la pared (ligada a la pared), con una

geometŕıa compleja y dimensión fractal ≈ 2. Estas estructuras tienen una forma similar a

una ‘esponja de placas’, en comparación con los grupos de vorticidad que tienen forma de

‘esponja de cuerdas’. Aunque el número de objetos decae al alejarnos de la pared, la frac-

ción de esfuerzos de Reynolds que contienen es independiente de su altura, y gran parte

reside en unas pocas estructuras que se extienden más allá del centro del canal, como en

las grandes estructuras propuestas por otros autores. Las estructuras dominantes en la

capa logaŕıtmica son parejas de sweeps y eyecciones uno al lado del otro y con grupos de

vorticidad asociados que comparten las dimensiones y esfuerzos con los remolinos ligados

a la pared propuestos por Townsend.

En tercer lugar, hemos estudiado la evolución temporal de Qs y grupos de vorticidad

usando las simulaciones numéricas directas presentadas anteriormente hasta números de

Reynolds Reτ = 4200 (Reynolds de fricción). Las estructuras fueron identificadas siguien-

do el proceso descrito en el párrafo anterior y después seguidas en el tiempo. A través
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de la interseción geométrica de estructuras pertenecientes a instantes de tiempo conti-

guos, hemos creado grafos de conexiones temporales entre todos los objetos y, a partir

de ah́ı, definido ramas primarias y secundarias, de tal forma que cada rama representa la

evolución temporal de una estructura coherente. Una vez que las evoluciones están ade-

cuadamente organizadas, proporcionan toda la información necesaria para caracterizar la

historia de las estructuras desde su nacimiento hasta su muerte. Los resultados muestran

que las estructuras nacen a todas las distancias de la pared, pero con mayor probabilidad

cerca de ella, donde la cortadura es más intensa. La mayoŕıa mantienen tamaños pequeños

y no viven mucho tiempo, sin embargo, existe una familia de estructuras que crecen lo

suficiente como para ligarse a la pared y extenderse a lo largo de la capa logaŕıtmica

convirtiéndose en las estructuras observas anteriormente y descritas por Townsend. Estas

estructuras son geométricamente autosemejantes con tiempos de vida proporcionales a su

tamaño. La mayoŕıa alcanzan tamaños por encima de la escala de Corrsin, y por ello, su

dinámica está controlada por la cortadura media. Los resultados también muestran que

las eyecciones se alejan de la pared con velocidad media uτ (velocidad de fricción) y su

base se liga a la pared muy rápidamente al inicio de sus vidas. Por el contrario, los sweeps

se mueven hacia la pared con velocidad −uτ y se ligan a ella más tarde. En ambos casos,

los objetos permanecen ligados a la pared durante 2/3 de sus vidas. En la dirección de la

corriente, las estructuras se desplazan a velocidades cercanas a la convección media del

flujo y son deformadas por la cortadura.

Finalmente, hemos interpretado la cascada turbulenta, no sólo como una forma concep-

tual de organizar el flujo, sino como un proceso f́ısico en el cual las estructuras coherentes

se unen y se rompen. El volumen de una estructura cambia de forma suave, cuando no

se une ni rompe, o lo hace de forma repentina en caso contrario. Los procesos de unión

y rotura pueden entenderse como una cascada directa (roturas) o inversa (uniones), si-

guiendo el concepto de cascada de remolinos ideado por Richardson (1920) y Obukhov

(1941). El análisis de los datos muestra que las estructuras con tamaños menores a 30η

(unidades de Kolmogorov) nunca se unen ni rompen, es decir, no experimentan el proceso

de cascada. Por el contrario, aquellas mayores a 100η siempre se rompen o unen al menos

una vez en su vida. En estos casos, el volumen total ganado y perdido es una fracción

importante del volumen medio de la estructura implicada, con una tendencia ligeramente

mayor a romperse (cascada directa) que a unirse (cascade inversa). La mayor parte de

interacciones entre ramas se debe a roturas o uniones de fragmentos muy pequeños en

la escala de Kolmogorov con estructuras más grandes, aunque el efecto de fragmentos

de mayor tamaño no es despreciable. También hemos encontrado que las roturas tienen a
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ocurrir al final de la vida de la estructura y las uniones al principio. Aunque los resultados

para la cascada directa e inversa no son idénticos, son muy simétricos, lo que sugiere un

alto grado de reversibilidad en el proceso de cascada.
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Summary

The purpose of the present thesis is to study the dynamics of the logarithmic layer

of wall-bounded turbulent flows. Specifically, to propose a new structural model based

on four different coherent structures: sweeps, ejections, clusters of vortices and veloc-

ity streaks. The tool used is the direct numerical simulation of time-resolved turbulent

channels.

Since the first work by Theodorsen (1952), coherent structures have played an impor-

tant role in the understanding of turbulence organization and its dynamics. Nowadays,

data from individual snapshots of direct numerical simulations allow to study the three-

dimensional statistical properties of those objects, but their dynamics can only be fully

understood by tracking them in time. Although the temporal evolution has already been

studied for small structures at moderate Reynolds numbers, e.g., Robinson (1991), a tem-

poral analysis of three-dimensional structures spanning from the smallest to the largest

scales across the logarithmic layer has yet to be performed and is the goal of the present

thesis.

The most interesting problems lie in the logarithmic region, which is the seat of cas-

cades of vorticity, energy, and momentum. Different models involving coherent structures

have been proposed to represent the organization of wall-bounded turbulent flows in the

logarithmic layer. One of the most extended ones was conceived by Adrian et al. (2000)

and built on packets of hairpins that grow from the wall and work cooperatively to gen-

erate low-momentum ramps. A different view was presented by del Álamo & Jiménez

(2006), who extracted coherent vortical structures from DNSs and proposed a less or-

ganized scenario. Although the two models are kinematically fairly similar, they have

important dynamical differences, mostly regarding the relevance of the wall. Another

open question is whether such a model can be used to explain the cascade process pro-

posed by Kolmogorov (1941b) in terms of coherent structures. The challenge would be to

identify coherent structures undergoing a turbulent cascade that can be quantified.

To gain a better insight into the previous questions, we have developed a novel method

to track coherent structures in time, and used it to characterize the temporal evolutions of
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eddies in turbulent channels with Reynolds numbers high enough to include a non-trivial

range of length scales, and computational domains sufficiently long and wide to reproduce

correctly the dynamics of the logarithmic layer. Our efforts have followed four steps.

First, we have conducted a campaign of direct numerical simulations of turbulent

channels at different Reynolds numbers and box sizes, and assessed the effect of the

computational domain in the one-point statistics and spectra. From the results, we have

concluded that computational domains with streamwise and spanwise sizes 2π and π times

the half-height of the channel, respectively, are large enough to accurately capture the

dynamical interactions between structures in the logarithmic layer and the rest of the

scales. These simulations are used in the subsequent chapters.

Second, the three-dimensional structures of intense tangential Reynolds stress in plane

turbulent channels (Qs) have been studied by extending the classical quadrant analysis

to three dimensions, with emphasis on the logarithmic and outer layers. The eddies

are identified as connected regions of intense tangential Reynolds stress. Qs are then

classified according to their streamwise and wall-normal fluctuating velocities as inward

interactions, outward interactions, sweeps and ejections. It is found that wall-detached

Qs are isotropically oriented background stress fluctuations, common to most turbulent

flows, and do not contribute to the mean stress. Most of the stress is carried by a self-

similar family of larger wall-attached Qs, increasingly complex away from the wall, with

fractal dimensions ≈ 2. They have shapes similar to ‘sponges of flakes’, while vortex

clusters resemble ‘sponges of strings’. Although their number decays away from the wall,

the fraction of the stress that they carry is independent of their heights, and a substantial

part resides in a few objects extending beyond the centerline, reminiscent of the very large

scale motions of several authors. The predominant logarithmic-layer structures are side-

by-side pairs of sweeps and ejections, with an associated vortex cluster, and dimensions

and stresses similar to Townsend’s conjectured wall-attached eddies.

Third, the temporal evolution of Qs and vortex clusters are studied using time-resolved

DNS data up to Reτ = 4200 (friction Reynolds number). The eddies are identified

following the procedure presented above, and then tracked in time. From the geometric

intersection of structures in consecutive fields, we have built temporal connection graphs

of all the objects, and defined main and secondary branches in a way that each branch

represents the temporal evolution of one coherent structure. Once these evolutions are

properly organized, they provide the necessary information to characterize eddies from

birth to death. The results show that the eddies are born at all distances from the wall,

although with higher probability near it, where the shear is strongest. Most of them stay

XX



small and do not last for long times. However, there is a family of eddies that become

large enough to attach to the wall while they reach into the logarithmic layer, and become

the wall-attached structures previously observed in instantaneous flow fields. They are

geometrically self-similar, with sizes and lifetimes proportional to their distance from

the wall. Most of them achieve lengths well above the Corrsin’ scale, and hence, their

dynamics are controlled by the mean shear. Eddies associated with ejections move away

from the wall with an average velocity uτ (friction velocity), and their base attaches very

fast at the beginning of their lives. Conversely, sweeps move towards the wall at −uτ , and

attach later. In both cases, they remain attached for 2/3 of their lives. In the streamwise

direction, eddies are advected and deformed by the local mean velocity.

Finally, we interpret the turbulent cascade not only as a way to conceptualize the

flow, but as an actual physical process in which coherent structures merge and split. The

volume of an eddy can change either smoothly, when they are not merging or splitting,

or through sudden changes. The processes of merging and splitting can be thought of

as a direct (when splitting) or an inverse (when merging) cascade, following the ideas

envisioned by Richardson (1920) and Obukhov (1941). It is observed that there is a

minimum length of 30η (Kolmogorov units) above which mergers and splits begin to be

important. Moreover, all eddies above 100η split and merge at least once in their lives.

In those cases, the total volume gained and lost is a substantial fraction of the average

volume of the structure involved, with slightly more splits (direct cascade) than mergers.

Most branch interactions are found to be the shedding or absorption of Kolmogorov-scale

fragments by larger structures, but more balanced splits or mergers spanning a wide range

of scales are also found to be important. The results show that splits are more probable

at the end of the life of the eddy, while mergers take place at the beginning of the life.

Although the results for the direct and the inverse cascades are not identical, they are

found to be very symmetric, which suggests a high degree of reversibility of the cascade

process.
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Chapter 1

Introduction

The key role of turbulence in both science and engineering is doubtless. From a

practical point of view, turbulent flows have a wide range of applications that are found

in many technological problems, such as the flow in turbines, meteorological predictions,

combustion or transport of fluid through ducts. Turbulence results in drag on vehicles

such as planes, cars or ships, and controls the heat transfer and mixing of pollutants in

machines and the environment.

The present thesis addresses a number of outstanding questions about the physics

of turbulence that are crucial to improve our understanding about such an important

phenomena.

1.1 Historical remarks

1.1.1 The beginnings of turbulence

Turbulence was recognized as a different flow regime several centuries ago. There are

even prehistorical paintings where water and wind are represented by spirals which mimic

the disorganized nature of these two elements. In both ancient Greek (τ ύρβη) and Latin

(turba-æ) existed specific words from where the current concept of turbulence derived.

However, these former words were related to chaos and turmoil rather than to a flow

regime. In Spanish, Gonzalo de Berceo (1197–1264) used the term turbare to describe

adverse weather, and Leonardo da Vinci (1452–1519) sketched disordered water and wind

in many of his paintings. The chaotic nature of fluids has been recurrent in art. Two

representative examples are the Starry Night (1889) by Vicent Van Gogh and The Great

Wave Off Kanagawa (1832) by Katsushika Hokusai (see figure 1.1).

The scientific study of turbulence began in the mid-nineteenth century with Poiseuille

1



2 1. Introduction

Figure 1.1: The Great Wave Off Kanagawa by Katsushika Hokusai.

(1846) and Hagen (1839), who analyzed the laminar regime of simple flows and mea-

sured the relation between viscosity and temperature. Hagen (1854) and Darcy (1857),

independently, studied the pressure drop in ducts and found two separate components.

The former changed linearly with the flow velocity and was proportional to the kinematic

viscosity of the fluid. The second changed quadratically with the velocity and was inde-

pendent of the viscosity. The latter component caused some controversy since it suggested

that the flow was able to organize in such a way that the dissipation of energy was never

zero even if the viscosity was. This posed a paradox inasmuch as the dissipation of energy

per units mass and time in an incompressible flow is

ε = ν|∇u|2, (1.1)

where ν is the kinematic viscosity, u the velocity of the flow, ∇ the gradient operator,

and the overline denotes ensemble average. The observations of Hagen (1854) and Darcy

(1857) and relation (1.1) implied that, in a turbulent flow, the velocity gradients become

singular when the viscosity tends to zero, and hence, a certain amount of dissipation

remains. This finding turned out to be a fundamental feature of turbulent flows.

In 1877, Boussinesq classified the flow regimes for the first time as turbulent or lam-

inar, and noticed that the momentum transport was larger in the former. Based on his

observations, he proposed a linear relation between terms responsible for the momentum
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transfer and the strain through a certain coefficient referred to as eddy viscosity. This

understanding was crucial and the enhanced transport of momentum was recognized as a

distinctive property of turbulence.

The experiments by Reynolds (1894) are considered among the most influential re-

sults in the study of turbulence. Using experimental data, Reynolds identified the non-

dimensional parameter responsible for the transition from laminar to turbulence in in-

compressible flows and simple geometries. The parameter is now known as the Reynolds

number and represents the ratio of inertial and viscous effects of the flow. Reynolds went

one step further and realized that attempting to understand turbulence in all its detail was

not a very fruitful approach. For that reason, he made use of statistical tools and sepa-

rated the flow velocity in two parts, the average component and the fluctuating one. The

average component obeys the Reynolds–averaged Navier–Stokes equations which, com-

pared to the Navier–Stokes ones, contain additional terms known as Reynolds stresses.

These terms depend on the fluctuating velocities and can not be obtained directly from

the average quantities. Nevertheless, they have been modeled on many occasions result-

ing in the so called closure problem. The Reynolds’ decomposition introduced a great

simplification and its use persist up to this day.

About the same time that Reynolds proposed a statistical description of turbulence,

Poincaré (1899) found that simple non-linear systems were able to show chaotic behaviors

even if they were governed by deterministic differential equations. It was later on when

Lorenz (1963) proposed a link between deterministic chaos and turbulence after his work

on weather prediction in 1961.

After the works by Reynolds, most of the studies tackled the closure problem using

different statistical models with varying degrees of success. The first important break-

through was obtained by Prandtl (1925) with the so-called mixing length theory first

introduced by Boussinesq (1877). The theory followed the ideas of the successful Kinetic

Theory of Gases and proposed the analogy between turbulent eddies and molecules, which

allowed to build the length and velocity scales required to estimate the eddy viscosity.

At the same time, Richardson (1920) suggested a multiscale description of turbulence

and postulated that the energy is injected in the largest scales or eddies, that break into

smaller ones due to flow instabilities. The process is self-similarly repeated, producing

eddies smaller and smaller until they are dissipated by viscosity. He famously summarized

turbulence in rhyming verse in Weather Prediction by Numerical Process (p 66):

Big whirls have little whirls that feed on their velocity,

and little whirls have lesser whirls and so on to viscosity.
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Although little rigorous, this phenomenological picture has been very influential on later

works.

Some of the most relevant advances during the 1930s were due to G. I. Taylor, who

introduced more sophisticated and rigorous mathematical tools such as velocity correla-

tions and Fourier transforms, both of them intensively used up to the present day. In

his work, Taylor (1935) introduced the concept of isotropic turbulence and showed that

its statistical properties resemble those of a flow moving across a grid in a experimental

wind tunnel. The idea of isotropic turbulence have played a key role in the understand-

ing of turbulence since it is the most simplified turbulence set-up that can be considered

reasonable realistic. A significant theoretical result related to isotropic turbulence was

published by von Kármán & Howarth (1938), who derived the equation describing the

energy transfer among eddies located at difference scales known as the Kármán-Howarth

equation. Another important contribution due to Taylor was the frozen turbulence hy-

pothesis, which allows conversion between spatial and temporal data, and was especially

relevant for analyzing one-point experimental measurements.

1.1.2 Kolmogorov’s theory

A.N Kolmogorov developed a statistical theory in a series of short papers (Kolmogorov,

1941b,a) that has become one of the major achievements in turbulence. Its simplicity and

ability to make simple but fundamental predictions have contributed enormously to its

success.

Kolmogorov considered an isotropic turbulent flow, and hypothesize that the Reynolds

number of the largest scales with characteristic length Lε and velocity uL is so high that

they are barely affected by the viscous terms. He argued that the external forces act

on the largest scales, that serves as the energy input to the flow. Since these scales can

not dissipate the energy, this has to be entirely transfer to the smaller ones. Therefore,

following the ideas proposed by Richardson (1920), Kolmogorov considered turbulence

as a multiscale phenomena where the energy is transfer among eddies which repeatedly

break into smaller ones until the effect of the viscosity acts on them. The energy is finally

dissipated in this last step. This transfer of energy among scales is known as the turbulent

energy cascade.

In particular, the theory states that the energy transfer per unit mass and time is

proportional to u2
l /tl, where ul and tl are respectively the characteristic velocity and

time-scale of an eddy of size l. Assuming that the characteristic time-scale is tl ∼ l/ul,

the energy flux at scale l is ∼ u3
l /l. For a statistically stationary state and for eddies large
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enough to be independent of the viscosity, the cascade is in equilibrium and the energy

flux must balance the dissipation

ε ∼ u3
l /l. (1.2)

Following the previous definitions, the characteristic velocity of eddies with size l is

ul ∼ (u3
Ll/Lε)

1/3 ∼ (εl)1/3, (1.3)

and from dimensional arguments, the associated one-dimensional energy spectrum follows

Euu(k) ∼ ε2/3k−5/3, (1.4)

which is known as Kolmogorov’s 5/3 law, with k ∼ 1/l the wavenumber.

On the basis of the arguments above, the theory defines three different regions associ-

ated with four characteristic length-scales. From large to small:

• Integral scale Lε: represents the largest characteristic length of the flow where the

injection of energy from the external forces to the flow occurs.

• Inertial range l: all the intermediate scales which are not directly influenced by the

injection of energy nor the dissipation, Lε ≫ l ≫ η, where η is defined below. In

this range, equation (1.2) is satisfied and the energy is transferred without loss.

• Kolmogorov’s length scale η: length at which the viscous and inertial effects are of

the same order, i.e., the Reynolds number of the eddies is Rel ∼ (εl4/ν3)1/3 ∼ 1

resulting in η =
(

ν3

ε

)1/4

.

• Dissipative range: those scales below the Kolmogorov’s scale, and hence, dominated

by the viscous effects.

The characteristic velocity associated with the Kolmogorov’ length-scale is

uη = (νε)1/4, (1.5)

and the velocity gradient, uη/η ∼ (ε/ν)1/2, becomes infinite when ν tends to zero. Sub-

stituting the previous gradient in equation (1.1) results in a dissipation rate independent

of the viscosity as predicted by Hagen and Darcy.

It is important to note that Kolmogorov derived the statistical consequences of the

energy cascade, but that does not imply that the phenomenological view presented above

is actually followed by the flow, even if the predictions are reasonable well satisfied when

compared with experiments.
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1.1.3 Advances following Kolmogorov

The theory by Kolmogorov (1941b,a) is considered a great success but it also presents

serious shortcomings. For instance, it assumes that the velocity gradients are uniformly

distributed in space as the scale decreases, but Batchelor & Townsend (1949) observed

that this hypothesis is not completely fulfilled, which was referred to as intermittency.

Kolmogorov (1962) himself modified his theory to account for this effect. More refined

models appeared to explain this phenomenon. One of the most widespread ones was

proposed by Frisch et al. (1978) and later improvements were developed by Frisch (1995)

and Jiménez (2000). These models rely on multiplicative cascades where the size of the

structures decreases by a constant factor and velocities are multiplied by a random one.

The experimental techniques developed very fast during 1960s and thereafter, which

allowed more sophisticated experiments and results. The experiments and flow visualiza-

tions by Kline et al. (1967), Corino & Brodkey (1969), and Brown & Roshko (1974) are

a milestone in the way turbulent flows are understood, and were the beginning of a new

deterministic approach to turbulence based on coherent structures in contrast to the sta-

tistical theories that dominated since Kolmogorov’s papers. All these new works identified

spatial and temporal coherent regions in the flow of mixing and boundary layers, which

were promptly considered essential features present in all turbulent flows. Nowadays, co-

herent structures play a fundamental role in our understanding of turbulence and there

are several structural models that attempt to explain the dynamics of the flow. Some of

these models are discussed in the next section for wall-bounded turbulence.

With the emergence and quick development of computers in the last decades, numerical

solutions of the Navier–Stokes equations have become one of the most important tools

available to unravel the dynamics of turbulence. The advantage of numerical simulations

compared to experimental techniques resides in their ability to resolved the full three-

dimensional velocity field. However, the computational cost increases rapidly as a power

of the Reynolds number simulated with an exponent between 3 and 4. Thereby, the first

simulations were performed for simplified systems where only a limited range of scales were

resolved and the rest were modeled as in the pioneer work by Deardorff (1970). These

approaches are called Large-Eddy Simulations (LES) and remain important nowadays

owing to its cheaper computational cost. It was only a few years later when the first

Direct Numerical Simulation (DNS) of isotropic turbulence was carried out by Orszag &

Patterson (1972), i.e., a simulation where all the dynamically relevant scales of the flow

are resolved directly without any model aside from the Navier–Stokes equations. The

first DNS of a turbulent channel flow was presented by Kim et al. (1987) and the first
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Figure 1.2: Sketch of the geometry of a turbulent channel.

boundary layer by Spalart (1988). In both cases, the outstanding results proved the great

potential of DNS as a tool to understand turbulence with a level of detail never achieved

before.

1.2 Wall-bounded turbulence

Most technologically relevant turbulent flows are bounded by walls and their study

is of paramount importance. One of the most widely used and successful theories is

the so called classical theory for wall-bounded turbulence found in many monographs (for

instance Tennekes & Lumley, 1972; Kuglin & Hines, 1975; Townsend, 1976; McComb,

1990; Lesieur, 1991; Schlichting & Gersten, 2000; Pope, 2000; Jiménez, 2000) and usually

valid for three canonical geometries: boundary layers, channels and pipes.

In this section, we summarize the main results of the classical theory particularized for

turbulent channel flows. Let us consider a turbulent channel as the one shown in figure

1.2, with two walls separated by a distance 2h and the other two directions extending

to infinity. Let us consider a statistically stationary incompressible turbulent flow with

density ρ and kinematic viscosity ν, which moves on average along one direction. The

streamwise, spanwise and wall-normal directions are denoted by x, z and y, respectively,

and the instantaneous velocity of the flow by ut vt and wt, which are functions of x,

y, z and time, t. The only non-zero mean velocity is obtained by averaging ut in the

homogeneous directions (x and z) and time, and is denoted by 〈ut〉 = U(y).

The streamwise velocity may be decomposed in the mean and fluctuating components

as,

ut(x, y, z, t) = u(x, y, z, t) + U(y), (1.6)

Note that vt and wt have zero mean and are equivalent to the fluctuating velocities v and
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w, respectively. Introducing the previous decomposition in the Navier–Stokes equations,

and averaging in the homogeneous directions and time results in

∂y(uv) = −∂xP

ρ
+ ν∂2

yU, (1.7)

∂y(v2) = −∂yP

ρ
, (1.8)

where P is the average pressure and the term −uv is known as the tangential Reynolds

stress. Note that the average derivatives are zero along the homogeneous directions.

Relations (1.7) and (1.8) are usually called Reynolds–averaged Navier–Stokes equations

and determine the shape of the mean velocity profile U(y). The mean pressure gradient,

∂xP , is responsible for sustaining the mass flux in the streamwise direction, as oppose as

the viscous terms that work against.

Integrating equation (1.8) in the y direction yields

P0(x) = P + ρv2, (1.9)

where P0 is an integrating constant depending only on x. Since the flow is homogeneous

in x, it is satisfied that ∂xv2 = 0 and

dP0(x)

dx
= ∂xP 6= q(y), (1.10)

and the average pressure gradient is independent of y. Integrating (1.7) in y and using

relation (1.10) we obtain

uv = −y

ρ

dPo(x)

dx
+ ν∂yU − u2

τ , (1.11)

where u2
τ is the constant of integration with dimensions of velocity squared. Evaluating

the previous relation at y = 0 results in the friction stress at the wall, τw = ν(∂yU)y=0,

which is equal to the square of the friction velocity, uτ . At y = h, the symmetry of the

channel implies that −h
ρ

dPo(x)
dx

= u2
τ . The total tangential stress is defined as

τ = −uv + ν∂yU, (1.12)

and can be expressed as a function of y/h and uτ as

τ = u2
τ

(
1− y

h

)
, (1.13)

that is, a linear relation between total stresses with the distance from the wall. The

variables h, ν and uτ characterize the channel flow, and define the non-dimensional group
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Reτ = uτh/ν, namely, the friction Reynolds number. The corresponding velocity, length

and time-scales built from the variables, uτ , ν/uτ , ν/u
2
τ , are usually called wall units or

inner units, and will be denoted by the superscript +. If the viscosity is not relevant, the

quantities with units of velocity, length, and time may be non-dimensionalized by uτ , h

and h/uτ , respectively, which are referred to as outer units. Note that in both inner and

outer units, uτ is considered the characteristic velocity of the flow.

Relation (1.13) is a fundamental property of turbulent channel flows and may be used

to study the asymptotic behavior of different regions of the channel as Reτ → ∞.

In the inner region (or region close to the wall) y+ ∼ 1 and y/h ≪ 1. Assuming that

the wall is smooth, equation (1.13) and its boundary conditions are

−uv+ + ∂y+U
+ ≃ 1, (1.14)

(uv+)y=0 = 0, (1.15)

(U+)y=0 = 0. (1.16)

The only independent variable in the relation above is y+, and the solution has the

functional form

U+ = f(y+), (1.17)

uv+ = g(y+), (1.18)

named as the law of the wall (Prandtl, 1925). Very close to the wall, uv+ ≃ 0 and

∂y+U
+ ≃ 1, (1.19)

that results in a linear profile for the mean velocity,

U+ ≃ y+. (1.20)

Experimental data from Nikuradse (1932) showed the validity of relations (1.17) and

(1.18). Reichardt (1951) extended the experimental measurements to regions closer to

the wall and found that for y+ . 5 the tangential Reynolds stresses are practically zero

and the law of the wall applies. The region y+ . 5 is often called viscous region, and the

layer delimited by 10 6 y+ 6 100, region close to the wall or buffer layer.

The exterior region of the channel is defined by y/h ∼ 1. Assuming Reτ → ∞,

equation (1.13) becomes

− uv+ = (1− y/h) , (1.21)

and the viscous stresses are negligible. Note that the previous relation can not satisfy

the non-slip condition at the wall, which is not very relevant since it is intended to work
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at the center of the channel only. Equation (1.21) does not provide information about

the particular shape of the mean profile. However, it points to y/h and uτ as the only

magnitudes involved in the outer region. From dimensional analysis, it follows

U+ − U+
c = F (y/h), (1.22)

where Uc is the mean centerline velocity of the channel. Equation (1.22) is known as the

velocity defect law and was first obtained by von Kármán (1930).

The inner and outer solutions presented above are only valid for y+ ∼ 1 and y/h ∼ 1,

respectively. However, for high Reynolds numbers, there must be a region where both

solutions coexist. This region is called the intermediate region or logarithmic layer for

reasons that will become clear below. In such a region, y+ → ∞ and y/h ≪ 1, and the

solutions from equations (1.17) and (1.22) must match. By dimensional arguments, the

velocities must be of the form

U = uτf(y
+), (1.23)

U = Uc + uτF (y/h), (1.24)

and both have to match in the intermediate region. To avoid the dependence with the

parameter Uc, we can match their gradients instead,

uτ

ν
∂y+f(y

+) =
1

h
∂(y/h)F (y/h), (1.25)

and multiplying relation (1.25) by y results in

y+∂y+f(y
+) = y/h∂(y/h)F (y/h), (1.26)

where the right-hand side only depends on y+ and the left-hand one on y/h. For that

reason, both gradients must remain constant and equal to 1/κ, where, κ is called the

Kármán constant for historical reasons. The mean profile U is obtained integrating (1.26),

U+ =
1

κ
log(y+) +B, (1.27)

U+ − U+
c =

1

κ
log(y/h)−B1, (1.28)

that are valid for y+ → ∞ and y/h ≪ 1. The constants κ and B are considered universal

with values close to κ ≃ 0.4 and B ≃ 5, although a large scatter has been reported for

B1. Since the velocities above describe a logarithmic profile, the intermediate region is

also called the logarithmic layer.
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The procedure followed here to derive the logarithmic profile was proposed first by

Millikan (1938), although there are other alternative approaches like the ones followed by

von Kármán (1930) or Prandtl (1925).

Figure 2.2 in chapter 2 tests the logarithmic behavior of the mean velocity profile and

shows an incipient logarithmic layer that is still quite small despite using one of the largest

Reynolds numbers DNSs available nowadays.

The shape of the energy spectrum for the large scales may also be deduced for the loga-

rithmic layer, assuming that uτ and the distance to wall are the only relevant magnitudes.

In that case, by dimensional analysis the spectrum has the form

E(k) ∼ u2
τk

−1. (1.29)

A more rigorous and detailed approach can be found in Perry et al. (1986). Equation (1.29)

differs from the Kolmogorov spectrum and is only valid for the spectral range k+ ≪ 1

and hk ≫ 1 in the logarithmic layer. For smaller scales, the Kolmogorov’ spectrum is

expected to be recovered.

1.3 Structural models in wall-bounded turbulence

The study of coherent structures in turbulence assumes that there is a group of coher-

ent regions in the flow that are important enough to explain the dynamics of the whole

flow. Of course, defining those regions is not trivial and its relevance compared to the

rest of the flow is not guarantee and has to be proved.

In wall-bounded flows, the buffer layer is a relatively simple system since it only

involves one-scale structures and it can be considered well understood nowadays. There

are several works devoted to it and examples include the papers by Jiménez & Moin

(1991), Jiménez & Pinelli (1999), Schoppa & Hussain (2002) and Kawahara et al. (2012)

among others. In the present thesis, we focus on the structural models for the logarithmic

layer in wall-bounded flows.

Attempts to describe wall-bounded turbulence in terms of coherent motions date at

least to the work of Theodorsen (1952), who proposed a horseshoe vortex as the central

structural element. Figure 1.3(a) sketches the structure elucidated by Theodorsen.

A seminal contribution was the attached-eddy model proposed by Townsend (1976)

for the logarithmic layer and further developed by Head & Bandyopadhyay (1981), Perry

& Chong (1982), Perry et al. (1986) and others. In such a model, wall turbulence was

considered to be dominated by a forest of self-similar horseshoe wall-attached vortices of
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(a) (b)

Figure 1.3: (a) Sketch of a horseshoe imagined by Theodorsen (1952). (b) Horseshoe proposed

in the model by Perry & Chong (1982),

different sizes with characteristic velocity uτ , leaned in the streamwise direction, and legs

extending to the wall where they slip while convected by the mean flow. Townsend (1976)

showed that a density of structures inversely proportional to the distance to the wall results

in the well-known logarithmic profile for the mean velocity, and in logarithmic trends for

the streamwise and spanwise mean-squared velocity fluctuations. From crude theoretical

calculations, Perry & Chong (1982) proved that the shape of the structures changed from

birth to death, and showed a linear growth of their height in time by applying the Biot-

Savart law to an isolated horseshoe. The death of the structures would be caused by the

decrease of the legs distance leading to an ultimate vorticity cancellation. However, most

of these results were theoretical with little evidence from experimental data. Figure 1.3(b)

sketches the hierarchy of self-similar eddies proposed by Perry & Chong (1982).

The visualization of sublayer streaks in boundary layers by Kline et al. (1967), of

flow ejections by Corino & Brodkey (1969), and of large coherent structures in free-

shear layers by Brown & Roshko (1974), increased the popularity of the structural view

of turbulence. The quadrant analysis by Wallace et al. (1972) was proposed to study

regions of intense tangential Reynolds stress in wall-bounded turbulent flows, and later

used to define and characterize ejections (Bogard & Tiederman, 1986). Every new work

introduced new potential candidates to describe turbulence in terms of coherent structures

such as vortices, ejections, sweeps, streaks, etc. All these objects have played a role with a

varying degree of relevance in most structural models proposed to explain how turbulent

kinetic energy and momentum are redistributed in wall-bounded flows (see review by

Robinson, 1991).



1.3. Structural models in wall-bounded turbulence 13

Followed by the rapid improvements of the experimental techniques and with the ad-

vent of DNS, a new iteration of the horseshoe vortex described by Theodorsen (1952)

emerged called the hairpin-packet paradigm. Originally proposed by Adrian et al. (2000),

the model conceived wall-bounded turbulence as a set of several hairpin vortices orga-

nized in coherent packets that grow from the wall into the outer region and with lifetimes

much longer than their characteristic turnover times (Zhou et al., 1999). The growth of

the packets involves several mechanisms, including self-induction, auto-generation, and

mergers with other packets, as discussed by Tomkins & Adrian (2003) and reviewed by

Adrian (2007). The low-momentum regions observed in previous experiments would be

produced by ejections contained within the hairpin packet and induced by the hairpins

themselves. However, the evidence for hairpin vortices far from the wall is limited, and

their origin and evolution remain unclear. The simulation by Wu & Moin (2010) showed

experimental confirmation of a forest of hairpins in a transitional boundary layer. How-

ever, later simulations for well-developed turbulence at higher Reynolds numbers show no

trace of hairpin shapes (Schlatter & Örlü, 2010; Sillero et al., 2013). The hairpin-packet

model is usually understood to involve relatively smooth vortex loops although, owing

to the limitations mentioned above, recent discussions tend to include “canes, heads,

legs and three-quarter hairpin shapes, generally asymmetric and distorted” into the class

of ‘hairpin-like’ vortices (Dennis & Nickels, 2011a), making them hardly distinguishable

from generic vortices. Figure 1.4(a) depicts all the important elements involved in the

hairpin-packet model.

An alternative less organized model was proposed by del Álamo et al. (2006) and

Flores & Jiménez (2010a), who analyzed the statistical properties of clusters of vortices

in DNSs of turbulent channels with h+ = 550 − 1880, and the temporal evolution of

turbulent kinetic energy in minimal boxes for the logarithmic layer, respectively. Del

Álamo et al. (2006) noticed that vortex clusters segregate into wall-attached and wall-

detached families. The wall-detached clusters are dissipative objects, with sizes that scale

with the local Kolmogorov scale. The attached ones form a self-similar family of objects

that mark strong ejections. The average flow conditioned to an attached cluster consist on

an elongated low-velocity streak extending downstream of the cluster, flanked by a pair of

shorter high-velocity streaks. The authors concluded that such an organization suggests

that the ejections marked by the clusters must be created at (or close to) their observed

heights. While this average structure is consistent with the hairpin packet paradigm,

del Álamo et al. (2006) pointed out that the instantaneous clusters are more complex,

in agreement with earlier visualizations by Tanahashi et al. (2004). Moreover, while the
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(a)

(b)

Figure 1.4: (a) Hairpin-packet paradigm by Adrian et al. (2000). From Adrian et al. (2000),

copyright c© 2000 Cambridge University Press. (b) Structural model proposed by del Álamo

et al. (2006). From del Álamo et al. (2006), copyright c© 2006 Cambridge University Press.

hairpin packets grow from the buffer region, there is evidence suggesting that the wall-

normal velocity structures marked by the clusters do not.

Not only are the statistics of the clusters not affected when the buffer region is com-

pletely destroyed by an artificial forcing (Flores et al., 2007), but their lifetimes are too

short to account for their sizes (del Álamo et al., 2006). The linear model of Flores &

Jiménez (2010b) predicts that the disturbances of the wall-normal velocity grow little be-

fore being dissipated by the background turbulence, and again suggests that the ejections

marked by the clusters must be created at, or close to, their observed heights. Figure

1.4(b) shows the flow structure proposed by del Álamo et al. (2006).

It is clear that the most interesting results are not the kinematic description of the

structures in individual flow realizations, but the elucidation of how they relate to each
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other, and how and why they evolve in time. For example, how the energy or the momen-

tum are exchanged among different structures and flow scales. Such dynamical studies

have been difficult in the past, because it has been hard to obtain time-resolved informa-

tion of three-dimensional structures, but that limitation is beginning to be relaxed. The

early studies by Robinson (1991), the animations of a boundary layer by Spalart (1988),

and the minimal-box simulations by Jiménez & Moin (1991), continued older experimen-

tal work using tracers in the buffer layer. More recently, it has become possible to extend

time-dependent analysis to the logarithmic layer. Examples are the works in small-box

simulations by Flores & Jiménez (2010a), or the recent analysis of vortex packets in a

boundary layer by Lee & Sung (2011). However, in a continuous system such as a fluid,

any such study depends on the choice of which structures to track. Most analyses of the

buffer-layer, which is essentially a one-scale system, centered on vorticity, which is easily

identifiable and representative of other quantities in that region. The initial extensions

to the logarithmic layer followed the same method, although that region is multiscale

and different quantities are associated with different scales. For example, it soon became

clear that neither the vortex clusters in del Álamo et al. (2006) nor the hairpin packets

in Adrian (2007) are single-scale objects, making the analysis of the logarithmic layer a

challenging one.

1.4 Aims

The goal of the present thesis is to improve our insight into the multiscale dynamics

of the logarithmic layer of wall-bounded turbulence.

In order to accomplish such a task, a novel approach is proposed based on the tempo-

ral tracking of three-dimensional coherent structures in a time-resolved direct numerical

simulation of a turbulent channel flow at moderate/high Reynolds numbers. By making

use of the time-resolved data, we aim to extend the structural time-dependent analysis to

the logarithmic layer in terms of three-dimensional clusters of vortices, sweeps, ejections

and streaks.

In particular, the objectives are to perform time-resolved DNSs of turbulent channels,

to analyze the minimum domain to correctly capture the dynamics of the logarithmic

layer and their interactions with other scales, to compute coherent structures associated

with different flow quantities and study their features at instantaneous snapshots, and to

track in time the previous structures and characterize their histories.

Finally, all the results are compiled to build a new structural model for the logarithmic
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layer.

1.5 Contents and organization of the thesis

Beyond this introduction, the present thesis is organized in five more chapters. In

chapter 2, the direct numerical simulations used throughout the thesis are presented and

the effect of the computational domain analyzed. In particular, three new time-resolved

DNSs were computed with Reynolds numbers up to Reτ = 4200, and streamwise and

spanwise dimensions of 2πh and πh, respectively. It is shown that this domain is large

enough to accurately capture the dynamics of all the scales of the logarithmic layer. In

addition, a very large computational box with streamwise and spanwise dimensions of

60πh and 6πh, respectively, serves to determine the largest energetically active scales in

turbulent channels. The contents of this chapter have been published in Physics of Fluids

under the title ‘Effect of the computational domain on direct simulations of turbulent

channels up to Reτ = 4200’, volume 26, number 1, eid 011702, with Javier Jiménez as

coauthor.

In chapter 3, the simulations above are used to compute and study the time-independent

properties of several three-dimensional coherent structures, namely, vortex clusters, sweeps

and ejections. It is shown that there is a family of geometrically self-similar coherent struc-

tures attached to the wall and responsible for most of the momentum transfer in turbulent

channels. These structures are promising candidates to represent the wall-attached eddies

described by Townsend (1976). The contents of the chapter have been published in the

Journal of Fluid Mechanics under the title ‘The three-dimensional structure of momentum

transfer in turbulent channels ’, volume 694, pages 100–130, with Oscar Flores and Javier

Jiménez as coauthors, and in the ACM Transactions on Mathematical Software in a work

entitled ‘An efficient algorithm to compute the genus of discrete surfaces and applications

to turbulent flows ’, with Guillem Borrell as coauthor.

Chapter 4 contains the temporal extension of the previous one and, vortex clusters,

sweeps and ejections are tracked in time for several eddy turnovers times in a time-resolved

turbulent channel flow. The results provide unique and detailed information that allows

to characterize the histories of the structures from birth to death. In particular, it is

shown that the wall-attached eddies from the previous chapter are self-similar not only in

space but also in time.

Chapter 5 is devoted to the turbulent cascade in terms of coherent structures and the

processes of merging and splitting of coherent structures are associated with the direct
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and inverse cascades, respectively, as in the models proposed by Richardson (1920) and

Obukhov (1941).

The contents of chapters 4 and 5 have been published in the Journal of Fluid Mechan-

ics under the title ‘Time-resolved evolution of coherent structures in turbulent channels:

characterization of eddies and cascades ’, volume 759, pages 432–471, with Javier Jiménez

as coauthor.

Finally, the conclusions are offered in the last chapter, which summarizes the main

results obtained in the present thesis, and describes a new multiscale structural model for

the logarithmic layer of wall-bounded turbulence consistent with all the observations.
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Chapter 2

Direct numerical simulations of

turbulent channels up to Reτ = 4200*

2.1 Introduction

It is unclear how large the computational domain has to be in DNSs of plane turbu-

lent channels to avoid unphysical constraints on the largest flow scales. Previous works

have determined the minimal boxes for ‘healthy’ turbulence in the buffer region (Jiménez

& Moin, 1991) and in the logarithmic layer (Flores & Jiménez, 2010a) in the sense of

providing correct one-point statistics. Those results suggest that the whole flow would be

healthy for boxes wider than about 3h, where h is the channel half-height. However, even

in the largest domains simulated until now, the premultiplied spectrum of the streamwise

velocity remains unclosed for a contour of 20% of its maximum which only contains about

70% of the total streamwise energy as shown by Hoyas & Jiménez (2006). Moreover,

some of the longest ejections in those boxes span the full length of the simulation domain

even though they carry a substantial fraction of the total Reynolds stress (Guala et al.,

2006; Lozano-Durán et al., 2012). In both cases, the longest structures are presumably

misrepresented. Their maximum length remains unknown, and so are the consequences

of constraining them.

Our goal is to examine the effect of the computational domain size on the large-scale

structures of the flow, and on the velocity and pressure statistics. That information is

used to determine the smallest box that reproduces identical one-point statistics to those

in larger domains at all wall-normal distances. The results will be used to choose the

*Part of the contents of this chapter have been published in Physics of Fluids, volume 26, number 1,

eid 011702, with Javier Jiménez as coauthor.

19
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appropriate computational domain in the following chapters. Smaller-scale quantities

such as the vorticities are not expected to be influenced by the box sizes used in the

present chapter.

The chapter is organized as follows. Old and new DNSs are presented and described

in the next section. The results are shown in section 2.3 and the conclusions offered in

§2.4.

2.2 Numerical experiments

We have performed five new DNSs of plane turbulent channels. Their parameters are

summarized in Table 2.1 together with the older simulations used for comparison. In all of

them, the incompressible flow is integrated in the form of evolution equations for the wall-

normal vorticity and for the Laplacian of the wall-normal velocity as in Kim et al. (1987),

and the spatial discretization is dealiased Fourier in the two wall-parallel directions. Cases

with Reτ < 1000 use Chebychev polynomials in y, while those with Reτ ≥ 2000 use

seven-point compact finite differences from Lele (1992). Time stepping is third-order

semi-implicit Runge-Kutta by Spalart et al. (1991) with CFL = 0.5. The streamwise, wall-

normal and spanwise coordinates are x, y and z respectively, and the mean streamwise

velocity is U(y). The corresponding components of the velocity fluctuations with respect

to the mean are u, v and w. Primed quantities are root-mean-squared intensities, and the

superscript + denotes wall units based on the friction velocity uτ and on the kinematic

viscosity ν. The Kármán number is Reτ = h+.

The very small case VS950 is a minimal box for the logarithmic layer from Jiménez

(2013), and is known to have incorrect statistics above y ≈ Lz/3 ≈ 0.25h (Flores &

Jiménez, 2010a). The new small case S950 has a somewhat larger computational domain

with streamwise and spanwise periodicities Lx = πh and Lz = πh/2 at Reτ = 939, and

Flores & Jiménez (2010a) suggests that its statistics should fail above y ≈ 0.5h. The

new medium cases M950, M2000 and M4200 have boxes with Lx = 2πh and Lz = πh,

with Reτ = 932, 2009 and 4179 respectively. The older large cases L550 from del Álamo

& Jiménez (2003), L950 from del Álamo et al. (2004), and L2000 from del Álamo et al.

(2004), have domains with Lx = 8πh and Lz ≥ 3πh, while the new very large case VL550

has a box size Lx = 60πh and Lz = 6πh, and is intended to test whether there is a largest

size for the structures that develop in the channel. The lines and symbols in table 2.1

are used consistently in later plots, and are chosen so that DNSs with the same Reτ have

similar symbols, unless otherwise stated. We also include results from the experimental
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Case Reτ Lx/h Lz/h ∆x+ ∆z+ ∆y+max Ny Tsuτ/h Symbols

VS950 948 π/2 π/4 11.6 5.8 7.8 769 77

S950 (present) 938 π π/2 11.5 5.8 7.7 385 110

M950 (present) 932 2π π 11.5 5.7 7.7 385 20 −•−
M2000 (present) 2009 2π π 12.3 6.2 8.9 633 11 −�−
M4200 (present) 4179 2π π 12.8 6.4 10.7 1081 15

L550 547 8π 4π 13.4 6.8 6.7 257 22 −N−
L950 934 8π 3π 11.5 5.7 7.6 385 12 −◦−
L2000 2003 8π 3π 12.3 6.1 8.9 633 11 −✷−
VL550 (present) 547 60π 6π 12.6 5.0 6.7 257 5 −△−
E1000 1010 - - - - - - - +

E2000 1960 - - - - - - - *

E4000 4050 - - - - - - - ✸

Table 2.1: Parameters of the simulations. Reτ = h+ is the Kármán number. Lx and Lz are

the streamwise and spanwise dimensions of the numerical box and h is the channel half-height.

∆x and ∆z are the spatial resolutions in terms of Fourier modes before dealiasing. ∆ymax is

the coarser spatial resolution in the wall-normal direction. Ny is the number of wall-normal

collocation points. Tsuτ/h is the total time used for statistics after discarding transients, in

eddy turnovers. The initial letter of each case is related with the size of the domain: very small

(VS), small (S), medium (M), large (L) and very large (VL). The entries starting with (E) are

experimental channels from Schultz & Flack (2013).

channels from Schultz & Flack (2013) at Reτ = 1010−4050, denoted by E1000 to E4000.

They are plotted in the same color as the DNS with the closest Reτ . The case with the

highest Reynolds number is the new M4200, with Reτ = 4179. It reaches a maximum

Taylor-microscale Reynolds number Reλ = q2[5/(3νε)]1/2 ≈ 200, at y ≈ 0.4h, where

q2 = u2+ v2+w2 is the magnitude of the velocity fluctuations and ε is the kinetic-energy

dissipation rate. Assuming that the smallest coherent structures are of order 10η (Jiménez

et al., 1993) where η = (ν3/ε)1/4 is the Kolmogorov viscous length, the resulting scale

separation is h/10η ≈ 100.

To illustrate the relative dimensions of the computational boxes from table 2.1, figure

2.1 shows the instantaneous streamwise velocity at the centerline of the channel VL550,

and compares the sizes for very large, large and medium domains.



22 2. Direct numerical simulations

Figure 2.1: Instantaneous streamwise velocity at the centerline of the channel, y = h, for

case VL550. The horizontal axis represents the streamwise direction and the vertical axis the

spanwise one. The flow goes from left to right.
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2.3 Results

The mean streamwise velocity profiles are shown in figure 2.2(a). They collapse reason-

ably well to a common logarithmic behavior for all the Reynolds numbers, experiments,

simulations, and box sizes. The only anomalous behavior is the bump in the core of the

smallest box (VS950), which is accelerated with respect to the other cases. To test the

logarithmic behavior in more detail, figure 2.2(b) shows the diagnostic function

Ξ+(y) = y+∂U+/∂y+, (2.1)

which is equal to the inverse of the Kármán constant κ wherever the mean profile is

logarithmic. The only case with an incipient logarithmic layer is M4200, for which κ ≈
0.38 is within the scatter of the values obtained by other authors (Klewicki, 2010; Marusic

et al., 2010; Smits et al., 2011) and Jiménez (2012). The agreement between the large

(L950, L2000) and medium (M950, M2000) boxes is excellent across the whole channel,

especially when compared with the differences with the smaller boxes, S950 and VS950.

As expected, U(y) and Ξ(y) are identical for the large and very-large cases L550 and

VL550. Experiments are not included in the diagnostic plot because of the relatively

large scatter of the derivatives of their velocity profiles. Note that one-standard-deviation

error bar has been added to figure 2.2(b) for case M4200 at y+ = 1000, computed as in the

appendix of Hoyas & Jiménez (2008). The error bars for other simulations are of the order

of the thickness of the lines used to plot statistics, and are omitted. For cases L2000 and

M2000 whose statistics have been accumulated for the same amount of eddy turnovers,

the errors in u′ at the center of the channel are roughly 3.4 times smaller in the large box.

If we suppose that each snapshot from case L2000 is equivalent to 8π× 3π/(2π× π) = 12

snapshots from case M4200, the result agrees well with the theoretical value
√
12 ≈ 3.5

and the statistical uncertainties decrease inversely proportional to the square-root area

of the box simulated. See Hoyas & Jiménez (2008) for more details about the previous

argument.

The mean-squared velocity and pressure fluctuations are presented in figures 2.3(a-d).

We briefly highlight some aspects regarding the effect of the box size and of the Reynolds

number, and the reader is referred to Townsend (1961, 1976); Metzger & Klewicki (2001);

Hoyas & Jiménez (2006); Jiménez & Hoyas (2008); Hultmark et al. (2012) and Sillero

et al. (2013) for a more detailed physical discussion. The profiles of the mean-squared

spanwise velocity fluctuations w′2 are logarithmic, as predicted in Townsend (1976), and

as already reported in Jiménez & Hoyas (2008); Jiménez et al. (2010) and Sillero et al.

(2013). This becomes more evident as the Reynolds number increases. The same is not
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Figure 2.2: (a) Mean streamwise velocity profiles. (b) Logarithmic-law diagnostic functions.

The dashed horizontal line correspond to a Kármán constant κ = 0.38. Lines and symbols are

as in table 2.1.

true of the streamwise velocity fluctuations u′2, for which a logarithmic region cannot be

found even at the highest simulated Reynolds number. The profile of u′2 gets flatter with

Reτ in the inner part of the region where the logarithmic behavior appears for the other

variables as noted by Marusic et al. (2013) and Sillero et al. (2013), and it is unclear

from the present data whether it will develop a local maximum, a plateau, or an actual

logarithmic region for higher Reynolds numbers. Experiments in pipes from Marusic et al.

(2013) suggest that u′2 also develops a logarithmic range, although probably only in the

outer part of the overlap layer. The asymptotic empirical law given in that paper has been

added to figure 2.3(a), and is tangent to M4200 and to E4000. An experimental channel at

Reτ ≈ 6000 from Schultz & Flack (2013) not included in the figure, approximately follows

that logarithmic behavior over a narrow range, suggesting that simulations at moderately

higher Reynolds numbers than the present ones should begin to show it.

The mean-squared wall-normal velocity fluctuations v′2 do not have a logarithmic

range, as expected from the constraints imposed by impermeability (Townsend, 1976).

Experimental and DNS data are in reasonable agreement, although v′2 is slightly higher

in E4000 than in the comparable simulation. Fluctuations for large (L950, L2000) and

medium (M950, M2000) simulations agree very well at all heights, including the growth

with Reτ of u′2 at its near-wall maximum (figure 2.4a), and at the center of the channel

(figure 2.4b). Even the pressure fluctuations, which could be expected to be more sensitive

than the velocities to the global effects of the box size, agree well between large and

medium boxes. These results support the prediction by Flores & Jiménez (2010a) that
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Figure 2.3: (a-c) Streamwise, wall-normal and spanwise mean-squared velocity fluctuations. (d)

Mean-squared pressure fluctuations. The dashed-dotted line in (a) is u′2 = 2.25− 1.26 log(y/h)

from Marusic et al. (2013), the one in (c) w′2 = 0.80 − 0.50 log(y/h) from Jiménez & Hoyas

(2008), and the one in (d) p′2 = 0.10 − 2.75 log(y/h) from Sillero et al. (2013). Other lines and

symbols are as in table 2.1.

the Lz ≈ π is sufficient to obtain good statistics up to the center of the channel. It is also

reassuring that there are no differences between the statistics of cases L550 and VL550,

supporting the conclusion that the simulation boxes used at present are large enough to

capture the one-point statistics of all the flow variables. The small box S950 has only

minor differences in the mean-squared fluctuations with respect to the medium boxes,

although we have seen that the logarithmic-law diagnostic function is more sensitive. On

the other hand, the smaller box VS950 shows important deviations for the three velocity

fluctuations above y/h ≈ 0.25.

It was already noted by del Álamo et al. (2004) that the resolved part of the velocity
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Figure 2.4: (a) Maximum of the mean-squared streamwise velocity fluctuations, u′2max. The

dashed line is u′2+max = 3.63+0.65 log(Reτ ) from Sillero et al. (2013). (b) Mean-squared streamwise

velocity fluctuations, u′2c , at the center of the channel (y = h). Symbols are as in table 2.1 except

for: H, M4200; × VS950; ⊳, S950. (c) Premultiplied two-dimensional spectra of the streamwise

velocity, φuu, at y = h, as a function of the streamwise and spanwise wavelengths. The contours

are 0.1 and 0.6 of the maximum value of φuu. ( ), case L550; ( ), case VL550. The dashed

lines mark the box dimensions, Lx and Lz, for the medium, large and very large domains.

spectrum is not strongly affected by the size of the domain. The same is found to be

true when comparing the spectral densities of the present medium and large boxes (not

shown). Essentially, the spectra in the medium boxes follow those in the large ones until

they are truncated at the maximum wavelengths fitting in the domain. A comparison

between the premultiplied spectra, φuu, of the the large and very large boxes, L550 and

VL550, is presented in figure 2.4(c). The lowest contour plotted is 10% of the maximum

of φuu and contains roughly 80% of the streamwise kinetic energy. The spectrum of L550

is truncated by the box, but that of VL550 is not. Very large structures of length O(25h)

have been documented before in pipes and channels (Jiménez, 1998; Kim & Adrian, 1999;

Marusic, 2001; del Álamo et al., 2004; Jiménez et al., 2004; Guala et al., 2006; Monty

et al., 2007) but, to our knowledge, this is the first time that such a low energy contour

has been shown to close within the computational box or within the spatial experimental

domain. That result sets a new lower limit of λx ≈ 100h for the wavelengths at which

some of the energy of the streamwise velocity fluctuations can be found.

The good agreement of the one-point statistics for large and medium boxes in figures

2.3(a-d) suggests that these infinitely long structures capture most of the dynamics of the

actual ones, or at least of their interactions with the smaller scales of size O(h). This is
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reasonable considering the disparity of lengths and times scales between them and the

rest of the scales in the flow. A similar argument applies to the truncated spectral density

of the streamwise velocity as pointed out by del Álamo et al. (2004).

2.4 Conclusions

Five new DNSs of plane turbulent channels have been presented. Three of them are

computed in moderate domains with streamwise and spanwise sizes of Lx = 2πh and

Lz = πh at Reτ = 932, 2009 and 4179. The two lowest Reynolds numbers, for which

similar simulations exist in boxes with Lx = 8πh and Lz = 3πh, have identical one-

point statistics to the larger simulations, giving some confidence that the smaller boxes

can be used for simulations with this particular purpose. This is true even if the largest

structures are found not to fit within the smaller simulation box, as shown by the spectrum

of the streamwise velocity. It is argued that, because of the periodic boundary condition,

these very large structures are essentially infinitely long in the smaller boxes, but that

their interaction with the well-resolved scales is correctly represented. Note that these

medium-sized boxes are not necessarily cheaper to simulate than larger ones, because they

have to run for longer times to accumulate comparable statistics, but they can typically be

run in smaller computers. In contrast, the statistics of even smaller boxes, with Lz ≤ π/2

differ significantly from the larger simulations, as predicted in Flores & Jiménez (2010a),

with the largest discrepancies affecting the mean velocity profile.

The simulation with the highest Reynolds number, Reτ = 4179, continues the trends

of the previously available simulations at lower Reτ . For example, it confirms the growth

with Reτ of the near-wall peak of the mean-squared streamwise velocity fluctuations. It

also shows an incipient logarithmic region in the diagnostic function of the mean velocity

profile, with a Kármán constant κ ≈ 0.38. No logarithmic range is found for u′2, in

contrast with clear ones for w′2 and p′2. Finally, in order to further test the effect of

relaxing the constrains to the flow due to the limited numerical domain, a new simulation

was performed in a very large box with Lx = 60πh and Lz = 6πh at Reτ = 547. No change

was found in the one-point statistics, but the two-dimensional premultiplied spectrum of

the streamwise velocity was shown to close for wavelengths of the order of λx ≈ 100h at

the level of the contour containing 80% of the streamwise kinetic energy.
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Chapter 3

The 3D structure of momentum

transfer in turbulent channels *

3.1 Introduction

One of the most ubiquitous properties of turbulent flows is the enhancement of trans-

port processes, such as mass, heat or momentum, and the success of many engineering

devices depends of our ability to control and predict those processes. Of particular interest

is the transport of momentum, which is responsible for the increased drag of wall-bounded

turbulent flows, and for their characteristically flattened mean-velocity profiles. The ob-

ject of the present chapter is to study the structure of the intense Reynolds stresses that

carry most of the wall-normal flux of momentum, particularly in the logarithmic and outer

layers.

The study of the statistical properties of the Reynolds stresses began in the late 1960’s,

with the observation by Kline et al. (1967) that the near-wall low-velocity streaks undergo

a process of lift-up, oscillation, breakup and ejection, which they called bursting. Kim

et al. (1971) showed that most of the turbulence production in the near-wall region occurs

during those bursts, and several conditional-sampling techniques were developed to iden-

tify the structures involved in the process. Examples are the u-level detection of Lu &

Willmarth (1973), the VITA (Variable-interval time-averaged) of Blackwelder & Kaplan

(1976) and the VISA (Variable-interval space-averaged) of Kim (1985). Several of those

techniques were surveyed by Bogard & Tiederman (1986), who concluded that the best

*Part of the contents of this chapter have been published in the Journal of Fluid Mechanics, volume

694, pages 100–130, with Oscar Flores and Javier Jiménez as coauthors, and in ACM Transactions on

Mathematical Software, with Guillem Borrell as coauthor (submitted).
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compromise between detection probability and false positives was provided by the quad-

rant analysis of Wallace et al. (1972), Willmarth & Lu (1972) and Lu & Willmarth (1973),

in which points of the flow are classified in terms of the quadrant of the parameter plane

of streamwise and wall-normal velocity fluctuations. Q1 events (outward interactions)

have u > 0 and v > 0, Q2 events (ejections) have u < 0 and v > 0, Q3 events (inward

interactions) have u < 0 and v < 0, and Q4 events (sweeps) have u > 0 and v < 0.

Hereafter, Q events will be referred to simply as Qs, and we will occasionally group the

‘gradient’ Q2s and Q4s as Q−, and the ‘counter-gradient’ Q1s and Q3s as Q+.

As in previous chapters, u, v and w are streamwise, wall-normal and spanwise veloc-

ities, and are usually understood to refer to fluctuations with respect to the mean. The

streamwise and spanwise coordinates are, respectively, x and z. The wall-normal coordi-

nate, y, is zero at the wall. Overlined (ϕ) and primed (ϕ′) variables respectively denote

average values and root-mean-squared (r.m.s.) intensities of the fluctuations, computed

over the homogeneous directions and time. The channel half-height or boundary-layer

thickness is h, and the ‘+’ superindex denotes wall units defined in terms of the friction

velocity uτ and of the kinematic viscosity ν. We often classify results as relating to the

buffer, logarithmic or outer regions, arbitrarily defined as y+ < 100, 100ν/uτ < y < 0.2h,

and y > 0.2h, respectively. Varying the limits of the logarithmic layer within the usual

range did not significantly alter the results.

Although most of the early work focused on bursting in the buffer region, studies

during the 1990’s began to establish a relationship between near-wall bursting and outer

structures. Antonia et al. (1990) applied a variant of the u-level method (WAG, window

average gradient) to boundary layers with relatively high Reynolds numbers based on

the momentum thickness, Reθ = U∞θ/ν = 1360–9630, corresponding to h+ = 530–3100.

They reported that outer-scale discontinuities in the streamwise velocity, extending across

the whole thickness of the boundary layer, tend to be located near the upstream end of

the near-wall bursts. Wark & Nagib (1991) applied quadrant analysis to a boundary

layer at Reθ = 4650 (h+ = 1500), and found large conditional events with sizes of the

order of h. Using a related identification technique in the atmospheric boundary layer,

Narasimha et al. (2007) described Reynolds-stress structures with lengths comparable to

the distance to the wall that, because of the high Reynolds number involved, were both

very long in wall units and very short compared with the boundary layer thickness. Hoyas

& Jiménez (2006) showed that the spectral signatures of the very-large motions (Jiménez,

1998; Kim & Adrian, 1999), or global modes (del Álamo et al., 2004), characteristic of

the outer region are present at the wall, as well as those of similar smaller structures in
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the logarithmic layer, and Hutchins & Marusic (2007b) showed that part of that influence

is a modulation of the intensity of the small-scale buffer-layer fluctuations.

More recently, Flores & Jiménez (2010a) showed that the hierarchy of structures of in-

creasing sizes postulated by Townsend (1976) for the logarithmic layer can be represented

numerically in computational boxes of widths proportional to the height to be studied.

Each box contains a single complex structure, including a segment of a streamwise ve-

locity streak and a cluster of vortices, that bursts quasi-periodically to fill the box with

essentially normal turbulence, with a strong Q2 and Q4 occurring simultaneously. The

existence of a hierarchy of Q2s and Q4s was also conjectured by Wark & Nagib (1991),

and is consistent with the similarity observed by Kailas & Narasimha (1994) between

the conditionally sampled structures extracted from the near-wall region of laboratory

boundary layers, and those in the logarithmic region of the atmospheric boundary layer.

It was also shown in chapter 2 that computational domains with streamwise and spanwise

lengths equal to 2πh and πh respectively are large enough to accurately reproduce the

one-point statistics of larger boxes.

Q2s and Q4s play important roles in most of the structural models proposed to ex-

plain how turbulent kinetic energy and momentum are redistributed in wall-bounded

turbulence. The majority of these models (see review by Robinson, 1991 ) are loosely

based on the attached-eddy hypothesis of Townsend (1976), and involve wall-attached

vortical loops growing from the wall into the outer region (Perry et al., 1986). More

recently, in order to account for the very large scale motions mentioned above, as well

as for earlier experimental evidence on the internal structure of the bursts (Bogard &

Tiederman, 1986), a variant model has evolved to include vortex packets (Adrian et al.,

2000), in which trains of hairpin vortices grow from the wall by a process of merging

(Tomkins & Adrian, 2003) and self-regeneration (Zhou et al., 1999). The heads of the

hairpins are arranged into inclined shear layers generated by the combined induction of

the hairpins of the packet, with a Q4 upstream and above the packet, and a Q2 beneath

it. Ganapathisubramani et al. (2003) used PIV data on wall-parallel planes in a boundary

layer with Reθ = 2500 (h+ = 1060) to quantify the contribution to the Reynolds stresses

by packets of hairpins. They report that, at y+ = 100, packets covering 4% of the area

produce 28% of the total Reynolds stresses.

As discussed in §1.3, the hairpin-packet model is usually understood to involve rela-

tively smooth vortex loops as the structures associated with Townsend’s attached eddies,

although recent discussions tend to include “canes, heads, legs and three-quarter hair-

pin shapes, generally asymmetric and distorted” into the class of ‘hairpin-like’ vortices
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(Dennis & Nickels, 2011a), making them hard to distinguish from generic vortices. An al-

ternative, less organized, structure was proposed by del Álamo et al. (2006), who analyzed

the statistical properties of clusters of vortices (clusters hereafter) in DNSs of turbulent

channels with h+ = 550 − 1880. The clusters segregate into wall-attached and wall-

detached families. The wall-detached clusters are dissipative objects, with sizes that scale

with the local Kolmogorov scale. The attached ones form a self-similar family of objects

that mark strong Q2s. The average flow conditioned to an attached cluster consist on an

elongated low-velocity streak extending downstream of the cluster, flanked by a pair of

shorter high-velocity streaks. While this average structure is consistent with the hairpin

packet paradigm, del Álamo et al. (2006) pointed out that the instantaneous clusters are

more complex, in agreement with earlier visualizations by Tanahashi et al. (2004).

In this chapter we study the statistical properties of the coherent structures responsi-

ble for the Reynolds stresses and the momentum transfer, and their possible relationship

with vortex clusters. We generalize to three dimensions the quadrant analysis of Wal-

lace et al. (1972) and Lu & Willmarth (1973), in a manner analogous to the method

used by del Álamo et al. (2006) to study clusters. This is the first time that a full,

three-dimensional, characterization of the Qs has been presented. These structures are

candidates for the time-dependent analysis presented in the next chapter, including its

relation with previously studied structures. As argued above, Qs are important for the

transfer of momentum and for the generation of turbulent energy, and can be considered

as lying at the top of the turbulent cascade. They have also been studied enough in the

past, typically as one-dimensional sections, to provide some continuity of the present work

with earlier ones. The further study of their temporal evolution, specially in relation to

other flow structures, will be studied in the next chapter.

The chapter is organized as follows. Section 3.2 describes the numerical database and

the method employed to identify Qs, which are classified in §3.3. The statistical properties
of the attached Q2s and Q4s are presented in §3.4 and §3.5, and their relative positions

and organization are described in §3.6. Finally, the results are discussed in §3.7, and
conclusions are offered.

3.2 Numerical experiments and identification method

We use data from the DNSs of turbulent channels by del Álamo et al. (2004) at

h+ = 934 (case L950), and by Hoyas & Jiménez (2006) at h+ = 2003 (case L2000). Their

parameters are summarized in table 3.1. The details of both simulations were described
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Case h+ Lx/h Lz/h ∆x+ ∆z+ Ny NF NQ NV

L950 934 8π 3π 11 5.7 385 21 4.6× 105 9.6× 105

L2000 2003 8π 3π 12 6.1 633 8 8.3× 105 2.1× 106

Table 3.1: Parameters of the simulations. Lx and Lz are the streamwise and spanwise dimen-

sions of the numerical box and h is the channel half-width. ∆x and ∆z are the resolutions in

terms of Fourier modes before dealiasing. Ny is the number of wall-normal collocation points.

NF is the number of fields used to accumulate statistics and NQ and NV are the numbers of

Q−s and of clusters extracted for the reference values of the identification thresholds.

in chapter 2. The two channels have large computational domains in the streamwise and

spanwise directions, to ensure that the largest structures of the flow are reasonably well

represented. Note that the Reynolds numbers of the simulations are comparable to those

of most of the laboratory experiments mentioned in the introduction. Occasionally, we

will use some of the cases with moderate and very large domains presented in chapter 2.

To investigate the statistical properties of the intense structures contributing most to

the Reynolds stresses, we extend the one-dimensional quadrant analysis of Lu &Willmarth

(1973) to three dimensions. We define the Qs as connected regions satisfying

|τ(x)| > Hu′(y)v′(y), (3.1)

where τ(x) = −u(x)v(x) is the instantaneous point-wise tangential Reynolds stress and

the hyperbolic-hole size H is discussed below. Connectivity is defined in terms of the

six orthogonal neighbors in the Cartesian mesh of the DNS, and an object is classified

as belonging to the different quadrants according to the signs of the mean um and vm,

computed over the domain Ω of all its constituent points,

vm =

∫
Ω
vdV∫

Ω
dV

, (3.2)

with a similar definition for um. It will be shown in figure 3.5(a) that this classification

is essentially unambiguous. To identify correctly the Qs of the upper channel half, we

change the sign of their vm. That allows connected Q2s and Q4s to extend beyond the

central plane, even if, otherwise, they would be classified as Q3s and Q1s over part of

their volumes. On the other hand, it leads to distortions in the statistics of the quadrant

contributions near the center of the channel (y/h & 0.7), because some of the stresses are

included with the wrong sign (see figure 3.3b, discussed in section 3.3).
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Note that the threshold in (3.1) depends on the wall-distance. As noted by Nagasoa

& Handler (2003), using an identification method with a constant threshold, such as

|τ | > Hu′(y0)v
′(y0), with some reference y0, is problematic in inhomogeneous flows. In

our case, fewer objects are recovered in the outer region if y0 is chosen in the buffer layer,

while choosing a high y0 results in a cluttered buffer layer. This behavior agrees with the

observations of Blackburn et al. (1996), and worsens as Reynolds number increases. Our

choice of the local standard deviation in (3.1) results in a roughly constant contribution

of the Qs to the Reynolds stress, and agrees with a similar choice in del Álamo et al.

(2006) for the identification of vortex clusters. Nevertheless, the aforemention problem

mainly affects structures based on small-scale quantities, such as vortex clusters, but it

is less relevant for Qs. The results presented in this chapter were repeated for a constant

threshold, Hu′(y0)v
′(y0), with y0 = 0.5h and qualitatively similar results were obtained.

As argued by Bogard & Tiederman (1986), quadrant analysis depends on the value of

the hyperbolic-hole size H . They report that the optimum threshold for the buffer region

is H ≈ 1, based on direct comparisons between the detected events and instantaneous

visualizations of the flow. We choose H based on the percolation behavior of equation

(3.1). Percolation theory describes the statistics of the connected components of a random

graph. Here, it is applied to the variation with H of the volume of the connected objects

extracted by (3.1), as first used to identify vorticity and dissipation structures in isotropic

turbulence by Moisy & Jiménez (2004), and in channels by del Álamo et al. (2006).

Figure 3.1(a) shows the percolation diagram of (3.1) in the two channels considered

here. The solid lines are the ratio of the volume of the largest identified object, Vlar, to the

total volume Vtot satisfying (3.1), and the dashed ones are the total number of identified

objects, N/Nmax, normalized with its maximum over H . When H & 3, the identifica-

tion only yields a few small objects that correspond to the strongest Qs. Decreasing H

introduces new Qs, while previously identified ones grow in size. At first, the size of the

largest Q changes little, and Vlar/Vtot stays roughly constant, but eventually the objects

start to merge, resulting in a rapid increase of Vlar/Vtot and in a decrease of the num-

ber of objects. Figure 3.1(a) shows that this percolation crisis takes place in the range

0.5 . H . 3, independently of the Reynolds number. For lower thresholds, Vlar/Vtot ≈ 1,

and most of the volume satisfying equation (3.1) belongs to a single object.

The vertical dashed line in figure 3.1(a) shows the threshold used in the present work,

H = 1.75, chosen to maximize the number of objects. Some of the effects of changing H

are discussed in later sections to illustrate specific points, but, in general, the results are

qualitatively similar within the range 1 . H . 3.
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Figure 3.1: (a) Percolation diagram for the identification of Qs. , Ratio of the volume of

the largest object to the volume of all identified objects, Vlar/Vtot; , ratio of the number

of identified objects to the maximum number of objects, N/Nmax. The vertical dotted line

indicates the chosen threshold, H = 1.75. (b) Profiles of the ratios τ/(u′v′) ( ) and τ ′/(u′v′)

( ). In both panels, lines without symbols correspond to L950, and those with symbols

correspond to L2000.

To avoid the high cost of evaluating (3.1) in the full domain for H . 0.5, we followed

del Álamo et al. (2006) and all data points in figure 3.1 were generated by applying (3.1)

to sub-boxes of size 6h × h × 3h in the three Cartesian directions, rather than to the

full computational domain (25h × 2h × 12h). The low values of Vlar/Vtot at the chosen

threshold (figure 3.1a), and the agreement between both Reynolds numbers, give some

confidence that the percolation diagram is not strongly influenced by that simplification.

The rest of the data in the chapter are obtained applying (3.1) to full flow fields.

The threshold selected, H = 1.75, compares well with the one recommended by Bog-

ard & Tiederman (1986) for bursts in the buffer region, but some care is needed when

comparing it with other published values. The Reynolds stresses in (3.1) are normalized

with the r.m.s. of the velocity fluctuations u′ and v′, as in Lu & Willmarth (1973) and

Bogard & Tiederman (1986), but other normalizations are also found in the literature.

The original analysis in Willmarth & Lu (1972) used multiples of the local mean Reynolds

stress,

|τ(x)| > H̃|τ |(y), (3.3)

while the more recent paper by Narasimha et al. (2007) proposes the r.m.s. of the stress

fluctuations,

|τ(x)| > Ĥτ ′(y), (3.4)
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together with a more complicated identification algorithm involving the zero crossings of

the instantaneous τ .

Figure 3.1(b) shows that H , H̃ and Ĥ satisfy approximately τ/(u′v′) ≈ 0.4 and

τ ′/(u′v′) ≈ 1.1, at least in y . 0.7h, yielding

H ≈ 0.4H̃ ≈ 1.1Ĥ. (3.5)

We will use those approximations in §3.3 to compare our results with others in the liter-

ature.

As mentioned in the introduction, del Álamo et al. (2006) found that wall-attached

clusters of vortices are markers for strong Q2s. Hence, we also apply their methodology to

extract clusters from the same fields used to extract the Qs. Briefly, a cluster of vortices

is a connected region satisfying

D(x) > αtD
′(y), (3.6)

where D is the discriminant of the velocity gradient tensor, D′(y) is its standard deviation,

and αt = 0.02 is a thresholding parameter. Connectivity is defined as for the Qs, and αt

is obtained from a similar percolation analysis. Full details can be found in del Álamo

et al. (2006). Figure 3.2 shows several examples of actual objects extracted from the flow

and demonstrates the complex geometries that may appear.

Finally, even if the flow is not isotropic, it will be useful in section 3.3 to define isotropic

Reynolds numbers and scales to compare the largest with the smallest Qs. We define the

Taylor microscale from λ2 = 10νK/ε, and the microscale Reynolds number as,

Reλ = qλ/ν = K(20/3νε)1/2, (3.7)

where ε is the kinetic-energy dissipation rate and K is the turbulent kinetic energy. The

large scale velocity q is defined from K = 3q2/2 as an ‘isotropic’ fluctuation intensity

(Batchelor, 1953). The three velocity components are available for the two simulations,

and K and ε can be computed directly, but we will use in the next section experimental

data for which only u and v are known. In those cases, ε is computed from the temporal

gradients of u, assuming isotropy of the small scales, and converting times to lengths using

Taylor’s frozen-turbulence hypothesis with the local mean velocity, and the kinetic energy

is defined as K = (u′2 + 2v′2)/2. The error of the latter approximation can be estimated

from the simulation data to be about 5% in the logarithmic layer. The Kolmogorov length

is η = (ν3/ε)1/4, and the integral scale is defined as Lε = q3/ε.

In the logarithmic layer of channels, ε can be approximated by the local turbulent

energy production, ε ≈ u2
τ∂yU ≈ u3

τ/κy, where κ ≈ 0.4 is the Kármán constant, from
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Figure 3.2: Examples of three vortex cluster (top row) and Qs (bottom row). The flow goes

from bottom-left to top-right. The axis are scaled in wall-units. The colors change gradually

with the distance to the wall, which is located at y = 0. Note that the objects are not to scale.

where it follows that η+ ≈ (κy+)1/4, and that Reλ ∝ λ+ ∝ y+
1/2

. In practice, the

maximum Reλ of channels is attained at y ≈ 0.4h, above where it decreases slightly.

Table 3.3 includes typical values for the two simulations and for some experiments at

higher Reynolds numbers.

3.3 Wall-attached and detached objects

The above procedure yields about 106 Q−s and clusters for each of the two Reynolds

numbers under study (see table 3.1). Objects with volumes smaller than 303 wall units

are discarded to avoid grid resolution issues, and are not included in the table. Although

they account for about 70% of the number of originally identified Qs, they contain less

than 1% of their volume. For clusters, the small discarded objects are almost 90% of the

total number, and contain 1.5% of the volume. Each object is circumscribed within a

box aligned to the Cartesian axes, whose streamwise and spanwise sizes are denoted by

∆x and ∆z. The minimum and maximum distances of each object to the closest wall are

ymin and ymax, and ∆y = ymax − ymin.

Figure 3.3(a) shows the probability density function (p.d.f.) of the minimum and

maximum wall distances for the Q−s, and shows that they separate into two families.
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Figure 3.3: (a) Probability density function of the maximum and minimum wall distances of

the identified Q−s, J(ymin, ymax). The contours are 0.1, 1 and 10, from lighter to darker. Shaded

contours are L950, and lines are L2000. (b) RSτ , fraction of the total Reynolds stresses from:

(positive), attached Q2; , attached Q4; , detached Q−; (negative), all Q+.

Lines without symbols for L950, lines with symbols for L2000.

Case Nf1 Nf2 Nf3 Nf4 Vf1 Vf2 Vf3 Vf4

L950 (all) 0.18 0.33 0.19 0.31 0.004 0.056 0.006 0.025

L950 (attached) 0.02 0.15 0.006 0.13 0.000 0.047 0.000 0.015

L2000 (all) 0.19 0.33 0.21 0.28 0.004 0.059 0.008 0.022

L2000 (attached) 0.02 0.14 0.007 0.11 0.000 0.053 0.000 0.014

Table 3.2: Nfk is the numerical fraction with respect of the total number of objects, and Vfk

is the volume fraction with respect to the total channel volume, for the four different types of

Qs.
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The first one is formed by the narrow vertical band with y+min < 20, and corresponds

to wall-attached objects. The second family is formed by wall-detached objects with

y+min > 20, contained in the wider parallel band above the diagonal in figure 3.3(a). The

p.d.f. of the objects in that family depends only on their vertical size, not on their distance

from the wall, so that J(ymin, ymax) ≈ J(∆y). By definition, ymin ≤ h, and the detached

Q−s only rise modestly above the channel center. The attached family, on the other hand,

contains very large Q−s that cross deeply into the opposite half of the channel. They are

not easy to see in figure 3.3(a) because they are contained in the narrow band of very

small ymin, but some of them reach almost to the opposite wall, ymax ≈ 2h. For both

Reynolds numbers, the number of attached Q2s and Q4s is about 40% of the total number

of Q−s, but they are large enough to account for about 80% of their volume. There are

very few attached Q1s and Q3s. They only account for about 7% of the total number of

Q+s, and for 2% of their volume. The numerical and volume fractions for the different

kinds of Qs are summarized in table 3.2.

3.3.1 Detached structures.

A similar separation was reported for clusters by del Álamo et al. (2006). In that case,

the attached clusters are energy-containing eddies, while the detached ones are dissipative

objects with sizes of the order of a few local Kolmogorov scales. Figure 3.3(a) suggests

that the same is true for the detached Q−s, because the width of their p.d.f.s appears

to scale in wall units. In fact, the circumscribed boxes of the detached Qs are roughly

cubical, with sides of the order of 30η at our Reynolds numbers. That does not necessarily

mean that the Qs are isotropic. A characterization of the shape of the objects in terms

of their smallest, intermediate and largest dimensions will be introduced in §3.5. For the
detached Qs, they are of the order of 7× 14× 45 Kolmogorov units, suggesting that they

are isotropically oriented, rather than isotropically shaped. Those sizes change relatively

little from H = 1 to H = 1.75, and make the detached Qs comparable to fragments of the

compact ‘worms’ in the dissipative ranges of isotropic turbulence (Jiménez et al., 1993)

and channels (Tanahashi et al., 2004). It is clear, for example, that isotropic turbulence

must have Reynolds-stress fluctuations, even if they cancel in the mean, and figure 3.1(b)

shows that, even in channels, the standard deviation of τ is 2.5 times larger than its

average. The figures just discussed suggest that the detached Qs are examples of those

fluctuations. For example, figure 3.3(b) includes the fraction of the total Reynolds stress

carried by the detached Qs. It is never large, and the contribution of the Q+s essentially

cancels that of the Q−s.
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Case y+ Reλ τ/u′v′ τ ′/u′v′ Lε/η λ/η ℓ/η LQ/Ltot

L950 (detached) 370 80 0.42 1.15 93 16 20 0.02

L2000 (detached) 800 127 0.39 1.11 187 22 21 0.01

L2000 (all) 800 127 0.39 1.11 187 22 31 0.10

Round jet 415 0.09 0.965 1.1× 103 40 50 0.05

Plane jet (PJ1) 632 -0.12 0.963 2.1× 103 49 50 0.03

Plane jet (PJ2) 1090 -0.04 0.962 4.7× 103 65 76 0.04

ASL 4× 104 1910 0.34 1.02 1.1× 104 85 188 0.08

Table 3.3: Characteristic of the Reynolds-stress fluctuations in the channels, and in several

high-Reynolds number flows from Antonia & Pearson (1999). The mean length, ℓ, of the Q−s

is defined for H = 1.75, estimated using Taylor’s advection hypothesis with the local mean

velocity. LQ/Ltot is the time (or length) fraction satisfying the Q− criterion. The velocities are

reduced to zero mean before processing.

The isotropic orientation of the detached Qs is consistent with the classical Corrsin

(1958) criterion that eddies are isotropically oriented when their internal gradients are

larger than the mean shear, ℓ−1(εℓ)1/3 & ∂yU , with U = U(y) the mean streamwise

velocity profile. If we estimate ε in terms of the production, eddies smaller than about

ℓC = uτ/∂yU should be isotropic. In the logarithmic layer, that implies ℓC ≈ κy. The

question was studied experimentally by Saddoughi & Veeravalli (1994), who concluded

that the actual threshold for the Reynolds stress tensor to be approximately isotropic is

ℓC ≈ 0.25y, implying that only attached structures of size O(y) need to be examined to

understand momentum transfer. We will indeed see in the next section that attached

objects are responsible for most of the mean Reynolds stress.

Table 3.3 compares the characteristics of the Reynolds-stress fluctuations in several

flows, most at considerably higher Reynolds numbers than ours. It turns out that the

rough equality τ ′ ≈ u′v′ holds in all cases, including the plane jets for which the mean

Reynolds stress is very small and countergradient. The correlation between u and v is

responsible for the non-zero mean stress in the wall-bounded cases, but it is low enough

to act as a second-order effect from the point of view of the intensity of the fluctuations

of τ . Antonia & Atkinson (1973) and Lu & Willmarth (1973) showed that the p.d.f. of τ

can be modeled as a joint Gaussian distribution of u and v, with the correct correlation

coefficient. The resulting distribution is very intermittent, but its standard deviation

differs little from u′v′ if |τ |/u′v′ . 0.5.
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Figure 3.4: (a) Histograms of the lengths of the Q−s, measured along streamwise lines. ,

L2000; , round jet; , PJ2; , ASL. The slope of the dashed diagonal is −4/3. All

the histogram are normalised with their value at ℓ = 15η to compensate for the truncation of

the smaller objects. (b) Spectra of the τ = −uv product. Lines as in (a). The slope of the

dashed diagonal is −5/3. The open circles in both figures mark the integral scale, Lε/η.

The experiments in the table are one-dimensional hot-wire traces, and the dimensions

of their Q−s are estimated from the lengths of the segments in which τ > Hu′v′, discarding

segments shorter than 8η to make them comparable with the threshold for small objects

used in the numerical channels. The results given in the table for the channels were

obtained by mimicking the experimental procedure, intersecting the Qs detected in the

previous section with random streamwise lines. The average dimensions of the structures

in the atmospheric surface layer (ASL) are longer than in the jets, probably because

they include attached objects that cannot be distinguished in the experimental traces. To

clarify that effect, the experiments in the L2000 channel were repeated taking into account

either all the Q−s, or only the detached ones, which are probably more representative of

the case of the jets. The average lengths of the detached Q−s are shorter when all the

Q−s are taken into account, but the effect is weaker than the difference between the ASL

and the jets.

Even with those uncertainties, it is clear that the lengths of the Q−s do not scale in

Kolmogorov units. The closest match is the Taylor microscale λ, specially for the lower

Reynolds numbers. That would be difficult to interpret, because the dynamical meaning

of λ is unclear, but we will see below that it is the result of trying to define a single length

scale for a turbulent phenomenon. Figure 3.4(a) displays histograms for the lengths of

the one-dimensional Q-intersections for the experimental and numerical cases. They are

very wide, with maxima near ℓ ≈ 10η in the two cases in which the resolution is enough to
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capture that range of scales (L2000 and ASL). To facilitate comparisons, all the histogram

have been redrawn on identical logarithmic bins, starting from ℓ = 10η, and normalised

to unity in the first bin. They have tails reaching into the integral length scales, which

are marked in both panels of figure 3.4, even if the spectra in figure 3.4(b) suggest that

the sample length of the ASL is not enough to capture the longest structures. The best

approximation to the histograms is a power law nob(ℓ) ∝ ℓ−α, with α between 4/3 and

5/3, approaching the former for high Reynolds numbers. The resulting average length is

then

ℓ =

∫
n(ℓ)ℓ dℓ∫
n(ℓ) dℓ

, (3.8)

where the two integrals extend over an inertial range of the order of η < ℓ < Lε. The

integral in the numerator is dominated by its upper limit, and is proportional to L2−α
ε . The

one in the denominator is dominated by its lower limit, and is proportional to η1−α. The

mean length is ℓ ∝ L2−α
ε ηα−1. For α = 5/3, that average is proportional to λ ∝ (Lεη

2)1/3,

which is the best fit for the lower-Reynolds number data in table 3.3, while for α = 4/3 it

is proportional to (Lελ)
1/2, which grows somewhat faster, and may be a better fit for the

higher Reynolds numbers. From their derivations, it is clear that neither average should

be considered the length of a ‘typical’ object.

The form of the ℓ histograms can be related to the spectrum of τ , reinforcing the

argument that the objects that we are discussing are the carriers of the Reynolds-stress

fluctuations. If we assume, from the previous discussion, that those fluctuations are

objects with intensities of the order of the large-scale velocity q, and simplify them to a

distribution of segments in which either τ = ±q2 or τ = 0, the correlation function Rττ (r)

is proportional to the probability that a point falls within an active segment with ℓ > r.

For α = 4/3, it can be estimated as

Rττ (0)− Rττ (r) ∝
∫ r

0

n(ℓ)ℓ dℓ ∝ r2/3, (3.9)

corresponding to a spectrum Eττ (k) ∝ k−5/3. From purely dimensional arguments, the

spectrum of τ would be expected to behave as ε4/3k−7/3, but figure 3.4(b) shows that

that is not the case. The higher-order spectra of un were documented, among others, by

Van Atta & Wyngaard (1975), who found them to behave as k−5/3 for all orders. They

gave theoretical arguments for the failure of the naive dimensional scaling, which are

essentially that large- and small-scale quantities are statistically independent, and that

the second-order structure function of the increments δ(un)2 is dominated by terms of

the form u2n−2δ(u)2. For example, the spectrum of quadratic quantities such as u2 has

the form q2ε2/3k−5/3. Y. Kaneda (private communication) noted that the same argument
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should hold for the second-order quantity τ , and we have used that normalization in figure

3.4(b).

3.3.2 Attached structures.

Attached Q−s are responsible for around 60% of the total Reynolds stresses in both

channels, even if they cover less than 8% of the total area at all heights. As expected,

their contribution in terms of volume and tangential Reynolds stresses increases as H is

lowered. At the same time, there is a transfer from detached to attached objects, reflecting

the percolation process by which small detached units collect into larger attached ones.

For example, the percentage of detached volume with respect to the total Q−s changes

from 60% at H = 3, to 14% at H = 1. Interestingly, the percolation does not proceed at

the same pace for the different kinds of structures. While the detached volume fraction of

Q4s changes little from H = 1.75 to H = 1, suggesting that their percolation is essentially

complete, that of the Q2s decreases by 30% in the same range.

The contributions to the mean stress mentioned above are in good agreement with

those reported in the literature. Figure 16 in Willmarth & Lu (1972) shows that the

contribution from Q2s and Q4s to the total Reynolds stresses in the buffer region is about

60% when H̃ ≈ 4.5 (H ≈ 1.75), and that those Qs cover roughly 10% of the measurements.

At the lower end of the logarithmic region, Ganapathisubramani et al. (2003) report that

hairpin packet signatures covering 4% of the total area contribute about 28% of the

Reynolds stresses, which also agrees with our data for H = 3 (not shown). Narasimha

et al. (2007) report that Ĥ = 1 yields structures that contains 100% of the total Reynolds

stresses, while covering roughly 50% of the measurement time in the neutral atmospheric

boundary layer at h+ ∼ 107 (y+ ∼ 105). When we use H = 1 (Ĥ ≈ 0.9), the contribution

to the total Reynolds stresses from attached Qs is also about 90%, but they only fill 20%

of the area. The difference in covered area is most likely due to the eduction scheme used

by Narasimha et al. (2007), who identify the structures by means of Ĥ , but subsequently

extend them to the nearest zero crossing of the Reynolds stress. Note that the covering

fractions given in table 3.3 for our channels are in reasonable agreement with those for

the other high-Reynolds number flows, suggesting that Reynolds number effects can not

explain the aforementioned difference between our results and Narasimha et al. (2007).

The contribution from the different quadrants, at H = 0, has been treated extensively

in the literature, and was discussed in some detail by Jiménez et al. (2010) in the context

of the similarities and differences between internal and external shear flows. The reader is

referred to that discussion for further details and references, but the behavior is roughly
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Figure 3.5: (a) Joint probability density function of the wall-normal velocities and the tan-

gential Reynolds stresses averaged over individual attached objects with ∆y in the logarithmic

layer. For each case, the plotted contours contain 50% and 98% of the data. The straight dashed

lines are τ+m = ±2.5v+m. (b) Mean τ+m for the different objects, as functions of their heights. In

both panels, , Q2; , Q4; , clusters. Lines without symbols are L950; those with

symbols are L2000.

as in figure 3.3(b), including the reversal of the roles of Q2s and Q4s in the buffer layer,

and the decay of the contribution of the Q4s far from the wall.

The picture that emerges from the previous discussion is that relatively few (25-30%

by number), large and intense wall-attached Q−s are responsible for most of the mo-

mentum transfer, while detached Qs play a secondary role. From now on, we will focus

on the geometry and structure of the attached Q−s, including, their geometry, spatial

distribution, associated velocity fields, and relationship with vortex clusters.

3.4 Size and intensity of the attached Q−s

The average Reynolds stress of an object, τm, is defined in the same way as the average

velocities in (3.2), and is a measure of its intensity. Figure 3.5(a) shows the joint p.d.f.

of vm and τm for the attached Q−s of the logarithmic layer. It clearly separates into Q2s,

with vm > 0, and Q4s with vm < 0, confirming that the classification of the Qs in terms of

their average velocities is meaningful. Similar plots are obtained in the buffer and outer

regions, or using um instead of vm.

The p.d.f.s of both kinds of Q−s are roughly aligned along τ+m = 2.5|v+m|, which is

consistent with a simple mixing-length argument in which the Reynolds stress is generated
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by displacing the mean velocity profile by an amount proportional to the eddy size, l ∝ y.

In the logarithmic region, ∂yU ≈ uτ/κy, and

τ+ ∝ v+(l∂yU)+ ∝ v+. (3.10)

This is a very rough estimate, but it provides a simple explanation for the other interesting

feature of figure 3.5(a), which is that the Reynolds stresses of the Q4s are weaker than

those of the Q2s with the same |vm|, probably because they can only draw momentum

from the flatter shear in the central part of the channel (see figures 3.3b and 3.5b). The

asymmetry between sweeps and ejections has been known for a long time (Nakagawa &

Nezu, 1977), and its modeling has been discussed often. The best-known argument is

based on the skewness of the velocity fluctuations (Raupach., 1981; Katul et al., 2006),

but it was shown by Jiménez & Hoyas (2008) that the velocity skewness can itself be

traced to the inhomogeneity of the mean velocity profile.

Figure 3.5(a) includes the p.d.f. of the vortex clusters, and shows that most of them

are Q2s, in agreement with the conditional velocity fields of del Álamo et al. (2006). On

the other hand, a non-negligible fraction of clusters lie in other quadrants: 14% are Q4s,

5% are Q1s and 1% are Q3s, showing that their association with the Q2s is not exclusive.

Accordingly, the average stress integrated over the attached clusters in figure 3.5(b) is

weaker than for the Qs.

Figure 3.6 shows the p.d.f.s of the logarithms of the sizes of the circumscribing boxes

for the Q−s, J(∆x,∆y) and J(∆z ,∆y). They follow fairly well-defined linear laws,

∆x ≈ 3∆y and ∆z ≈ ∆y, (3.11)

except for objects with ∆y & 1, crossing the central plane. Del Álamo et al. (2006)

reported similar, although slightly wider, laws for the attached clusters, ∆z ≈ 1.5∆y.

Figure 3.6 shows that the sizes of the boxes of the Q2s and Q4s are similar, but that the

latter are more common below ∆+
y = 20, which is to be expected because their negative

vm tends to flatten them against the wall. Those flattened Q4s have widths comparable

to the high-speed streaks reported by Jiménez et al. (2004) in the buffer region, but they

are shorter, in agreement with the conclusion in that paper that both the high- and the

low-velocity streaks of the buffer layer are composite objects.

There are other, smaller, differences between the size distributions of Q2s and Q4s.

Figure 3.6(c) shows that the Q2s are longer and narrower than the Q4s in the logarithmic

region, and the same is true in figure 3.6(d) for the outer layer, although to a lesser degree.

It is interesting that, although the modes of the size distributions grow linearly with y, as
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Figure 3.6: Joint probability density functions of the logarithms of the sizes of the boxes

circumscribing attached Q−s. (a) J(∆+
x ,∆

+
y ). (b) J(∆

+
z ,∆

+
y ). (c) J(∆x/∆y,∆z/∆y) for objects

in the logarithmic layer. (d) J(∆x/h,∆z/h) for objects with 0.5h < ∆y < 0.95h. In all figures,

the contours plotted contain 50% and 98% of the p.d.f. , Q2s; , Q4s. Lines without

symbols are L950, and those with circles are L2000. In all the panels, the solid and dashed

straight lines are ∆x∆y = 3∆2
z and ∆x = 3∆z = 3∆y, respectively, and the horizontal dashed

ones are 2h.
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shown in figures 3.6(a) and 3.6(b), the relationship between ∆x and ∆z in the distributions

at a fixed ∆y is not linear. Both p.d.f.s are roughly aligned along ∆x∆y ∝ ∆2
z, which recalls

the shape of the streamwise energy spectra in del Álamo et al. (2004). However, the two

behaviors are probably unrelated, and it is even unclear whether the alignments in figures

3.6(c) and 3.6(d) are quadratic or some similar power. What those p.d.f.s measure is the

dispersion among the sizes of structures with similar ∆y, and the nonlinear alignment

implies that there is more variation in ∆x than in ∆z. However, the dispersion is not

large, and its amplitude does not appear to vary with the Reynolds number, making the

definition, and relevance, of a power law uncertain. Most probably, the message of figures

3.6(c) and 3.6(d) is just that the mechanisms that deform the structures along the two

coordinates are different. A possible model is that the deformation along x is due to the

shear, while the weaker dispersion by the background turbulence is responsible for the

spanwise growth (Flores & Jiménez, 2010b). On the other hand, an explanation in terms

of longitudinally growing vortex packets may be equally valid (Tomkins & Adrian, 2003)

and it will be analyzed in the next chapter by the temporal tracking of the objects.

The ‘overhangs’ of the p.d.f.s in figures 3.6(a) and 3.6(b) contain the largest structures,

which are mostly Q2s extending beyond the centerline. Their sizes, ∆x ≈ 20h and ∆z ≈
2h, are comparable to the very-large-scale motions of Jiménez (1998) and Kim & Adrian

(1999), or to the global modes of del Álamo et al. (2004). They are the only parts of the

p.d.f.s that change appreciably with the detection threshold H , and also the only ones that

do not satisfy the scaling self-similarity of the smaller objects, suggesting that the global

modes are different from the Qs of the logarithmic and buffer layer, and are probably

formed by percolated juxtapositions of smaller subunits. Figure 3.10 includes examples

of a cluster and a Q2 from the logarithmic layer, and of a global Q2, and highlights

the differences among them. The appearance of the latter clearly suggests a composite

character, and it is difficult not to remark its similarity with the large-scale low-velocity

streaky structures discussed, for example, by Hutchins & Marusic (2007a), or in figure 4

of Flores et al. (2007).

The very-large outer objects extending to the center of the channel carry a substantial

fraction of the Reynolds stresses (Jiménez et al., 2004; Guala et al., 2006; Balakumar &

Adrian, 2007). Figure 3.7 shows how the total stress carried by the Q−s is distributed

among objects of different heights. In general, the stress carried by objects of height

ymax is maximum near y = ymax/3, although the distributions are not strictly self-similar,

and tend to peak closer to the wall for the Q4s than for the Q2s. It is striking that

about one third of the stress carried by the attached Q−s is due to objects crossing the
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Figure 3.7: Reynolds stress carried by attached Q2s and Q4s with heights in different bands.

Case L950. Lines without symbols, y+max < 100; ▽, 100ν/uτ < ymax < 0.4h; △, 0.4h < ymax < h;

◦, ymax > h. Solid lines are Q2s, dashed ones are Q4s.

centerline. About 70% of those objects are Q2s, and the rest are Q4s. The former are

larger, accounting for 90% of the volume. There are only about 50 very large objects per

field (< 1%), but they account for about 60% of the volume of the attached Qs, or 4% of

the volume of the channel.

To check which fraction of the smaller attached structures are also aggregates of even

smaller ones, we analyze the fragmentation of the Q− as the threshold varies from H =

1.75 to H = 3.0 by tracking the Cartesian boxes circumscribing them. Intersections

of actual objects are forbidden by the clustering procedure, which collects intersecting

objects into single ones, but the boxes may intersect each other, usually because a large

attached Q overlies smaller ones near its base. Those intersections are not very relevant,

and usually involve objects of very different heights. To avoid them, only boxes whose

heights differ by less than a factor of two,

1/2 ≤ ∆(i)
y /∆(j)

y ≤ 2, (3.12)

are considered as interacting in the rest of this chapter. Boxes with no interactions when

H = 1.75, and therefore presumably ‘isolated’ (ranging from 90% by number in the buffer

layer to 50% above 0.2h), were tracked when the threshold was increased to H = 3. Of

those that survived (about 35%), most were still isolated at the higher threshold, but the

rest broke into sub-boxes, and were considered to have been originally composite. The

number of composite Q−s, and the number of pieces, increases with the distance to the

wall; from 10%, and an average of 2.2 fragments for boxes originally below y+max = 100,

to 20% and an average of 2.5 fragments when y+max > 0.2h.



3.4. Size and intensity of the attached Q−s 49

Those percentages depend little on the Reynolds number, but change when the limit

in (3.12) is relaxed from 2 to 4, allowing a wider range of scales between an object and

its fragments. In that case, the percentage of initially isolated objects ranges from 90%

below y+max = 100 to only 15% above y+max = 0.2h, and the fraction of surviving Q−s

increases to almost 60% away from the wall. Not surprisingly, more of those surviving

objects turn out to be composite, ranging from 10% near the wall to 40% above 0.2h.

We can now compare the size distributions of the Q−s with other scaling information

about wall-bounded flows. The proportionality ∆z ≈ ∆y in (3.11) agrees approximately

with the results of Tomkins & Adrian (2003) and Ganapathisubramani et al. (2003) for

hairpin packets in the near-wall region. It should be stressed that the Qs studied here cover

the entire height of the flow, from ∆+
y ≈ 10 to ∆y = 2h, while ordered hairpin packets

have only been observed directly in the buffer and lower logarithmic layers (y+ . 200),

and become disorganized further from the wall (Lee & Sung, 2011; Jiménez, 2012).

Del Álamo et al. (2004) and Hoyas & Jiménez (2006) found that the peaks of the

uv-cospectrum of L950 and L2000 align along λz ≈ 3y, which agrees with (3.11) if we

accept, from figure 3.7, that the maximum stress of the Q−s is at y ≈ ∆y/3. It also

agrees with the relation between the width of the minimal logarithmic boxes in Flores

& Jiménez (2010a) and the height to which they maintain turbulence. Moreover, the

proportionality ∆x ≈ 3∆z in (3.11) implies that the peak of the uv-cospectrum should be

around λx ≈ 9y, which is not too far from the ratio, λx/y ≈ 10− 15, found by Jiménez &

Hoyas (2008) in boundary layers and channels. In all, those figures reinforce the conclusion

that the structures described here are those responsible for most of the Reynolds stresses

in wall-bounded turbulent flows.

The y dependence of the number of attached Q−s per unit height and wall area is

given in figure 3.8(a). As we have already seen, Q4s reach closer to the wall than Q2s,

but otherwise their densities are similar and decay with size as n+
ob ∝ (∆+

y )
−2. Because

the cross-sections of individual Q−s are proportional to ∆x∆z ∝ ∆2
y, the fraction of the

area covered by Q−s at a given y within the logarithmic layer is equally distributed among

the ∆y of the Q−s crossing that level, which are those with ∆y > y. Moreover, since the

Reynolds stress averaged over the section of individual Q−s is also remarkably uniform

within each structure, as shown in figure 3.8(b), the uniform distribution of areas implies

a uniform contribution to the overall Reynolds stress by each ∆y. Integrating over y <

∆y < h, the total stress is proportional to h− y, in agreement with the constant fraction

of the total stress carried by the Q−s in figure 3.3(b). Note that some such constraint

has to be satisfied by any set of structures carrying the bulk of the Reynolds stress across
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Figure 3.8: (a) Number n+
ob of attached events per unit height and wall area, and time, in wall

units. , Q2s; , Q4s. Lines without symbols are L950, those with circles are L2000.

The chain-dotted line is nob ∝ ∆y
−2, and the two vertical dashed lines are ∆y = 2h. (b) Mean

τm(y) of attached Q−s in the logarithmic layer, as a function of y within the object. , Q2;

, Q4. Lines without symbols are L950, those with circles are L2000.

the channel, because the total stress is fixed by the mean momentum equation, and it

implicitly determines the decay law for nob.

On the other hand, the clusters, which are not constrained by the dynamics to carry

a constant property flux, decay faster with ∆y than the Q−s. Del Álamo et al. (2006)

showed that their density behaves like n+
ob ∝ (∆+

y )
−3. As a consequence, attached clusters

are essentially near-wall objects, which can only associate with the smaller Q−s. We will

see in §3.6 that the larger Q−s are mostly independent of small-scale vorticity.

3.4.1 Effect of the computational domain

The sizes shown in figure 3.6 are computed in large domains (Lx = 8π, Lz = 3π). To

assess the effect of the computational box, some results for ‘medium’ (Lx = 2π, Lz = π)

and ‘very large’ (Lx = 60π, Lz = 6π) domains are discussed next. The DNSs considered

are the cases M2000, L550, L2000 and VL550 presented in the previous chapter in table

2.1.

The results are shown in figure 3.9. The distribution of spanwise sizes is barely affected

by the size of the domain. On the contrary, the largest structures in x are found for case

VL550, with streamwise lengths of the order of 40h, and probably correspond to the

very large-scale motions reported in previous works (Jiménez, 1998; Kim & Adrian, 1999;
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(a) (b)

Figure 3.9: Probability density functions of the logarithm of the size of Qs. (a) Streamwise

size, ∆x. (b) Spanwise size, ∆z. The vertical dashed lines are the edges of the domain for

medium, large and very large boxes. −�−, M2000; −✷−, L2000; −N−, L550; −△−, VL550.

Cases from table 2.1 .

Marusic, 2001; del Álamo et al., 2004; Jiménez et al., 2004; Guala et al., 2006). They

are somewhat shorter than the u-structures implied by the spectra shown in figure 2.4(c),

in agreement with previous observations that the Reynolds-stress cospectrum is shorter

than φuu (del Álamo et al., 2004; Jiménez & Hoyas, 2008). The distribution of streamwise

sizes in the medium box only differs from that in the larger domain at the limit ∆x ≈ Lx,

where it develops a peak caused by the accumulation of structures that would otherwise

be longer than Lx, but do not fit in the domain. In agreement with that interpretation,

the total probability contained in that peak is roughly the same as the one in the tail of

the longer p.d.f. The number of structures per unit area with ∆x ≥ 2πh is (0.041h−2) for

M2000 and (0.039h−2) for L2000, which are very close. It is important to realize that,

because of the periodic boundary condition, these structures are seen by the flow in the

shorter box as being infinitely long, but it was shown in chapter 2 that their interactions

with the smaller scales are correctly represented.

3.5 Shape of individual objects

We showed in the previous section that, at least in the logarithmic layer, the circum-

scribing boxes of the attached Q−s form a self-similar family with sizes proportional to y.

The same was shown for the vortex clusters by del Álamo et al. (2006). In this section
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Figure 3.10: (a) Joint probability density function of the logarithms of the volume VQ and the

height ∆y of attached Q−s. The contours contain 50% and 98% of the data. The dashed straight

line is VQ ∝ ∆2.25
y . (b) Instantaneous visualization of an attached cluster. (c) Instantaneous

visualization of an attached Q2. The axes of (b) and (c) are in wall units. (d) Very-large-scale

attached Q2, with the axes scaled with h. Note that the object crosses the center of the channel.

The visualizations are colored with the distance to the wall; red (dark) near the wall, and white

near the top. Flow is from bottom-left to top-right.

we study the shape of the objects themselves.

Figure 3.10(a) is the joint p.d.f. of the volumes and heights of the attached Q−s, and

follows quite well V +
Q ∝ (∆+

y )
α, with α ≈ 2.25. A similar law, with α ≈ 2 was found for

the clusters by del Álamo et al. (2006), who interpreted it as an estimate of their fractal

dimension, and as an indication that they were shell-like. Figure 3.10(a) implies that the
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Qs have slightly fuller shapes, which is confirmed by inspection of the individual cluster

and Q2s in figures 3.10(b) to 3.10(d).

Although the power law in 3.10(a) seems persuasive, it can only be related to a frac-

tal dimension by assuming that the objects themselves are self-similar. A more direct

characterization requires estimating the shapes of the individual structures, to which end

we define three ‘intrinsic’ lengths for each object, following the methodology of Moisy &

Jiménez (2004). The outer scale, r3, is the size of the smallest circumscribing cube, which

typically coincides with ∆x. The inner scale, r1, is the side of the largest inscribed cube,

and is computed from the inner coverage fraction, as in the appendix in Moisy & Jiménez

(2004). The third scale, r2, is related to the volume by VQ = r1r2r3.

The inner length, r1, estimates the ‘thickness’ of the object, and is always the smallest

of the three. For smooth objects, one also expects that r1 ≤ r2 ≤ r3, and the two aspect

ratios (r1/r2, r2/r3) give an idea of the shape of the object. Ideal spheres, tubes, sheets

and ribbons have aspect ratios of the order of (1, 1), (1, 0), (0, 1) and (0, 0), respectively

(Moisy & Jiménez, 2004), but the shapes of non-smooth objects can be very different from

those ideal ones. For example, it is not always true that r2 < r3, even approximately, as

can be seen by considering a large piece of cloth packed into a small box. The ratio r2/r3

characterizes the amount of ‘wrinkling’ of the object, but there are relatively few cases

among our Q−s and clusters in which the smooth ordering is not satisfied. The p.d.f.s

of the aspect ratios for the attached Q−s and clusters are shown in figures 3.11(a) and

3.11(b), respectively. Both types of objects change from being tubes or ribbons in the

buffer and lower logarithmic layers, to fuller sheets in the center of the channel, although

the somewhat larger values of r1/r2 of the Qs confirm their slightly fuller shapes.

We gave in §3.3 typical intrinsic lengths for the detached Qs, which were of the order

of the Kolmogorov scale, presumably making them smooth objects. Their aspect ratios,

(r1/r2, r2/r3) ≈ (0.5, 0.3), put them in the class of elongated ellipsoids, or ‘flakes’, fuller

than the attached Q−s or clusters (figure 3.11a).

Figure 3.11(c) shows the evolution with height of the average lengths of the attached

Q−s. Somewhat surprisingly, the inner length, r1/η ≈ 5 − 15, is of the order of the local

Kolmogorov scale, suggesting that even these larger structures of a large-scale quantity,

such as the Reynolds stress, are shells formed from viscous-scale subunits. The ratio r1/η

increases slowly with the distance from the wall, and it can be shown that its probability

distribution is fairly narrow at each wall distance, as opposed to the wide tails of figure

3.4(a). The other two lengths grow approximately linearly with y, except in the buffer

layer. The largest one, r3 ≈ 2.5∆y, agrees roughly with ∆x in the logarithmic layer,
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Figure 3.11: (a) Probability density functions of the aspect ratios r1/r2 and r2/r3 for attached

Q−s. , Buffer layer; , logarithmic; , outer. Probability contours include 50% of

the data. ⊕, average aspect ratios of the detached Qs. (b) As in (a), for attached clusters. (c)

Intrinsic lengths of the attached Qs. , r1; , r2; , r3. Lines with symbols are L2000;

those without symbols are L950. The lower dashed straight line is 3η, and the upper one 10∆y.

(d) Joint histogram of the fractal dimension and ∆+
y , normalized with the maximum at each

∆y. , Q2; , Q4, ; clusters. Probability contours include 90% of the data. Figures

(a), (b) and (d) are L2000.
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but the intermediate one, r2 ≈ 0.5∆y, is smaller than ∆z. The implied shapes change

from tubes, or narrow ribbons, in the buffer layer, to increasingly wrinkled sheets away

from the wall. They are moderately elongated streamwise, of sizes of the order of the

integral scale, but their small, perhaps viscous, thickness suggests that they are formed

by connecting subunits similar to the detached Qs.

The ratio r2/r3 increases with increasing y, suggesting that the wrinkling increases

with increasing size, as expected. That was confirmed by counting the number of discrete

intersections (nI) of random lines aligned with each coordinate axis within the circum-

scribing boxes of individual objects. It turns out to be proportional to ∆+
y
1/2

along

the three coordinate axes, implying mean distances between intersections of the order of

∆+
y
1/2 ∝ λ+. That recalls the scaling of the detached Qs discussed in §3.3.1, and probably

has a similar origin. In fact, if the volume of each subunit is estimated by dividing the

total volume of the Qs, which is proportional to ∆+
y
2.25

, by n3
I , the result is ∆

+
y
0.75 ∝ η+

3
,

which is consistent with the dimensions given above for the detached objects. The re-

sulting model for the attached Qs is a sponge-like object formed by the agglutination

of ellipsoidal flakes similar to the detached Qs, most of which are of the order of the

Kolmogorov scale, but which span a wide range of sizes. The examples shown in figures

3.10(c)-(d) support this model of a ‘sponge of flakes’, in the same way that figure 3.10(b)

suggests that vortex clusters are ‘sponges of strings’.

Following Moisy & Jiménez (2004), the fractal dimension of individual objects can

be statistically estimated by box counting within their bounding boxes. Each object is

circumscribed within a cube of side r3, which is then divided into smaller cubes of size r.

The number Nc(r) of cubes containing at least one point of the object is then counted. If

we can approximate Nc(r) ∝ r−Df for r1 < r < r3, the exponent Df can be considered as

the fractal dimension of the individual object.

Figure 3.11(d) shows the joint histogram of Df and ∆y, and is roughly consistent

with the discussion above. The dimension increases slightly with the height of the Qs

and clusters, with a wide distribution between Df = 1 and Df = 2 in the buffer layer,

increasing towards Df ≈ 2 away from the wall. As above, the dimension of the clusters

is slightly lower than for the Qs. The fractal dimension of the Qs suggests a shell, but

we have just seen that it has to be a very corrugated one. Note that the dimensions

in figure 3.11(d) are lower than those obtained above from the evolution of the volume

with height. The reason is that the objects become thicker as they become taller. We

showed in §3.2 that the Kolmogorov scale increases in the logarithmic layer as y1/4. The

volume of a ‘sheet’ of dimension Df , with outer scale ∆y and thickness η, is proportional
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to ∆
Df
y η3−Df . Substituting η ∝ ∆

1/4
y , we obtain VQ ∝ ∆α

y , and

α =
3

4
(Df + 1). (3.13)

Taking, from figure 3.11(d), Df = 1.7 for clusters, and Df = 2 for Qs, we obtain α = 2

and α = 2.25, respectively, in reasonable agreement with the results of figure 3.10(a) for

the Q−s, and of del Álamo et al. (2006) for the clusters.

Using a DNS of isotropic turbulence, Bermejo-Moreno & Pullin (2008) characterized

the geometry of eddies of a passive scalar as blobs or tubes for the larger scales, and

as sheets for the smaller ones, which could be construed as being related to the present

results. However, beside referring to a different flow and variable, the Qs described here

are conceptually different from the objects discussed by those authors. Our Qs coexist

in physical space without intersecting each other, while they filter their fields before

analyzing them, with the result that their small-scale objects are engulfed within their

large-scale ones. One of the conclusions of the discussion above should be that different

small-scale quantities have different geometries (see also Moisy & Jiménez, 2004), and our

results and those of Bermejo-Moreno & Pullin (2008) are probably unrelated.

3.5.1 Topology of the coherent structures

In this section, we use the genus to characterize the topology of the coherent structures.

The genus is a topologically invariant property of a surface defined as the largest number of

non-intersecting simple closed curves that can be drawn on the surface without separating

it. The genus is negative when applied to a group of several isolated surfaces, since it

is considered that no closed curves are required to separate them. Both spheres and

discs have genus zero, while a torus has genus one. On the other hand, two separated

spheres or the surfaces defined by a sphere shell (or sphere with a cavity) has genus minus

one. For a set of objects in a given region, the genus is equal to the number of holes -

number of objects - number of internal cavities+1. The concept is also defined for higher

dimensions but the present section is restricted to two-dimensional surfaces embedded

in a three-dimensional space. In integral geometry, the genus is part of a larger set of

Galilean invariants called the Minkowski functionals, which characterize the global aspects

of a structure in a n-dimensional space. The genus is also closely related with the Betti

numbers, and more details can be found in Thompson (1996).

The method used to numerically compute the genus of the structures is the fast and

memory-efficient algorithm presented by Lozano-Durán & Borrell (2015), which makes
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Figure 3.12: (a) Probability density functions of the genus g. The dashed-dotted line is propor-

tional to g−1.2. (b) Average number of holes (genus) of individual coherent structures as a func-

tion of their volume, V , in Kolmogorov units. The dashed-dotted lines are g = 10−3η−3(V/η3)

and g = 4 × 10−5η−3(V/η3). For (a) and (b), the solid lines with open symbols correspond to

Qs and the dashed lines with closed symbols to vortex clusters. Different symbols stand for

different Reynolds numbers; ◦, Reτ = 934; ✷, Reτ = 2004; △, Reτ = 4180, which correspond to

cases M950, M2000 and M4200 from table 2.1.

the present analysis feasible from a computational point of view. Figure 3.2 shows sev-

eral examples of actual objects extracted from the flow and demonstrates the complex

geometries that may appear. The data reveals that only 0.05% of objects have negative

genus, suggesting that most of structures are solid objects with few or no internal cavities.

This was reassured by counting the number of internal cavities of the structures. In this

scenario, genus and number of holes can be used interchangeably.

The probability density functions of the genus, g, are presented in figure 3.12(a) and

most of the values concentrate around zero or a few holes, although the long potential

tails reach values up to 104 holes. Figure 3.12(b) shows the average number of holes in

the objects as a function of their volume, V , normalized in Kolmogorov units. It becomes

clear that as the volume of the structures increases, so does the genus, which is reasonable

if we consider that the volume of the object is related to its internal Reynolds number

(or complexity), and increasing its volume results in more complicated topologies. The

curves for both vortex clusters and Qs show good collapse for the three Reynolds numbers

and follow the trend g = ρhV , with ρh a constant equal to 10−3η−3 and 4 × 10−5η−3 for

vortex clusters and Qs respectively.

From relation g = ρhV , the genus may be understood as an alternative method to

characterize the level of complexity of the structures, with ρh a density equal to the
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number of holes per unit volume. If we define l as the average distance between holes

within the structures, its value may be approximated by l ≈ (10−3)−1/αcη ≈ 30η for

vortex clusters and l ≈ (4 × 10−5)−1/αQη ≈ 90η for Qs, with αc = 2 and αQ = 2.25

the fractal dimensions for vortex clusters and Qs, respectively, computed in the previous

section. These lengths are consistent with the model of coherent structures built mostly by

small blocks of length 30− 90η stacked together to create larger objects but not perfectly

compacted which results in holes between the blocks. For a given volume, V , vortex

clusters have on average 25 times more holes than Qs, suggesting that their blocks and

connections are fundamentally different. This is consistent with the results above where

the Qs are flake-shaped while vortex clusters are worm-shaped, also visible in figure 3.2.

3.6 Spatial organization

We discuss now the relative positions of the objects characterized in the previous

sections. Consider first the relation between clusters and Q2s, which were shown by del

Álamo et al. (2006) to be statistical markers for each other. As in §3.4, we only consider

that two objects are related if their heights differ by less than a factor of two.

Figure 3.13(a) shows that more than 80% of the clusters intersect with at least one

Q−, at all heights. The converse is not true, and the probability that a Q− intersects

a cluster is only high near the wall. It decays further up, together with the density of

clusters, essentially because there are not enough tall clusters to cover all the tall Q−s.

Figure 3.13(b) contains the p.d.f.s of the fraction of the volume of the box of each at-

tached cluster that is covered by boxes containing Q2s or Q4s, and addresses the question

of how relevant are the intersections between Q−s and clusters. The figure is drawn for

the logarithmic region of L2000, but similar results hold for L950 and for other heights.

In theory, the intersected fraction fA can be greater than one, because the boxes of the

Qs may overlap, and some parts of the cluster can be covered by more than one Q. Figure

3.13(b) shows that the p.d.f.s drop sharply beyond fA = 1, indicating that those cases

are rare. Note that the discreet peak at fA = 1 is an artifact of considering covering

fractions.* It is clear from the figure that the intersections of clusters with Q2s are more

probable than with Q4s, in agreement with figure 3.5(b). Moreover, to test whether those

*Lets consider a system with two boxes A and B, where the relative positions of the boxes are random

and where the box B is larger than box A. The probability of the box A being completely covered by box

B (fA = 1) is proportional to a triple-infinitude of relative positions. But the probability of any other

covering fraction is proportional to a double-infinitude, the positions resulting of moving box B over the

surface of box A.
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Figure 3.13: (a) Fraction of clusters (Q−s) whose boxes are intersected by one or more boxes

of a Q− (cluster), as function of their ∆y. , Qs; , clusters. Lines without symbols

are L950, those with symbols are L2000. (b) Probability density function of the fraction of the

volume of cluster boxes that is filled by intersecting boxes of Q−s. Case L2000, for clusters in

the logarithmic layer. , Q2s; , Q4s; , randomized Q−s.

intersections are just a statistical consequence of the areas covered by the different ob-

jects, we recomputed their statistics after randomizing the x − z positions of the centers

of the boxes of the Q−s. The resulting p.d.f. is very close to that of the Q4s, supporting

the idea that their intersections with the clusters are mostly a matter of chance, while

those of the Q2s are not.

We analyze next the relative positions of different objects, defining joint p.d.f.s, J (ij)(δx, δz),

for the position of events of type j with respect to those of type i, where i and j are 2 for

Q2s, 4 for Q4s and C for clusters. The relative distances

δx = 2
x(j) − x(i)

d(j) + d(i)
and δz = 2

z(j) − z(i)

d(j) + d(i)
, (3.14)

are referenced to the position of i-objects, (x(i), z(i)), and are normalized with the semi-

sum of the wall-parallel diagonals of each pair of events,

d(i) =

√
∆

(i)
x

2
+∆

(i)
z

2
. (3.15)

The spanwise statistical symmetry of the flow allows us to choose the direction of the

δz axis for each individual reference event. In p.d.f.s involving only Qs, such as figures

3.14(a), 3.14(b) and 3.14(d), δz > 0 is chosen pointing to the nearest Q of different kind

than the reference. For the p.d.f.s of the positions of clusters with respect to Qs, such as

figures 3.14(e) and 3.14(f), δz > 0 points towards the closest cluster. That choice weights
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the p.d.f.s towards the positive δz, but allows us to test the symmetry of individual groups

of events. For example, if Q2s were typically surrounded by two roughly equivalent Q4s,

as in a symmetric trio, the p.d.f. of the positions of Q4s with respect to Q2s would have

a secondary peak with negative δz, in addition to the primary one with δz > 0. Weaker

secondary peaks correspond to statistically more one-sided associations.

Figure 3.14 shows the p.d.f.s for reference objects within the logarithmic region, with

probability isolines normalized with J
(ij)
∞ , which is the average value of the p.d.f. for

δ2x + δ2z > 9. The three distributions for pairs of objects of the same type, figures 3.14(a)

to 3.14(c), show that they tend to be aligned in the streamwise direction, and that the

objects do not overlap, as shown by the low probabilities at δx = 0. The Q−s tend to

be spaced longitudinally by |δx| ≈ 1, with the probability of finding another Q of the

same kind in that position being more than twice the probability of finding it anywhere

else. The clusters also align longitudinally, but tend to be a little closer than the Qs,

|δx| ≈ 0.75. That means that they almost overlap each other, and is consistent with the

discussion in the previous sections that the Qs are slightly fuller objects than the clusters.

Objects of different kinds tend to align spanwise, rather than streamwise. Figure

3.14(d) shows that the most probable position of the Q4s with respect to the Q2s is to

one side of the Q2, and very close to it, suggesting that both events tend to form parallel

pairs. Our choice of the sign of δz requires the closest Q4 to be at δz > 0, but the lack

of any peak at δz < 0 (where the probability of finding a Q4 is actually lower than the

average) strongly implies one-sided pairs, rather than symmetric hairpins. Although not

shown, J (42) is similar to J (24), because the Q2s and Q4s have roughly the same density

and size distribution throughout the logarithmic layer.

The p.d.f. of the relative position of the clusters with respect to the Q2s is presented

in figure 3.14(e), and shows that they tend to be embedded within Q2s of similar sizes, in

agreement with figure 3.5(a), and with the conditional velocity fields in del Álamo et al.

(2006). Figure 3.14(f) reinforces that conclusion, because the clusters are in δz > 0 with

respect to the Q4s, which is also the preferred location of the Q2s.

The picture that emerges is one of spanwise pairs of Q2s and Q4s, with a cluster

associated with the Q2, and with the groups aligned streamwise. The p.d.f.s in figure

3.14, including the existence of pairs and the streamwise distance between neighboring

Q−s, are robust with respect to the eduction threshold. They change little in 1 < H < 3,

implying that the pairs are distinct units rather than random pieces of longer objects.

The statistical evidence for pairs of Q2s and Q4s is also strong. Roughly 50% of the

Q−s in the logarithmic region are involved in simple pairs, and 30% are involved in more
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Figure 3.14: Probability density functions of the relative positions of clusters, Q2s and Q4s, using as reference events in the logarithmic

layer. (a) J22. (b) J44. (c) JCC . (d) J24. (e) J2C . (f) J4C . Solid contours are J (ij)/J
(ij)
δ,∞ = 1.5 and 2. Dashed contours are

J (ij)/J
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δ,∞ = 0.66 and 0.5. Lines without symbols are L950, and those with symbols L2000.
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complicated trios or groupings. The rest are isolated.

3.6.1 Sweep-ejection pairs

Figure 3.15 shows the average flow field conditioned to the presence of a Q2–Q4 pair,

which is defined whenever a Q2 has a neighboring Q4 that satisfies the relative-height

condition (3.12), and is within

|δx| < 1.25 and |δz| < 0.75. (3.16)

Very similar results are obtained when the pair is defined as a Q4 with a neighboring Q2.

The conditional averages are then computed in the reference frame

r = 2 (x− x
(24))/∆(24)

y , (3.17)

where x(24) is the midpoint of the line connecting the centers of the circumscribing boxes

of the two Qs, and ∆
(24)
y = (∆

(2)
y + ∆

(4)
y )/2 is the semi-sum of their vertical sizes. The

axes are chosen so that rz > 0 for the Q4.

Figure 3.15(a) shows the average shape of the pair and its associated cluster. As

expected, the aspect ratios of this conditional object, approximately 4 × 1 × 1.5 in the

coordinate directions, are consistent with the p.d.f.s shown in figure 3.6, with two parallel

Q−s. The cluster is mostly lodged within the Q2, but it extends into the shear layer

underneath the Q4. Note that the Q-pair is one-sided. No effort was made to prevent

the formation of a conditional trio involving a second Q4 or Q2, but they did not appear

in the statistics. Even so, and as we have already mentioned, the smooth conditional

shape in this figure is not representative of the individual pairs of the flow, which are

more complex. An example is given in figure 3.15(b). It should be stressed again that

while the average flow field in figure 3.15(a) is consistent with an asymetric hairpin, the

instantaneous pair is not.

Figure 3.15(c) shows the conditional streamwise velocity perturbation associated to

the Q2–Q4 pairs. It has two streaks, elongated in the x direction, in qualitative agreement

with the conical wakes reported by del Álamo et al. (2006) in the velocity fields conditioned

to attached clusters. However, the figure shows that the two streaks are very different.

For the isosurfaces used in the figure, the low-velocity object is only about as tall as the

Q2, but the high-velocity perturbation is much larger, longer and taller than its associated

Q4. The Q2 and its low-velocity streak seem to be engulfed within the larger high-velocity

region. That is seen even more clearly in the cross-section in figure 3.15(d). As mentioned

above, the velocity field obtained when the pair is defined with respect to the Q4, instead
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Figure 3.15: Flow fields conditioned to attached Q2–Q4 pairs in the logarithmic layer. Data

for L2000. (a) P.d.f.s of the points belonging to the Q2 (green), Q4 (blue) and clusters (grey).

The isosurfaces plotted are 0.75 times the maximum value of the p.d.f.s for the Qs, and 0.85 for

the cluster. (b) Example of an instantaneous Q2–Q4 pair. Color code as in (a). (c) Conditional

streamwise perturbation velocity. The blue object is the low-speed isosurface, u = −0.5uτ . The

red one is +0.5uτ . The heavy parallelepiped is a tight box around the conditional object in (a).

The flow in (a) to (c) is from bottom-left to top-right. (d) Cross section of the conditional field

in (c) at rx = 0. The arrows are the cross flow (v,w), and the shaded map is the streamwise

velocity (u < 0 in blue, u > 0 in red). The white dotted lines are 0.75 times the maximum value

of the p.d.f. of the points belonging to the reference Q pair. The white solid line is 0.85 times

the maximum value of the p.d.f. of the points belonging to the cluster.
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of the Q2, is very similar to the one in figures 3.15(c) and 3.15(d), and does not differ

too much from those obtained when conditioning on all Q2s or Q4s, confirming that most

Q−s are parts of pairs.

Similar findings were reported by Kim (1985) using the VITA technique in the buffer

region, and by Ganapathisubramani (2008) for sinks of momentum, both at y+ ≈ 100

and at y ≈ 0.5h. The low-velocity object lodged underneath the high-velocity overhang

in figures 3.15(c) and 3.15(d) is clearly the same phenomenon as the low-velocity ‘ramps’

seen by many investigators in streamwise sections of the velocity field (e.g., Meinhart &

Adrian, 1995). Flores et al. (2007) noted that those ramps are actually long cylindrical

tubes or cones, and figure 3.15(c) is most probably a conditional picture of a side-wall of

such a tube.

It was argued in del Álamo et al. (2006) that the clusters are too small to have created

the low-velocity streak associated with them, and that they are probably a consequence

of the streak, rather than a cause. That should probably now be rephrased as that they

are a consequence of the Q2. Figures 3.15(c) and 3.15(d) suggest that even the low-speed

streak is conditioned by the presence of a pre-existing larger sweep, which either creates

it, or, more probably, preferentially influences the location of the Q-pairs and clusters

that serve to condition the figures.

3.6.2 Large-scale organization

The results presented up to now suggest that the building block of the Reynolds

stresses is a pair of attached Q2s and Q4s, with a vortex cluster embedded within the Q2.

The aspect ratios of those units are of the right order of magnitude for them to become

comparable, when ∆y ≈ h, to the large-scale-motions defined by Adrian (2007). They are

the best candidates that we have for the attached eddy hierarchy postulated by Townsend

(1976).

On the other hand, they do not hint at a mechanism by which such structures, of size

O(h), can give rise to the very-long coherent structures (∆x ≈ 20h) in the central part

of the channel, such as the one in figure 3.10(d). Moreover, the procedure that we have

used to identify them does not make use of the streamwise alignment detected in figure

3.14, suggesting that some undetected organization could exist at even larger scales. The

only conditional structure detected up to now longer than a single Q is the high-velocity

streak in figure 3.15(c).

It is tempting to explore the existence of ‘supergroups’ formed by Qs and clusters

under somewhat laxer relational rules, but our attempts to extract physical meaning from
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such groups were not successful. It is very easy to form them by defining two objects as

connected when they satisfy (3.16). Moreover, even if we enforce our usual rule that two

objects can only be related if their heights differ by less than a factor of two, a supergroup

can be formed with objects of many sizes, connected by intermediate chains of structures

that differ little from their neighbors.

Such supergroups are longer and taller than individual Q−s or clusters, and have

statistical properties that can be interpreted as self-similar, although their aspect ratios,

8× 1× 2 are only marginally more elongated than the single Q-pairs, and do not explain

the longer global modes. In fact, although figure 3.14 proves the streamwise alignment

of the pairs, the range of that ordering is not very long. Of the Q−s in the logarithmic

layer, roughly 55% have another Q in front or behind, but only 13% have both.

Moreover, most of the definite properties of the supergroups are retained when the

positions of the Qs and clusters are randomized before they are allowed to connect, sug-

gesting that the supergroups are little more than random juxtapositions of unrelated

units, whose properties are determined by the volume fractions occupied by the different

objects. They will not be discussed further.

It is interesting to mention at this point that recent visualization work suggests that

the very-long structures mentioned above may be an exclusive feature of internal flows,

and are not present in turbulent boundary layers (Hutchins et al., 2011; Dennis & Nickels,

2011a,b; Lee & Sung, 2011). Although generally using more limited statistics than those in

the present work, the three groups find that the longest structures in boundary layers have

∆x ≈ 6h, and do not reach above ∆y ≈ 0.5h. We have seen that the largest structures

in channels extend well across the mid-plane, but Jiménez et al. (2010) already noted

that boundary layers are shorter than channels, and showed that many of the differences

between the two flows are due to the effect of turbulent/irrotational intermittency in the

corrugated edge of the boundary layer. That the wall-normal extent found in the papers

just mentioned roughly coincides with the lower edge of the intermittent layer suggests

that it may also be the interaction with irrotational fluid that limits the growth of the

structures. The largest structures in boundary layers would not then be much longer than

the self-similar attached eddies discussed in the previous sections, and the problem with

very-large-scale alignment would be exclusive to pipes and channels.
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3.7 Conclusions

We have generalized to three dimensions the quadrant analysis of the intense Q events

that contribute most to the tangential Reynolds stress in plane turbulent channels, with

special emphasis on the logarithmic and outer layers. We have shown that they separate

into wall-attached and wall-detached families.

The detached objects represent background fluctuations of the tangential Reynolds

stress. They are isotropically oriented, and their contributions to the mean Reynolds

stress cancel. Their dimensions and intensities are very similar to the strong fluctuations

of the Reynolds stress in experimental flows with little mean momentum transport. Even

in our turbulent channels, or in the atmospheric surface layer, the r.m.s. amplitude of

the τ fluctuations is 2.5–3 times larger than their mean. Those detached Qs are small,

with sizes that, at least at our Reynolds numbers, are of the order of a few Kolmogorov

lengths.

The wall-attached Q−s are larger, and carry most of the mean tangential Reynolds

stress. At the identification threshold, H = 1.75, they only fill 8% of the volume of

our channels, but they are responsible for roughly 60% of the total Reynolds stresses at

all wall-distances. Most of the wall-attached events are sweeps or ejections, and form a

self-similar family with aspect ratios ∆x ≈ 3∆y and ∆z ≈ ∆y, which agree well with the

known dimensions of the uv cospectrum. There are very few attached ‘countergradient’

Q1s or Q3s.

When the Qs are extracted from one-dimensional sections of either our channels or ex-

perimental shear flows, their lengths appear to scale with the local Taylor microscale, but

closer inspection reveals that they really span a wide range of scales, from the Kolmogorov

to the integral length, and that the average length is not a representative quantity. In

the channels, where objects can be classified in terms of their overall connected sizes, the

thickness of objects in a given size class is more narrowly defined, suggesting that longer

one-dimensional Qs also correspond statistically to larger three-dimensional objects in the

experimental flows.

In fact, the similarities among the distributions of the one-dimensional Q surrogates

in the very different shear flows in table 3.3 suggest that the fluctuations of the Reynolds

stress are similar for all such flows at sufficiently high Reynolds numbers. In wall-bounded

turbulence, the attached structures would simply be large fluctuations that reach the wall,

because of their size, where they are modified by the inhomogeneity of the mean velocity

profile.

The number of attached Q−s decays away from the wall as ∆−2
y . Since their wall-
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parallel area increases as ∆2
y, the area covered by Q−s of a given size is independent of

∆y, and so is the fraction of the Reynolds stress carried by them. On the other hand,

the volume fraction filled by the Q−s increases with their size. Roughly 60% of the total

volume of the attached Q−s is concentrated in a few very large Q2s that extend into

the opposite half of the channel across the central plane. Those objects, with lengths

of the order of 20h in our simulations, are probably the same as the very-large-scale

structures discussed by several authors. They are visually composite objects, formed by

the concatenation of smaller subunits, and do not form part of the self-similar family

mentioned above.

The dimensions of the self-similar attached Q−s are similar to those of the attached

vortex clusters discussed by del Álamo et al. (2006). Most clusters are associated with at

least one Q2, although the converse is not true. The number of attached clusters decays

faster than the Qs, as ∆−3
y , and the taller Qs do not have associated clusters.

The individual Q−s have fractal dimensions of the order of Df = 2, slightly fuller than

the clusters, whose dimension is Df ≈ 1.7. The thickness of their shells is 10–15 times

the Kolmogorov length, at our Reynolds numbers, and they become more complicated as

their sizes increase, suggesting that they might be described as ‘sponges of flakes’, in the

same way that the vortex clusters might be described as ‘sponges of strings’. Examples

of both are given in figures 3.10 and 3.15.

Most of the Q2s and Q4s are grouped into side-by-side parallel pairs, mostly one-sided

rather than symmetric trios. The predominant structure is formed by one such pair with

a vortex cluster embedded within the base of the Q2 and underneath the Q4. As with

the individual objects, the groups are self-similar, with aspect ratios ∆x ≈ 4∆y and ∆z ≈
1.5∆y. It is conjectured that those objects are the attached eddies of Townsend (1976),

with which they share the dimensions and the stresses. The conditional velocity field

around them shows that they are preferentially located in the side-walls separating a low-

velocity streak lodged underneath a larger high-velocity structure, which most probably

coincides with the low-momentum ramps discussed by various authors.

The attached eddies tend to be aligned longitudinally with each other, but that orga-

nization does not extend far enough to explain the very long structures in the center of the

channel. Although roughly 55% of the Q−s have another Q in front or behind, only 13%

have both. Attempts to identify larger super-groups that could explain the formation of

the very-large-scale structures failed beyond what could be expected from purely random

associations, and did not reach the required aspect ratios, although some evidence is cited

that this might only be a problem in internal turbulent flows.
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Our simulations cover a factor of two (or four in some cases) in friction Reynolds

numbers, in the range of many of the available experiments. The scalings that we have

used in the figures are those that result in the best collapse of our simulations, and they

are usually not ambiguous. Although it is dangerous to extrapolate beyond the range of

the available data, that collapse suggests that our conclusions may apply to a wider range

of Reτ .



Chapter 4

Time-resolved evolution of coherent

structures *

4.1 Introduction

The research on coherent structures in turbulence relies on the notion that there is

a set of eddies that are representative enough of the dynamics of the flow that their

understanding would result in important insights into the mechanics of turbulence. In re-

cent years, the steady increase in computer power has allowed the study of instantaneous

three-dimensional coherent structures extracted from DNSs. However, their dynamics can

only be fully understood by tracking them in time. Although the temporal evolution of

structures in wall-bounded flow has already been studied for small eddies at moderate

Reynolds numbers (e.g., Robinson, 1991; Johansson et al., 1991), a temporal analysis of

the three-dimensional structures spanning from the smallest to the largest scales across

the logarithmic layer, using non-marginal Reynolds numbers is still missing. Our goal in

the present chapter is to perform such analysis and study the dynamics of turbulent chan-

nel flows in terms of the time-resolved evolution of coherent structures, with particular

emphasis on the logarithmic layer. We describe the tracking method, summarize the prop-

erties of the three-dimensional eddies described in the previous chapter, and characterize

their temporal evolution and interactions.

The efforts to describe wall-bounded turbulence in terms of coherent motions date at

least to the work of Theodorsen (1952), but it was not until the experimental visualization

of sublayer streaks in boundary layers by Kline et al. (1967), of fluid ejections by Corino

*Part of the contents of this chapter have been published in the Journal of Fluid Mechanics, volume

759, pages 432–471, with Javier Jiménez as coauthor.
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& Brodkey (1969), and of large coherent structures in free-shear layers by Brown &

Roshko (1974), that the structural view of turbulence gained wider acceptance. Quadrant

analysis was proposed to study regions of intense tangential Reynolds stress in wall-

bounded turbulent flows by Wallace et al. (1972) and by Willmarth & Lu (1972), and

the related VITA (variable interval time average) technique of Blackwelder & Kaplan

(1976) was used to identify one-dimensional sections of individual structures from single-

point temporal signals, and to define and characterize ejections (Bogard & Tiederman,

1986). The pioneer numerical work by Chong et al. (1998) used a thresholding method

to visualize coherent structures in wall-bounded flows. Particle-image velocimetry (PIV)

experiments in the 90’s provided two-dimensional flow sections, and linked the groups of

ejections to ramp-like low-momentum regions (Adrian, 1991, 2005). Simultaneously, the

increase in computational power and the development of new experimental techniques led

to the study of full three-dimensional coherent structures (Robinson, 1991). Some recent

works of this type are the characterization of clusters of vortices in simulations by Moisy

& Jiménez (2004); Tanahashi et al. (2004) and del Álamo et al. (2006), the experiments

in Dennis & Nickels (2011a,b), and the generalized three-dimensional quadrant analysis

in the previous chapter among others. However, most of these studies are restricted to

instantaneous snapshots from which it is difficult to extract dynamical information.

The study of convection velocities is closely linked to that of coherent structures.

Kim & Hussain (1993) extracted the streamwise propagation speed of the fluctuations

of pressure and velocity in a numerical channel, and concluded that it is approximately

equal to the local mean velocity, except in the near-wall region, while Krogstad et al.

(1998) computed convection velocities in an experimental turbulent boundary layer, and

found that coherent motions of the order of the boundary layer thickness convect with

the local mean velocity, but that the velocity drops significantly for the smaller scales.

Interestingly, del Álamo & Jiménez (2009) found that the small scales in channels travel

at approximately the local average velocity, whereas larger ones travel at a more uniform

speed roughly equal to the bulk velocity. Since the bulk velocity may be larger or smaller

than the local average depending on the distance to the wall, these three results are not

necessarily incompatible. The average convection velocity has also been found to depend

on the flow variable or structure under consideration. For instance, ejections travel at

distinctly lower speeds than sweeps (Guezennec et al., 1989; Krogstad et al., 1998).

The first attempts to measure the lifetimes of vortices date from the experiments

in grid turbulence by Cadot et al. (1995) and Villermaux et al. (1995), although with

limited results. The temporal evolution of the velocity fluctuations in the logarithmic
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layer of turbulent channels was studied by Flores & Jiménez (2010a) using minimal boxes,

resulting in a scenario that is a more disorganized version of the one in the minimal

simulations of the buffer-layer described in Jiménez & Moin (1991). Some preliminary

work about the time-resolved evolution of individual structures in a full-sized logarithmic

layer may be found in Lozano-Durán & Jiménez (2010) and Lozano-Durán & Jiménez

(2011). Those works share some features with previous studies of the dynamics of hairpin

vortices, both numerical (Singer & Joslin, 1994; Zhou et al., 1999; Suponitsky et al., 2005)

and experimental (Acarlar & Smith, 1987a,b; Haidari & Smith, 1994). However, while

the older works describe the evolution of individual hairpin-like vortices in a laminar flow,

although in some cases with a turbulent-like profile, Lozano-Durán & Jiménez (2010);

Lozano-Durán & Jiménez (2011) and the present chapter deals with the evolution of

actual eddies in fully developed turbulence.

Exploiting a different technique, Elsinga & Marusic (2010) studied the evolution of

the invariants of the velocity gradient tensor (Chong et al., 1990; Perry & Chong, 1994;

Mart́ın et al., 1998) in the outer part of a turbulent boundary layer, using a dataset

of time-resolved three-dimensional velocity fields obtained by tomographic PIV. They

found a nearly constant orbital period of the order of tens of eddy turnovers for the

conditionally averaged spiral trajectories in the invariant-parameter plane, and interpreted

it as a characteristic lifetime of the energy-containing eddies. The same dataset was later

used by Elsinga et al. (2012) to track vortices in a turbulent boundary layer, and to

compute average trajectories and convection velocities. They observed non-negligible

wall-normal displacements of the structures during a typical trajectory, and showed that

the vortical structures and bulges are transported passively by the external velocity field

without significant changes in their topology. The recent work of LeHew et al. (2013)

also uses time-resolved PIV to examine the structure and evolution of two-dimensional

swirling motions in wall-parallel planes of a turbulent boundary layer, which they take

to be markers for three-dimensional vortex structures. They measured their convection

velocity and lifetime, and found that the latter increases with the wall-normal distance,

and that a small percentage of the vortices survive for more than five eddy-turnover times.

These observations have been used to build models for the dynamics of wall-bounded

turbulence based on coherent structures. Some of these models were presented in §1.3 and

we revisit below some of their main properties. The best developed models refer to the flow

near the wall, where the local Reynolds numbers are low, and the flow is smooth enough

to speak of simple objects. Examples include the papers by Jiménez & Moin (1991),

Jiménez & Pinelli (1999), Schoppa & Hussain (2002) and Kawahara et al. (2012), and
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the reviews by Panton (2001) and McKeon & Sreenivasan (2007). Above the buffer layer,

the internal Reynolds number of the eddies is higher, the eddies are themselves turbulent

objects, and their characterization is more challenging. A seminal contribution was the

attached-eddy model proposed by Townsend (1976) for the logarithmic layer. Generally

speaking, there are at present two different models for the dynamical implementation of

the Townsend (1976) conceptual framework, both of them hitherto incomplete. The first

one is the hairpin-packet paradigm, originally proposed by Adrian et al. (2000), based on

the horseshoe vortex initially described by Theodorsen (1952) and further developed by

Head & Bandyopadhyay (1981), Perry & Chong (1982) and others. According to that

model, several hairpin vortices are organized in coherent packets that grow from the wall

into the outer region, with lifetimes much longer than their characteristic turnover times

(Zhou et al., 1999). The growth of the packets involves several mechanisms, including self-

induction, autogeneration, and mergers with other packets, as discussed in Tomkins &

Adrian (2003) and reviewed in Adrian (2007). The observed low-momentum regions and

ejections are contained within the hairpin packet, and are reflections of the cooperative

effect of the hairpins. However, the evidence for hairpin vortices far from the wall is

limited, and their origin and evolution remain unclear, specially with regard to how they

move away from the wall.

Other models have been proposed in which the importance of the hairpins is ques-

tioned. Pirozzoli (2011) studied the organization of vortex tubes around shear layers and

concluded that the former are a by-product of the latter, most likely through a Kelvin-

Helmholtz instability. In the same line, Bernard (2013) found vortex furrows to be the

dominant structural entity in a transitional boundary layer and the hairpins the rotational

motion created as a consequence of the furrows. Schlatter et al. (2014) showed that tran-

sitional hairpin vortices in fully developed turbulent boundary layers do not persist and

their dominant appearance in the outer region at high Reynolds numbers is very unlikely.

However, the three aforementioned works focus on the buffer layer or their vicinity and

do not provide any information about the logarithmic layer and above. A more complete

model has been proposed in the previous chapter extending the works by del Álamo et al.

(2006) and Flores et al. (2007), in which the flow in the logarithmic layer is explained in

terms of ejections, sweeps and clusters of vortices. Reviews are found in Jiménez (2012,

2013). These structures are intrinsically turbulent and complex objects, in contrast to

the simpler hairpins. Ejections and sweeps are grouped into side-by-side parallel pairs,

mostly one-sided rather than symmetric trios (see also chapter 3 and Guezennec et al.,

1989), and the predominant structure is formed by one such pair, with a vortex cluster
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embedded within the base of the ejection, and extending underneath the sweep. They are

preferentially located in the side-walls of, rather than surrounding, a low-velocity streak

lodged besides a taller high-velocity structure, in a configuration that most probably cor-

responds to the low-momentum ramps discussed by various authors (e.g., Adrian, 1991,

2005). The presence of structures with almost identical features over rough walls (Flores

et al., 2007) and in channels without a buffer layer (Mizuno & Jiménez, 2013) suggests

that they are generated at all heights, or that, if they are formed at the wall, they quickly

forget their origin and reach local equilibrium with the outer layers. Either way, the im-

portance of the wall as the source of eddies is diminished, and is mostly relegated to the

role of creating and maintaining the mean shear.

From the kinematic point of view (ignoring the asymmetry reported above for the

ejection-sweep pairs), the hairpin packet model by Adrian et al. (2000) and the scenario

proposed in chapter 3 together with del Álamo et al. (2006) and Flores et al. (2007), are

statistically compatible at the level of one-point velocity statistics and spectra, as shown

by Perry & Chong (1982), Perry et al. (1986) and Nickels & Marusic (2001) for hairpin

packets, and by del Álamo et al. (2006) for vortex clusters. Beyond that, the two models

are not dynamically equivalent and, while the hairpins are seen as the cause of the low-

momentum regions and of the ejections, the clusters of vortices in del Álamo et al. (2006)

are rather considered consequences of the streaks. This chapter is devoted to clarify this

issue by the direct observation of the temporal evolution of the different structures.

The chapter is organized as follows. Section 4.2 describes the numerical experiments

and the method employed to identify coherent structures. The tracking method is ex-

plained in §4.3. The temporal evolutions of eddies are classified according to different cri-

teria in §4.4, and their geometry analyzed. Their temporal behavior is described in §4.5,
their lifetimes in §4.5.1, their birth, death and vertical evolution in §4.5.2 and §4.5.3, and
the advection velocities in §4.5.4. Finally, a discussion and conclusions are offered in sec-

tion 4.6. Two sections at the end of the chapter contain additional information concerning

the validation of the tracking procedure and the effect of the parameters chosen.
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Case Reτ Reλ Lx/h Lz/h ∆x+ ∆z+ ∆y+max ∆t+s Tsuτ/h Symbol

M950 932 89 2π π 11 5.7 7.6 0.8 20 ◦
M2000 2009 126 2π π 12 6.1 8.9 2.1 11 △

M4200 4164 202 2π π 12 6.1 10.6 3.5 10 none

Table 4.1: Parameters of the simulations. Reτ is the Kármán number. The microscale Reynolds

number Reλ is the maximum in each channel, attained in all cases near the upper edge of the

logarithmic layer, y/h ≈ 0.4. Lx and Lz are the streamwise and spanwise dimensions of the

numerical box, and h is the channel half-height. ∆x and ∆z are the streamwise and spanwise

resolutions in terms of Fourier modes before de-aliasing and ∆ymax is the coarsest wall-normal

resolution. Nx, Ny, Nz are the number of collocation points in the three coordinate directions.

∆ts is the average time separation between the consecutive fields to compute coherent structures,

and Tsuτ/h is the number of global eddy-turnovers times used in the analysis, after transients

are discarded. The symbols are used consistently in the figures, unless noted otherwise.

4.2 Numerical experiments and identification of co-

herent structures

4.2.1 Numerical experiments

The parameters of the direct numerical channel simulations used for our analysis are

summarized in table 4.1, and were described in more detail in chapter 2. We define the

global eddy-turnover time as h/uτ , and occasionally use a local turnover time y/uτ . The

Kolmogorov length and time scales are η = (ν3/ε)1/4 and tη = (ν/ε)1/2, respectively, where

ε(y) is the mean dissipation rate of the kinetic energy. We often classify results in terms of

buffer, logarithmic and outer regions, arbitrarily defined as y+ < 100, 100ν/uτ < y < 0.2h,

and y > 0.2h, respectively. It was checked that varying those limits within the usual range

did not significantly alter the results presented below.

The Reynolds numbers chosen, Reτ = 932, 2009 and 4164, yield scale separations of

h/10η ≃ 30, 60 and 100, respectively, if we assume that the largest structures are O(h),

and that the smallest ones are vortices with diameters of order 10η (Jiménez et al., 1993;

Jiménez & Wray, 1998). The microscale Reynolds numbers in table 4.1 are computed,

assuming isotropy, as Reλ = q2
√
5/(3νε), where q2 = u2 + v2 + w2, and the maximum

is achieved in all cases near y/h = 0.4. All the statistics are compiled over at least 10

global eddy-turnovers, which will be seen in §4.5.1 to be long enough with respect to the

lifetimes of most coherent structures in order not to interference with their description.
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The analysis of the temporal evolution of the flow requires storing approximately 104

snapshots for each simulation, implying several hundred Tbytes for each channel in table

4.1. To keep the storage requirements under some control, the channel dimensions are

kept Lx = 2πh and Lz = πh. It was shown by Flores & Jiménez (2010a) that this box

size is the minimum needed to accommodate the widest flow structures, and it was shown

in chapter 2 that it results in correct one-point statistics. Structures longer than 2πh

exist in larger channels (Jiménez, 1998; Kim & Adrian, 1999; Marusic, 2001; del Álamo

et al., 2004; Jiménez et al., 2004; Guala et al., 2006), and are represented in the numerics

as infinitely long, but it was argued by del Álamo et al. (2004) and in chapter 2 that

their evolution times are slow enough for their interactions with the smaller scales to be

represented correctly even in that case. The result is essentially healthy turbulence across

the whole channel, although the behavior of the largest structures is probably unreliable.

However, spectral analysis shows that structures longer than 2πh are at least as tall as

h (Hoyas & Jiménez, 2006; Jiménez, 2012), so that the results of our analysis should be

correct for eddies approximately restricted to the logarithmic and buffer layers. In fact,

no structure has been discarded from our analysis for being too large. The number of

eddies constricted by the box size is too small to influence the statistics, and the only

obvious difference between our results and those in larger boxes is the ‘cap’ of very tall

and long structures found in the size distributions in figure 3.6 in chapter 3, which is

much weaker in the equivalent distributions in figures 4.8(c,d) of the present chapter.

4.2.2 Identification of coherent structures

We understand by coherent structures those motions that are organized in space and

persistent in time and, although some distinctions are made in the literature, we will use

as synonymous coherent structures, objects and eddies.

We define structures as simply connected sets of points in which some property exceeds

a given threshold, with connectivity defined in terms of the six orthogonal neighbors in

the Cartesian mesh of the DNS. We study two types of structures: the vortex clusters dis-

cussed by del Álamo et al. (2006) as surrogates for strong dissipation, and the ‘quadrant’

structures described in chapter 3 and responsible for the momentum transfer. Both have

been shown to form well-defined hierarchies in the logarithmic layer of channels, and it

will be shown in §4.5.1 that they retain their individuality long enough to be considered

coherent.

Summarizing the identification method and results from chapter 3, vortex clusters are
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defined in terms of the discriminant of the velocity gradient tensor, satisfying

D(x) > αtD
′(y), (4.1)

where D is the discriminant, D′(y) is its standard deviation, and αt = 0.02 is a threshold

obtained from a percolation analysis (Moisy & Jiménez, 2004; del Álamo et al., 2006).

Quadrant events (Qs) are structures of particularly strong tangential Reynolds stress

that generalize to three dimensions the one-dimensional quadrant analysis of Lu & Will-

marth (1973). They satisfy

|u(x)v(x)| > Hu′(y)v′(y), (4.2)

where −u(x)v(x) is the instantaneous point-wise tangential Reynolds stress, and the

hyperbolic-hole size, H = 1.75, is also obtained from a percolation analysis (see chapter

3 or Lozano-Durán et al., 2012).

Each object is circumscribed within a box aligned to the Cartesian axes, whose stream-

wise and spanwise sizes are denoted by ∆x and ∆z. The minimum and maximum dis-

tances of each object to the closest wall are ymin and ymax, and its wall-normal size is

∆y = ymax − ymin. Both types of structures are classified as being detached from the

wall if y+min > 20, or attached to it if y+min < 20 (del Álamo et al., 2006; Lozano-Durán

et al., 2012). Attached objects with y+max > 100 extend into the logarithmic layer and

are denoted as tall attached. They form self-similar families with approximately constant

geometric aspect ratios across the logarithmic layer, although without a clearly defined

shape (Jiménez, 2012). Detached objects have sizes that range from a few Kolmogorov

lengths up to the integral scale. The largest ones differ little from the tall attached objects

(Jiménez, 2013), and we will see later that they often become temporarily attached to

the wall during their lives. However, most of them are small and roughly isotropically

oriented, with typical sizes of the order of 15–20η in the three directions (del Álamo et al.,

2006; Lozano-Durán et al., 2012), and correspond to individual Kolmogorov-scale vortices.

The fraction of volume contained within vortex clusters depends strongly on the

threshold chosen, but is about 1% of the total channel for the one used here, decreas-

ing slowly with increasing Reτ . Within this volume, clusters account for about 10–15%

of the total enstrophy, which is similar to the values found by Moisy & Jiménez (2004) in

isotropic turbulence. Tall attached clusters are especially relevant because, even if we will

see in §4.4 that they are a relatively small fraction of the total, both by number and by

volume, their bounding boxes fill a substantial part of the channel (≈ 20% by volume),

and intercept a corresponding large part of the Reynolds stresses (del Álamo et al., 2006).
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Structure Sizes Shape
Fractal

dimension

Volume of the

channel occupied
fc

Vortex cluster
∆x ≈ 3∆y

∆z ≈ 1.5∆y

sponges of worms 1.7 1% 10-15%

Attached Q−s
∆x ≈ 3∆y

∆z ≈ ∆y

sponges of flakes 2.0 6% 60%

Table 4.2: Summary of the main features of tall attached vortex clusters and Q−s. fc is the

fractional contribution to the enstrophy for vortex clusters or to the Reynolds stress for Q−s.

The fractal dimension is defined as in chapter 3. See text for details.

They have ∆x ≈ 3∆y and ∆z ≈ 1.5∆y, and are ‘sponges of worms’ whose elementary

vortices have diameters of the order of 7η. Figure 4.1(a) shows all the vortex clusters in a

snapshot from case M4200, and figure 4.2(a) is a particular tall attached cluster extracted

from it.

Individual Qs are classified as belonging to different quadrants according to the signs

of their mean streamwise and wall-normal velocity fluctuations, computed as

um =

∫
Ω
u(x) d3

x∫
Ω
d3
x

, (4.3)

over the domain Ω of all their constituent points, where u(x) is the instantaneous stream-

wise fluctuation velocity. A similar definition is used for vm, τm = (uv)m, etc. As in vortex

clusters, Qs of each kind separate into wall-detached and wall-attached families. The wall-

attached Q−s (those with (uv)m < 0) are larger and carry most of the mean tangential

Reynolds stress. They only fill 6% of the volume of the channel, but are responsible for

roughly 60% of the total Reynolds stresses at all wall distances. Most wall-attached events

are sweeps (Q4s, with um > 0 and vm < 0) or ejections (Q2s, with um < 0 and vm > 0),

and form self-similar families with aspect ratios ∆x ≈ 3∆y and ∆z ≈ ∆y. They agree

well with the dimensions of the uv cospectrum (Jiménez & Hoyas, 2008; Lozano-Durán

et al., 2012). Geometrically, they are ‘sponges of flakes’ whose individual thickness are of

the order of 12η. There are very few tall attached ‘countergradient’ Q+s, with (uv)m > 0,

and we will pay little attention to them. Basically, the Reynolds stress carried by the de-

tached Q+s is compensated by the detached Q−s. Figure 4.1(b) shows all the sweeps and

ejections in a snapshot from case M4200, and figure 4.2(b) shows a structure extracted

from it.

Table 4.2 summarizes some of the results described above for tall attached structures.
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(a)

(b)

Figure 4.1: Coherent structures identified in a snapshot from case M4200. The structures are

colored with their distance from the wall, and only the bottom half of the channel is shown.

Points close to the wall are lighter. (a) Vortex clusters. (b) Sweeps (hot colors) and ejections

(cold).
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(a) (b)

Figure 4.2: Instantaneous structures identified from case M4200. Both of them are attached

to the wall and colored with their distance to it. (a) Vortex cluster. (b) Sweep.

Sweeps, ejections and vortex clusters are complex objects that are generally difficult to

appreciate from a single two-dimensional view. An interactive three-dimensional view of a

composite object incorporating the three kinds of structures can be downloaded from the

supplementary material of Lozano-Durán et al. (2012), and a few more examples of indi-

vidual structures can be found in our web page http://torroja.dmt.upm.es/3Deddies.

4.3 Tracking method

4.3.1 Temporal sampling

Since the purpose of this chapter is to analyze the time evolution of individual struc-

tures, snapshots of each simulation are periodically stored every ∆ts. The sampling

intervals for the different cases are given in table 4.1, and were chosen to be sufficiently

short to be able to track structures between consecutive snapshots. The sampling inter-

vals in table 4.1 increase with Reτ , but are always shorter than the Kolmogorov time

scale, which ranges from t+η ≈ 4 at y+ = 50 to approximately Re1/2
τ in the center of the

channels. The effect of coarsening the sampling times is analyzed in section 4.B, but it

will be shown below that the values in table 4.1 are short enough that only the smallest

structures fail to be correctly tracked. To keep the storage requirements reasonable, only

M950 was stored in full for all the snapshots, so that the structure identification could

be repeated if needed. This dataset was used to tune the identification and tracking

methods, and the snapshots for the other two cases only contain lists of points belonging

to identified structures, although including several thresholds to study the effect of the
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Figure 4.3: Sketch of the same coherent structure at two consecutive times. The picture

corresponds to x–y views of the channel and the flow goes from left to right. The Sketch on

the left shows one structure at time tn, and the picture on the right the same structure in dark

gray at time tn+1, and in light gray at time tn. The two structures overlap when copied onto a

common grid and, thereby, a connection is created between them.

structure intensity. In addition, about 150 complete flow fields are stored for the two

higher-Reynolds-number cases, and are used to compute averages conditioned to the dif-

ferent structures. This procedure decreases the storage requirement by about 95%, and

makes the analysis in this chapter possible.

Note that what is being studied here are naturally occurring structures in a fully

turbulent flow, rather than tripped structures in transitional or otherwise simplified flow

fields (Zhou et al., 1999; Wu & Moin, 2010). In that sense, our results avoid some of

the artifacts of simpler situations and, for example, include all the interactions between

different structures in their natural turbulent setting.

4.3.2 Steps of the tracking method

The tracking involves three stages:

(A) Connections between structures. All the structures of a given type (i.e., either Qs

or clusters) from two consecutive snapshots are copied onto a common grid, and

the spatial overlaps between them are computed using the actual points of the

structures. All the structures with some overlap are considered connected (figure

4.3), and the operation is repeated for all the consecutive time pairs.

(B) Organization in graphs. The result of the previous analysis is a set of backwards

and forward connections between structures in consecutive frames, and needs to

be processed further if the evolution of individual structures is to be studied for

longer times. An object in a given frame is considered to have evolved without

merging or splitting if it has exactly one backward and one forward connection.
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As long as that remains true, such an object can be unambiguously identified as an

individual eddy. Structures with more that one backward connection are interpreted

as having merged from several pre-existing ones, and those with several forward

connections are said to split (see figure 4.4a). A first analysis of the data shows that

mergers and splits happen often enough that they cannot be ignored, and suggests

the organization of the objects in a temporal graph containing all the structures in

the dataset and their connections. Hence, all the connected structures are organized

into a very large graph or super-graph in which the nodes are the instantaneous

structures and the edges are their temporal connections (figure 4.4b). This super-

graph is then partitioned into singly connected components, each of which contains

the evolution of all the structures that interact with each other at some point in

their lives. For simplicity, each of those individual connected sub-graphs will be

simply referred to as a ‘graph’. Note that the organization of the structures into

connected temporal graphs can be seen as a single clustering process in space-time,

in which two points are assigned to the same four-dimensional cluster if they are

contiguous in any of the three orthogonal spatial directions or in the forward or

backwards temporal ones.

(C) Organization in branches. Graphs are organized into ‘branches’, each of which

represents an individual structure. For that, each temporal connection is given a

weight ∆V/Vi, where ∆V is the volume difference between the structures in its two

end nodes, and Vi is the volume of their overlap. Special action is only required for

mergers and splits, which are defined as nodes with more than two edges. In those

with more that one incoming edge, the edge with the lowest weight is defined as

the primary incoming branch, while all the others are considered parts of branches

that end (merge) at that moment. Similarly, in nodes with more than one outgoing

edge, the edge with the lowest weight is defined as the primary outgoing branch,

and all the others give rise to newly created branches that split at that moment.

Roughly speaking, this algorithm continues as a primary branch the objects whose

volume changes less across the split or merger.

A simple graph with three branches is sketched in figure 4.4(b), while figure 4.5(a)

is an actual example of the temporal evolution of several vortex clusters belonging to

the same graph. Figure 4.5(b) is the graph associated with that evolution, chosen as an

example of the complex interactions that may arise. Figure 4.5(c) shows an actual branch

classified as primary, tall attached and Q2 (see below and §4.4). Table 4.3 shows the
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(a)

(b)

Figure 4.4: (a) Sketch of two structures created from the turbulent background that merge into

a single one and eventually split into two fragments. (b) Graph associated with the evolution

shown in (a) and its organization in branches. The graph is formed by three branches. The

primary branch is continued throughout the largest object and new secondary branches are

created for the fragments split and merged.

Clusters Qs

Case Objs. Branches Primaries Graphs Objs. Branches Primaries Graphs

M950 185.7 6.6 2.8 1.9 107.8 3.2 1.3 1.8

M2000 397.8 19.4 8.8 6.2 294.7 18.6 11.0 9.4

M4200 799.2 45.8 19.7 36.9 889.5 64.1 35.3 32.6

Table 4.3: Number of identified objects (Objs.), branches, primary branches, and graphs. All

numbers are in millions.

number of identified structures, branches and graphs for Qs and vortex clusters. Note

that the numbers are in millions.

The tracking procedure in step (A) does not always succeed, especially for very small

structures. The main reason is that a structure may be advected between snapshots by a

distance larger than its length. To partly compensate for advection, which is mostly due

to the mean flow (Taylor, 1938; Kim & Hussain, 1993; Krogstad et al., 1998; Jiménez,

2013), the structures at time tn+1 are shifted (and hence deformed) by −U(y)∆ts in the

streamwise direction before their connections are computed during the tracking. Even if

this procedure allows us to track smaller structures than would be possible otherwise, only

those with lifetimes longer than ∆ts can be captured, and structures much smaller than

U(y)∆ts may be occasionally lost. For that reason, objects with sizes of the order of a

few wall units may look artificially isolated in time from the point of view of our method.
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(a)

(b)

(c)

Figure 4.5: (a) Example of the temporal evolution of several vortex clusters belonging to the

same graph for case M4200. The time goes from left to right. (b) The associated graph. The

horizontal solid lines are branches, and the vertical dashed ones, mergers (red) or splits (blue).

(c) Example of a primary branch extracted from case M4200 and classified as a tall attached

ejection. The flow (and time) goes from left to right and the streamwise displacement of the

structure has been shortened in order to fit several stages of its lifetime in less space. The

structure is colored with the distance from the wall. Note the different behaviors of its upper

and near-wall components.
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(c) (d)

(b)

Figure 4.6: Classification of the branches attending to their beginning and end. (a) Primary.

(b) Incoming. (c) Outgoing. (d) Connectors.

Section 4.A presents more details and several validation tests for the tracking procedure,

including for the shifting step just described, but some idea of how many connections are

being missed can be gained from the number of structures that remain isolated after the

tracking step, without any temporal connection. They typically represent less than 1%

of the total number of structures, and are small objects. In the case of clusters, where we

have seen that the statistics are dominated by the small-scale end of the size distribution,

the average volume of the isolated structures is 10–20% of the average volume computed

for all the clusters. In the case of the Qs, the volume of the isolated objects is even

smaller, about 1% of the average.

4.3.3 Classification of branches according to their endpoints

Branches can be further classified according to how they are created and destroyed.

Sketches for the different cases are depicted in figures 4.6(a–d). When a branch is born

from the turbulent background (i.e., its first node has no backwards connections) and ends

in the same way (its last node has no forward connections), it is classified as ‘primary’

(figure 4.6a). Secondary branches may be ‘incoming’, if they are born from scratch and

end in a merger (figure 4.6b), ‘outgoing’ if they are born from a split and end into the

background (figure 4.6c), and ‘connectors’ if they go from a split to a merger (figure 4.6d).

Primary branches can be considered to represent the full lives of individual structures,

and will be our main interest in the following analysis. Their number for the different

cases have been incorporated into table 4.3. For Qs in M4200, primaries represent 52% of

all branches, incoming branches represent 20%, outgoing ones, 27%, and connectors, 1%.

For the vortex clusters, primaries are 43%, incomings are 16%, outgoings are 39% and
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connectors are 2%. The results for M950 and M2000 are qualitatively similar. Note that

the unbalance between the number of incoming and outgoing branches can be interpreted

as a measure of the predominance of the direct cascade towards smaller structures over

the inverse one towards larger ones. This point will be addressed in more detail in chapter

5.

4.4 Classification and geometry of branches

Graphs and branches can be classified in much the same way as instantaneous struc-

tures. For example, we saw in §4.2.2 that the structures that are attached to the wall and

tall enough to reach the logarithmic layer play an important role in the dynamics of the

flow. Branches are intended to represent the temporal evolution of individual structures

but, since eddies cannot be expected to remain attached or detached during their whole

evolution, we will classify a branch as attached if its structure is attached to the wall at

some point in its life. Similarly, a branch is classified as tall attached if it contains at

least a tall attached structure (y+max ≥ 100); detached branches are never attached to the

wall; and buffer-layer ones spend all their lives within the buffer layer (y+max < 100). The

same nomenclature applies to graphs, even if each graph represents the evolution of a

more complex group of related structures.

Branches of Qs are assigned quadrants in the same way as individual structures. It

was shown in chapter 3 that all the points within a given Q belong to the same quadrant,

essentially because moving from one quadrant to another involves a discontinuous change

in the velocity fluctuations that is unlikely to occur between neighboring points in a

spatially well-resolved flow field. In the same way, a discontinuous change in the quadrant

of a structure is unlikely to happen in a temporally resolved simulation, and branches and

graphs retain their quadrant classification over their evolution. In fact, no discontinuous

change of quadrant was found in any of the branches of our data base, even if no effort

was made in the tracking step to connect Qs with structures of the same quadrant.

To continue our study of branches we define their geometrical properties as temporal

averages over their constituent structures. Thus, the length lx of a branch is taken to be

the temporal average over the branch lifetime, 〈∆x〉B, of the length of the single structure

it tracks, and the same is true of its height ly, and width lz. A similar definition is used

for the volume Vb of a branch, which is the temporal mean of the volume of its constituent

structure, and the height of its center of gravity, which is the temporal mean, yc, of the

instantaneous centers, Yc = (ymin + ymax)/2.
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By number By volume

Q2 Q4 Q+ Clusters Q2 Q4 Q+ Clusters

buffer layer 0.167 0.161 0.177 0.509 0.023 0.026 0.055 0.323

detached 0.169 0.148 0.175 0.471 0.034 0.050 0.053 0.490

tall attached 0.002 0.001 0.000 0.021 0.476 0.284 0.016 0.188

Table 4.4: Fractional contribution of different types of branches, expressed both by number

and by volume. All the entries for clusters and for Qs sum to unity independently. The most

important contributions are highlighted in bold. Case M4200.

Table 4.4 summarizes the fractional contribution of each kind of branch with respect

to all the branches of its same type (i.e., Qs or clusters), expressed both in terms of

number of branches and of total volume. It is seen that most branches are small, either

detached or confined to the buffer layer, which is also true for individual structures (del

Álamo et al., 2006; Lozano-Durán et al., 2012). On the other hand, the distribution of the

volumes is different for clusters than for Qs. While 76% of the volume of the Q-branches

is concentrated in tall attached sweeps and ejections, even if they represent less than

1% of the total number, 81% of the volume of clusters is in relatively small detached or

buffer-layer branches. This distribution is consistent with the different spectra of the two

quantities. While the small-scale vorticity is dominated by Kolmogorov-scale vortices,

momentum transfer is associated with large-scale features of the order of the integral

scale. Although compiled for a single Reynolds number, table 4.4 is representative of the

results for our three cases.

Average values taken over branches are relatively good representations of the instanta-

neous structures. We will see below that the lifetime of a structure is roughly proportional

to its size, so that the most abundant small Qs and vortex clusters also have relatively

short lives. They emerge momentarily above the thresholding intensity, and their proper-

ties change little before they disappear again. This is shown in figure 4.7 by the probability

density functions of the heights of the individual structures in a primary branch, normal-

ized by the mean branch height. Both for Qs and for clusters, the p.d.f.s for detached

or buffer-layer branches are concentrated around unity, and only those of the larger tall

attached branches show a wider spread. The easiest interpretation is that even large

branches are necessarily created and destroyed as small structures, and that their longer

lives gives them the opportunity of scanning a wider range of sizes. There is relatively

little skewness of the distributions towards smaller or larger sizes, suggesting a relatively
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Figure 4.7: (a) P.d.f. of the height of the structures in primary branches, ∆y, normalized with

the mean height of their branch, ly. , Detached; , buffer-layer; , tall attached.

Case M4200. (a) Q−s. (b) Vortex clusters.

smooth size variation. This is confirmed by the temporal evolution of the p.d.f.s of the

dimensions of the structures (not shown), which reveals that their lives are approximately

evenly divided into a relatively uniform initial growth, an intermediate constant phase,

and an equally smooth final decay.

Figures 4.8(a,b) show the joint p.d.f.s. of the spanwise size of the detached primary

branches and the height of their center of gravity, yc. As mentioned in §4.2.2, most

detached structures are small objects of the order of the Kolmogorov scale, and it is sig-

nificant that the average size of the branches follows the same trend, lz ≈ 15η, mentioned

in §4.2.2 for individual objects. This agrees with the narrow p.d.f.s for the detached

branches in figure 4.7.

The joint p.d.f.s. of the sizes of the tall attached primaries are given in figures 4.8(c,d).

Both the Q−s and the vortex clusters follow self-similar aspect ratios

lx ≈ 2ly, and lz ≈ ly, (4.4)

although the latter is not shown in the figure. The streamwise aspect ratio is somewhat

lower than for individual tall structures, in which ∆x ≈ 3∆y (see chapter 3). That

difference is consistent with the evidence in figure 4.7 that tall branches contain many

smaller structures that bias their aspect ratio towards isotropy. Since even large structures

are roughly isotropic in the cross-stream plane, ∆z ≈ ∆y (del Álamo et al., 2006; Lozano-

Durán et al., 2012), their spanwise aspect ratio is maintained by the branches.

Note that the self-similarity of vortex clusters is less clear-cut than for the Qs. In

particular, while the maximum size of the Q− primaries scales in outer units, and keeps
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Figure 4.8: Joint p.d.f.s of the logarithm of the streamwise or spanwise average length of

branches. Contours enclose 50% and 98% of the data. (a) Spanwise width of detached primary

Q−s, as a function of the wall-normal distance of their center of gravity, yc. The dashed diagonal

is lz = 15η(yc). , Ejections; , sweeps. (b) As in (a), for detached vortex clusters. (c)

Streamwise length of tall attached primary Q−s, as a function of their wall-normal size, ly. The

dashed diagonal is lx = 2ly. , Ejections; , sweeps. (d) As in (c), for tall attached

clusters. The dashed-dotted line in all the figures is the Corrsin scale lC(y) = (ε/S3)1/2 with

y = ly/2 or y = yc, and S = ∂yU . Symbols as in table 4.1.
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growing with the Reynolds number when scaled in wall units, the vortex clusters do not go

beyond l+y ≈ 700. This was already noted by del Álamo et al. (2006) and Lozano-Durán

et al. (2012) (and in chapter 3), who remarked that, although vortex clusters tend to be

associated with Q2s, they also tend to be restricted to their near-wall roots.

In the buffer layer (not shown), most of the branches are small, with sizes of the order

of the well-known quasi-streamwise vortices in that region, l+x ≈ 150 and l+z ≈ 80 (Kim

et al., 1987; Robinson, 1991).

The four panels of figure 4.8 include the length lC = (ε/S3)1/2, where S = ∂yU , which

was introduced by Corrsin (1958) as the size limit below which structures should not feel

the effect of shear and remain essentially isotropic. This was shown to be the case for the

Euv cospectrum by Saddoughi & Veeravalli (1994) in a high-Reynold-number boundary

layer, and for the velocity and vorticity isotropy tensors in several shear flows by Jiménez

(2013). Figure 4.8 is probably the first time that the effect is documented for individual

structures. Small detached branches are approximately isotropic because they have sizes

of the order of, or below the Corrsin scale, while tall attached ones are elongated in the

streamwise direction because they are larger than lC .

4.5 Temporal evolution.

4.5.1 Lifetimes

The lifetime, T , of a structure is the time elapsed between its first and last appearance

in a branch, but that definition is only unambiguous for graphs or for primary branches.

Secondary branches begin or end in splits or mergers, and it is unclear whether their

lifetimes should be continued into the branch from where they split or into which they

merge. In this section, we will mostly concern ourselves with primary branches. Figure

4.9(a) shows the relation between lifetimes and sizes of detached primary sweeps and

ejections, which scale well with the Kolmogorov times at the height of their centers of

gravity, T = 5tη(yc). This supports the interpretation that they are essentially viscous

structures with short lifetimes, although it is interesting that there is, at all heights,

a tail of longer lives suggesting enhanced coherence. It was already noted by Jiménez

(2013) that there is a continuous transition between large detached objects and coherent

attached ones. Although figure 4.9(a) refers only to Q−s, no significant differences are

found between the lifetimes of detached Qs of any kind, or of vortex clusters.

Q−s in the buffer layer have lifetimes of T+ ≈ 30 (not shown), with extreme cases in
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Figure 4.9: (a) P.d.f.s of the lifetimes of detached Q− primaries as a function of the height

of their mean center of gravity, yc. Each vertical section is a p.d.f., and contours are 50% and

98% of the maximum at each height. , Ejections; , sweeps; , T = 5tη(yc). (b)

P.d.f.s of the lifetimes of tall attached Q− primaries, as a function of the mean branch height,

ly. Each vertical section is a p.d.f., and contours are 50% of the maximum at each height. The

dashed straight line is T+ = l+y . ◭, Lifetimes defined by the decay of the frequency–wavenumber

spectrum of v, as computed by del Álamo et al. (2006) for Reτ = 550 − 2000; (×,�), bursting

time scale in a minimal box for the range y/h = 0.1−0.3, at Reτ = 1880. �, From the temporal

spectrum of the energy-production balance (Flores & Jiménez, 2010a); ×, from the temporal

autocorrelation of v2 (Jiménez, 2013). (c) P.d.f.s of the lifetimes of tall attached primaries,

normalized with the local eddy turnover. , Ejections; , sweeps; , clusters. The

vertical dashed line is Tuτ/ly = 1. (d) Number density per unit height, wall area and total time,

of objects belonging to tall attached Q− branches as a function of ∆y (solid), and of the branches

themselves, as a function of their height ly (dashed). The chain-dotted lines are nob ∝ ∆−3.7
y ,

and nbr ∝ l−4.7
y . Symbols as in table 4.1.
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which T+ ≈ 400, comparable to the bursting period of the buffer layer (Jiménez et al.,

2005), and to the vortex decay times in that region, T+ ≈ 200 (Jiménez & Moin, 1991;

Jiménez & Pinelli, 1999). The lifetime distributions for buffer-layer clusters have similar

tails, but many of them live very little, near the temporal resolution limit of the present

simulations.

Figure 4.9(b) shows that the lives of the tall attached Q−s are proportional to the

local eddy-turnover time, Tuτ/ly ≈ 1. This makes those branches self-similar not only in

space, but also in time. Estimates for the lifetime of the structures have been reported

before, and some of them are included in figure 4.9(b), for comparison. All of them

refer to the temporal evolution of some flow quantity as a function of the wall distance,

not to individual structures, and we have used the correspondence y = ly/2. The two

lines representing temporal correlations in minimal channels agree relatively well with

the present estimates, which is to be expected since they were both computed from box-

averaged data, which should represent the characteristics of the largest structure present

in those small boxes. The best agreement is with the line marked with crosses (Jiménez,

2013), which represents the width of the temporal autocorrelation function of the box-

averaged v2, and should thus be closest to the lifetime of individual sweeps or ejections.

All the points in the line fall within the levels selected for the p.d.f.s but with a lower slope.

Since only three points are available for the line, it is difficult to quantified the importance

of such a difference. The solid squares were obtained from the temporal spectrum of the

integrated instantaneous energy balance, and are slightly longer than the present results

(3ly/uτ versus ly/uτ), presumably reflecting the difference between the life of a given

structure and the average period between the generation of consecutive ones (Flores &

Jiménez, 2010a). On the other hand, the times represented by solid triangles are shorter

than the present estimates. They were obtained by del Álamo et al. (2006) from the

decorrelation time of the frequency-wavenumber spectrum of v (Wills, 1964), and thus

include contributions from small scales that are bound to decay faster than the larger

attached structures. It was already noted by Flores & Jiménez (2010a), in discussing

the same data, that the definition of lifetime depends on the particular quantity being

analyzed, and should only be taken as indicative. The present lifetimes are shorter than

the periods reported by Elsinga & Marusic (2010) for the average orbits in the plane of

Q–R invariants. These differences are not so important if we take into account that the

periods of the orbits and the lifetimes presented here are computed using very different

methods. In any case, the results are comparable if our structures are not expected to

live for a full revolution of the orbit but just a fraction of it.
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Other estimates are harder to compare. The increase of the lifetimes with the dis-

tance from the wall was noted qualitatively by LeHew et al. (2013), who tracked swirling

structures with dimensions comparable to individual vortices in wall-parallel sections of a

relatively low-Reynolds-number boundary layer (Reτ = 410). Their lifetime distributions

are dominated by very short values that the authors attribute to structures moving out of

the observation plane. If they are disregarded, their distributions have longer exponential

tails whose decay rate imply average lifetimes that increase from T+ = 11 at y+ = 33

to T+ = 16 at y+ = 200. Even though those distributions include lifetimes up to ten

times longer than their means, these values are quite shorter than ours, especially above

the buffer layer. Our distributions are also far from exponential, and the conclusion by

LeHew et al. (2013) that the lifetimes of the detached eddies are longer than those of the

attached ones contradicts the present ones. However, it should be stressed that LeHew

et al. (2013) could only distinguish attached from detached structures indirectly.

Note that, since the local mean shear in the logarithmic layer is S(y) ≈ uτ/κy, where

κ is the von Kármán constant, the linear growth of the lifetime with the height of the

structures can be interpreted as ST ≈ 5, which is consistent with our interpretation

in figure 4.8 that tall branches are controlled by their interaction with the local shear

(Jiménez, 2013). If we take this to mean that the interaction with the wall is only

indirect, it would suggest that sweeps and ejections should be essentially mirror images

of one another. Figure 4.9(b) is an accumulated distribution for both types of structures,

but they are separated in figure 4.9(c), which reveals that the long end of the two p.d.f.s

is actually very similar, but that sweeps are somewhat more likely to have short lifetimes

than the ejections do. It turns out that this difference is restricted to the neighborhood

of the buffer layer. Figure 4.9(d) shows that most attached structures live near the wall,

so that most of those classified as tall (y+max > 100) barely exceed that height. We will see

below that sweeps generally approach the wall, while ejections move away from it, so that

a sweep born near the top of the buffer layer tends to move near the wall and is dissipated

by viscosity, while a similar ejection tends to move away from the wall and survives longer.

The short-end tail of the p.d.f.s in figure 4.9(c) is due to this effect. When only taller

branches are considered, the difference between sweeps and ejections decreases, and it

essentially disappears for l+y > 200. Vortex clusters behave very similarly to ejections.

In addition to the distribution of the number of structures associated with tall attached

branches, figure 4.9(d) also shows the distribution of the number of branches as a function

of ly. It follows from the previous discussion that, if the number of objects decays as

nob ∼ ∆−n
y , and the lifetime of a branch is T ∼ ly, the number of branches should decay
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Figure 4.10: Sketch of the temporal evolution of a primary branch and the wall-normal position

of its birth and death, respectively yb and yd, and the time-dependent maximum and minimum

heights, ymax and ymin, of the instantaneous structure.

like nbr ∼ l
−(n+1)
y , because each branch contributes T objects to nob. This estimate, which

also assumes that the distribution of object sizes within a branch is described by the

single parameter ly, is tested in figure 4.9(d), and works well. That figure also shows that

the number density of branches and objects is independent of the Reynolds number when

expressed in consistent units.

As a final remark, the simulations presented here were run for at least 10h/uτ , whereas

the longest lifetime identified for the structures in the logarithmic layer is five times

shorter, giving us some confidence on the statistical relevance of our results.

4.5.2 Birth and death, and vertical evolution

The distribution of branch births and deaths is interesting, even if only because there

are at least two competing models for the genesis of tall attached structures. They differ

mostly in their view of the importance of the wall. One view is that the buffer layer is the

source of attached coherent motions, from where they rise into the outer region (Adrian

et al., 2000; Christensen & Adrian, 2000; Adrian, 2007; Cimarelli et al., 2013). A different

view, with some support from the discussion in the previous section, is that structures are

controlled by the shear, and can be born at any height. In this view, the wall is mainly

a source of shear, and the structures attach to it as part of the natural growth of eddies

in any shear flow (Rogers & Moin, 1987). Because the shear is strongest near the wall,

that is also where most structures are born and are strongest, but large structures would

predominantly be expected to arise farther away (del Álamo et al., 2006; Flores et al.,

2007; Lozano-Durán et al., 2012). Figures 4.11(a,b) show the p.d.f.s of the height of the

centers of primary Q−s at the beginning and the end of their lives, classified as a function

of the mean branch height (see sketch in figure 4.10). It turns out that Q2s are born in

the buffer layer, and rise, while Q4s are born away from the wall, and drop. Moreover, it

appears that ejections die and sweeps are born near their mean branch height, which for
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attached branches is essentially ly ≈ 2yc.

The evolution of the maximum and minimum structure heights during the life of a

branch is given in figures 4.11(c,d). As we just saw, the Q2s are born attached to, or very

near, the wall. They remain attached for about 2/3 of their lives, after which they detach

and rise quickly. Their maximum height grows steadily during that time. The evolution

of the Q4s is the opposite. Their bottom moves down relatively quickly, attaches to

the wall at roughly 1/3 of the branch live, and stays attached thereafter. Their top

moves down steadily. The details of the distribution into attached and detached behavior

change slightly when considering very tall branches, or those closer to the buffer layer, but

the overall behavior is always just as described. Clusters behave approximately as Q2s,

although, as already mentioned, their range of heights is more limited (figures 4.11e,f ).

The wall-normal velocity of the individual eddies is shown in figures 4.12(a,b), defined

from the vertical displacement of their center of gravity between consecutive times sepa-

rated by ∆t+ ≈ 30 (to avoid spatial and temporal resolution issues) during which merging

or splitting is not taking place. Consistent with the previous discussion, ejections move

upwards on average, and sweeps move towards the wall, and it is interesting that both

move within fairly narrow ranges of wall-normal velocities close to ±uτ . This agrees with

the results in Flores & Jiménez (2010a), who noted that strong sweeps and ejections in

a small channel move across the logarithmic layer with surprisingly constant velocities.

Note that these velocities are also consistent with a total vertical excursion of order ly

(figures 4.11a,b) during a lifetime of order ly/uτ (figure 4.9b). Vortex clusters have both

positive and negative vertical velocities. Apparently, although most clusters follow ejec-

tions as they rise, some of them also move with the sweeps as they drop. The shapes

of the velocity distributions do not depend much on the attached or detached character

of the structures being tracked, although the velocities decrease somewhat in the buffer

layer, as expected (not shown).

It was speculated in Flores & Jiménez (2010a) that bursts and ejections are parts of a

single underlying structure, because they tend to burst and ebb concurrently in channels

whose dimension has been adjusted to be minimal in the logarithmic layer, and also

because their symmetric vertical velocities suggest a common cause. It is also known that

they tend to occur in side-by-side pairs (chapter 3) and that the conditional mean flow

field of such pairs is a large-scale streamwise roller whose up- and down-welling edges

contain the Q−s, both in the buffer layer (Guezennec et al., 1989) and farther from the

wall (Jiménez, 2013). The symmetry of the distributions in figures 4.9(c) and 4.12(a)

further supports that view.
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Figure 4.11: (a, b and e) P.d.f.s of the wall-normal height of births, yb ( ), and deaths,

yd ( ) of tall attached primary branches, as a function the mean height of their center of

gravity, yc. The dashed straight line is yb,d = 2yc. (c, d and f ) P.d.f.s of the minimum ( )

and maximum ( ) heights of tall attached primary branches, as functions of the time elapsed

from their birth. Time is normalized with the lifetime of each branch, T , and ymin and ymax with

the heights, yb and yd, at its birth and death, respectively (see figure 4.10). The solid horizontal

lines are the average position of the wall. (a, c) Ejections. (b, d) Sweeps. (e, f ) Vortex clusters.

In all cases, each vertical section is a p.d.f., and the contours are 0.5 of its maximum. Symbols

as in table 4.1.
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Figure 4.12: P.d.f.s of the wall-normal velocity of the center of gravity of the structures. The

vertical lines are dyc/dt = ±uτ in (a) and dyc/dt = 0 in (b). (a) , Ejections; , Sweeps.

(b) Vortex clusters. Symbols as in table 4.1.

Figure 4.13: Sketch of the relative streamwise and spanwise distances of births with respect

to existing tall attached structures. Points (xc, zc) and (xb, zb) are the wall-parallel coordinates

of the centers of gravity of the existing and newborn structures respectively.

4.5.3 Relative position of branch creation

We next consider whether the birth of new tall attached branches is influenced by

pre-existent structures in their neighborhood, such as would be the case, for example, in

the vortex-packet propagation mechanism proposed by Tomkins & Adrian (2003). Note,

however, that such an association would not necessarily imply causation, and could rather

be due to the presence of a larger undetected common structure, as discussed above.

For that purpose, we look at the location with respect to existing structures of the

birth of branches that will eventually become tall attached. At each moment, a frame

of reference is defined at the center of gravity of existing tall attached structures, and

the relative positions of births taking place at that moment are computed. Figure 4.13
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sketches the procedure. The relative distances are defined as

δx =
xb − xc√
∆2

x +∆2
z

, (4.5)

δz =
zb − zc√
∆2

x +∆2
z

, (4.6)

where xc and zc are the coordinates of the center of the existing structure, and xb and zb

the position of the newborn one. The distances are normalized with the length of the x–z

diagonal of the circumscribed box of the existing structure, and only births between the

wall and the maximum height of the existing structure are considered.

The resulting p.d.f.s are shown in figures 4.14(a–d). In all cases, the central part of the

p.d.f.s has a low probability of finding births, because that region is already occupied by

the existing structure. Figures 4.14(a,b) show that existing ejections trigger new ejections

ahead of themselves, while existing sweeps trigger new sweeps predominantly behind.

The p.d.f.s of the relative wall-normal position of births (not shown) reveal that the

new ejections tend to appear in the buffer layer (consistently with figure 4.11a) whereas

sweeps are born roughly at same height as the center of gravity of the already existing

ones. Figure 4.14(c) displays the birth of sweeps with respect to existing ejections, and a

symmetric figure can be drawn for ejections with respect to sweeps. It shows that Qs of

different quadrants are not created aligned to each other, but side by side. Note that, in

this case, the probability map is oriented in such a way that the closest newborn structure

is always to the left (δz > 0) of the existing one. An un-oriented p.d.f. would show new

structures appearing symmetrically at both sides of the center. Note also that, for that

reason, the minimum birth probability of this case is not at the center of the p.d.f. but

to its right (δz < 0). Births in that location have been transferred to the peak on the

left (δz > 0). Finally, figure 4.14(d) shows that vortex clusters are born downstream of

existing ones, as in the case of ejections.

The p.d.f.s in figure 4.14 are self-similar plots normalized with the size of the ‘par-

ent’ structure, and therefore have no absolute dimensions associated with them. If we

consider them as reflecting a causal relation, they show that larger structures influence

regions farther from their centers than small ones do. The p.d.f.s in figure 4.14 are highly

reminiscent of the p.d.f.s of the relative location of neighboring structures in figure 3.14,

including similar distances between the different peaks, suggesting that the geometric

relations between existing structures reflect their process of formation. We have already

mentioned that Q2s and Q4s are organized into streamwise trains of pairs each of which

contains a Q2 and a Q4 side by side, which can be interpreted to mean that sweeps and
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Figure 4.14: Joint p.d.f.s of the relative streamwise, δx, and spanwise, δz , distances of births

with respect to existing tall attached structures whose height is ∆+
y ≥ 200 (see sketch in figure

4.13). (a) New ejections with respect to existing ejections. (b) New sweeps with respect to

sweeps. (c) New sweeps with respect to ejections. (d) New vortex clusters with respect to

existing clusters. Contours are 1.2 ( ) and 0.8 ( ) the probability in the far field. Symbols

as in table 4.1.
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ejections are reflections of quasi-streamwise large-scale rollers, embedded in the longer

streaks of the streamwise velocity; sweeps in the high-velocity side of the streak, and

ejections in the low-speed part. Figure 4.14(c) and its counterpart in chapter 3 (figure

3.14) would then reflect the spanwise separation between the high- and low-velocity com-

ponent of the streaks. The streamwise separation in figures 4.14(a,b) would correspond

to the streamwise wavelength of the inhomogeneity of the streak, which is known to take

predominantly the form of meandering, both near the wall (Jiménez et al., 2004) and in

the logarithmic layer (Hutchins & Marusic, 2007a).

However, the front-to-back asymmetry in figures 4.14(a,d) provides additional infor-

mation beyond that contained in the relative position of the instantaneous structures. It

shows that trains of ejections and clusters grow streamwise by extending downstream, but

that sweeps grow towards their backs. This difference is difficult to interpret, since it was

shown in the previous chapter that there are very few unpaired Q−s in the channel, and

the Q4s triggered behind the pre-existing Q4 in figure 4.14(b) would eventually require the

formation of new Q2s, and vice versa. It is not clear from figure 4.14(a) where those Q2s

are coming from. Some possibilities suggest themselves, although they are unfortunately

difficult to test statistically. The simplest one is probably that the pairs are completed by

un-triggered structures. The probability contours in figure 4.14 are only 20% higher or

lower than the uniform background probability of finding a newborn structure anywhere,

but it is difficult to see why only one component of the organized pairs in figure 4.14(c),

should be created randomly. A more likely possibility is that the missing trailing Q2s

are created too far from the origin to show in figure 4.14(a). A plausible variant of that

scenario starts by assuming that the triggering Q2s and Q4s are always in the form of

pairs. They would also trigger new pairs, but only (or predominantly) with the opposite

orientation to that of the existing one. A triggering Q2 from 4.14(a) with a Q4 to its

right would create ahead of itself a new Q2 with a Q4 to its left, which would be too far

from the existing Q4 to appear in the conditional probability distribution in 4.14(b). A

similar scenario would account for the formation of a companion Q2 for the new Q4 in

figure 4.14(b). Thus, a clockwise quasi-streamwise roller, with the sweep to the right of

the ejection (see figure 9 in Jiménez, 2013) would only trigger anticlockwise rollers ahead

or behind itself. This process would not be too different from the self-propagation of

hairpin packets in Tomkins & Adrian (2003), although it should be made clear that the

objects being discussed here live predominantly in the logarithmic layer, and that none

of the evidence in this chapter, or in the previous one, suggests the presence of hairpins

in that region. Note that the generation of rollers of alternating sign along a streak leads
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naturally to the observed streak meandering. It also agrees with the staggered-vortex

models proposed by Schoppa & Hussain (2002) for the buffer layer, and with the majority

of the equilibrium and periodic exact solutions more recently found in wall-bounded flows,

and reviewed, for example, in Kawahara et al. (2012).

4.5.4 Advection velocities

How structures deform during their evolution, and presumably what determines their

lifetime, is in part controlled by the vertical gradient of their advection velocity. It is well-

known that most flow variables advect roughly with the local mean streamwise velocity

(Kim & Hussain, 1993; Krogstad et al., 1998), and are thus deformed by the mean shear.

The advection velocity of the wall-parallel sections of the structures is measured in two

independent ways. In the first one, the set of points within the section of the structure

is correlated between consecutive times separated by ∆t+ ≈ 10 (to avoid grid resolution

issues), and the velocity is estimated from the shift away from the origin of the maximum

correlation peak (Kuglin & Hines, 1975; Sutton et al., 1983). This is the method typically

used in particle-image velocimetry (Willert & Gharib, 1991). The second method tracks

the center of gravity of the circumscribing rectangle to the section of the structure. Both

velocities need not coincide if, for example, the structure moves by accreting new elements

from the front and shedding them from behind. The difference is akin to the distinction

of phase and group velocity in wave packets, with the correlation method representing the

phase velocity. Non-dispersive structures in which the phase and group velocities coincide

can be considered as ‘coherent’ objects advected by the flow, while dispersive ones are

probably better understood as being ‘footprints’ continuously destroyed and re-formed by

some global influence, such as pressure.

The results are shown in figures 4.15(a,b), which displays phase velocities from snap-

shots not involved in mergers or splits. All structures move approximately with the mean

profile, U(y), above the buffer layer. Ejections move slightly slower than U(y), roughly by

−1.5uτ , while sweeps move faster by roughly the same amount. This agrees with previous

results (Guezennec et al., 1989; Krogstad et al., 1998), and with the idea that ejections

live in low-velocity streaks, and sweeps in high-velocity ones. Vortex clusters can be ei-

ther faster or slower than U(y), although the latter is slightly more probable, presumably

reflecting their preferential association with ejections. This was also seen in their vertical

velocities in figure 4.12(b). Their mean advection velocity is U(y) − 0.8uτ . Close to the

wall, all structures advect roughly at 10uτ , in agreement with Kim & Hussain (1993) and

Krogstad et al. (1998). Figure 4.15(b) also includes the p.d.f.s of the advection velocities
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Figure 4.15: P.d.f.s of the streamwise advection velocities of wall-parallel sections of the in-

dividual structures, as functions of their wall-normal distances. (a) Phase velocity. , Q2s;

, Q4s. (b) Phase velocity. Vortex clusters. Symbols as in table 4.1. +, advection velocity

of the swirling coherent structures adapted from figure 10(b) in LeHew et al. (2013). (c) Phase

velocity. Q2s in M4200. ◦, all structures; ×, ∆+
y > 400; ✷, ∆+

y > 1000. (d) As in (c), but group

velocity. In all panels, each horizontal section is a p.d.f., and contours are 40% of its maximum.

The thicker dashed line is the mean streamwise velocity profile for case M4200.
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reported by LeHew et al. (2013) which shows shorter tails though reasonable considering

the differences between both methods. Elsinga et al. (2012) observed a mean advection

velocity of 0.78U∞ at y = 0.2h, with U∞ the free steam velocity of the boundary layer,

which also agrees with the value of 0.776Uc obtained for vortex clusters at y = 0.2h in

the present study, being Uc the mean channel velocity at the centerline.

On the other hand, these results are not entirely consistent with those in del Álamo

& Jiménez (2009), who showed that large structures with wavelengths λx & 2h advect at

all heights with the bulk velocity of the mean profile, including near the wall, where that

velocity is very different from the local one. Their method computes a phase velocity, and

this dependence on the wavelength suggests that, at least for large attached structures

near the wall, turbulence should be dispersive. The same conclusion could be drawn from

the attached-eddy model of Townsend (1976), who proposed that large structures near

the wall are passive (“inactive”), controlled by active cores farther away from the wall.

Bradshaw (1967) later showed that the interaction between the outer active part and

the inactive inner one was most likely due to the pressure induced by the active cores.

This was even more vividly shown by Tuerke & Jiménez (2013) by means of a numerical

experiment in which the y-distribution of the total tangential stress in a channel was

modified by a distribution of volume forces. They expressed the average stress at a given

distance from the wall as a y-dependent friction velocity, uτ (y), and showed that, while the

intensity of the velocity fluctuation spectrum kxEuu(λx, y), where kx = 2π/λx, scale with

u2
τ(y) for relatively short wavelengths, λx ≈ y, the longer wavelengths scale everywhere

much better with u2
τ at the height of the active cores, y = λx/10. The suggestion in

all these cases is that, while the smaller scales contained within the attached root of a

large structure may move approximately with the local mean velocity, the structure itself

should advect with a velocity closer to that of the active core near its center of gravity.

For a graphic representation of this process, see the different behaviors of the root and

body of the structure in figure 4.5(c). Note that this observation reinforces and refines

the evidence for the modulation of the inner layer by the outer one documented by Mathis

et al. (2009).

This is confirmed in figures 4.15(c,d), which show the advection velocity separately

for structures of three different size ranges. Figure 4.15(c), shows the phase velocity as a

function of y. All the size ranges agree, showing that the motion of the small scales traced

by the correlation method is indeed independent of the size of their ‘host’ structure. On

the other hand, the group velocities in 4.15(d), computed by tracking the circumscribing

box, depend on the structure size. All the structures travel with the mean velocity for
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y+ & ∆y/4, but they decouple from the mean flow below that level, and move with what

can be interpreted as the advection velocity of the base of the active part of the structure.

Note that, since both the shear time, (∂yU)−1 ∼ κy/uτ , and the local eddy-turnover time,

y/uτ , decrease as we approach the wall, such a decoupling between the top and bottom

parts of the attached structures, with very different local time scales, should probably

have been expected.

The conclusion that only the upper part of the tall attached structures can be consid-

ered as coherent is interesting, because the lifetime of a structure is most probably limited

by its deformation by the shear. Whenever a structure is sheared by much more than its

length, it should disappear as a coherent object. The difference between the phase veloci-

ties at the top and bottom of an attached structure is approximately ∆U ≈ uτκ
−1 log∆+

y ,

which would shear it by an amount roughly equal to its length in a time of the order

of ∆x/∆U ∼ ∆x/(uτ log∆
+
y ). This estimate differs from the data in §4.5.1 by the non-

trivial logarithmic denominator. On the other hand, if the only deformation that counts

is that between y = ∆y and y = ∆y/4, or some other constant factor, the shear time

would be proportional to (∆x/uτ) log 4, i.e., T ∼ ∆x ∼ ∆y, which agrees better with the

observations.

4.6 Conclusions

We have presented a novel approach to the study of the kinematics and dynamics

of wall-bounded turbulent flows, and applied it to temporally and spatially well-resolved

simulations of turbulent channels in the range of Reynolds numbers Reτ = 930–4200. The

fields were stored often enough, and the simulated time was long enough, for several mil-

lions of structures to be individually tracked from birth to death. Two types of structures

were analyzed, vortex clusters (del Álamo et al., 2006), and the quadrant structures of

the tangential Reynolds stress (chapter 3 and Lozano-Durán et al., 2012), both of them

presented and studied in chapter 3. Although it was found that most structures stay small

and live short lives, special emphasis was put on the tall attached sweeps and ejections

with longer lifetimes stretching from the wall into the logarithmic layer. In agreement

with previous investigators, those structures were found to carry most of the wall-normal

momentum transfer.

The tracking procedure resulted in the organization of the structures into primary

branches, representing the evolution of a single structure from birth to death, and a

complicated set of secondary branches that either merge into, or split from them. Pri-
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mary tall attached structures were shown to be geometrically self-similar, with roughly

constant aspect ratios for branches taller than l+y > 100–200, and equally self-similar

lifetimes, T+ ≈ l+y . This was true for sweeps, ejections and vortex clusters, and it is

striking that branches of sweeps and ejections were found to be essentially mirror im-

ages of each other. Both have essentially identical lifetimes, and their vertical advection

velocities are antisymmetric: +uτ for the ejections, and −uτ for the sweeps. Moreover,

ejections are born near the wall and rise until they disappear near their maximum height,

and sweeps are born away from the wall and move towards it. This, together with the

observation by previous investigators that sweeps and ejections are typically found in

side-by-side pairs, strongly suggests that both structures are manifestations of a single

quasi-streamwise roller lying between them, whose height does not change much during

its evolution. Vortex clusters, which are typically found between sweeps and ejections,

tend to follow the ejections, and are probably partial manifestations of the roller. Tall

attached sweeps and ejections are found more often in the high-shear region near the wall,

but they appear often enough at all heights for the largest structures to be responsible

for most of the momentum transfer. Several observations were shown to imply that the

largest structures at each height are large enough to be controlled by the shear, and their

antisymmetry suggests that they are not necessarily created near the wall, but are rather

a general consequence of the mean shear itself. On the other hand, detached structures

are much smaller than the tall attached ones and have sizes and lifetimes of the order of

the local Kolmogorov scales.

It was found that new structures form predominantly ahead or behind structures of

the same kind, but the details of that process were found to be difficult to reconcile with

the rest of the available evidence unless sweeps and ejections were again considered part

of side-by-side pairs that trigger new pairs of opposite polarity. A clockwise roller would

thus follow a counterclockwise one, and vice versa. Although our study deals mostly with

large structures in the logarithmic and outer layers, the resulting model of alternating

vortices flanking a streak agrees qualitatively with older ones of the buffer layer, and with

transitional exact structures at much lower Reynolds numbers.

The streamwise advection velocity of individual structures was measured, and found to

depend on the distance to the wall, implying that the structures are deformed enough by

the mean shear that their lifetime is controlled by that deformation. It was moreover found

that their group and phase velocities only coincide in the top part of the tall attached

structures (y > ∆y/4). This is the only part of the structure that can be considered

coherent. The ‘root’ below that height is dispersive, and is probably just the ‘pressure
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shadow’ of the upper core. We have noted that restricting coherence to the upper part

of the attached structures also makes their observed lifetimes consistent with a model

in which they are created and eventually destroyed by their deformation by the mean

velocity profile.

The model proposed shares a few properties with the hairpin’s packet paradigm

(Adrian, 2007) but also shows fundamental differences that will be discussed in chap-

ter 5.

4.A Details and validation of the tracking method

4.A.1 Spurious connections and branches

This section expands the discussion about the tracking method detailed in section

4.3. For all the results presented, those branches in which none of the structures attain a

volume higher than 203 wall units are excluded to avoid grid resolution issues. Besides,

branches crossing the edges of the temporal domain are also dismissed since their histories

are incomplete.

In order to remove spurious connections, four particular cases are corrected (see figure

4.16). Sometimes the branches do not clearly split or merge but they rather touch each

other as shown in figures 4.16(a,b). In these cases, the connection between both branches

is dismissed when the difference of volume between the structures labeled as (1) and (2) is

less than 5% (figure 4.16a). On the other hand, the structures (1) and (2) are disconnected

when such difference is larger than 90% (figure 4.16b). The same corrections are applied

to the cases obtained reversing the time in figures 4.16(a,b). The third case is sketched in

figure 4.16(c). When the beginning and the end of a branch belong to the same branch, it

is considered that both represent the evolution of a single coherent structure and, hence,

are gathered together as a single branch. The last correction is done when two branches

are connected with the same node of a third branch as shown in figure 4.16(d). In this

case, the first two branches are disconnected from the third one and reconnected together

to form a single branch. The modification is applied only when the difference of volumes

as well as the difference of the y–z centers of gravity of (1) and (2) are less than 10%. All

the percentages given above are computed with respect to the largest magnitude involved.

Finally, we address the effect of the spatial shifting of the structures employed in the

tracking step. As discussed in section 4.3, in order to maximize the connections between

structures at contiguous times, tn and tn+1, the points of the objects at time tn+1 are
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(a) (b)

(c) (d)

Figure 4.16: Sketches of the four types of connections corrected. For each graph, time is going

from left to right. (a) Case I: two branches touch each other. The contact between them is

dismissed. (b) Case II: two branches touch each other. One branch is disconnected in two. (c)

Case III: a branch begins and ends at the same branch. Both of them are grouped into a single

one. (d) Case IV: two branches are connected backward and forward with a third one at the

same node. The two branches are disconnected and linked together to form a new one. See text

for details of when the corrections are applied.
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shifted by a distance −U(y)∆ts in the streamwise direction. This may lead to spurious

connections, especially between small structures. Most of the results presented above were

also computed without applying any shifting for case M950 and no important differences

were observed. Some results are shown in table 4.5. Almost the same amount of branches

and graphs are obtained, and the main consequence of removing the shifting is to increase

the number of isolated structures, although their total volume remains negligible compared

to the total volume of the non-isolated ones. The ratio of direct and inverse cascade, as

will be defined in section 5.4, changes roughly by 3%.

4.A.2 Validation of the tracking method

In order to verify that the tracking method is properly working, graphs and branches

extracted from the actual turbulent flow were visualized (see, for instance, figure 4.5a).

In addition, three tests were performed with synthetic data. They are shown in figure

4.17 which also includes the corresponding graphs. The first test consists of three eddies

moving in the streamwise direction with different advection velocities. The second test is

an initial eddy that first splits into two fragments of different sizes, then, each of them split

again following the same process, and finally all the objects merge in reverse order. The

third test does not have any physical meaning and is intended to check rare connections.

All the cases were correctly captured by the tracking method.

To discard any bias of the method related to the arrow of time, Q graphs and branches

were computed with data from case M950 that were previously reversed in time. The

results are shown in table 4.5. The same number of branches and graphs are obtained,

and the role of mergers and splits is exchanged, as expected.

4.B Effect of the threshold and time step

Two new cases derived from M950 are defined to study the effect of the threshold and

the time step between consecutive fields. The parameters are summarized in table 4.6.

For case Ms950, the threshold H is almost doubled, and for case Mt950, the time step is

increased roughly by a factor of four. All the results presented above were recomputed for

cases Ms950 and Mt950, and no significant differences appeared. Some results are collected

in figures 4.18(a,b,c,d) and table 4.6. The number of branches and graphs decreases for

cases Ms950 and Mt950, although the total volume of isolated structures remains smaller

than 0.01% with respect to the total volume of objects. The only remarkable change is a

10% increment of the ratio of direct and inverse cascade (see chapter 5) for intense Q−s
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(a) (b)

(c)

Figure 4.17: Synthetic test cases in arbitrary units. (a) Three objects moving with different

advection velocities. (b) Objects splitting and merging. (c) Test with no physical meaning

intended to check rare connections. For (a) and (b) the top figure shows the structures (in

green) at different times (linked with arrows). The view is a x–y plane. The flow and time are

going from left to right. The bottom part shows the corresponding graph with black lines for

branches and red lines for mergers and splits. In case (c), only the graph is shown.
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Case NQ
B NQ

G NQ
S NQ

M NQ
I V Q

I /V Q
T rB

M950 3148888 1805427 570440 415147 153440 2.5× 10−5 1.21

M950 time-reversed 3148888 1805427 415147 570440 153440 2.5× 10−5 0.83

M950 no shifting 3154002 1825554 554322 398813 427059 1.6× 10−4 1.25

Table 4.5: NQ
B , number of branches; NQ

G , number of graphs; NQ
M , number of mergers; NQ

S ,

number of splits; NQ
I , number of isolated structures; V Q

I /V Q
T , ratio of total volume occupied by

isolated objects and volume of all the objects; rB, ratio of direct and inverse cascade as defined

in chapter 5. Data for Qs. The results presented in previous sections correspond to case M950.

Case M950 time-reversed is case M950 with the arrow of time reversed. Case M950 no shifting is

case M950 but without shifting the structures a distance −U(y)∆ts in the streamwise direction

before computing their connections.

Case H ∆t+s NQ
B NQ

G NQ
I V Q

I /V Q
T rB Symbol

M950 1.75 0.8 3.15 1.81 0.15 2.5× 10−5 1.21 none

Ms950 3.00 0.8 1.79 0.91 0.09 4.1× 10−5 1.32 ✷

Mt950 1.75 3.8 1.38 0.82 0.21 1.07× 10−4 1.24 ×

Table 4.6: Summary of the parameters and results from case M950 and the sub-cases derived

from from it. H, thresholding parameter; ∆ts, time step between consecutive fields; NQ
B , number

of branches; NQ
G , number of graphs; NQ

I , number of isolated structures. All numbers are in

millions. V Q
I /V Q

T , ratio of total volume of isolated objects and volume of all the objects; rB ,

ratio of direct and inverse cascade as defined chapter 5. Data for Qs.

with H = 3, compared to those computed with H = 1.75. Figure 4.18(a) shows that

coarsening the time between consecutive fields does not affect the statistical trends of tall

attached branches, and its effects are only visible for detached and buffer layer branches

whose lifetimes are close to the time-resolution limit. Sizes and advection velocities are

qualitatively similar. More thresholds were tested without any remarkable change for Qs

defined within 1.25 < H < 3. A similar analysis was performed for vortex clusters with

no important differences for 0.01 < αt < 0.04.
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Figure 4.18: (a) P.d.f.s of the lifetimes of Q−s primaries as a function of the wall-normal length

of the branch, ly. Each vertical section is a p.d.f.. Contours are 40% and 80% of the maximum.

The straight dashed line is T+ = l+y . (b) Joint p.d.f.s of the logarithm of the streamwise, lx,

and wall-normal, ly, sizes of tall attached primaries. Data for ejections. The dashed straight

line is lx = 2ly. Contours are 50% and 98% of the data. (c) P.d.f.s of the minimum ( ) and

maximum ( ) heights of tall attached primary branches, as functions of the time elapsed

from their birth. Time is normalized with the lifetime of each branch, T , and ymin and ymax

with the heights, yb and yd, at its birth and death, respectively. The solid horizontal lines are

the average position of the wall. (d) P.d.f.s of the wall-normal velocity of the center of gravity

of sweeps ( ) and ejections ( ). The vertical dashed-dotted lines are vs = ±uτ . Symbols

as in table 4.6.



Chapter 5

The turbulent cascade in terms of

coherent structures *

5.1 Introduction

This last chapter is devoted to the turbulent cascade. The phenomenological expla-

nation of the transfer of energy from large to small scales was introduced in the classical

paper by Kolmogorov (1941b), but the concept of a turbulent cascade in terms of interac-

tions among eddies had been proposed earlier by Richardson (1920), and later by Obukhov

(1941). In the present chapter, we focus on the geometrical Richardson-Obukhov model

of local-in-space cascade as opposed to the Kolmogorov local-in-scale one, and occasion-

ally refer to the momentum cascade as described in Jiménez (2012). Also, it was shown

in chapter 4 that the most important structures have sizes above the Corrsin scale and,

hence, are influenced by the injection of energy from the mean shear. As a consequence,

these structures are not intended to represent the isotropic energy transfer in the sense

of Kolmogorov (1941b) but at most its first steps. There have been some attempts to

reconcile the two different views described above, and to unravel the physical mechanism

behind the cascade. In particular, it has been known for some time that the cascade is

not one-directional from large to small scales, but that there is a balance between direct

and inverse transfers. Most of the evidence for this backscatter originates from filtering

techniques in scale space (Piomelli et al., 1991; Aoyama et al., 2005). Again, the physical

details of the process remained unknown, and our goal will be to inquire whether individ-

ual structures can be observed to break or merge in ways that can be related to a cascade

*Part of the contents of this chapter have been published in the Journal of Fluid Mechanics, volume

759, pages 432–471, with Javier Jiménez as coauthor.
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process.

The chapter is organized as follows. Section 5.2 studies the statistics of the secondary

branches that were not included in the previous chapter. The definitions of a cascade of

eddies are presented in §5.3, and section 5.4 describes the evidence for direct and inverse

turbulent cascades in terms of coherent structures. Finally, the conclusions are presented

in §5.5.

5.2 Secondary branches and graphs

The discussion in the previous chapter deals mostly with primary branches. Here we

describe the behavior of the secondary branches that interact with them. The underlying

goal is to describe, if possible, the inertial cascade as a spatially localized process in which

individual eddies merge and split, as implied in the original descriptions by Richardson

(1920) and Obukhov (1941), rather than simply as the conceptual scale-by-scale model

introduced by Kolmogorov (1941b). Our tool will be the identification of such interactions

within the organization of the structures into branches and graphs.

As discussed in §4.3, graphs are collections of branches that interact with each other

at some point in their life. It is difficult to define unique descriptors for the geometry

of the graphs, which can be quite complex objects (see figure 4.5a,b), but they can be

classified in the same way as branches. For example, a graph is tall attached if that is the

case for at least one of the structures in one of its branches. For the same reasons as in

the case of structures and branches, graphs can be given a unique type. For example, a

Q2 graph is exclusively formed by Q2 structures, and there are no mixed graphs.

Throughout the chapter we will use the same cases compiled in table 4.1. Figure 5.1

shows the normalized histogram of the number of branches per graph, and gives an idea of

their complexity. The mode of the histogram is located at one branch per graph, but these

cases correspond to simple small structures that evolve without splitting or merging. On

the other hand, the tails of the histograms include large graphs with thousands of branches

which represent groups of eddies (either Qs or clusters) that merge and split often, as in

the example in figure 4.5(a).

Graphs are mostly made of primary, incoming and outgoing branches, with very few

connectors (see the classification in figure 4.6 and the discussion in §4.3). When only

incoming and outgoing branches are considered, the results obtained in previous sections

are little affected for detached and buffer-layer branches, but those for tall attached ones

change. Roughly 60-70% of the tall attached branches are secondary (either incoming or
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Figure 5.1: P.d.f.s of the number of branches per graph. Open symbols for Q−s and closed

ones for vortex clusters. Symbols as in table 4.1 with squares for case M4200. The dashed line

is proportional to N−3
b .

outgoing). Their evolutions are truncated versions of the tall attached primaries, with

lifetimes biased towards shorter values and of the order of ly/(2uτ), which is half of

that obtained for primaries. Their minimum and maximum wall distances (not shown)

behave like the ones presented for primary branches in figures 4.11(c,d,f) but only until

they interact (merge or split) with a primary. Hence, the equivalent plots for incoming

branches are similar to the first half of figures 4.11(c,d,f) from t/T = 0 (when they are

born) to t/T ≈ 0.5 (when they merge with a primary), whereas the plots for outgoing

branches resemble the second half, from t/T ≈ 0.5 (when they split from a primary) to

t/T = 1 (when they die).

5.3 Definition of a cascade of eddies

Figure 5.2 contains sketches of the two basic interactions among branches, and defines

the notation for this section. Each elementary interaction involves three objects. Two of

them, b for big and m for medium, are part of the main branch involved in the interaction,

while the third one (s for small) is the fragment being lost or gained. Thus, in the split in

figure 5.2(a), a structure of characteristic size ∆b breaks into a fragment of size ∆m, which

continues the branch, and loses a fragment of size ∆s. We will call this interaction a direct

cascade event. Similarly, in the inverse cascade event in figure 5.2(b), two structures of

sizes ∆m and ∆s merge into a single one of size ∆b. In both cases, the notation is

(b) ⇋ (s) + (m). Usually, but not always, ∆b > ∆m > ∆s. Note that the sketches in



114 5. The turbulent cascade

(a) (b)

Figure 5.2: Sketch of the process of: (a) split or direct cascade, and (b) merge or inverse

cascade. The structures labeled as b (big) and m (medium) belong to the same branch, and the

one denoted by s (small) is the fragment that has split or merged.

figure 5.2 depict the merger or split of a single structure at a given moment, but that it

is fairly common to find several mergers or splits, or a mixture of them, coinciding in a

single event.

For the purpose of characterizing interactions, we use as eddy size the length, ∆, of

the three-dimensional diagonal of its circumscribing box, which is, on average, 1.3 times

larger than its streamwise length. This choice was preferred instead of other lengths based

on the volume of the structures due to their complicated shapes (see, for example, figure

4.2). For that reason, the split of a structure in two fragments with similar characteristic

lengths as defined above do not necessarily imply similar volumes. The length ∆ can be

generalized to branches by averaging over the branch life, l = 〈∆〉B, as in §4.4. When

normalizing it with the Kolmogorov scale, we use the channel average at the height of the

center of gravity of the branch.

Also, since very few differences were found in the cascade statistics of sweeps and

ejections, they are treated together for the rest of this chapter.

5.4 Results

We analyze first the prevalence of interactions. Figure 5.3(a) shows the fraction of

primary vortex-cluster branches that split or merge at least once in their lives, as a function

of their mean diagonal length. There is a minimum size, l ≈ 30η, roughly agreeing with

the peak of the energy-dissipation spectrum at λx ≈ 40η (Jiménez, 2012), below which

branches rarely merge or split. In this range, the cascade is presumably inhibited by

viscosity, and graphs contain a single branch that evolves without splitting or merging.

On the other hand, almost all the branches larger than l ≈ 100η, most of which are tall

attached, merge or split at least once. In the transition between these two limits, the
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Figure 5.3: (a) Fraction, f , of the number of primary clusters branches that split ( ) or

merge ( ) at least once in their lives, as a function of the mean diagonal length of the branch,

l. The buffer layer branches are excluded. The vertical dashed lines are l = 30η and l = 100η.

Symbols as in table 4.1. (b) Ratio between the volume of direct and inverse cascade as a function

of the Reynolds number. ✷, Q−s; ×, vortex clusters.

direct cascade predominates, and some branches split but never merge. Similar results

are obtained for Q−s (not shown), although with less pronounced differences between the

direct and the inverse cascades. The buffer layer branches are excluded from figure 5.3(a).

They cascade very little and, when they are included in the figure, the cascading fractions

increase more slowly and the curves move to the right, reaching unity at l ≈ 180η.

Next, we characterize the part of the growth and decay of the structures that is due

to mergers and splits, which can be interpreted as a measure of the contribution of the

inverse and direct cascades to the eddy evolution. To do that, we compare the total volume

gained or lost by primary branches in their cascade interactions with the average volume

of the branch, Vb. For example, the total lost volume (direct cascade),
∑

B Vsd, is defined

as the sum of the volumes of all the fragments lost during the life of the branch, with

a similar definition for the volume gained,
∑

B Vsi. Excluding the buffer layer branches,

Q primaries with l > 100η have on average
∑

B Vsd/Vb ≈ 0.72 and
∑

B Vsi/Vb ≈ 0.50 for

case M4200. For vortex clusters, the ratios are on average 1.41 and 0.73. In both cases

mergers and splits are substantial contributors to the eddy growth and decay.

The ratio

rB =

∑
B Vsd∑
B Vsi

, (5.1)

gives an idea of which of the two cascades dominates in a given branch. Its average, 〈rB〉,
is plotted in figure 5.3(b) for different Reynolds numbers and branch types. The direct
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Figure 5.4: (a) Volume ratio between the direct and inverse cascades, as a function of the sizes

of the smallest and largest fragments in a given interaction. Data for vortex clusters in M4200.

The dashed line is ∆s = 0.4∆b. Contours are, from dark to light, 3.5, 3, 2.5, 2 and 1.2. (b) P.d.f.s

of the sizes of the fragments merged ( ) or split ( ), ∆s, for different lengths of the larger

eddy involved, ∆b/η = 0 − 200, 200 − 500, 500 − 2000. Data for vortex clusters. The vertical

dashed line is ∆s = 30η. Symbols as in table 4.1.

cascade always dominates, especially for vortex clusters, and its dominance increases

slightly with the Reynolds number. However, the imbalance is not huge, approximately

1.3 for Q−s, and 2.2 for vortex clusters, implying that the inverse cascade is not negligible,

in accordance with the backscatter observations of Piomelli et al. (1991) and others.

To understand better how this imbalance is distributed as a function of scale, we

decompose the ratio rB in terms of the size of the fragments involved, r. Figure 5.4(a)

shows the ratio r(∆s, ∆b), defined as in (5.1) but restricting the sums and the subsequent

averaging to interactions involving a smallest and largest eddy of those sizes. The figure

refers to vortex clusters in case M4200, but qualitatively similar ones are obtained for

Q−s and for vortex clusters at different Reynolds numbers.

The direct cascade always prevails, but the imbalance is strongest along a ridge ∆s ≈
0.4∆b, which corresponds to eddies splitting roughly in halves, or merging with others

of similar size. It is also strongest for small structures below ∆b ≈ 60η, which tend to

split in fragments of ∆s ≈ 20η much more frequently than they merge. This ridge can be

interpreted as the preferred locus of a predominantly direct cascade, but note again that

the imbalance for inertial structures is at most a factor of two, and that the cascade only

really becomes unidirectional when one of the fragments is small enough to be dissipated

by viscosity.

Figure 5.4(b) studies in more detail the merging or splitting process by presenting the
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p.d.f.s of the size of the smallest structure involved in an interaction for different ranges of

the size of largest one. Most of the fragments are of the order of ∆s ≈ 30η, corresponding

to viscous fragments torn from larger eddies or merging into them. However, the tails of

the p.d.f.s get longer as the largest structure gets bigger, representing inertial interactions

between eddies of comparable sizes. Further analysis of the data (not shown) confirms

this trend, and reveals that the size of the largest fragment likely to merge into, or split

from, an eddy of size ∆b is some fixed fraction of ∆b. Note that the p.d.f.s in figure

5.4(b) are almost identical for mergers and splits, and that the previous discussion applies

equally well for the direct as for the inverse cascade.

The temporal behavior of the two cascades is studied in figure 5.5. Figure 5.5(a) shows

the average time, TI , elapsed before a Q− of size ∆b splits into two similar fragments,

or a Q− of size ∆m merges with another one of similar size (in both cases defined as

|∆m−∆s| < 0.1∆m). This time may be interpreted as characterizing the inertial cascade

and it is defined as the time elapsed between the birth of a primary and its first roughly

symmetrical split or merger at sizes ∆b or ∆m respectively. In the case of several such

events in a single branch, we consider TI as the time between two consecutive inertial

interactions, with the sizes ∆b and ∆m belonging to the last one. The results show

that T+
I ≈ 0.35∆+

m,b for both merging and splitting, and a further analysis reveals that

primaries with l > 100η undergo two or three inertial events in its life, counting mergers

and splits. In general, if we count any interaction regardless of its size, the average

number of splits (or mergers) in a branch is n ≈ 10−4(l/η)2 for primaries with l > 100η

and excluding the buffer layer branches.

Figure 5.5(b) shows that mergers and splits are asymmetrically distributed during the

life of the branch. While splits happen at the end of the life, and contribute to tear the

structure apart, mergers take place at the beginning, and enhance the early stages of the

growth of the eddy. While the figure is drawn for Q−s, similar results are obtained for

vortex clusters.

Finally, the spatial organization of mergers and splits is studied in figure 5.7 by looking

at the relative position of the center of gravity of the smallest fragment with respect to the

intermediate one (see the sketch in figure 5.6). Figures 5.7(a,b) show results for Q−s. Most

of the mergers and splits take place in the streamwise direction. The structures merge

predominantly with fragments below and ahead of them, presumably because taller and

faster structures overtake smaller ones. The splits occur mostly in the tail of the structure

or in its upper-front head. Since we saw in §4.5.4 that tall attached Q−s are tilted forward

by the shear, this distribution of splits seem to reflect the occasional tearing of their heads
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Figure 5.5: (a) Average time, TI , for a Q− to merge with, or split into, two fragments of similar

size (|∆m −∆s|/∆m < 0.1), plotted against ∆m for mergers and ∆b for splits. , splitting;

, merging. The dashed-dotted line is T+
I = 0.35∆+

m,b. Data for primary branches. (b)

P.d.f.s of the time at which mergers and splits take place, normalized with the branch lifetime.

, splits, , mergers. Primary tall attached Q−s. Symbols as in table 4.1.

and tails during that process. The results for vortex clusters are not as interesting (figures

5.7c,d). Most of their interactions take place near the core of the original structure. The

reason is probably that vortex clusters are much ‘emptier’ than Q−s (see figure 4.2), and

there is enough space within them for mergers and splits to happen internally.

With respect to the nature of the participants in an interaction, tall attached structures

split 68% of the time into another tall attached structure and either a detached or a

short attached one. In 25% of the interactions, neither of the resultant structures is tall

attached, while only in 7% of the cases both of them are. Similar results are obtained for

mergers and vortex clusters at different Reynolds numbers in this respect.

Taking the evidence in this section at face value, it is difficult not to think of the

classical interpretation of the cascade by Leith (1967) or Orszag (1970), according to

which the inertial energy transfer is an entropy-driven random process in phase space,

in which energy tends to equipartition while drifting either up or down in scale (see the

discussion in Lesieur, 1991, p. 295–305). It is only when viscosity breaks the energy

conservation at the smallest scales that the energy is unidirectionally drained into heat.

However, there are two important caveats.

The first one was already mentioned in the introduction. It should be clearly under-

stood that most of the results in this section refer to the large scales in which energy

is being fed into any possible inertial cascade. This should be clear from their associ-
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Figure 5.6: Sketch of the relative position of the center of gravity of fragments merged or split

(structure s) with respect to the center of gravity of the medium eddy (structure m).
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Figure 5.7: Joint p.d.f.s of the relative wall-normal and streamwise distances of the centers

of mergers and splits (structures s) with respect to the center of the medium eddy (structure

m) normalized with the characteristic size of the latter, lm. See sketch in figure 5.6. Contours

are 20%, and 90% of the data. (a) Splits for Q−s. (b) Mergers for Q−s. (c) Splits for vortex

clusters. (d) Mergers for vortex clusters. Symbols as in table 4.1.
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ation with the tangential Reynolds stress, and from the observation in figure 4.8 that

the attached structures are larger that the Corrsin scale, and therefore directly coupled

with the mean shear. As such, although the cascade process described in this section is

probably a good description of how the momentum transfer changes scale across the log-

arithmic layer, it may not be representative of the behavior of the, presumably universal,

Kolmogorov (1941b) inertial energy cascade.

In the second place, the description of a structure gaining fragments from its front

(or back) while shedding them from the other end, could be interpreted as the definition

of a dispersive wave packet, and it was shown in §4.5.4 that the bottom part of the

attached structures is dispersive. To test whether this could be a simpler interpretation

of the ‘reversible’ cascade described here, the objects from case M2000 were recomputed

and tracked again after discarding all the planes for which y+ < 100. It follows from

figure 4.15(d) that structures above that level are mostly non-dispersive. The results in

this section were then recalculated. The new structures were indeed different from those

including the buffer layer. For example, the average structure size decreased somewhat,

reflecting the loss of connectivity through the buffer layer, but no qualitative differences

were found for the cascade statistics described here.

5.5 Conclusions

In this chapter we have studied the turbulent cascade in terms of coherent structures.

It was found that the interactions (merging and splitting) among branches constitute a

substantial part of their evolution, and could not be neglected. We have analyzed them as

indicators of a cascade of the quantities carried by the structures involved; in this case, the

wall-normal momentum transfer by the sweeps and ejections, and the enstrophy by the

vortex clusters, even if the latter quantity is not conserved as is the former. Following the

geometrical model proposed by Richardson (1920) and Obukhov (1941) in which cascading

structures are related locally in space, mergers were taken to indicate an inverse cascade,

from smaller to larger sizes, and splits to represent a direct one, from large to small. This

process does not necessarily coincide with the energy cascade proposed by Kolmogorov

(1941b), which is local in scale. The resulting picture is more complex than a simple

direct cascade of large eddies into small ones. Eddies smaller than about 30η were found

to cascade only rarely, while those larger than 100η, almost always do. In those cases, the

total volume gained and lost was found to be a substantial fraction of the total volume of

the large structures. Most branch interactions were found to be the shedding or absorption
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of Kolmogorov-scale fragments by larger structures, but more balanced splits or mergers

spanning a wide range of scales were also found to be important. Not surprisingly, mergers

are more common during the initial growth part of the evolution of the structures, while

splits predominate later in their life, but the contributions from both directions of the

cascade are surprisingly balanced. Only those involving small viscous fragments can be

described as essentially unidirectional (direct). A typical large attached eddy cascades

into comparable fragments two or three times during its life.

The location of the mergers and splits with respect to the largest eddy involved in

the interaction was also investigated. New small structures in that region are accreted

at the front of the structure, and shed from behind. This was interpreted to be the

individual-structure counterpart of the classical active-inactive organization proposed by

Townsend (1976). Large attached momentum structures, which can be roughly described

as forward-leaning, add fragments from below, probably by overtaking them, and lose

them from their upper head and their lower back, probably by shearing. Clusters, which

are more disorganized, and with an emptier interior space, tend to cascade from the inside.

These behaviors persist even when the buffer layer is discarded from the identification and

tracking of individual structures.
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Chapter 6

Conclusions and future work

In the present thesis, we have investigated the multiscale dynamics of the logarithmic

layer of wall-bounded turbulent flows in terms of three-dimensional time-resolved coherent

structures. The main contributions are a novel method to track in time coherent structures

and a new structural model of the logarithmic layer based on vortex clusters, sweeps,

ejections and streaks, which have been spatially and temporally scrutinized with a degree

of detail never achieved before.

The raw data used as starting point, presented in chapter 2, are a set of new time-

resolved DNSs of plane turbulent channels with periodic boundaries at Reτ = 932, 2009

and 4179, in moderate computational domains with streamwise and spanwise sizes of

Lx = 2πh and Lz = πh, respectively, where h is the channel half-height. New and

previous simulations were used to asses the effect of the domain size on the large scales at

all wall-normal distances. We have shown that these moderate domains are large enough

to produce one-point statistics of the velocity and pressure fluctuations identical to those

obtained in larger domains, suggesting that the infinitely long structures contained in

these smaller boxes capture most of the dynamics of the larger ones, or at least of their

interactions with scales of sizes up to O(h). This finding is of utmost importance since it

justifies the use of moderate boxes to study the dynamics of the logarithmic layer, making

the analysis feasible from a computational point of view.

Results from the highest Reynolds number case, Reτ = 4179, continue the trends

observed in previous simulations at lower Reτ , such as the growth with Reτ of the near-

wall peak of the mean-squared streamwise velocity fluctuations. It also shows an incipient

logarithmic region of the mean velocity profile with a Kármán constant κ ≈ 0.38, but no

logarithmic range was found for u′2, in contrast with the clear ones observed for w′2

and p′2. We also introduced a new DNS in a very large domain with Lx = 60πh and
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Lz = 6πh at Reτ = 547, and showed that the largest structures in a turbulent channel

attain streamwise sizes of the order of λx ≈ 100h based on the contour of the streamwise

velocity spectrum which contains roughly 80% of the streamwise turbulent kinetic energy.

In chapter 3, the quadrant analysis of the intense tangential Reynolds stress in plane

turbulent channels was generalized to three-dimensional structures (Qs), with special

emphasis on the logarithmic and outer layers. The structures were classified as outward

interactions (Q1), ejections (Q2), inward interactions (Q3), and sweeps (Q4). The results

suggest a separation of these structures into wall-attached and wall-detached families.

Wall-detached Qs are background stress fluctuations and their contributions to the

mean Reynolds stress cancel. Although they span a wide range of scales, from the Kol-

mogorov to the integral length, most of them are small and isotropically oriented, with

sizes of the order of a few Kolmogorov lengths. On the contrary, wall-attached structures

are larger and carry most of the mean stress. These structures, predominantly ejections

and sweeps, are responsible for roughly 60% of the total Reynolds stresses, but only fill 8%

of the volume of the channel at the identification threshold used. They form a family of

roughly self-similar objects with sizes ∆x ≈ 3∆y and ∆z ≈ ∆y, and become increasingly

complex away from the wall.

The self-similar relations above do not hold for very large Qs. These structures, mostly

ejections, extend into the opposite half of the channel across the central plane, and are

responsible for 60% of the total volume of the attached Q−s, and hence, of a substantial

fraction of the mean stress. Their streamwise and spanwise lengths are of the order of

20h and 2h, respectively, the same as the very-large-scale structures discussed by several

authors. They are visually composite objects, formed by the concatenation of smaller

subunits, and do not form part of the self-similar family mentioned above.

From a geometric point of view, Qs can be described as ‘sponges of flakes’, while vortex

clusters are ‘sponges of strings’, in both cases with a thickness of their shells around 10–

15 times the Kolmogorov length. Individual Qs have fractal dimensions of the order of

Df = 2, slightly fuller than the clusters, Df = 1.7, and their associated genus density, i.e.,

number of holes per unit volume, is constant when scaled in Kolmogorov units, suggesting

that large attached structures may be formed by smaller Kolmogorov objects similar to

the detached ones.

The predominant logarithmic-layer structure is a side-by-side pair (rather than trio) of

a sweep and an ejection. Most vortex clusters are associated with at least one Q2, although

the converse is not true, and the clusters do not extend as far as the Qs into the logarithmic

layer. These Q2-Q4 pairs have self-similar sizes, ∆x ≈ 4∆y and ∆z ≈ 1.5∆y, and share
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dimensions and stresses with the conjectured attached eddies of Townsend (1976). Their

constituent eddies tend to be aligned streamwise from each other, located near the side-

walls between the low- and high-velocity large-scale streaks, but that organization does

not extend far enough to explain the very large structures discussed above.

In chapter 4, a novel approach to the study of the kinematics and dynamics of tur-

bulent flows was presented. The method involves tracking in time coherent structures,

and provides all the information required to characterize eddies from birth to death. The

spatially and temporally well-resolved DNSs presented in chapter 2 were used to ana-

lyze the evolution of several millions of three-dimensional sweeps, ejections and clusters

of vortices studied in chapter 3 for instantaneous realizations. The tracking procedure

resulted in the organization of the structures in graphs, sub-organized again into primary

branches, representing each the full evolution of a single structure, and a complicated set

of secondary branches that either merge into, or split from them.

The results show that most of the eddies remain small and do not last for long times,

but that some become large, attach to the wall, and extend across the logarithmic layer.

The latter group contains the wall-attached structures discussed in chapter 3, and are

geometrically and temporally self-similar, with lifetimes proportional to their size (or dis-

tance from the wall). This was true for sweeps, ejections and vortex clusters, and it

is noteworthy that branches of sweeps and ejections were found to be essentially mir-

ror images of each other. Both have essentially identical lifetimes and sizes, and their

vertical advection velocities are antisymmetric: +uτ for the ejections, and −uτ for the

sweeps. Moreover, ejections are born near the wall and rise until they disappear near

their maximum height, and sweeps are born away from the wall and move towards it.

The symmetry found between sweeps and ejections supports the idea that they are not

independent structures, but different manifestations of larger quasi-streamwise rollers in

which they are embedded. This reinforces the results in chapter 3, where it was observed

that sweeps and ejections tend to appear in pairs.

Large wall-attached eddies were shown to have sizes above the Corrsin’ scale and their

dynamics to be controlled by the mean shear near their center of gravity. The results

suggest that they are not necessarily created near the wall, but are rather a general

consequence of the mean shear itself. On the other hand, detached structures are much

smaller than the tall attached ones and have sizes and lifetimes of the order of the local

Kolmogorov scales.

New structures form predominantly ahead or behind structures of the same kind, and

that process was found to be consistent with side-by-side pairs of sweeps and ejections
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triggering new pairs of opposite polarity. A clockwise roller would thus follow a counter-

clockwise one, and vice versa.

The streamwise advection velocity of individual structures was measured, and found

to follow the mean velocity profile, U(y). On average, ejections move slightly slower than

U(y), roughly by −1.5uτ , while sweeps move faster by the same amount. Vortex clusters

can be either faster or slower than U(y), although the latter is more probable, presumably

reflecting their preferential association with ejections. The wall-normal dependence of the

advection velocities implies that the structures are deformed enough by the mean shear

that their lifetimes are controlled by that deformation, consistently again with a model

in which tall attached eddies are created and eventually destroyed by their deformation

by the mean velocity profile.

Finally, in chapter 5, spatially localized direct and inverse cascades were respectively

associated with the processes of splitting and merging of individual structures, as in the

geometric models of Richardson (1920) or Obukhov (1941). Eddies smaller than about

30η were found to cascade only rarely, probably because they are associated with viscous

processes, while those larger than 100η, almost always do. In those cases, the total volume

gained and lost was found to be a substantial fraction of the total volume of the large

structures. It was found that the direct cascade predominates, but that both directions

are roughly comparable. Most of the merged or split fragments have sizes of the order

of a few Kolmogorov viscous units, but a substantial fraction of the growth and decay of

the larger eddies is due to a self-similar inertial process in which eddies merge and split

in fragments spanning a wide range of scales, including fragments comparable to the sizes

of the eddies themselves.

In summary, the structural model proposed for the logarithmic layer of wall-bounded

flows consist of pairs of wall-attached sweeps and ejections located side-by-side, with

self-similar sizes and lifetimes, and extending throughout the logarithmic layer. These

sweeps and ejections are embedded in longer high- and low-velocity streaks, respectively,

and are responsible for most of the wall-normal momentum transfer in the channel. The

vortex clusters are embedded within the ejections, and are a consequence of the vertical

advection of high vorticity close to the wall carried by the ejections. In this scenario, the

dynamics of the eddies are controlled by the mean shear, S, and the importance of the

wall is diminished and relegated to maintain S. Wall-attached structures are surrounded

by detached structures of little dynamical relevance, with sizes and lifetimes of the order

of the local Kolmogorov scales, and whose contribution to the mean stress cancel.

The model proposed above shares a few properties with the hairpin’s packet paradigm
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(Adrian, 2007) like being consistent with the logarithmic velocity profile and the self-

similar nature of the structures involved. Nevertheless, the results reveal crucial differ-

ences that make the two models no longer compatible. The scenario proposed here is much

more disorganized and the structures involved are complicated multiscale objects. If tall

wall-attached vortex clusters are considered to be as markers for hairpin-like structures,

most of them would be born close to the wall and rise. However, not all the attached

structures appear at the wall. Sweeps are created further away from the wall and only

later move towards it. Besides, the symmetries found between tall attached ejections

and sweeps with heights well above the buffer layer (i.e., the evolution of their maximum

and minimum wall distances, their wall-normal velocities, their grouping in pairs, their

lifetimes and sizes, etc) diminish the importance of the wall as the main source of tall

wall-attached eddies. Regarding the casual relations between hairpins and ejections, tall

attached vortex clusters do not grow in the wall-normal direction as much as the ejections

do, suggesting than the latter could not be the consequence of fluid pumped by hairpins’

packets but rather their cause. Other differences are also worth mentioning, such as that

the merging of our structures takes place mostly in the streamwise direction rather than

in the spanwise one, as conjectured for hairpins.

Future works should explore the time-resolved evolution of coherent structures in dif-

ferent turbulent flows, such as in isotropic turbulence and homogeneous shear turbulence.

The former, when compared with the present work, would pinpoint the key dynamical

differences between flows with and without mean shear, while the latter is particularly

interesting to understand shear turbulence in its purest expression, since is the most sim-

ple shear flow that allows to remove the trace of the wall. The other natural extension of

the present work is its application to the very large scale motions reported for channels

and pipes that could not be studied here at high Reynolds numbers owing to the current

state-of-the-art in computing power and storage. Besides, the tracking method proposed

may be used to analyze other flow quantities that are considered dynamically relevant

as those related to the energy transfer, for instance, the sub-grid stress. In particular,

the results presented here suggest that sweeps and ejections are just a partial manifesta-

tion of the same streamwise roller, and it would be interesting to investigate alternatives

structures that group both of them into the same coherent object.
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Flores, O & Jiménez, J 2010a Hierarchy of minimal flow units in the logarithmic

layer. Phys. Fluids 22 (7), 071704.
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Röhren. Math. Abh. Akad. Wiss Berlin 17, 17 – 98.

Haidari, A. H & Smith, C. R 1994 The generation and regeneration of single hairpin

vortices. J. Fluid Mech. 277, 135–162.



133

Head, M. R & Bandyopadhyay, P 1981 New aspects of turbulent boundary-layer

structure. J. Fluid Mech. 107, 297–338.
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Jiménez, J 2012 Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech. 44, 27–

45.
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von Kármán, T & Howarth, L 1938 On the statistical theory of isotropic turbulence.

Proc. Royal Soc. London A 164, 192 – 215.

Katul, G, Poggi, D, Cava, D & Finnigan, J 2006 The relative importance of

ejections and sweeps to momentum transfer in the atmospheric boundary layer. Bound.

Layer Met. 120 (3), 367–375.

Kawahara, G, Uhlmann, M & van Veen, L 2012 The significance of simple invariant

solutions in turbulent flows. Annu. Rev. Fluid Mech. 44 (1), 203–225.

Kim, H. T, Kline, S. J & Reynolds, W. C 1971 The production of turbulence near

a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50, 133–160.

Kim, J 1985 Turbulence structures associated with the bursting event. Phys. Fluids 28,

52–58.



135

Kim, J & Hussain, F 1993 Propagation velocity of perturbations in turbulent channel

flow. Phys. Fluids 5 (3), 695–706.

Kim, J, Moin, P & Moser, R. D 1987 Turbulence statistics in fully developed channel

flow at low Reynolds number. J. Fluid Mech 177, 133–166.

Kim, K & Adrian, R. J 1999 Very large-scale motion in the outer layer. Phys. Fluids

11 (2), 417–422.

Klewicki, J. C 2010 Reynolds number dependence, scaling, and dynamics of turbulent

boundary layers. J. Fluids Eng. Trans. ASME 132 (094001).

Kline, S. J, Reynolds, W. C, Schraub, F. A & Runstadler, P. W 1967 The

structure of turbulent boundary layers. J. Fluid Mech. 30, 741–773.

Kolmogorov, A. N 1941a On degeneration of isotropic turbulence in an incompressible

viscous liquid. In Dokl. Akad. Nauk SSSR, , vol. 31, pp. 538–540.

Kolmogorov, A. N 1941b The local structure of turbulence in incompressible viscous

fluid for very large Reynolds’ numbers. In Dokl. Akad. Nauk SSSR, , vol. 30, pp. 301–

305.

Kolmogorov, A. N 1962 A refinement of previous hypotheses concerning the local

structure of turbulence in a viscous incompressible fluid at high Reynolds number. J.

Fluid Mech. 13, 82–85.

Krogstad, P.-A, Kaspersen, J. H & Rimestad, S 1998 Convection velocities in a

turbulent boundary layer. Phys. Fluids 10 (4), 949–957.

Kuglin, C. D & Hines, D. C 1975 The phase correlation image alignment method.

Proc. IEEE Int. Conf. on Cyber. and Soc. pp. 163–165.

Lee, S.-H & Sung, H. J 2011 Very-large-scale motions in a turbulent boundary layer.

J. Fluid Mech. 673, 80–120.

LeHew, J, Guala, M & McKeon, B 2013 Time-resolved measurements of coherent

structures in the turbulent boundary layer. Experiments in Fluids 54 (4), 1–16.

Leith, C. E 1967 Diffusion approximation to inertial energy transfer in isotropic turbu-

lence. Phys. Fluids 10, 1409–1416.



136

Lele, S. K 1992 Compact finite difference schemes with spectral-like resolution. J. Com-

put. Phys. 103 (1), 16 – 42.

Lesieur, M 1991 Turbulence in fluids , 2nd edn. Springer.

Lorenz, E. N 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130 – 141.

Lozano-Durán, A & Borrell, G 2015 An efficient algorithm to compute the genus

of discrete surfaces and applications to turbulent flows. ACM. Transaction on mathe-

matical software. –, (submitted).
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