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The turbulent/non-turbulent interface is analysed in a direct numerical simulation of
a boundary layer in the Reynolds number range Reθ = 2800–6600, with emphasis on
the behaviour of the relatively large-scale fractal intermittent region. This requires
the introduction of a new definition of the distance between a point and a general
surface, which is compared with the more usual vertical distance to the top of the
layer. Interfaces are obtained by thresholding the enstrophy field and the magnitude
of the rate-of-strain tensor, and it is concluded that, while the former are physically
relevant features, the latter are not. By varying the threshold, a topological transition
is identified as the interface moves from the free stream into the turbulent core.
A vorticity scale is defined which collapses that transition for different Reynolds
numbers, roughly equivalent to the root-mean-squared vorticity at the edge of the
boundary layer. Conditionally averaged flow variables are analysed as functions
of the new distance, both within and outside the interface. It is found that the
interface contains a non-equilibrium layer whose thickness scales well with the
Taylor microscale, enveloping a self-similar layer spanning a fixed fraction of the
boundary-layer thickness. Interestingly, the straining structure of the flow is similar
in both regions. Irrotational pockets within the turbulent core are also studied. They
form a self-similar set whose size decreases with increasing depth, presumably due
to breakup by the turbulence, but the rate of viscous diffusion is independent of the
pocket size. The raw data used in the analysis are freely available from our web page
(http://torroja.dmt.upm.es).
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1. Introduction
It has been known since the early days of turbulence research that the near-wall

region of boundary layers follows the law of the wall, but that the outer region is
influenced by the interaction between turbulence and the free stream (Klebanoff 1955),
whose most obvious manifestation is the ‘wake’ component of the mean velocity
profile (Coles 1956; Jiménez et al. 2010). Early work by Corrsin (1943) revealed the
presence of a sharp but irregular boundary between turbulent and non-turbulent flow,
and the intermittent character of the flow near that boundary. It is also known that,
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although the outer part of boundary layers has some similarities to a wake (Coles
1956), intermittency does not behave identically in different flows (Gartshore 1966).
This is true even if the extent of the intermittent region, quantified by Townsend
(1948) in terms of the fraction of time during which a given point is turbulent, is
found to be similar in many flows.

Much of the research on the turbulent/non-turbulent (T/NT) interface has dealt
with the entrainment process by which the irrotational flow acquires vorticity. An
important early result was that the surface area of the T/NT interface is much larger
than its projected area in the direction normal to the wall, and that it is intensely
folded (Fiedler & Head 1966). This observation was the origin of two conjectures
summarised by Townsend (1976). The first one is that the interface itself has similar
mass transfer per unit area in all turbulent flows, and that the different entrainment
rates (stronger in jets and wakes, weaker in boundary layers and in plane mixing
layers) are due to different folding intensities. The second conjecture has to do with
the details of the entrainment mechanism. It is clear that irrotational fluid can only
acquire vorticity by viscous diffusion (Corrsin & Kistler 1955). However, if the
interface is sufficiently folded, large pockets of irrotational flow can be trapped by
large coherent structures and driven deep into the turbulent region before acquiring
vorticity. To add some nomenclature, small-scale entrainment is called nibbling, while
the process by which large blobs of irrotational fluid are swallowed by the turbulent
flow before becoming vortical is called engulfment (Mathew & Basu 2002). The
ongoing discussion on the relative importance of the two entrainment mechanisms
hinges in part on the understanding of the geometry of the T/NT interface.

It is challenging to capture this geometry in both experiments and simulations,
partly because of its complexity. The thickness of the intermittent zone is comparable
to the boundary-layer thickness, δ99 (Corrsin & Kistler 1955), while we will see that
the strong gradients present in the interface contain some of the shortest scales in the
flow. The interface inherits the fractal-like properties of the underlying turbulent flow
(Sreenivasan, Ramshankar & Meneveau 1989), and, since turbulent flows typically
contain eddies of all possible sizes between the smallest and largest scales, all of them
have to be considered when the interface geometry is studied. As a result, important
questions about entrainment in turbulent flows had to wait for the necessary data to
be available.

Some experimental techniques are able to capture the interface with considerable
detail, and the methods described in Prasad & Sreenivasan (1989) are still used today.
The properties of the flow surrounding the interface could not be measured until the
advent of particle image velocimetry (Westerweel et al. 2002) and particle tracking
velocimetry (Holzner et al. 2008). However, experiments are typically restricted to
two-dimensional sections of the flow, and the three-dimensional description of the field
requires direct numerical simulations (DNS).

Just like experiments, simulations have limitations. The range of available scales is
the most obvious, and is crucial if the scaling properties of a phenomenon are to be
studied. Direct numerical simulations at Reynolds numbers large enough to observe a
reasonable scale separation are a recent achievement. While there have been boundary-
layer simulations at moderate Reynolds numbers for some time (Jiménez et al. 2010;
Schlatter & Örlü 2010; Lee & Sung 2013), a domain size sufficiently large to obtain
a deep T/NT interface requires state-of-the-art DNS (Pirozzoli & Bernardini 2013;
Sillero, Jiménez & Moser 2013). The Reynolds numbers of these newer simulations
are comparable to those of most experiments for which the interface has been analysed
in any detail.



556 G. Borrell and J. Jiménez

These larger and more accurate representations of the flow field, and better analysis
tools, have called into question the consensus of what the dominant mechanism of
entrainment is. Dahm & Dimotakis (1987), Ferre et al. (1990), Mungal, Karasso
& Lozano (1991) and Dimotakis (2000) suggested that engulfment is the dominant
process, but later works like Mathew & Basu (2002) and Westerweel et al. (2005)
emphasise again the importance of nibbling. The dichotomy may have something to
do with the level of description desired, since it is clear that viscosity is the ultimate
mechanism for vorticity diffusion, but it is equally clear that the complex geometry
of the interface has to be taken into account in determining the rate of diffusion.

Determination of which scales are most relevant to entrainment requires the study of
the turbulent structures in the vicinity of the interface, which implies the analysis of
the properties of the flow in a reference frame linked to the interface itself. Fiedler
& Head (1966) presented results obtained from hot wires, but it was not until the
work of Bisset, Hunt & Rogers (2002), Westerweel et al. (2002), da Silva, dos Reis &
Pereira (2011) and van Reeuwijk & Holzner (2014) that conditional profiles relevant to
the scaling of the interface were shown. Bisset et al. (2002) mentioned that the T/NT
interface could contain at least two layers with possibly different scaling properties: a
turbulent region where the major exchanges between the irrotational fluid and the fully
turbulent core occur, and a thinner viscous superlayer at its outer boundary, already
conjectured by Corrsin & Kistler (1955). A similar observation was made recently by
Ishihara, Ogasawara & Hunt (2015) for a boundary layer. A recent review of the state
of the art is given in da Silva et al. (2014a).

The length scales of the interface provide information about the configuration of the
nearby eddies, and about how they are affected by the irrotational flow. We define in
this paper the T/NT interface as the region in which the properties of the flow are
neither fully turbulent nor completely irrotational, and we are interested in describing
how this transition is structured. Two important questions concern the thickness of the
transition layer, and whether it can be further subdivided into distinct sublayers. The
main candidates for the scaling of the T/NT interface are the Kolmogorov viscous
length η and the Taylor microscale λ. The thickness of the vorticity interface of a
DNS temporal jet was computed by da Silva & Taveira (2010) and found to be of
the order of the Taylor microscale, and Gampert et al. (2013) were able to scale quite
accurately with λ the average thickness of the interface of a passive scalar in a jet over
the Reynolds number range Reλ= 61–141. This would agree with the theory described
in Hunt & Durbin (1999) who, on the assumption that the interface is subject to a
relatively strong local shear, noted that eddies would be blocked and squeezed instead
of escaping to the irrotational side. Such an interface would have different dynamics
from the rest of the flow and a characteristic thickness of O(λ).

The goal of this paper is to study the properties of the T/NT interface in a
turbulent boundary layer, with emphasis on the relatively large-scale interactions
across the fractal intermittent layer, rather than on the thinner viscous superlayer.
We also analyse the consequences of the threshold used for interface detection.
New methods are developed for the geometric characterisation of surfaces of arbitrary
complexity in three-dimensional space, and for the conditional analysis of scalar fields
with respect to those surfaces. These methods are used to describe the properties of
the flow depending on its position relative to the T/NT interface, and to determine
the characteristic thickness of the interface layer. The choice of the identification
threshold is given special attention, as well as the choice of the variable being
thresholded.

The paper is organised as follows. The next section is a short description of the data
used in this research. The characteristics of the intermittent zone that are relevant to



Properties of the T/NT interface in boundary layers 557

the detection of a T/NT interface based on a vorticity isocontour are presented in § 3,
followed in § 4 by a quantitative analysis of the geometrical properties of the interface
and its dependence on the threshold. Section 5 presents the conditional analysis of the
flow using the interface as a reference frame. In particular, §§ 5.5 and 5.6 describe
the structure of the vorticity and of other velocity gradients within the T/NT interface
layer, and § 5.7 discusses the determination of its thickness. Finally, § 6 explores the
behaviour of the velocity magnitude across the interface, and § 7 concludes.

2. Description of the data
The boundary layer is simulated in a rectangular box over a no-slip smooth wall.

The spanwise boundary conditions are periodic, and inflow and outflow conditions
are imposed in the streamwise direction. A transpiration velocity in the boundary
opposite to the wall keeps the pressure gradient very close to zero. The simulation
code and its implementation are thoroughly explained in Simens et al. (2009), and the
modifications to achieve higher Reynolds numbers are presented in Borrell, Sillero &
Jiménez (2013). The axes in the streamwise, wall-normal and spanwise directions are
x, y and z respectively. The total velocity vector is u, with components along each
axis u, v and w respectively. Wall units are defined in terms of the friction velocity
uτ and of the kinematic viscosity ν, and are denoted by a ‘+’ superscript. The
brackets 〈·〉 denote the ensemble average at a given wall-normal location, and primes
denote root-mean-squared values. Both are functions of x and y, and are obtained
from field snapshots sufficiently separated in time (approximately 0.2 flow turnovers)
to discard spurious correlations between the samples. The boundary-layer thickness
is δ99, defined as the distance to the wall at which 〈u〉 is 99 % of the free-stream
velocity. The Kolmogorov length is η= (ν3/〈ε〉)1/4, where

〈ε〉 = ν[〈|∇(u− 〈u〉)|2〉] (2.1)

is the turbulent kinetic-energy pseudo-dissipation rate. A third relevant length is the
Taylor microscale

λ=
√

15νu′2

〈ε〉 , (2.2)

where u′2 = [〈|u|2〉 − |〈u〉|2]/3 is the one-component velocity fluctuation intensity
computed under the assumption of isotropy. Table 1 and figure 1 summarise the
important parameters and characteristics of the simulation, which was designed to
achieve convergence of all of the scales of the flow in the domain labelled BL,
over a range of Reynolds numbers as wide as possible. Two simulations are run
simultaneously with a synchronised time step, but the purpose of the auxiliary
simulation BLAUX is just to provide inflow boundary conditions for BL. Only data
from BL are used in this paper. A detailed discussion of the effects of the inflow and
of the evolution with x of the flow properties towards their asymptotic behaviour can
be found in Sillero et al. (2013).

Because both λ and η depend on the distance to the wall, especially in the
intermittent region, the values used below to normalise lengths are taken at y= 0.6δ99.
This is the point farthest from the wall that can be assumed to be roughly free
of intermittency corrections. We will see below that the dissipation decays in the
turbulent parts of the layer approximately as in non-intermittent internal turbulent
flows (see figure 3a), so that λ ∝ y1/2 and η ∝ y1/4 (Tennekes & Lumley 1972). As
a consequence, the reference values used below are proportional to ‘notional’ values
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FIGURE 1. (Colour online) Sketch of the simulation and the boundary conditions. The
inflow boundary conditions for BL are obtained from BLAUX , copying the plane π2 to the
first plane of BL at π ′2. The streamwise location of π2 is chosen so that the flow has
recovered from the recycling scheme (π1 is recycled to π ′1) used to start BLAUX from a
turbulent inflow condition.

Case Nx, Ny, Nz δ+99 Reλ δ99/η δ99/λ Tuτ/δ99

BLAUX 3585× 315× 2560 630–1100 — — — —
BL 15361× 535× 4096 1000–2000 75–108 242–440 14.2–21.4 11.5

TABLE 1. Summary of important parameters of the simulation. Here, Nx, Ny and Nz
are the size of the computational grid. The Taylor-microscale Reynolds number Reλ, the
Kolmogorov length η and the Taylor microscale λ are estimated at y= 0.6δ99. The running
time T is normalised with properties at the middle of the BL box.

at the edge of the layer, η(0.6δ99)/η(δ99)≈ 0.61/4 = 0.88 and λ(0.6δ99)/λ(δ99)≈ 0.77,
and the scaling properties with respect to the mid-layer values are the same as those
with respect to the boundary-layer edge.

The simulation agrees excellently with previous experiments and DNS (Sillero et al.
2013; Sillero, Jiménez & Moser 2014). The Taylor-microscale Reynolds number,
Reλ = λu′/ν ' O(100), is comparable to those of most experiments and simulations
used in the analysis of the T/NT interface in free shear flows, and higher than those
in the boundary layers previously used for that purpose. The microscale Reynolds
numbers in table 1 are evaluated at y = 0.6δ99, but they vary little in the range
y/δ99 = 0.3–0.6 and only start to decrease where the flow intermittency becomes
important. They can be taken as representative of the ‘turbulent’ Reλ near the T/NT
interface. The friction Reynolds number δ+99 ranges over a factor of two (see table 1),
allowing it to be used as a parameter in the analysis. The resulting ratio of δ99/η
ranges over a factor of 1.8, easily allowing the distinction between outer (δ99) and
viscous (η) scaling. The corresponding range of λ/η is only approximately 1.2, but is
still sufficient to distinguish between scalings with the two quantities. The averaged
properties of the data set have been accumulated over the complete history of the
simulation after discarding the initial transient. Some of the more detailed results
have been obtained from at least eight flow snapshots, sufficiently separated to ensure
statistical independence.
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3. The interface detection criterion
The first step to study the T/NT interface is to define the criterion that discriminates

between turbulent and non-turbulent flow. Unfortunately, different methods produce
different interfaces, and the criteria found in the literature are variable enough to be
difficult to compare consistently. Historically, the first interface detections were based
on a cutoff frequency for the one-point streamwise-velocity signal, in the expectation
that turbulent fluctuations could be easily distinguished by their faster time scales.
As better descriptions of the flow became available, the interface came to be defined
by an indicator function with two components: a scalar field related to the turbulent
fluctuations, and a threshold. Prasad & Sreenivasan (1989) use the concentration of a
passive scalar injected in the turbulent side, and threshold it at the least probable value
of the concentration. da Silva et al. (2011), in jets, and Bisset et al. (2002), in wakes,
use the vorticity magnitude as indicator, and a particularly low vorticity value as the
threshold. In boundary layers, Jiménez et al. (2010) also use the vorticity magnitude,
and a threshold based on a sharp jump in its probability density function (PDF) at
y = δ99. Chauhan et al. (2014) use a measure of the kinetic-energy fluctuations as
their scalar, and choose the highest threshold for which the PDF of the height of the
interface above the wall can be fitted by a Gaussian.

Our criterion is based on the magnitude of the total vorticity, ω = |ω| = |∇ ∧ u|,
which has several desirable properties as a turbulence indicator and can easily be
obtained from DNS. In the first place, the incompressible identity ∇2u = −∇ ∧ ω
implies that the characteristic turbulent dissipation of energy requires vorticity. Second,
while velocity gradients can be created by pressure fluctuations in potential flow, there
is no inviscid mechanism to create vorticity fluctuations. As a consequence, even if
vorticity is not conserved, any vorticity in the boundary layer is ultimately linked to
the wall. It should be noted that some of these desirable properties of the vorticity
magnitude do not extend to its individual components. For example, there can be
energy dissipation in the absence of one vorticity component, and any component can
easily appear or disappear by simple rotation. More significantly, although vorticity is
very approximately isotropic away from the wall (Jiménez 2013), the solenoidality of
the curl requires that the vorticity vector should be roughly parallel to any surface
across which its magnitude drops or increases sharply. The geometry of the vorticity
magnitude and of any one of its component cannot be assumed to be similar.

We thus define a point as turbulent if

ω(x, y, z, t) > ω0, (3.1)

and the T/NT interface by ω=ω0, and turn our attention to determining the threshold
ω0, either from the properties of the resulting interface or from comparisons with
previous investigations.

The simplest tool is three-dimensional visualisation, preferably of a relatively large
part of the interface. Figure 2(a,b) shows the interface in a domain whose wall-parallel
size is several boundary-layer thicknesses, for two thresholds separated by an order of
magnitude. The two panels are different. Figure 2(a) can be described as a moderately
complex envelope with scattered small regions of low vorticity within the turbulent
side, while figure 2(b) has a large number of handles and contortions which span a
significant fraction of the boundary-layer thickness.

Another useful tool is the joint PDF of the vorticity magnitude and of the vertical
distance to the wall, which is presented in figure 3(a) as a premultiplied PDF, ωΓω,y,
to account for the logarithmic scale of the vorticity. It has two well-defined regions.
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(a) (b)

FIGURE 2. (Colour online) Vorticity magnitude isosurfaces of the same region of the
present data at δ+99 ' 2000, of size 3δ99 × 2δ99 in the streamwise and spanwise directions
respectively: (a) ω+0 = 5 × 10−4 (ω∗0 = 0.022), (b) ω+0 = 5 × 10−3 (ω∗0 = 0.22). For the
definition of ω∗, see (3.4). The flow is from top left to bottom right, but note that the
spanwise and streamwise directions are barely distinguishable.

The high-vorticity near-wall points of the turbulent core of the boundary layer are
in the lower right-hand corner. Points far from the wall with very low vorticity,
representing the ideally irrotational non-turbulent free stream, are in the top-left
corner. Their residual vorticity is due to the finite accuracy of the inflow condition,
but it is approximately four orders of magnitude weaker than the turbulent values,
and easily distinguished from them. In the present data set, the details of the joint
PDF depend only weakly on the Reynolds number.

The quantity ωΓω,y was also obtained by da Silva, Taveira & Borrell (2014b) for
other external turbulent flows, showing that the intermittent region is comparable in
all the tested cases. There is always a sharp jump in vorticity, and a relatively wide
range of choices for the threshold.

On the turbulent side of the PDF, the mode of the vorticity distribution follows
closely the expected y-dependence of its root-mean-squared value, ω′, which
can be estimated from the approximate balance between the production and the
pseudo-dissipation of the turbulent kinetic energy,

νω′2 '−〈uv〉∂〈u〉
∂y
' u3

τ

κy
, (3.2)

where κ ' 0.4 is the von Kármán constant. Equation (3.2) holds above y+ ' 50
(Jiménez 2013), and provides a characteristic magnitude for the vorticity fluctuations,

〈ω+〉 ' (κy+)−1/2. (3.3)

We will use this dependence, particularised at the edge of the boundary layer, to define
dimensionless star units for the vorticity,

ω∗ =ω(δ+99)
1/2(ν/u2

τ ), (3.4)

which are linked to the interface. The usual scaling ω+=ων/u2
τ is linked to the wall.

The ratio ω∗/ω+ varies by a factor of 1.4 in our range of Reynolds numbers, and we
will see below that star units collapse most properties of the interface substantially
better than wall units.
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FIGURE 3. (Colour online) (a) Premultiplied joint PDF, ωΓω,y, of the wall-normal distance
and the vorticity magnitude. The contours contain 50 %, 90 % and 99 % of points. Two
vorticity scales are provided, wall units ω+, and the ω∗ defined in (3.4). The line
with open circles is ω+ = (y+)−1/2. The horizontal and vertical lines correspond to the
one-dimensional sections in (b,c), using the same markers. (b) Sections of ωΓω,y at four
different distances to the wall: ♦, y/δ99= 0.5;A, 0.75;C, 1;@, 1.25. (c) One-dimensional
PDF, Q(yI), of the vertical position of the interface when its average position is ♦,
〈yI〉/δ99= 1 (ω∗0 = 0.022);A, 0.9 (ω∗0 = 0.09);C, 0.8 (ω∗0 = 0.2);@, ω∗0 = 2.0. The vorticity
thresholds of the first and third curves are those of the isosurfaces in figures 2(a) and
2(b) respectively. The dashed line fitting each curve is the Gaussian distribution with the
same mean and standard deviation. (d) Intermittency factor for the four thresholds in (c).
In all cases, δ+99 ' 1500.

The definition of ω∗ can be adapted to flows other than the boundary layer
by normalising the vorticity with the root-mean-squared value of the enstrophy
fluctuations of the turbulent fluid close to the interface. We will occasionally do this
for the purpose of comparison.

There is a band connecting the turbulent and non-turbulent regions of figure 3(a)
which spans several orders of magnitude of the vorticity and extends over y/δ99 =
0.3–1.5. Four sections of the premultiplied PDF at different y are presented in
figure 3(b). The one at y = δ99 is particularly interesting, because it shows the
separation between the two regions of the flow. Its two mild peaks bracket a plateau
three orders of magnitude wide, from the expected turbulent value ω∗ ' κ−1/2 = 1.6
on the right to the free-stream residual vorticity on the left. Any vorticity within this
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plateau could, in principle, be used as a threshold for the interface, but, even with
generous safety margins at both ends, this leaves a full order of magnitude of possible
choices. This would not be a problem if thresholds within this range produced similar
results, but they do not. The two isosurfaces in figure 2 are obtained with thresholds
within the plateau. They correspond to the first and third leftmost vertical lines in
figure 3(a).

Other quantities frequently used to analyse the properties of the edge of boundary
layers can be obtained from Γω,y. The intermittency parameter

γ (y;ω0)=
∫ ∞
ω0

Γω,y dω
/∫ ∞

0
Γω,y dω (3.5)

is the probability that a point at a given distance from the wall is turbulent according
to (3.1). The sections of Γω,y at constant ω provide the marginal probability
distribution of the distance, yI , to the wall of the interface defined as a vorticity
isocontour,

Q(yI;ω0)=−∂γ /∂ω0 = Γω0,y

/∫ ∞
0
Γω0,y dy. (3.6)

It should be noted that, because of several approximations analysed in detail below,
the effective definition of the interface does not usually exactly coincide with this
vorticity isosurface. Four examples of Q(yI) and γ (y) are presented in figure 3(c,d).
The thresholds of the first three are chosen so that the average height of the T/NT
interface is 〈yI〉/δ99 = 1, 0.9 and 0.8 respectively, and are within the plateau in
figure 3(a). The first and third ones are used in figure 2. This confirms that the
threshold has an important effect on the geometry of the T/NT interface, even for
properties that are easily measurable. It should be noted that, although Q(yI) and
γ (y) are linked by the first equality in (3.6), γ is not very sensitive to the changes in
Q, and always tends to look approximately Gaussian. The fourth line in figure 3(c,d),
marked with open squares, is ω∗0 = 1.6 and corresponds to the rightmost end of the
plateau in figure 3(a). It behaves differently from the other three PDFs, and neither
Q(yI) nor γ (y) can be approximated as Gaussian. This threshold does not represent
the interface any more, and can best be understood as describing the internal structure
of the turbulent vorticity.

The mean, 〈yI〉, and standard deviation, σ(yI), of the interface height are presented
in figure 4 as functions of ω0. Three regimes can be distinguished. The first one, below
ω∗0 = 2 × 10−3, reflects the vorticity fluctuations in the free stream, and therefore is
basically a numerical artefact. In the second one, between ω∗0 = 2× 10−3 and ω∗0 = 0.1,
the average position of the interface is 〈yI〉 ' δ99, and Q(yI) is well approximated by
a normal distribution with symmetric tails (figure 3c). Above ω∗0 = 0.1, the left tail
of Q(yI) begins to penetrate the turbulent core, 〈yI〉 drops faster with the threshold,
and the standard deviation increases slightly. It should be noted that figure 4 includes
the two extreme Reynolds numbers in our simulation, which agree well except for
thresholds low enough to represent the free stream. This good collapse with the
Reynolds number suggests that the extent of the intermittent region is not expected
to change significantly with increasing δ+99.

The values of 〈yI〉 available in the literature are compiled in table 2 and marked
with their corresponding symbols in figure 4. They can be used as guides in choosing
our threshold. It should be noted that there is a fairly large spread between the
choices of Jiménez et al. (2010) and of Chauhan et al. (2014), which, if translated to
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FIGURE 4. (Colour online) The solid lines and left vertical axis are the average, 〈yI〉, of
the height of the vorticity isosurface, and the dashed lines and right vertical axis are its
standard deviation, both as functions of ω∗0 . The values of 〈yI〉 in table 2 are marked by
their corresponding symbols, with an arrow pointing to the matching ω∗0 . Lines without
symbols are δ+99 = 1100; those with symbols are δ+99 = 1900.

Case Symbol 〈yI〉/δ99 σ(yI)/δ99 ω∗0 δ+99

Jiménez et al. (2010) E 0.92 0.018 0.068 692
Eisma et al. (2015) ? 0.90 0.018 0.081 2053
Corrsin & Kistler (1955) ♦ 0.83 0.021 0.127 N/A
Kovasznay, Kibens & Blackwelder (1970) A 0.82 0.022 0.146 1237
Murlis, Tsai & Bradshaw (1982) C 0.8 0.024 0.182 1450
Klebanoff (1955) @ 0.78 0.024 0.208 N/A
Chauhan et al. (2014) B 0.71 0.026 0.311 14500

TABLE 2. Properties of Q(yI) for the different values of 〈yI〉 found in the literature. The
standard deviation σ(yI) and the threshold ω∗0 are obtained from the present data set, and
correspond to the threshold required to match 〈yI〉 for each entry.

vorticity thresholds using figure 4, would imply half an order of magnitude in ω∗0 . The
thresholds in figures 2(a) and 2(b) correspond to 〈yI〉 ≈ δ99 and 0.8δ99 respectively.

Figure 3(b) suggests that ω∗0 = 0.022, for which 〈yI〉 = δ99, should be a reasonable
threshold, since it is at this height that the vorticity PDF is widest and bimodal.
However, figure 4 and table 2 show that this threshold is an order of magnitude
lower than most values used in previous works.

The definition in Prasad & Sreenivasan (1989) can be adapted to cases without a
passive scalar, using the vorticity magnitude as a tracer (Gampert et al. 2014; da Silva
et al. 2014b). Applying this criterion to the present data would imply ω∗0 = 0.05 and
〈yI〉 = 0.95δ99, which is comparable to figure 2(a), and again lower than the values
found in the literature. On the other hand, da Silva et al. (2014b) found that ω∗=0.01,
corresponding to roughly ω/ω′ = 0.1, is a reasonable choice in jets and shear-free
turbulence, and it can be shown that there is very little difference in our case between
this choice and the value ω∗ = 0.022 suggested above. da Silva et al. (2014b) also
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FIGURE 5. Sketch of the three basic geometrical features in the vorticity isosurface:
(a) handles, (b) pockets and (c) bubbles.

include a proof that this definition is related to the one used by Watanabe et al. (2015)
to detect their irrotational boundary.

If we try to apply the criterion of Chauhan et al. (2014) to the vorticity field, we
find that Q(yI) is approximately Gaussian for ω∗0 ∈ (2× 10−3–0.1). This corresponds
to 〈yI〉/δ99 ∈ (1.1–0.9). Although the lowest end of this range agrees with the mean
interface height in Jiménez et al. (2010), it is very far from the value 〈yI〉/δ99 =
0.71 obtained by Chauhan et al. (2014). This shows that the vorticity and velocity
interfaces are different, and that the criterion in Chauhan et al. (2014) should not be
used for the vorticity.

In summary, since neither the intermittency properties of the interface nor previous
studies provide guidance on a unique vorticity threshold, we defer our decision until
we study the evolution of the interface over the rather wide range ω∗0 ∈ (0.001–10).

4. The geometry of the T/NT interface
In this section we study the geometry of the T/NT interface defined as an isosurface

separating vortical from irrotational fluid. As such, we can use its dependence on ω0
to explore the geometry of the two flow regimes as the isosurface moves from one
to the other. This will also help us to decide which threshold is best suited for each
particular purpose. For example, figure 2(a) appears to represent the free stream better,
while figure 2(b) is more representative of the interior of turbulence.

4.1. Bubbles and drops
The first step is to define the interface separating the flow into turbulent and
non-turbulent regions. This is not as straightforward as the previous section may
suggest. Figure 2(b) shows that the vorticity isocontour is not usually a singly
connected surface. Depending on the threshold, there may be a few or several
thousands of disconnected components of the isosurface, but one of them is typically
much larger than the rest and divides the computational box into two large disjoint
regions. The remaining isosurface components can be classified as envelopes of
low-vorticity bubbles within the turbulent region (figure 5c), or of high-vorticity
drops in the free stream. It will be shown in § 5 that, although there can be a
large number of bubbles, they are usually too small to contribute significantly to
most quantities related to the T/NT interface. There are generally very few drops.
In consequence, the rest of this paper defines the interface as the largest singly
connected component of the vorticity isosurface that separates ‘smoothed’ irrotational
and vortical regions from which drops and bubbles have been eliminated.

The algorithm to obtain this largest component is sketched in figure 6. We first
decompose the computational domain into computational cells (voxels). The flow
properties are defined at their vertices. We next obtain the set Ωω> of voxels for
which at least one vertex has a vorticity higher than the threshold (figure 6a).
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(a) (b) (c)

FIGURE 6. (Colour online) (a) The set Ωω> of voxels in which at least one vertex is
ω >ω0. (b) The set Ωω< of voxels where ω <ω0. (c) The set Ωi of voxels that contain
the interface, from (4.1).

This set contains the drops and the bulk of the turbulent flow. Similarly, we obtain
the set Ωω< for which at least one vertex has a vorticity lower than the threshold,
containing the bubbles and the bulk of non-turbulent flow (figure 6b). Each of these
sets has a connected component many times larger than the rest (approximately seven
orders of magnitude in our case). In the case of Ωω>, this set represents the bulk of
the turbulent flow, Ωt, while in the case of Ωω< it represents the bulk of the free
stream, Ωn. The sets of voxels containing the drops, Ωd, and the bubbles, Ωb, are
obtained by subtracting these largest components from their respective sets. Thus,
Ωd =Ωω> −Ωt and Ωb =Ωω< −Ωn. The final step is to define the set of voxels of
the cleaned T/NT interface as (figure 6c)

Ωi = (Ωt ∪Ωb)︸ ︷︷ ︸
Turbulent side

∩ (Ωn ∪Ωd)︸ ︷︷ ︸
Non-turbulent side

. (4.1)

It should be noted that the two terms of this equation are effective definitions of the
smoothed turbulent region (the bulk of the turbulent flow plus the bubbles) and the
smoothed non-turbulent region (the bulk of the non-turbulent flow plus the drops).

Drops and bubbles should not be confused with other complications of the interface,
such as the handles and overhangs or ‘pockets’ represented in figure 5(a,b). The
former complicate the topology of the flow and cannot be eliminated. The latter are
topologically neutral, but may be important from the experimental or dynamical point
of view. They hide part of the surface to some observational procedures, and may be
precursors of large-scale engulfing. At this point, the interface is still a set of voxels
that has to be converted into a surface, but this representation is sufficient for the
analysis in the next two sections.

4.2. Fractal dimension
Mandelbrot (1975) was the first to suggest that the hierarchy of turbulent eddies can
be approximated by a fractal when the Reynolds number is large enough. This was
first verified by Sreenivasan & Meneveau (1986) for the bulk of the flow, and by
Sreenivasan et al. (1989) for the T/NT interface. The latter also proposed a simple
theory to relate the two results. The fractal dimension of the vorticity isosurface
measures how contorted it is, and is a useful statistical measure of its complexity.
The most widely used definition is the box-counting Kolmogorov capacity: if Nb is
the number of boxes of size r required to cover a set Ω , such as the interface, the
fractal dimension D is defined by Nb ∝ rD.

In practice, the computation of fractal dimensions is complicated because turbulence
is only self-similar in a limited range of scales. Vorticity is smooth at scales of the
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order of the Kolmogorov microscale, and the largest eddies responsible for the energy
input are not self-similar. In cases in which an extended power law is not immediately
obvious, a reasonable redefinition of the box-counting dimension is

dimb =− lim
r→ς

log Nb

log r
, (4.2)

where ς stands for the smallest possible box size at which the data set remains
self-similar, or, in the present case, for the size of the computational voxels. This
requirement is difficult to define, and it is hard to speak of a fractal unless the
self-similar range extends over a reasonably wide range.

Sreenivasan et al. (1989) found a clear power law from two-dimensional sections
of the interface, and measured a constant dimension D away from the saturation
caused by the shortest and longest scales. They concluded that the interface is a
monofractal in that range. Moisy & Jiménez (2004) computed the fractal dimension
of three-dimensional enstrophy isosurfaces in homogeneous turbulence, using the
full three-dimensional field instead of cross-sections, and three-dimensional boxes
instead of two-dimensional ones. They found that the self-similar range observed by
Sreenivasan et al. (1989) is only an approximation, and defined a local dimensional
exponent to account for the dependence on the box size,

Db(r)=−d log Nb

d log r
. (4.3)

This definition includes the previous two. If Db(r) is constant and the T/NT interface
is a monofractal, dimb =D=Db(r).

The local exponent (4.3) of our ‘cleaned’ interface is presented in figure 7 as a
function of ω∗0 for several Reynolds numbers. Figure 7(a) plots Db for the smallest
possible value of r, and tries to approximate (4.2). Figure 7(b) plots the maximum
value Db over the whole range of r. The differences between the two figures quantify
how far from a monofractal the T/NT interface is. The good collapse of the different
Reynolds numbers when parametrised with ω∗0 should be noted. The black horizontal
bar near the peaks of both figures is the variation of ω∗/ω+ in our range of Reynolds
number. A similar bar is included in all later figures that make a Reynolds number
comparison, and measures how much the collapse of the different curves would
deteriorate if the data had been normalised with ω+0 instead of with ω∗0 .

The dependence of Db on ω∗0 confirms the visual impression from figure 2 that the
threshold has a dramatic effect on the interface. At low thresholds, the dimension
approaches the smooth limit D = 2, but, at higher ones, the T/NT interface is
significantly more convoluted. Sreenivasan et al. (1989) predicted D = 7/3 for the
T/NT interface, precisely the value observed by de Silva et al. (2013) in a more recent
experiment, which is within the range of the present results. It would correspond to
ω∗0 ' 1 in figure 7(a), and to the lowest possible dimension in figure 7(b).

Regardless of the differences in their absolute values, the two estimations of the
fractal dimension in figure 7 behave similarly with respect to ω∗0 . There is a transition
between ω∗0'0.2 and ω∗0'2, across which the geometrical complexity of the interface
increases significantly. This suggests that across this range the isosurface moves inside
the turbulent core, where it reflects the geometrical features of the turbulent vorticity
itself. It also follows from figure 4 that ω∗0 ' 0.2 corresponds to the threshold for
which the average location of the interface 〈yI〉 decreases fastest as the threshold
increases.
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FIGURE 7. (Colour online) Estimation of the box-counting fractal dimension, obtained
in (a) from the local fractal exponent in the limit of small box size, and in (b) from
the maximum of the local exponent over r. The symbols represent different values of δ+99:
E, 1100; ×, 1300;C, 1500;A, 1700; ?, 1900. The horizontal bar is the variation of ω∗/ω+
in our range of δ+99.

The decrease of the dimension beyond ω∗0 ' 2 was already observed by Moisy &
Jiménez (2004), who used thresholds equivalent to ω∗0'2–12 to study the geometry of
the volume of the vorticity in isotropic turbulence. There is no simple relation between
the fractal dimensions of a set and of its surface, but Moisy & Jiménez (2004) noted
that in the limit of very high thresholds the vorticity would be reduced to a discrete
cloud of points for which D' 0. A similar argument can be applied to the interface.

4.3. Genus
The geometric complexity of an object can also be characterised by its topological
properties. The genus g is a topological invariant of any connected orientable surface,
and measures the number of its ‘handles’ (figure 5a). A sphere has genus zero, a torus
has genus one, and two connected tori have genus two. To the best of our knowledge,
the genus was first used to characterise turbulent structures in homogeneous turbulence
by Leung, Swaminathan & Davidson (2012), who cite instances of its earlier use in
disciplines such as astrophysics. In most of those cases, the genus is obtained by
integrating the mean and Gaussian curvatures over the interface, which requires a
careful triangulation of the surface. This step is time consuming and prone to errors,
and we bypass it by computing the genus directly from the Euler characteristic χ
of the numerically defined contour. The algorithm is described in Lozano-Durán &
Borrell (2016), and is optimised to exploit discrete data in structured grids.

Briefly, any numerical isosurface in a Cartesian grid is a polyhedron of stacked
parallelepipeds. If V is the number of vertices, E is the number of edges and F is
the number of faces, its Euler characteristic is given by the Euler–Poincaré formula,

χ = V − E+ F, (4.4)

and the genus is
g= 1− χ

2
. (4.5)

The genus is a measure of complexity, like the fractal dimension, but the two are not
equivalent. A wrinkled piece of paper has genus zero, independently of the amount
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FIGURE 8. (Colour online) (a) Genus normalised with its maximum over ω0. The
horizontal bar is the variation of ω∗/ω+ in our range of δ+99. The horizontal bar is the ratio
of ω∗/ω+ over the present range of δ+99. (b) Maximum genus per cubic boundary-layer
thickness, occurring in all cases at ω∗0 ' 2. Both axes are logarithmic. The solid line
is a power law fit, max(g)/δ+99

3 ∝ δ+99
1.6. The dashed one is the Kolmogorov limit,

max(g)/δ+99
3 ∝ δ+99

9/4. The symbols represent values of δ+99, as in figure 7.

of wrinkling. A regular Brownian surface is defined as a fractal single-valued map on
the real plane. Its fractal dimension is D= 2.5, but it has no handles (Russ 1994).

As in the previous section, we compute the genus for the largest connected
component of the vorticity isosurface, which is shown in figure 8(a) normalised
by its maximum over ω0. There is a topological transition in which handles begin
to appear over roughly the same range, ω∗0 ' (0.2–2), as the growth of the fractal
dimension. Around ω∗0 ' 1, handles are the dominant feature of the surface, and
there are hundreds or thousands of them in a volume O(δ3

99). We suggested in the
discussion of the fractal dimension that the T/NT interface at these high thresholds
is basically a reflection of the internal geometry of the turbulent vorticity, and the
reasons for the decrease of the dimension beyond the end of the transition also
apply here. Some turbulent features disappear for very large thresholds, causing
the genus to decrease. The maximum genus occurs at the end of the topological
transition ω∗0 ' 2, and figure 8(b) shows that it increases with the Reynolds number
as max(g)/δ+99

3 ∝ δ+99
1.6. This exponent is somewhat lower than that for the number

of Kolmogorov-size structures per cubic integral scale δ+99
9/4, which sets an upper

bound for the scaling of the possible complexity. It is tantalisingly close to the
corresponding number of λ-sized structures, δ+99

3/2. One should note again the good
collapse provided by ω∗0 for the Reynolds number dependence of the genus.

This proliferation of handles will become important for the conditional analysis
of the flow in the next section. When the analysis of a surface with handles is
carried out using a lower-dimensional section, such as a two-dimensional plane or
a line, the results can be subject to interpretation artefacts. For example, the planar
section of a torus across its principal axis is two circles, giving the impression of
two disconnected geometrical objects. Up to a point, the same is true for pockets
such as those in figure 5(b). For example, the interface shown below in figure 12(b)
is a section of a singly connected isosurface, although it appears to contain many
unconnected irrotational bubbles within the turbulent region. Another effect of the
handles has to do with values conditioned to the direction normal to the interface.
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FIGURE 9. Sketch of (a) the vertical distance ∆v and (b) the ball distance ∆b between a
point p and a surface Ω . In the case of ∆v , the wall-normal line may intersect Ω multiple
times, but only the top intersection is kept. Here, the surface has a pocket and the line
crosses it three times. In the case of the ball distance, there is usually only one point
where the sphere centred at p with radius ∆b is tangent to Ω , marked here with a small
circle.

The usual assumption in this case is that a normal defined from high towards low
values of the vorticity points into the free stream. In a handle, or in a narrow pocket,
this is only true over distances of the order of the feature thickness, and becomes
an issue if handles and pockets are dominant. The problem is less pressing when
the threshold is chosen below ω∗0 ' 0.2, where the T/NT interface is smoother, but
figure 4 shows that a great deal of the published work uses thresholds within the
topological transition, characterised by non-trivial fractal dimensions and, presumably,
large genera.

The main conclusion from this section is that the properties of the fully turbulent
flow appear gradually in the geometry of the interface as the threshold traverses the
topological transition, and that the handles, folds and high fractal dimensions are
probably the reflection of the internal structure of the flow.

5. Conditional analysis of the vorticity field
In this section we study the properties of the vorticity field as a function of the

distance to the T/NT interface. Given the geometrical complexity of the interface, it
is to be expected that different definitions of distance produce different conditional
results. To allow us to differentiate between genuine flow properties and possible
measurement artefacts, we will pay special attention to the cases in which the results
of two alternative distance definitions are not equivalent.

We consider first the vertical distance ∆v. Given a surface Ω , ∆v is the distance
between a point p and the topmost intersection with Ω of a line normal to the
wall going through p. A sketch is given in figure 9(a), emphasising that even if the
line used to measure distance crosses the interface multiple times, only the highest
intersection is used. It should be noted that discarding the lower intersections hides
part of the complexity of the interface, and that most handles and pockets are not
captured. This criterion has been used to study the T/NT interface in boundary layers
by Chauhan et al. (2014) using normals to the wall, and in jets by Westerweel et al.
(2009) and da Silva & Taveira (2010) using normals to the symmetry plane.

Our second definition of distance is the separation between the point p and its
closest point in Ω . We will call it the ball (or minimum) distance ∆b, and it has
a simple geometrical interpretation as the radius of the sphere tangent to the interface
and centred at p. It is sketched in figure 9(b). Some properties of this distance are
particularly convenient for a conditional analysis. Regardless of the complexity of
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FIGURE 10. (a) Sketch of a simple almost horizontal surface for which ∆v ' ∆b. (b)
Example of a case in which the two distances are very different. Here, point p is very
close to the interface and ∆b'0, but lies underneath a pocket and a handle, and ∆v�∆b.

the surface, there is always a closest surface point to any point in space, and the
ball distance is always uniquely defined. If the point p is infinitesimally close to the
interface, ∆b is equivalent to the distance measured along the local normal. It also
has a relatively simple mathematical formulation, since it satisfies the Eikonal equation
|∇(∆b)|=1 with ∆b=0 at the interface. This equation has a solution regardless of the
complexity of the boundary condition, and can be integrated by several fast methods
(Jones, Baerentzen & Sramek 2006).

The relation between the two distance definitions depends on the local orientation
and complexity of the surface. Referring to figure 10(a), when the T/NT interface
is mostly horizontal, simple and smooth, the two definitions produce similar results.
When the interface is more complex or is not parallel to the wall, as in figure 10(b),
the two results are different. For example, point p in figure 10(b) is very close to the
interface in terms of ∆b, but relatively deep into the turbulent side in terms of ∆v.

Other authors have introduced alternative definitions of conditional distance. da
Silva & Pereira (2008) and Watanabe et al. (2015) use the local normal to the
interface, obtained in two and three dimensions respectively. This is similar to the ball
distance close to ∆ = 0, particularly in the three-dimensional case, but farther away
normals may intersect each other, and the two definitions are not comparable. There
have been efforts to study the conditional properties of the interface using Lagrangian
trackers in jets (Holzner et al. 2008; Taveira et al. 2013), but the trajectories soon
get complicated away from the interface, and Atkinson et al. (2014) showed that
tracking them close to the edge of the boundary layer is significantly more difficult
than in jets, where the free-stream velocity is very low.

Our algorithm to obtain the ball distance starts from the set Ωi of interface voxels
defined in (4.1). The vorticity within each voxel is approximated by a trilinear
interpolation of the values at the vertices, so that the T/NT interface is approximated
by a polyhedron of which each interface voxel contains a planar face. The interface
is approximated by the set Ωp of the points that are closest to the centre of the voxel
in each of those faces. The sets Ωi and Ωp are illustrated in figure 11.

The ball distance between p and Ω is approximated by the distance between p
and its nearest neighbour in Ωp. The nearest-neighbour search (NNS) is a common
problem in optimisation. If Np is the number of elements in the set Ωp, a fast
solution requiring O(log Np) computations was found by Arya et al. (1998). Most
data analysis packages and toolkits provide implementations of some variant of NNS,
and free libraries are available (Muja & Lowe 2014). By convention, the distance
to the interface is defined as positive or negative depending on whether the point p
has been classified as being in the turbulent or the non-turbulent region. It should
be noted that, because the distance is computed with respect to the cleaned interface
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FIGURE 11. (Colour online) (a) The set Ωi of voxels that contain the interface. (b) The
set Ωp of points used to approximate the T/NT interface.
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FIGURE 12. (Colour online) Cross-stream sections of the signed distance fields for the
lowest and highest available thresholds, and for the two definitions of distance: (a) ∆b and
ω∗0 = 0.01, (b) ∆b and ω∗0 = 0.5, (c) ∆v and ω∗0 = 0.01, (d) ∆v and ω∗0 = 0.5. All sections
correspond to the same flow field at δ+99 = 1500. The thicker solid line represents the
T/NT interface for each distance definition, and always corresponds to a single connected
surface. The isolated spots are due to three-dimensional contortions. Other contour levels
are separated by 50η for ∆b and by 100η for ∆v . Negative contours are dashed.

defined in § 4.1, turbulent and non-turbulent points refer to the smoothed flow regions.
Bubbles are counted as turbulent and drops as non-turbulent.

In our analysis, the ball distance is treated as a field and is computed for all the
collocation points in the computational grid. Assuming a total number N of grid
points, obtaining the field of ball distances requires O(N log Np) operations. For our
data, Np is of the order of 108, and N is of the order of 109 for each snapshot. The
same procedure is followed for the vertical distance ∆v, with a computational cost
of O(N).

5.1. The signed distance field
The discrete fields obtained with the minimum and vertical distances are called the
ball-distance field ∆b(x, y, z) and the vertical-distance field ∆v(x, y, z) respectively.
The symbol ∆ denotes distance regardless of the particular definition.
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The concept of a distance field is also found in Mellado, Wang & Peters (2009),
who use the length of the trajectories along lines of maximum gradient of an advected
scalar to measure the distance with respect to the interface. While their definition can
also be used regardless of the complexity of the surface, the gradient lines of the
vorticity magnitude become very contorted away from the interface on the turbulent
side, and less suitable for conditional analysis than either of the two definitions
mentioned above.

Sections of the two distance fields of the same snapshot of the flow are shown
in figure 12, each computed for two different thresholds. The isosurface ∆ = 0 is
our effective definition of the interface, but note that the two distance definitions
generate different surfaces. The first observation is that the two distances give fairly
different results on the turbulent side, particularly for the higher vorticity thresholds.
On the non-turbulent side, where the interface is more convex, the differences are
not as important. When the threshold is within the topological transition, such as
ω∗0 = 0.5 in figure 12(b,d), the contortions of the ‘ball’ interface are so intense that
there are very few points on the turbulent side for which ∆b > 100η. We emphasise
that ∆b = 0 in figure 12(b) corresponds to a single connected surface from which
bubbles have been removed, and that the apparently isolated contours within the
turbulent side are artefacts of the two-dimensional section. Comparison of the results
of the two thresholds for each distance definition shows that the vertical-distance
field in figure 12(c,d) is less sensitive to the contortions than the ball distance in
figure 12(a,b), and also less sensitive to the choice of the threshold. Because of
this, it misses most of the interface complexity and the existence of the topological
transition.

Away from the wall, the two distance definitions also behave differently. Because
of its connection with the Eikonal, the ball distance can be visualised as a wavefront
moving away from the interface at a uniform velocity. As is does, the interface
irregularities are eliminated by successive mergings of caustics, and the ∆b isosurface
becomes smoother. Roughly speaking, a ∆b isosurface only retains wavelengths larger
than O(|∆b|). The vertical distance does not share this smoothing property. Because
the ∆v isosurfaces are vertical translations of the interface, they retain its irregularities
at all distances. It should be noted also that neither distance is additive. Because a
∆ 6= 0 isosurface is not an iso-vorticity surface, even if the ∆= 0 surface is defined as
one, it is impossible to define a distance between interfaces with different thresholds
such that ∆(p→ω0)=∆(p→ω1)+∆(ω1→ω0). This will later lead to ambiguities
in the definition of the thickness of the T/NT interface layer.

The angle θ between the normal to the ∆b interface and the vertical can be
estimated by d∆v/d∆b|∆b=0 = 1/ cos θ , but there is no simple way to evaluate the
orientation of the ∆v interface in this manner.

None of the interfaces defined by the above distance criteria exactly coincide with
a vorticity isosurface. In the case of ∆b the only difference is the absence of the
bubbles and drops discarded in the smoothing step, and the deviations are relatively
minor. The vertical distance misses substantial parts of the isosurface, and may deviate
significantly from it. Figure 13(a) shows the mean positions of the two interfaces as a
function of ω∗0 , compared with the mean position of the vorticity isosurface. The mean
〈yI(∆b)〉 deviates little from the position 〈yI〉 of the vorticity isosurface (figure 4), but
〈yI(∆v)〉 remains close to the edge of the boundary layer even when the vorticity
isosurface moves closer to the wall. This is confirmed by the PDFs of the heights
of the three isosurfaces, given in figure 13(b). For low thresholds (not shown), the
PDFs of the two interfaces and of the vorticity isosurface roughly coincide, and are
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FIGURE 13. (Colour online) (a) Mean position of the T/NT interface as a function of the
vorticity threshold. No symbols, vorticity isosurface as in figure 4;A, interface defined as
∆b = 0;E, ∆v = 0. The threshold in (b) is the vertical dashed line. (b) The PDFs of the
vertical positions of the three isosurfaces for ω∗0 = 0.19. The lines are as in (a); δ+= 1500.

approximately Gaussian (Corrsin & Kistler 1955). However, for the higher threshold
in figure 13(b), yI(∆b) follows the isosurface into the turbulent core of the boundary
layer substantially better than yI(∆v). As a consequence, yI(∆b) results in a much
better representation of the intermittency parameters of the boundary layer, such as γ .
It should be noted that the vorticity threshold used in figure 13(b), ω∗0=0.19, although
relatively high, is below the topological transition, and in the range of most of the
studies collected in table 2.

5.2. Conditional analysis of distance and vorticity
The properties of the vorticity conditioned to its position with respect to the interface
can be analysed using the joint PDF of the vorticity magnitude and the distance,
Fω,∆. Figure 14 shows four examples corresponding to the thresholds and distance
definitions in figure 12. Similar PDFs were obtained by Taveira & da Silva (2014)
using ∆v in a planar jet, and by da Silva et al. (2014b) for jets, a shearless interface
and a subset of the present boundary layer. The analysis in the present paper has
been carried out for five Reynolds numbers in the range δ+99 ∈ (1100–1900), and 10
thresholds in ω∗0 ∈ (0.01–0.5), each of them computed for the two distance definitions
described above.

The joint PDF can be divided into four quadrants (figure 14b), separated by the
axes ∆= 0 and ω = ω0, marked with dashed lines in figure 14. Given that the flow
field is the same in the four figures, the differences in the joint PDF are due to the
different distance definitions and thresholds.

The first quadrant, which contains points classified as turbulent and with a relatively
high vorticity, represents the core turbulent flow. As already seen in figure 12, the
minimum and vertical distances behave similarly for low thresholds (figure 14a,c), but
very differently for thresholds within the topological transition. The field of vertical
distances depends only slightly on the threshold (figure 14c,d), but there are few
points at distances beyond ∆b = 100η for the higher threshold in figure 14(b).

The second quadrant contains different geometrical objects depending on the
distance definition. It contains bubbles for ∆b, and bubbles, handles and pockets
for ∆v. For the ball distance, the weight of the second quadrant is always small
compared with the first one, and contributes little to the averaged vorticity on the
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FIGURE 14. (Colour online) Premultiplied joint PDF of vorticity and distance, ωFω,∆.
Each panel corresponds to the thresholds, Reynolds number and distance definitions in
figure 12 ((a,b) ∆b, (c,d) ∆v , (a,c) ω∗0 = 0.01, (b,d) ω∗0 = 0.5). The contours contain 50 %,
90 % and 99 % of points.

free-stream side of the interface (figure 14a,b). This is not the case for the vertical
distance, and it is clear from figure 14(c,d) that the weight of this quadrant increases
as the interface becomes more complex at high thresholds. This quadrant, with special
reference to the properties of the pockets, will be studied in more detail in § 5.4.

The third quadrant contains points of low vorticity classified as non-turbulent. It
represents the bulk of the free stream which, in the case of ∆b, also includes the
irrotational pockets. It depends only weakly on the threshold and on the distance
definition, except for ω≈ω0.

The fourth quadrant, with ω>ω0 and negative distances, corresponds to the objects
defined in § 4.1 as drops. It is almost empty for all of the cases considered in this
study, confirming that the smoothing of the free stream described in § 4.1 does not
affect the results of the conditional analysis.

The influence of the distance definition on the joint PDF is most visible far from the
horizontal axis in the neighbourhood of ω=ω0. These are points in which the vorticity
is close to the identification isosurface, but which are incorrectly identified as being
far from the interface. The range of possible ball distances for ω' ω0 (figure 14a,b)
is very narrow, |∆b|< 100η, especially in the second quadrant, and can be interpreted
as a typical distance to the interface of the irrotational bubbles that have been labelled
as turbulent by the smoothing process. On the other hand, the vertical distances in the
same region can be as large as 250η on both sides of the interface (figure 14c,d). We
denote by ω−0 the vorticities just below the threshold. The wide ∆v tails of Fω−0 ,∆v have
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FIGURE 15. (Colour online) (a) Sketch of the discontinuity of the vertical distance at the
edge of a pocket. The hatched line marks points where ω= ω0 and ∆b = 0, but ∆v > 0.
The non-turbulent region just outside A has ∆b ' 0 but ∆v < 0. (b) Premultiplied PDF,
∆vFω−0 ,∆v , of the vertical distance of the non-turbulent points with ω∗ = 0.25–0.5, whose
vorticity is close to the threshold ω∗0 = 0.5:E (blue), δ+99= 1100; × (green), 1300;A (red),
1500; C (black), 1700; ? (magenta), 1900.

several causes, sketched in figure 15(a). On the positive side, ∆v > 0 in Q2, all of the
points represented with a hatched line in that figure are on the ω = ω0 and ∆b = 0
isosurfaces, but not on the ∆v interface, which is only the top of the overhang. Points
near the hatched line have vorticities close to ω0, but are counted as being deep within
the turbulent region by ∆v. The ∆v < 0 tail of Fω−0 ,∆v in Q3 contains points whose
vorticity is slightly below that of the threshold, but which are classified by ∆v as being
far within the irrotational region. They correspond to points such as A in figure 15(a),
where the orientation of the interface is vertical and induces a discontinuity in the
height of the ∆v interface. Such discontinuities are clearly visible in figure 12(c,d).
These tangencies are less common than the overhung surfaces, and the mass in the
negative tail of Fω−0 ,∆v is typically smaller than in the positive one, especially in the
convoluted interfaces at the higher thresholds (only 15 % as many in figure 12d).

It is clear from figure 15(a) that the negative tail of Fω−0 ,∆v contains information
about the ‘depth’ of the pockets, rather than about the thickness of the interface.
The premultiplied probability distribution ∆vFω−0 ,∆v , integrated over the band
ω ∈ (ω0/2, ω0), is presented in figure 15(b) for a relatively high threshold. It is
well approximated by a power law Fω−0 ,∆v ∝∆−1

v for ∆v . 0.2δ99. Although the reason
for this particular power is not completely clear, it suggests a regular structure for
the ∆v interface. That interface has no overhangs, and renders pockets as holes with
steep sides. If we assume that the interface is covered with pockets of size ∆, the
contribution of each hole to the PDF in figure 15(b) would be proportional to the
O(∆) length of its lip. Their number would be proportional to ∆−2 and the total lip
length would be proportional to ∆−1, as in the figure.

Even if this explanation turns out to be oversimplified, the fact that the distribution
of pocket heights satisfies a power law is consistent with a fractal interface, and
suggests that the discontinuities represent a self-similar hierarchy of overhangs. For
the threshold in figure 15(b), the self-similar range ends around ∆v ≈ 0.2δ99, and the
probability of finding pockets deeper than that limit is very low. This is approximately
three times the standard deviation of the position of the vorticity isosurface for
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FIGURE 16. (Colour online) Conditional profiles: – –@– –, ω; – –E– –, ω1; – –A– –, ω2.
The figures follow the same arrangement as in figure 12 ((a,b) ∆b, (c,d) ∆v , (a,c) ω∗0 =
0.01, (b,d) ω∗0 = 0.5). The black dashed lines correspond to the values of the threshold
(vertical) and zero distance (horizontal). The inset in each figure corresponds to the same
plot, using linear coordinates for the vorticity magnitude. The two solid lines with crosses
in (c) and (d) correspond to ω(3.1∆b) (see § 5.3.1).

this threshold (figure 4). At lower thresholds such as those in figure 14(a,c), the
self-similar range disappears, and the ‘pocket’ distribution is concentrated around
∆v = 10η.

5.3. Conditional averages

The averaged vorticity conditioned to the distance to the interface can be computed
from Fω,∆ as

ω(∆)=

∫ ∞
0
ωFω,∆ dω∫ ∞

0
Fω,∆ dω

. (5.1)

It is given by the solid lines with squares in figure 16(a–d), and is equivalent to the
conditional vorticity profiles in Westerweel et al. (2002). One should note the use of
the bar over the symbol to distinguish (5.1) from the more usual mean profile 〈ω〉 at
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a given distance from the wall, defined as

〈ω〉(y)=

∫ ∞
0
ωΓω,y dω∫ ∞

0
Γω,y dω

. (5.2)

We will use the notation ω(∆b) and ω(∆v) to distinguish between conditional profiles
obtained with each definition of distance.

The conditional vorticity in all of the panels of figure 16 increases monotonically to
its expected fully turbulent level, ω∗ =O(1), within a few Kolmogorov lengths from
the interface, except for the plateau at ∆v/η= 15–40 in figure 16(d).

The existence of a plateau or of a maximum in the conditional vorticity profile
near the T/NT interface has been mentioned in wakes (Townsend 1976; Bisset et al.
2002) and reported in jets (Westerweel et al. 2009; da Silva et al. 2011). Its presence
has sometimes been used to define the thickness of the interface layer (da Silva &
Taveira 2010), and taken as the basis for theoretical models in which the interface
is maintained by the presence of a strong localised shear (Hunt & Durbin 1999).
Similar models have been used to suggest similarities between the T/NT interface
in jets (Westerweel et al. 2009) and strong internal vortex layers in homogeneous
turbulence (Ishihara, Kaneda & Hunt 2013). Chauhan et al. (2014) report a strong
conditional vorticity peak in boundary layers, but their interface is defined in terms
of the velocity fluctuations, and we will argue below that it is probably different from
the one discussed here. Moreover, not all of these papers use the same definition
of the interface or even the same thresholded scalar. In fact, when da Silva et al.
(2014a) compiled conditional vorticity statistics for a variety of flows, the only
obvious peak was found in the early stages of the evolution of a shearless mixing
layer (da Silva & Taveira 2010). Bisset et al. (2002) also find strong-vorticity peaks
for some high-vorticity thresholds in their wake, but attribute them to the presence of
isolated vorticity patches, and discard them in favour of a lower threshold (ω∗≈ 0.1)
for which the maximum is barely noticeable. Although we will find and discuss
below comparable peaks in other variables, we note at this stage that, if the vorticity
magnitude were particularly intense close to the interface, a plateau analogous to the
one in figure 16(d) should also appear in the ω(∆b) profile in figure 16(b), but this
is not the case. An alternative explanation is that the vorticity close to the interface
is not particularly intense, but that, when the conditional profiles are obtained as a
function of ∆v at a sufficiently high threshold, some non-turbulent flow is counted
as being turbulent within the inner part of the interface, lowering the local average
vorticity (Bisset et al. 2002).

To differentiate between the two hypotheses we split the conditional profile ω(∆v)
into contributions from the high-vorticity first quadrant, Q1, and the mislabelled non-
turbulent points in Q2. Equation (5.1) is split into

ω=W1ω1 +W2ω2, (5.3)

where

ω1 =

∫ ∞
ω0

ωFω,∆ dω∫ ∞
ω0

Fω,∆ dω
, ω2 =

∫ ω0

0
ωFω,∆ dω∫ ω0

0
Fω,∆ dω

(5.4a,b)
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FIGURE 17. (Colour online) Conditional vorticity profiles for δ+99= 1900, computed as in
figure 16, as functions of the threshold:E, ω∗0 = 0.17;@, 0.29;A, 0.52; C, 0.88; (a) ∆v ,
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are the conditional averages for Q1 and Q2, and

W1 =

∫ ∞
ω0

Fω,∆ dω∫ ∞
0

Fω,∆ dω
, W2 =

∫ ω0

0
Fω,∆ dω∫ ∞

0
Fω,∆ dω

(5.5a,b)

are the corresponding weights. The profiles of ω, ω1 and ω2 are given in figure 16. In
the case of low thresholds (a,c), ω1'ω, and the contribution of the second quadrant
is small, regardless of the distance definition.

The only case in which ω1 is clearly different from the overall average is
figure 16(d), in which the contribution of the handles and pockets is significant.
In this figure, the maximum relative weight of Q2 is W2 ' W1/4 at ∆v = 20η. At
the even higher thresholds at which the interface reaches its maximum geometrical
complexity near the end of the topological transition, the weights of the two quadrants
are comparable. This has a noticeable effect on the conditional profiles, and it is clear
from figure 16(d) that the plateau is a consequence of the negative contribution from
ω2. If we consider this contribution as a spurious effect of ∆v, the ‘true’ conditional
vorticity ω1 in figure 16(d) increases monotonically near the interface. In essence, the
conditional vorticity remains constant or decreases away from the interface because
∆v misclassifies some weakly vortical pockets as part of the turbulent flow.

This effect is clearer in figure 17, which presents conditional vorticities for several
interface thresholds. Figure 17(a) is computed with ∆v, and develops a plateau and
eventually a peak as the threshold increases. As in figure 16(d), it can be shown
that this is a due to the increasingly negative contribution from the pockets as the
complexity of the interface increases. Figure 17(b) presents the same cases computed
for ∆b, and shows no trace of an interface peak.

It should be noted that the distances in figure 17(b) are much lower than in
figure 17(a), while the conditional vorticities are higher. In fact, similar conditional
vorticities are found when the horizontal axis of figure 17(a) is extended to ∆v ' 400,
carrying the plot to the neighbourhood of the wall. The plot of ω(∆v) for these
large distances is very similar to a shifted version of ω′(y) (figure 3a). The
vorticity isosurface at these high thresholds permeates the whole boundary layer,
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and occasionally comes very close to the wall. The ball distance recognises this fact
and brings the strong near-wall vorticity closer to the interface, while the vertical
distance misses that complexity.

This discussion suggests that the apparent strongly vortical interface layer observed
in some of the studies mentioned above either is an artefact of how a one-dimensional
definition of distance interacts with a fully three-dimensional geometry or is only
manifested in variables different from the vorticity magnitude. In the present case,
the above arguments show that the interface peak is due to the neglect of the effect
of irrotational pockets on the conditional quantities. We next discuss the relevance of
these pockets in the entrainment process.

5.3.1. An approximate relation between ∆v and ∆b

A property of the ball distance that can be used to approximately relate it to the
more common vertical definition ∆v is that, sufficiently close to the interface, it
corresponds to the distance along the local normal. In consequence, both definitions
are related by

lim
∆b→0

∆b/∆v = cos θ, (5.6)

where θ is the angle between the local normal and the vertical direction. Equation (5.6)
can be averaged, giving a quantitative relationship between the conditional profiles,

∆b

∆v

∼ cos θ, (5.7)

showing that conditional profiles obtained in terms of the ball distance are cos θ
narrower than those expressed in terms of the vertical distance. The profile
ω(∆b/cos θ) is represented in figure 16(c,d) as a magenta line with crosses. Whenever
ω(∆b/cos θ) ' ω(∆v), the projection of one distance onto the other is quantitatively
valid. The results suggest that the two measures are comparable if the geometry
of the interface is only moderately complex. For example, figure 16(c) shows that
the range of validity of (5.6) for low vorticity thresholds extends to a substantial
portion of the boundary-layer thickness, using cos θ = 0.32. On the other hand, when
the threshold approaches the topological transition, the two measurements are only
comparable within a region very close to the interface (figure 16d).

Although this relationship between ∆b and ∆v is only a gross approximation, it
contains information about the shape of the interface. Lower values of cos θ imply
that the interface is steeper on average, so that the local normal is less likely to be
aligned with the vertical axis. To give some perspective on the empirical 0.32 factor
mentioned above, the same result for a hemisphere yields cos θ = 0.5.

5.4. The relevance of pockets
We saw in figure 15 that pockets form a self-similar hierarchy of many different sizes,
and it has been conjectured that their formation signals the large-scale engulfment
of irrotational fluid before it is finally entrained by small-scale ‘nibbling’. Their
abundance has been used to quantify the relative importance of the two processes
(Sandham et al. 1988; Mathew & Basu 2002).

We can define pockets as regions identified by the ball distance as part of the
free stream, ∆b < 0, and by the vertical distance as turbulent, ∆v > 0. For the
purpose of this section, they include the undersides of handles as well as simple
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FIGURE 18. (Colour online) Flow within pockets of the interface at ω∗0 = 0.5: – – –,
δ+99 = 1100; ——, δ+99 = 1900. (a) Joint PDF of ∆v and ∆b within the region. The two
contours for each Reynolds number contain 60 % and 98 % of the points. (b) Average
vorticity within the pockets as a function ∆v and ∆b within the region that contains 98 %
of the points. The contours are ω∗= 0.15, 0.25, 0.35. The two red diagonals are ∆v =∆b.

folds of the interface. Figure 18(a) shows the joint PDF of the two distances in the
range corresponding to pockets. The figure is drawn for the relatively high vorticity
threshold of figure 12(b,d), guaranteeing both the presence of abundant pockets and
the possibility of observing how the vorticity diffuses into the irrotational flow. It
includes the two extreme Reynolds numbers in our simulation, allowing some scaling
comparisons. For instance, the agreement between the two profiles of 〈yI〉 suggests
that the thickness of the intermittent region is not expected to change substantially
with higher Reynolds numbers. It turns out that the size of the pockets, as measured
by the maximum ∆b, scales best in terms of the Taylor microscale, while their depth
within the layer, as measured by ∆v, scales better with the boundary-layer thickness.
The joint PDF is roughly triangular. It is bounded on the left by the trivial limit
∆b 6∆v, plotted for each Reynolds number as a thick inclined straight line, and on
the right by a roughly hyperbolic curve which can be interpreted to mean that deeper
pockets (large ∆v) tend to be smaller (small ∆b), presumably because they have been
broken down by the turbulence while being entrained.

The question of whether being entrained into a pocket also promotes the diffusion
of vorticity is tested in figure 18(b), which shows the distribution of the conditionally
averaged vorticity in the same parameter space as figure 18(a). It should be noted that
all of the vorticity levels in this figure are below the interface threshold, so that the
band of higher vorticities along the top of figure 18(b) portrays how vorticity diffuses
into the irrotational fluid. It should be noticed that the size of the pockets in this figure
is normalised with η. Comparison with figure 18(a) shows that the difference between
scaling it with η or λ is not great, but the collapse of the vorticity band at the top
of figure 18(b) is considerably better with η than with λ. Its width, approximately
5–10η, strongly suggests a viscous origin (van Reeuwijk & Holzner 2014), and it is
clear from the figure that the vorticity is correlated with the ball distance, but not with
the vertical position with respect to the interface. The only exceptions are points near
the line ∆v =∆b, where the two measures coincide.

The implication is that the fluid within pockets is sensitive to how close it is to the
interface, but not to how deep it is within the turbulent layer. If engulfment were an
important mechanism to promote the diffusion of vorticity into the irrotational fluid,
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FIGURE 19. (Colour online) Premultiplied joint PDF, ωFω,∆b , of the vorticity and ball
distance on the turbulent side of the interface for (a) a low threshold, ω∗0 = 0.01, and
(b) a moderate one at the beginning of the topological transition, ω∗0= 0.09. Two Reynolds
numbers are presented in each panel, δ+99= 1100 (—— black) and δ+99= 1900 (– – – blue).
The vertical solid line is ω∗0 . (c,d) Same as (a,b), but with the vorticity in wall units
and the distance normalised with the boundary-layer thickness. The horizontal bar is the
variation of ω∗/ω+ in our range of δ+99. The curves with markers correspond to the average
vorticity magnitudes for each Reynolds number, δ+99 = 1900 (green A) and δ+99 = 1100
(magentaE). The contours contain 50 %, 90 % and 99 % of points.

for example by preferentially straining it, one would expect some correlation between
∆v and the width of the diffusion band at the top of figure 18(b), but there is little
evidence for that. Apparently, whether the fluid is within a pocket or not is immaterial
to its behaviour, although the breakup of the deeper pockets into smaller sizes should
enhance the overall effect of viscous diffusion. We will only use ∆b from now on in
our analysis.

5.5. The interface layer

While the previous sections deal with the properties of the interface surface, it is also
interesting to characterise the properties of the interface layer, understood as the part
of the turbulent flow that is directly influenced by its proximity to the free stream. As
a first step, figure 19(a,b) reproduces the first and second (turbulent) quadrants of the
joint PDFs of the vorticity and distance in figure 14(a,b). The distance axis is now
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logarithmic, to emphasise the region close to the interface, and each panel includes
the two extreme Reynolds numbers in our data set.

Three regions can be distinguished in order of increasing distance from the interface.
The first and closest to the interface contains the strongest vorticity gradients. A
precise definition of the thickness of this layer will be given in § 5.7, but, if we
define the limit of this layer by the intersection of two straight lines tangent to
the probability isocontours near and far from the interface, its thickness is of the
order of a few Kolmogorov units for the different Reynolds numbers, suggesting a
viscous origin. However, this thickness depends on the identification threshold. It is
approximately 10η in figure 19(a) (ω∗0 = 0.01), 5η in figure 19(b) (ω∗0 = 0.09), and
almost vanishes at the beginning of the topological transition, ω∗0 = 0.2 (not shown).
In the cases in which this region can be identified in the joint PDF, its limit is ω∗≈ 1,
which we have seen above to be the level of fully developed turbulence.

The viscosity-dominated region just outside the interface has been recently studied
by van Reeuwijk & Holzner (2014) and Taveira & da Silva (2014) in temporally
evolving turbulence fronts. They identify it with the ‘superlayer’ conjectured by
Corrsin & Kistler (1955), and find that its characteristic thickness is the Kolmogorov
microscale computed with the energy dissipation rate of the core flow. The enstrophy
level in this viscous layer depends somewhat on the definition, but is typically very
low. The viscous region in figure 19 is probably not the superlayer, whose observation
requires a higher numerical resolution and a quieter free stream than those in our
simulation (van Reeuwijk & Holzner 2014). We will see below that both the rate
of strain and the vortex stretching remain high in the viscous layer of figure 19,
and that this region is probably best interpreted as part of the ‘buffer layer’ defined
by van Reeuwijk & Holzner (2014) in the range ω∗ ∈ (0.1–1). In analogy to the
similarly named layer in wall-bounded turbulence, both nonlinear and viscous effects
are important in this region. It is interesting that such a hybrid mechanism was
proposed by Townsend (1976), who noted that viscous diffusion of vorticity and its
tangential transport should be comparable near the interface. On the assumption of
homogeneity, the magnitude of the rate of strain is proportional to the enstrophy, and
the predicted result of this mechanism is also a thickness of O(η).

The region beyond the buffer interface layer is self-similar, in the sense that both the
conditionally averaged vorticity and the probability isocontours follow power laws in
∆b. This implies that there is no intrinsic length or vorticity scale, which is consistent
with the intuitive idea of an inertial layer but difficult to interpret dynamically. In the
first place, different parts of the PDF scale differently. The strong-vorticity isocontours
to the right of figure 19(a) are almost vertical (ω ∝ ∆0

b), but those corresponding
to weak vorticity on the left of the figure follow ω ∝∆1

b, and the conditional mean
enstrophy approximately satisfies ω ∝∆1/2

b . In the second place, these slopes change
with the detection threshold, and it is hard to distinguish any power law in figure 19(b)
or at higher thresholds. We mentioned with regard to (3.2)–(3.3) that 〈ω〉 ∝ y−1/2

is a consequence of the local energy equilibrium and the logarithmic profile in the
logarithmic layer, but the same argument cannot be used here. The interface is not
an impermeable boundary that limits the size of eddies as the wall does, although
it could be argued that the size of the eddies defines the position of the interface.
The trend in figure 19(a), that larger eddies have more intense vorticity, is contrary
to the inertial relation of homogeneous turbulence, ω∝∆−2/3 (Kolmogorov 1941), and
the most plausible explanation is that larger eddies reach closer to the wall and are
therefore stronger. The apparent self-similarity in figure 19 may be coincidental.
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The width of this intermediate region depends on the identification threshold, but
scales with the boundary-layer thickness. It extends to the hockey stick at the top
of the PDFs, which contains the points with the highest vorticity and farthest from
the interface. This last region is mostly formed by points near the wall. When ω is
scaled in wall units and ∆b is normalised with the boundary-layer thickness, as in
figure 19(c,d), the two Reynolds numbers collapse well for long distances and high
vorticities. At the two Reynolds numbers in figure 19, δ99/η≈ 250 and 450.

5.6. Other velocity gradients
In the previous sections, we have discussed the properties of the vorticity field near
a vorticity isosurface, and it is perhaps not surprising that they may be special.
For example, an interesting question is whether the vorticity within the interface
layer has different properties from the core of the turbulent flow, such as perhaps
being weaker because it is less strained, but such questions are hard to answer if
the interface is defined by the magnitude of the vorticity itself. It is useful for that
purpose to determine the conditional properties of other quantities besides the one
being thresholded. In this section we study the properties of the strain-rate tensor
S in the neighbourhood of the vorticity interface, as well as the behaviour of the
vorticity in the neighbourhood of an interface defined in terms of the strain. We
define S as the Euclidean norm of the rate-of-strain tensor, S = ‖S‖. In analogy to
(3.4), and taking into account that

〈ω2〉 = 2〈S2〉 (5.8)

in homogeneous flows, the star units for S are defined as

S∗ = S
ν
√

2δ+99

u2
τ

. (5.9)

Equation (5.8) then becomes 〈ω2〉∗= 〈S2〉∗, and suggests that ω∗ and S∗ should be of
the same order. The joint PDFs of S and y, and of ω and y, are presented in figure 20.

Both PDFs agree within the turbulent region in the right-lower corner of figure 20,
supporting the normalisation (5.9), but the vorticity in the free stream on the left-hand
side of the figure is almost two orders of magnitude lower than the rate of strain.
This is not unexpected in a nominally irrotational part of the flow but, since (5.8) is a
kinematic relation whose only condition is spacial homogeneity, the mismatch between
the two magnitudes implies that the strain in the free stream is an inhomogeneous
residual effect of the vortical flow within the boundary layer.

Any solenoidal velocity field can be written as

u=∇ ∧B+∇φ, (5.10)

where the potentials satisfy ∇2φ = 0 and ∇2B = −ω (Batchelor 1967). In the
irrotational free stream, both potentials satisfy Laplace’s equation and, if they are
expanded in terms of wall-parallel Fourier harmonics, decay away from the wall as
exp(−ky), where k2 = k2

x + k2
z is the magnitude of the wall-parallel wavevector. All

of the velocity components and the rate-of-strain tensor decay exponentially at the
same rate, and the slowest decay corresponds to the largest horizontal wavelengths.
It is known that this results in an algebraic decay of the velocity fluctuations for
y� δ99, because different distances are dominated by different wavenumbers in the
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FIGURE 20. (Colour online) Premultiplied joint PDFs: —— (black), SΓy,S; – – – (blue),
ωΓy,ω. The contours contain 50 %, 90 % and 99 % of points. The dashed diagonal is
the exponential decay of the Fourier modes of irrotational strain with a wall-parallel
wavelength 2δ99.

long-wavelength end of the spectrum (Phillips 1955; Stewart 1956), but the near
field is controlled by the peak of the v spectrum in the turbulent region. The thick
dashed diagonal in figure 20 is S ∝ exp(−πy/δ99), corresponding to the decay of
irrotational velocity fluctuations due to structures within the boundary layer whose
shortest dimension is O(2δ99). This is the order of magnitude of the largest structures
in boundary layers (Sillero et al. 2014).

The vorticity is unrelated to the velocity potentials, and decays much faster than the
rate of strain as it enters the free stream. In fact, this was one of the reasons why we
originally chose vorticity over other quantities to characterise the T/NT interface.

It should be noted that the vorticity also decays exponentially with y in the free
stream, although at a much lower absolute level than S. This is not a kinematic
result, but a consequence of the numerical inflow conditions, which determine the
three velocities at the inflow but not their derivatives with respect to x. The result
is that there is a residual vorticity in the free stream due to terms like ∂xv, which
inherits the exponential decay of the velocity potentials at the inflow plane.

A consequence of the relatively high strain levels in the free stream is that the
separation between its characteristic values on the turbulent and non-turbulent sides
is not as clear-cut as in the case of the vorticity. Even so, the complexity transition
happens at comparable thresholds. The geometrical properties of the strain interface
are presented in figure 21. The fractal dimension in figure 21(a) should be compared
with figure 7(b) for the vorticity interface. The strain isosurface is smoother, with
minimum values close to the non-fractal value, D ≈ 2. The maximum dimension is
also somewhat lower than for the vorticity, in agreement with the observation by
Moisy & Jiménez (2004) that strong dissipation structures are less fractal (plate-like)
than those of vorticity (string-like). The evolution of the genus in figure 21(b) is
also similar to the case of the vorticity, although the maximum genus and fractal
dimension are reached for slightly higher thresholds, S∗0 ≈ 2.5 instead of ω∗0 ≈ 1.5.
The topological transition is also narrower for the strain interface, especially for the
genus in figure 21(b), which starts to increase at S∗0 ≈ 1 instead of at ω∗0 ≈ 0.3, as
it did in figure 8(a). The reason is probably that, while the maximum dimension
and genus mark the threshold for which the interface has fully moved into the core
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FIGURE 21. (Colour online) (a) Fractal dimension and (b) genus of an interface defined
by thresholding the norm of the strain-rate tensor: E, δ+99 = 1100; ×, 1300; C, 1500;
A, 1700; ?, 1900. The horizontal bar is the variation of ω∗/ω+ in our range of δ+99.

turbulent flow, the slower decay of the strain fluctuations with y means that low-strain
isosurfaces are farther from the wall than for similar enstrophy thresholds, and the
corresponding interface becomes regular much faster.

The evolutions of the conditional statistics of the flow across the vorticity and
strain isosurfaces are compared in figure 22. The two thresholds chosen are S∗0 = 0.1
and ω∗0 = 0.01, both of which are within the plateau that separates the values of
turbulent and non-turbulent flow in their joint PDFs, and well below the beginning of
the respective topological transitions. The average height of the resulting interfaces
is 〈yI〉 ≈ 1 in both cases. Figure 22 shows the conditionally averaged enstrophy and
strain for each of the two interfaces. They are plotted as functions of the respective
ball distances, which are denoted by ∆ω

b and ∆S
b respectively.

The interesting question to be answered is whether the sharp vorticity gradient
across the vorticity interface is a statistical artefact of the thresholding procedure or
a true physical effect. The former is a possibility, because enstrophy is fixed at the
interface, and moving slightly away from the geometrically complex isosurface could
sample flow regions that are unrelated to it and representative of the bulk of the
turbulent and irrotational regions. In a related example, Chauhan et al. (2014) find a
sharp velocity jump across an interface defined in terms of the velocity magnitude,
raising similar questions. In both cases, the sharp jump at the interface is what makes
the criterion useful, and the reason why an interface can be defined at all (Corrsin &
Kistler 1955). The lines without symbols in figure 22 refer to the vorticity interface.
Within ∆b = O(10η) of ∆ω

b = 0 the conditional vorticity (dashed) drops by three
orders of magnitude, and a similarly sharp gradient is seen for the conditional strain
(solid).

The behaviour is different for the strain interface, represented by the lines with
circles in figure 22, whose vorticity and strain cross the level ∆S

b = 0 relatively
smoothly. The difference between the two behaviours strongly suggests that while a
sharp vorticity jump is a dynamically significant feature separating distinct regions of
the flow, that of the strain is not.

We are now ready to define a ‘natural’ interface as an enstrophy isosurface below
the topological transition, such as ω∗0 ≈ 0.01. This threshold is somewhat lower than
most of those compiled in table 2, with the result that the turbulent region contains
part of the buffer and viscous superlayers defined by van Reeuwijk & Holzner (2014).
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FIGURE 22. (Colour online) Conditional mean profiles of the vorticity and rate of strain,
as functions of the distance ∆ω

b to the ω∗0= 0.01 interface or of the distance ∆S
b to S∗0= 0.1

for δ+99 = 1900: ——, S; – – –, ω. Lines without symbols are with respect to ∆ω
b . Those

with symbols are with respect to ∆S
b.

The structure of the flow with respect to this interface is displayed in figure 23. The
joint PDFs of the vorticity and rate of strain with ∆b are shown in figure 23(a). The
sharp decay of the vorticity below ω∗ ≈ 1 is clearly visible, spanning a thickness of
approximately 20η. The strain decays slowly as it gets closer to the interface and far
from the wall, but shows no special behaviour within the buffer region. The vorticity
in the buffer layer lives in essentially the same straining environment as in the core
turbulent flow.

This is seen more clearly in figure 23(b), which shows the PDF of the vortex-
stretching component of the strain, ωSω/ω2. The positive (stretching) and negative
(compression) PDFs are plotted separately to allow a logarithmic representation. Both
decay slowly and apparently self-similarly as they approach the interface, but do not
change appreciably as they enter the buffer layer. The different rates of decay of the
vorticity and the strain rate was also mentioned by Holzner et al. (2007). Figure 23(c)
shows the same result in the form of one-dimensional PDFs of the vortex-stretching
term at two distances from the interface, one within the buffer region and another
one in the core of the flow. The normalisation with S absorbs most of the differences
between the two levels. An even more detailed comparison is figure 23(d), which
shows the PDFs of the individual eigenvalues of the rate-of-strain tensor. The PDFs at
the two distances also collapse well. In both cases, the implication is that the straining
environment within the buffer layer is essentially the same as in the core of the flow.
Enstrophy is viscously diffused into the free stream, but it keeps being stretched as it
does, in agreement with the model proposed in Townsend (1976). It should be noted
that the magnitude of the vorticity within this inhomogeneous region is of the order of
the isosurfaces that were shown in § 4 to be within the topological transition, and that
the geometry of the flow in this layer is therefore intermediate between the irrotational
free stream and the turbulent core, but much more complex than the former.

Other authors have explored higher-order quantities close to the interface, such
as the invariants of the velocity gradient tensor (da Silva & Pereira 2008), and the
different terms of the vorticity equation (Holzner et al. 2007, 2008). The study of
these quantities for the present boundary layer is unfortunately beyond the scope
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FIGURE 23. (Colour online) (a) Premultiplied joint PDFs at δ+99 = 1900, with respect to
the interface ω∗0 = 0.01: – – – (blue), ωFω,∆b ; —— (black), SFS,∆b . Symbols:E, ω∗;u, S

∗
.

The vertical line is ω∗= S∗= 1. (b) Premultiplied joint PDF of ∆b and – – – (blue), vortex
stretching; —— (black), vortex compression. The two horizontal lines ——, ∆b = 100η;
– – –, ∆b = 7η are used in (c,d). The three contours in (a,b) contain 50 %, 90 % and
99 % of points. (c) Premultiplied PDF ofA, normalised vortex stretching;@, compression.
(d) Premultiplied PDFs of the absolute values of the normalised individual eigenvalues
of the rate-of-strain tensor: ♦, most positive; C, most negative; A, positive intermediate;
@, negative intermediate. The abscissae in (c,d) are normalised with S. In both cases, the
PDFs are compiled at – – –, ∆b = 7η; ——, ∆b = 100η.

of this study, but our data are openly accessible from our web site, and interested
researchers are encouraged to use them to test their ideas.

5.7. The thickness of the interface layer
We have normalised our lengths up to now in terms of η, λ or δ99, according to
which of these scales appears to collapse better the different Reynolds numbers in
each particular figure, or arbitrarily in figures involving a single Reynolds number.
We saw in the introduction that the thickness of the T/NT interface layer has been the
subject of much discussion, and we mentioned that comparisons are difficult because
of the variety of definitions used by investigators. In general, there is some consensus
that the properties of the flow change across the interface over distances of the order
of the Taylor microscale, even if the narrow range of Reynolds numbers makes the
scaling ambiguous in some cases. However, Gampert et al. (2013) showed that the
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thickness of the mixing interface of a passive scalar in a jet scales with λ over a
range of Reλ somewhat wider than ours. This result is surprising to us, because there
are relatively few examples in which the Taylor microscale appears in fully developed
turbulence (see, however, the correlation length along the strong vortices of isotropic
turbulence in Jiménez & Wray 1998). However, the T/NT interface is not fully
developed turbulence, and Hunt & Durbin (1999) and Hunt, Eames & Westerweel
(2006) have given theoretical arguments as to why the thickness of strong vortex
layers within a turbulent flow should scale with λ. They propose that the interface
is one such layer (see also Eisma et al. 2015). Here, we examine the scaling of
the thickness of our interface, defined as a layer in which the enstrophy and rate
of strain do not satisfy the homogeneity constraints. We will find that the thickness
scales with the Taylor microscale, but it is unclear whether the reasons are those in
Hunt & Durbin (1999). They argue that strong shear layers are only subject to the
rate of strain of the largest turbulent scales because the smaller ones are excluded by
the shear, and that their thickness is controlled by viscosity. The question of whether
there is an effectively high shear at the interface will be discussed in the next section,
but we have seen above that the rate of strain and the stretching eigenvalues within
the interface layer are similar to those in the bulk of the flow, which would imply
viscous lengths of the order of η in an equilibrium flow. We also saw that the
geometry of the vorticity within this layer is complex, and not immediately consistent
with an equilibrium viscous process. Our interface layer is probably not the same
one as analysed by Hunt & Durbin (1999). Other dynamical models reach different
conclusions about the scaling of the thickness of the interface layer starting from
different assumptions. For example, Teixeira & da Silva (2012) show that the initial
decay of a shear-free synthetic turbulent interface should have thickness of order η.

Since we have defined the interface by the difference between the conditional
vorticity and the rate of strain, the ratio $ = ω∗/S∗ is a useful indicator of its
location. It is shown in figure 24(a) for three different thresholds. Because the
geometry of the interface changes with ω∗0 , the indicator also changes, but it always
undergoes a smooth change between $ ≈ 1 in the turbulent core and $ � 1 in the
free stream. It is interesting that the limit at the turbulent end is $ = 0.9 rather
than the homogeneous result $ = 1, but conditional and volume averages are not
equivalent, and the observed ratio is robust across thresholds and Reynolds number.
The ratio eventually climbs to approximately unity at distances from the interface of
the order of δ99, probably because far from the interface the ∆b isosurfaces become
approximately flat, and ω≈ 〈ω〉. The mean enstrophy and dissipation agree very well
at all of the wall distances within the boundary layer (Sillero et al. 2013).

Our definition of thickness is sketched in figure 24(b) as the distance ∆ω between
the intersections with $ = 0 and $ = 1 of a tangent drawn through the steepest point
of the indicator. Because ∆b is only defined with respect to a particular isosurface
and is not an additive property (see § 5.1), any definition of thickness depends on the
detection threshold, but ∆ω scales well the whole indicator profile for a given ω∗0 , as
a function of the Reynolds number. The ratio of ∆ω(δ99) to its value at δ+99 = 1100
is shown in figure 24(c). It should be noted that the Reynolds number dependence
is the same for the three thresholds in the figure, even if the thickness at the highest
threshold is approximately 1.5 times narrower than at the lowest one (not shown). The
figure also includes the Reynolds number dependence of the three candidate length
scales, and it is clear that the Taylor microscale is the best match.

The scaling with λ extends to the conditional profiles of ω and S, shown in
figure 24(d) for our two extreme Reynolds numbers. This figure also displays the
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FIGURE 24. (Colour online) (a) Ratio of the conditional vorticity and rate-of-strain
magnitude as a function of the ball distance to the vorticity interface, normalised with
the Taylor microscale at y/δ99 = 0.6: E, ω∗0 = 0.01; C, 0.02; A, 0.04. (b) Sketch of the
definition of the interface vorticity thickness, ∆ω. For other symbols, see text. (c) Length
scales as functions of δ+99, normalised with respect to δ+99 = 1100. The lines with symbols
are ∆ω for interface thresholds as in (a). The lines without symbols are flow length scales:
– - – - –, η; ——, λ; – – –, δ99. (d) Conditional profiles of ——, ω; – – –, S; for ω∗0 = 0.01
and the two extreme Reynolds numbers. Open symbols are for δ+99= 1100 and closed ones
are for δ+99= 1900:E, ∆out in (b);A, ∆in;C, position ∆u of the maximum gradient of the
velocity magnitude in figure 25(b).

inner and outer limits of the vorticity interface layer, defined as in figure 24(b). They
span a thickness ∆ω ≈ 0.66λ for this particular ω∗0 . The peak of the velocity gradient
interface discussed in the next section is included in figure 24(d) for reference. It is
always deeper into the turbulent region than the vorticity interface.

6. The velocity interface
A model that has been extensively discussed in the literature is that the T/NT

interface layer is an active region whose dynamics is dominated by a strong localised
shear (Hunt & Durbin 1999). We have already mentioned that peaks in the vorticity
magnitude have been sought with uncertain success, but the two issues are different.
Roughly speaking, the vorticity magnitude describes ‘how many’ vortices there are,
while a localised shear measures how they are oriented. We have already seen that
the vorticity magnitude changes rapidly near the interface, and it follows from the
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FIGURE 25. (Colour online) (a) Conditional profile of the norm of the velocity, |u|, with
respect to the ball distance ∆b. Vorticity interface ω∗0 = 0.01. (b) Conditional velocity
gradient, d|u|/d∆b, forE, δ+99 = 1100; ×, 1300; C, 1500;A, 1700; ?, 1900.

solenoidality of the vorticity field that the vortex lines at the edge of the potential
region have to be roughly parallel to the interface. That, by itself, should lead to a
reinforcement of the tangential versus the normal vorticity component at the interface,
but whether the vortices organise themselves parallel to each other to produce a net
velocity gradient depends on the details of the vorticity dynamics. At the moment,
this can only be answered empirically, although linearised analysis suggests that they
should (Hunt et al. 2006). The experimental test is complicated by the tendency
of different groups to define the interface by thresholding different quantities. For
example, there is clear evidence of a strong interfacial shear (∂u/∂y) in Chauhan
et al. (2014), but their interface is defined by thresholding u, and their velocity
discontinuity is probably a similar phenomenon to the vorticity discontinuity found
in the previous sections when thresholding the vorticity. In fact, a joint PDF of the
enstrophy and the kinetic energy (not shown) shows fairly wide distributions of each
quantity along isosurfaces of the other. For example, the vorticity magnitude over
the isosurface of the kinetic energy equivalent to that used by Chauhan et al. (2014)
ranges from ω∗ < 0.01 to ω∗ > 1. The two interface definitions are probably very
different in detail.

It has been known for some time that the mean streamwise velocities within the
vortical and potential regions of free shear layers (Wygnanski & Fiedler 1970) and
boundary layers (Jiménez et al. 2010) are different. Westerweel et al. (2009) made
a detailed analysis of the interface of a jet, and found that ωz is restricted to the
turbulent region (defined using the distance ∆v), with a mild peak of the order of 20 %
at the interface. They discuss this peak as a possible surrogate for interfacial shear.
They also find a discontinuity in the streamwise velocity, but the limited resolution of
their experimental method spreads it over a fairly wide layer.

To test this matter on the present data, whose Reynolds number is substantially
higher than in Jiménez et al. (2010) or Westerweel et al. (2009), we compute the
conditional velocity norm and its gradient with respect to the distance to a vorticity
interface, for a threshold below the topological transition. We first compute the joint
PDF and the conditional profile of the velocity magnitude |u| with respect to ∆b, and
then compute the gradient d|u|/d∆b.

These profiles are presented in figure 25 for a range of Reynolds numbers,
and agree reasonably well with the results of Westerweel et al. (2009) in a jet.



Properties of the T/NT interface in boundary layers 591

The gradient of the velocity magnitude is restricted to the turbulent side, and there
is a mild peak near the interface. The scalings used in this figure are those found
to work best for these quantities. The scaling of the distance with λ agrees with the
results in the previous section, but the scaling of the velocity is different from those
found up to now. Scaling the velocity gradient in star units and lengths with λ would
correspond to a velocity scale uτ , but the collapse of the different Reynolds numbers
in figure 25 requires an extra factor δ+99

1/4, which implies that the velocity differences
across the interface are proportional to the Kolmogorov velocity (νε)1/4. Since this is
the velocity usually associated with length scales of the order of η, its presence in
this context is difficult to explain, but the scaling is clear. Omitting the δ+99

1/4 factor
in figure 25(b) would spread the height of the peaks over a factor of 1.2, which is
comparable to the amplitude of the peak itself.

It should be noted that the mean gradient in figure 25(b), (d|u|/d∆b)
∗ ≈ 0.4, is of

the same order of magnitude as the characteristic vorticity magnitude in this region
(ω∗ ≈ 1), implying a substantial alignment of the vortices. It should be noted also
that it is unclear whether this gradient represents a shear layer at the interface. That
would imply a normal jump of the tangential velocity, but it is difficult to define either
normals or tangents to a fractal surface. The interface used here corresponds to the
one in figure 12(a), and the range of distances on the turbulent side of figure 25(b)
is comparable to the first band of contours in figure 12(a). The conditional shear
profile in figure 25(b) is obtained numerically by differentiating the velocity profile
in figure 25(a). This amplifies the small error produced when the conditional average
is computed very near ∆= 0, causing the small kink in the shear profile.

Although we have mentioned that the measured thicknesses in different experiments
can only be used as rough estimations, because of the variety of definitions and flows,
some comparisons may be useful. The present results are that the thickness of the
vorticity interface at ω∗0 = 0.01 is ∆ω/λ = 0.68 ± 0.01 (0.48 ± 0.02 at ω∗0 = 0.04),
where the uncertainties refer to the variation over the range of Reynolds numbers
Reλ ∈ (75–108). The thickness defined by the position of the maximum of the velocity
gradient in figure 25(b) is ∆u/λ= 1.16± 0.07 for ω∗0 = 0.01, and 0.73± 0.02 at ω∗0 =
0.04. Gampert et al. (2013) estimate ∆/λ = 2.9 ± 0.2 for the interface of a passive
scalar in a round jet with Reλ ∈ (61–140), using ∆v corrected for the orientation of the
interface in two-dimensional sections. Westerweel et al. (2009) cite a thickness of the
order of λ for a circular jet at Reλ≈ 60, without scaling information, and da Silva &
Taveira (2010) find ∆/λ=0.73±0.34 for the vorticity interface of temporally growing
planar jets with Reλ∈ (60–160), with a clear growing trend from ∆/λ=0.54 to 1.34 in
that range of Reynolds numbers. Since their vorticity profiles contain interface peaks
such as those of the higher thresholds in figure 17(a), and these peaks are used to
determine the thickness, their results are difficult to compare with ours. The same
authors also find substantially thinner interface layers for the shearless contact of two
different turbulent intensities. In summary, all that can be said is that the interface
thickness depends on the measurement technique, on the threshold used to define the
interface and on the flow being investigated, but that it probably scales with λ, and
actually is of order λ, in most cases.

7. Conclusions
We have studied the T/NT interface of a zero-pressure-gradient turbulent boundary

layer in the range of Reynolds numbers δ+99= 1000–2000, equivalent to Reλ≈ 75–110.
The emphasis is on the statistical description of the relatively large-scale interactions
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between turbulent and non-turbulent fluid across the fractal intermittent zone, rather
than on the details of the smaller scales at which the interface can be considered
to be smooth. We define the interface as an approximation to an isosurface of the
vorticity magnitude, and show that its properties depend strongly on the threshold
ω0 used to define it. The dependence on the Reynolds number can be eliminated by
normalising ω0 in ‘star’ units, defined in terms of the root-mean-squared magnitude
of the enstrophy fluctuations at the edge of the boundary layer, u2

τ (δ
+
99)
−1/2/ν, rather

than in wall units. In this normalisation, the geometric complexity of the interface
undergoes a transition across ω∗0 ≈ 0.1–2, characterised by the increase of the fractal
dimension and of the topological genus, and which can be interpreted as the transition
of the isosurface from the free stream into the core turbulence.

Study of the behaviour of turbulence in the neighbourhood of the interface requires
the definition of the distance between a point and a general surface. We introduce a
new definition of (ball) distance, specifically designed for complex surfaces and three-
dimensional data sets, which is compared with the more usual wall-normal (vertical)
distance to the top of the interface. While the former captures correctly the increase
of complexity across the transition, the vertical distance misses most of it, because it
hides many of the convolutions, pockets and handles of the vorticity isosurface. In fact,
if the interface is defined as a zero-distance isosurface, the two definitions produce
different interfaces, which differ even in their average distance to the wall. While the
‘ball’ interface follows the vorticity isosurface as it gets closer to the wall at high
thresholds, the vertical ‘envelope’ always stays close to the boundary-layer edge.

We have shown that these limitations of the vertical distance are responsible for
some of the previously reported properties of the T/NT interface. For example, the
proposed layer of localised high vortex intensity at the edge of the turbulent region
disappears with the new distance definition, and reappears with the old one.

We have used the difference between the two distance definitions to characterise the
pockets of irrotational flow as they are entrained into the body of the flow, throwing
some light on the controversy between engulfing and nibbling. We show that the rate
at which vorticity diffuses into the irrotational pockets within the turbulent region
is independent of their position within the layer, but that entrainment is enhanced
because pockets become smaller as they are entrained from the edge of the layer
towards the wall, presumably because they are broken down in the process. The size
of the entrained pockets scales in viscous units, but they are found at depths that scale
with the boundary-layer thickness.

There is a narrow interface layer in which the enstrophy decays from its core
value, ω∗ ≈ 1, to that of the free stream. To ascertain whether this sharp transition
is a statistical artefact of the thresholding procedure or a true physical feature, we
study interfaces based on thresholding the norm of the rate-of-strain tensor. We
show that, whereas the enstrophy and the strain change sharply across the vorticity
interface, neither of them does so across a strain interface. We conclude that enstrophy
thresholding represents a physical feature, while thresholding the strain does not.

We have studied in some detail the conditionally averaged properties in the
neighbourhood of an enstrophy interface, using a threshold below the topological
transition. We find that even within the layer in which the vorticity decays sharply,
the straining structure of the flow is essentially identical to that in the core turbulence.
Because homogeneity would imply that vorticity and strain should have comparable
magnitudes, we use this discrepancy to define a non-equilibrium region which we
identify as the interface layer. The vorticity in this fractal ‘buffer’ layer, even while
undergoing viscous diffusion into the free stream, retains most of the structure of
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the interior of the flow. Its enstrophy levels are in the range previously shown to be
within the complexity transition.

Finally, we also study the velocity magnitude in the neighbourhood of the vorticity
interface, completing a description of the kinematics of the T/NT interface layer. In
agreement with previous investigators, we find that the deviations from the free-stream
velocity are mostly excluded from the irrotational zone, which includes the engulfed
pockets when using our definition of distance. The derivative of the conditional
velocity magnitude with respect to the ball distance, which can loosely be interpreted
as a shear parallel to the interface, is restricted to the turbulent zone, with a mild
maximum at the inner edge of the interface layer.

We have explored several definitions of the thickness of the interface layer, all of
which unequivocally scale with the Taylor microscale over our range of Reynolds
numbers.

Several open questions remain. The first one is the origin of the scaling of the
interface thickness with the Taylor microscale, because the usual argument that
this layer is only subject to the strain of the large scales is weakened here by the
direct measurement of the rate-of-strain tensor. The second one is the scaling of the
conditional velocity magnitude. The observed scaling of the enstrophy in star units,
together with the scaling of the lengths with λ, implies that the velocity scale should
be the friction velocity, but the collapse of the conditional velocity requires a different
unit, which differs by a factor of δ+99

1/4. We can offer no explanation for these two
results, but we believe that, within our range of Reynolds numbers, the resolution of
our numerical simulation is sufficient to exclude most other obvious alternatives.
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