
34

Algorithm 964: An Efficient Algorithm to Compute the Genus
of Discrete Surfaces and Applications to Turbulent Flows

ADRIÁN LOZANO-DURÁN and GUILLEM BORRELL, Universidad Politécnica de Madrid

A simple and efficient algorithm to numerically compute the genus of surfaces of three-dimensional objects
using the Euler characteristic formula is presented. The algorithm applies to objects obtained by thresholding
a scalar field in a structured-collocated grid and does not require any triangulation of the data. This makes
the algorithm fast, memory efficient, and suitable for large datasets. Applications to the characterization of
complex surfaces in turbulent flows are presented to illustrate the method.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Algorithm Design and Analysis; I.3
[Computational Geometry and Object Modeling]; J.2 [Physical Science and Engineering]: Physics

General Terms: Algorithms

Additional Key Words and Phrases: Genus, Euler characteristic, voxels, turbulence, coherent structures,
turbulent/nonturbulent interface

ACM Reference Format:
Adrián Lozano-Durán and Guillem Borrell. 2016. An efficient algorithm to compute the genus of discrete
surfaces and applications to turbulent flows. ACM Trans. Math. Softw. 42, 4, Article 34 (June 2016), 19
pages.
DOI: http://dx.doi.org/10.1145/2845076

1. INTRODUCTION

We present a fast and memory-efficient algorithm to numerically compute the topo-
logical genus of all surfaces associated with three-dimensional objects in a discrete
space. The article is aimed at the turbulence community interested in the topology of
three-dimensional entities in turbulent flows such as coherent structures [del Álamo
et al. 2006; Lozano-Durán et al. 2012] or turbulent/nonturbulent interfaces [da Silva
et al. 2014a]. Konkle et al. [2003] describes fast methods for computing the genus of
triangulated surfaces, which usually is a time- and memory-consuming process. Our
algorithm does not rely on triangulation [Toriwaki and Yonekura 2002; Chen and Rong
2010; Ayala et al. 2012; Cruz and Ayala 2013] and is adapted to exploit the structured-
collocated grid commonly used in the largest direct numerical simulations of turbulent
flows [Kaneda et al. 2003; Hoyas and Jiménez 2008; Sillero et al. 2013]. Our goal is to
provide a clear and easy description of the algorithm and sample codes. See Computa-
tional Fluid Mechanics Lab [2015] for more examples in Fortran and Python.

This work was supported by the Computational Fluid Mechanics Lab headed by Javier Jiménez, the Euro-
pean Research Council, under grant ERC-2010.AdG-20100224. A. Lozano-Durán was supported by an FPI
fellowship from the Spanish Ministry of Education and Science and the ERC.
Authors’ addresses: A. Lozano-Durán, Center for Turbulence Research, Stanford University, Stanford, CA
94305, USA; email: adrianld@stanford.edu; G. Borrell, Technical University of Madrid, Plaza Cardenal
Cisneros 3, Spain; email: guillem@torroja.dmt.upm.es.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0098-3500/2016/06-ART34 $15.00
DOI: http://dx.doi.org/10.1145/2845076

ACM Transactions on Mathematical Software, Vol. 42, No. 4, Article 34, Publication date: June 2016.

http://dx.doi.org/10.1145/2845076
http://dx.doi.org/10.1145/2845076

34:2 A. Lozano-Durán and G. Borrell

The genus is a topologically invariant property of a surface defined as the largest
number of nonintersecting simple closed curves that can be drawn on the surface
without separating it. The genus is negative when applied to a group of several isolated
surfaces, as it is considered that no closed curves are required to separate them. Both
spheres and discs have genus zero, whereas a torus has genus one. On the other hand,
two separated spheres or the surfaces defined by a sphere shell (or sphere with an
internal cavity) has genus minus one. For a set of objects in a given region, the genus is
equal to the number of holes – number of objects – number of internal cavities+ 1. The
concept is also defined for higher dimensions, but the present work is restricted to two-
dimensional surfaces embedded in a three-dimensional space. In integral geometry, the
genus is part of a larger set of Galilean invariants called Minkowski functionals, which
characterize the global aspects of a structure in a n-dimensional space. The genus is
also closely related to the Betti numbers, and more details can be found in Thompson
[1996].

Regarding its applications, the genus has proven to be very useful to characterize
a wide variety of structures in many fields, such as cosmology and related cosmic
microwave background studies [Einasto et al. 2007]. The large-scale structure of the
universe has been studied over the years through analyses of the distribution of galax-
ies in three dimensions using the genus for characterizing its topology [Gott et al. 1986,
1987, 1989; Hamilton et al. 1986’ Vogeley et al. 1994; Mecke et al. 1994; Park et al.
2005a, 2005b]. For a given threshold of the galaxy density, an isosurface separating
higher and lower density regions is defined and the genus of such contour evaluated.
This allows one to compare the topology observed with that expected for Gaussian
random phase initial conditions [Guth 1981; Linde 1983]. In all of these applications,
the computation of the genus was performed by calculating the discrete integrated
Gaussian curvatures [Gott et al. 1986; Chen and Rong 2010] following the Fortran
algorithm by Weinberg [1988] based on the Gauss-Bonnet theorem. As we will show in
Section 3, the present method does not rely on computing any curvatures.

Other applications are oriented to medical and biological areas and use the genus of
surfaces or three-dimensional objects—for example, to compute adenine properties in
the biochemistry field [Konkle et al. 2003] and to evaluate the osteoporosis degree of
mice femur [Martin-Badosa et al. 2003] or human vertebrae [Odgaard and Gundersen
1993].

The Minkowski functionals have been introduced in the study of turbulent flows
through the so-called shapefinders [Sahni et al. 1998]. Leung et al. [2012] studied
the topological properties of enstrophy isosurfaces in isotropic turbulence by filter-
ing the data at different scales and computing structures of high enstrophy together
with its corresponding Minkowski functionals. The geometry of the educed objects was
then classified with two nondimensional quantities—planarity and filamentarity—that
measure the shape of the structures.

Borrell and Jiménez [2013] followed a strategy based on the genus to decide opti-
mal thresholds in turbulent/nonturbulent interfaces extracted from numerical data.
Several surfaces were obtained by thresholding the fluctuating enstrophy field in a
turbulent boundary layer, and their associated genus was used as an indicator of the
complexity of the interface. This topological description was crucial to decide the range
of thresholds where a vorticity isocontour can be considered a turbulent/nonturbulent
interface.

The rest of the article is organized as follows. Important definitions are provided in
Section 2. The algorithm to compute the genus is described in Section 3. An alternative
method is presented in Section 4 and validated with the previous one in Section 5,
which also contains some scalability tests. Two applications to turbulent flows are
shown in Section 6. Conclusions are offered in Section 7.

ACM Transactions on Mathematical Software, Vol. 42, No. 4, Article 34, Publication date: June 2016.

An Efficient Algorithm to Compute the Genus of Discrete Surfaces 34:3

Fig. 1. (a) Two-dimensional example of a structured-collocated grid defined by the open and closed circles.
Points satisfying relation (1) are red closed circles, and their corresponding voxels are solid lines. The exterior
edges are the thicker lines colored in red, and the exterior vertices are marked by squares. Objects are built
by connecting orthogonal neighboring points with A = 1, which results in two objects in this particular
example. (b) Voxel around the grid point (i, j, k). Only edges e1, e2, and e3 (red lines) and vertex v1 (triangle)
are taken into account to compute the number of exterior vertices and edges corresponding to the voxel
centered at (i, j, k).

2. DEFINITIONS

We will first introduce the definitions of object, voxel, surface, hole, cavity, and genus.
The starting point is a discrete three-dimensional scalar field, φ = φ(i, j, k), with
i = 1, . . . , nx, j = 1, . . . , ny, and k = 1, . . . , nz, where nx, ny, and nz are the number
of grid points in each direction, respectively, separated by a grid spacing δ. Given a
thresholding value α, we define the points belonging to the three-dimensional objects
as those satisfying

φ(i, j, k) > α, (1)

which can be expressed as a scalar field A = A(i, j, k) whose values are equal to one
at (i, j, k) if relation (1) is satisfied and zero otherwise. The latter is referred to as an
empty region.

Three-dimensional individual objects in Aare constructed by connecting neighboring
points with value 1. Figure 1(a) shows a two-dimensional example. Connectivity is de-
fined in terms of the six orthogonal neighbors in the grid, usually called 6-connectivity.
Points contiguous in oblique directions are not directly connected, although they may
become so indirectly through connections with other points. This remark is important,
as the 6-connectivity is built-in in the algorithm, and, for instance, the number of
objects in the example shown in Figure 1(a) is not one but two.

We define the voxel associated with A(i, j, k) = 1 as the cube centered at (i, j, k)
and with edge length equal to δ (see Figure 1(b)). For a given object, its surface is
delimited by the exterior faces of its voxels (i.e., those facing empty regions). In the
two-dimensional example shown in Figure 1(a), the one-dimensional “surface” is high-
lighted with red lines. Actual three-dimensional examples are shown later in Figure 4.
A hole is a empty region piercing the object, as the torus in Figure 4(a), and a cavity
an internal empty region that is locally not connected to the exterior. The term handle
will be used occasionally as a synonym for hole, as they are topologically equivalent.

Our goal is to compute the genus of all surfaces contained in A. Mathematically, the
genus g is defined in terms of the Euler characteristic χ via the relationship

χ = 2 − 2g. (2)

ACM Transactions on Mathematical Software, Vol. 42, No. 4, Article 34, Publication date: June 2016.

34:4 A. Lozano-Durán and G. Borrell

The Euler characteristic can be calculated for continuous surfaces as

χ = 1
2π

∫∫

�

Kd�, (3)

where K is the Gaussian curvature of all objects considered and � their area. However,
we are more interested in the original discrete form for polyhedral surfaces,

χ = F − E + V, (4)

where F, E, and V respectively are the number of exterior faces, edges, and vertices of
all polyhedra. In this case, the curvature can be considered to be located at the discrete
edges, but the calculations lead to the same results as (3). The connection between
the discrete and continuous formulations is the Gauss-Bonnet theorem [Chavel 2006].
Intuitively, in terms of the elements defined earlier, the genus is equal to the number
of holes – number of objects – number of internal cavities +1.

3. ALGORITHM

The present algorithm exploits formula (4) and the structured-collocated nature of the
data to compute the genus of all surfaces contained in the three-dimensional space
defined by the scalar field A, without previous triangulation or calculation of the Gaus-
sian curvatures. Note that this differs from other works that compute the genus of the
three-dimensional objects themselves [Toriwaki and Yonekura 2002; Chen and Rong
2010; Ayala et al. 2012; Cruz and Ayala 2013]. The method is conceived for large
datasets of the order of 102 GiB and takes A as input.

First, we provide a general description of the algorithm. The key idea is to place a
voxel around every (i, j, k) point with A(i, j, k) = 1, as the example shown in Figure 1(b),
and to create a virtual mesh using the exterior elements of the resulting polyhedra.
The term virtual is used here in the sense that no actual faces, vertices, or edges have
to be stored for each object—that is, there is no actual structure in the code to do so, in
contrast to the standard meshes obtained by triangulation, where these are saved in a
file or in memory for all objects. Figure 1(a) shows an example of a virtual mesh in a
two-dimensional case.

The way to proceed is then to compute the Euler characteristic of the virtual mesh
and thereafter the genus. The value of χ is easily calculated once the total number of
exterior faces, vertices, and edges are known for all objects within A. To achieve this,
three variables F, V, and E are used to store the total number of exterior faces, vertices,
and edges, respectively, which are counted looping once through the array A. At each
(i, j, k), a voxel is placed if A(i, j, k) = 1 and the counters F, V, and E (initially set to
zero) are increased accordingly every time faces, edges, and vertices are identified as
exterior. The selection of edges and vertices taken into account at each (i, j, k), shown
in Figure 1(b), is deliberately chosen to avoid counting several times edges and vertices
already considered.

To prevent any problems at the boundaries of the field A, the original grid is extended
by padding two extra planes of zeros at the beginning and at the end of each dimension.
The new field will still be called A, but now with dimensions Nx = nx + 4, Ny = ny + 4,
and Nz = nz + 4. For simplicity, we consider that A is fully loaded in memory, but note
that this is not required and it could be loaded in small chunks or planes.

A more detailed description of the algorithm is now presented:

(1) Initialize the variables. F, V , and E are integers containing the number of exterior
faces, vertices, and edges, and they initially are set to zero. For large cases, they
must be double precision. A(i, j, k) is the array whose points are set to one if they
belong to an object and to zero otherwise. Nx, Ny, and Nz are the sizes of A after

ACM Transactions on Mathematical Software, Vol. 42, No. 4, Article 34, Publication date: June 2016.

An Efficient Algorithm to Compute the Genus of Discrete Surfaces 34:5

Fig. 2. Sketches of the neighboring voxels adjacent to voxel (i, j, k) used to compute the number of exterior
faces (a), vertices (b), and edges (c). In all plots, the closed red dot denotes the center of the voxel (i, j, k) and
the triangle the position of its vertex v1 as defined in Figure 1(b). Case (c) is particularized to edge e1, and
similar configurations apply to edges e2 and e3 (see Figure 1(b)).

ALGORITHM 1: Count Number of Exterior Faces at Position (i, j, k).
Input: A,F
Output: F
if A is equal to 1 at position (i, j, k) then

if A is equal to 0 at position (i − 1, j, k) then
F ← F + 1;

end
if A is equal to 0 at position (i + 1, j, k) then

F ← F + 1;
end
if A is equal to 0 at position (i, j − 1, k) then

F ← F + 1;
end
if A is equal to 0 at position (i, j + 1, k) then

F ← F + 1;
end
if A is equal to 0 at position (i, j, k − 1) then

F ← F + 1;
end
if A is equal to 0 at position (i, j, k + 1) then

F ← F + 1;
end

end

extending it. cube1 and cube2 are auxiliary arrays of integers with dimensions
2 × 2 × 2 and 2 × 2, respectively, and are used to store the slices of A shown in
Figure 2(b) and (c).

(2) Loop through i = 2, . . . , Nx −1, j = 2, . . . , Ny −1, k = 2, . . . , Nz −1. For each (i, j, k),
proceed as follows:
(a) Count number of exterior faces. See Algorithm 1. The six faces of the voxel at

(i, j, k) are considered, and its six neighbors are defined in Figure 2(a). For each
neighboring voxel with coordinates (i + �i, j + �j, k + �k), F is increased by
one if A(i, j, k) = 1 and A(i + �i, j + �j, k + �k) = 0. The possible values for
(i+�i, j+�j, k+�k) are (i−1, j, k), (i+1, j, k), (i, j−1, k), (i, j+1, k), (i, j, k−1),
and (i − 1, j, k + 1).

ACM Transactions on Mathematical Software, Vol. 42, No. 4, Article 34, Publication date: June 2016.

34:6 A. Lozano-Durán and G. Borrell

ALGORITHM 2: Count Number of Exterior Vertices at Position (i, j, k).
Input: A,V
Output: V
cube1 ← slice of A from i − 1 to i, j − 1 to j and k − 1 to k;
if any element in cube1 is 0 and any element in cube1 is 1 then

V ← V + getconnected1(cube1);
end

ALGORITHM 3: Count Number of Exterior Edges at Position (i, j, k).
Input: A,E
Output: E
cube2 ← slice of A from i − 1 to i, j − 1 to j and k;
if any element in cube2 th and any element in cube2 is 1 then

E ← E + getconnected2(cube2);
end

(b) Count number of exterior vertices. See Algorithm 2. Only vertex v1 in Figure 1(b)
is considered, and its eight adjacent voxels are defined in Figure 2(b). V is
increased by one if any of the eight adjacent voxels has value 1, and any other
value 0. In some cases, V must increase by a number dV larger than one if
some of the surrounding voxels are locally not connected. The value of dV is
calculated by procedure getconnected1, which is discussed at the end of the
section.

(c) Count number of exterior edges. See Algorithm 3. Only edges e1, e2, and e3
highlighted in Figure 1(b) are considered. The four adjacent voxels for edge e1
are shown in Figure 2(c). E is increased by one unit if any of the four adjacent
voxels has value 1 and any other value 0. In some cases, the edges have to be
counted dE times when the neighboring voxels are not locally connected. The
increment dE is computed by procedure getconnected2. A similar algorithm
applies to the other two edges e2 and e3 shown in Figure 1(b).

(3) Finally, the Euler characteristic and the genus are computed as X = V − E+ F and
G = (2 − X)/2.

To complete the description of the algorithm, we now comment on the procedures
getconnected1 and getconnected2. Some edges or vertices has to be counted multiple
times to be consistent with the 6-connectivity of the voxels. An example is illustrated in
Figure 1(a). In contrast to other works [Toriwaki and Yonekura 2002; Ayala et al. 2012;
Cruz and Ayala 2013], this is achieved by counting the number of local objects contained
in the slices shown in Figure 2(b) and (c)—that is, the number of objects in the 2×2×2
subvolume satisfying the 6-connectivity disregarding any other connections outside the
slide. For example, the subvolume denoted as C41 in Figure 3 contains one local object,
and C33 contains three. Note that some voxels may be locally disconnected but belong
to the same object, as they may connect indirectly through other voxels not considered in
the slide. The purpose of procedure getconnected1, defined in Algorithm 4, is to compute
the number of local objects in the subvolume shown in Figure 2(b), which can easily
be obtained by any labeling method, such as the Hoshen-Kopelman algorithm [Hoshen
and Kopelman 1976]. Note that there is one degenerated case with an infinitesimally
small hole, shown in case C63 in Figure 3, where there is only one object but the vertex
must be considered twice.

ACM Transactions on Mathematical Software, Vol. 42, No. 4, Article 34, Publication date: June 2016.

An Efficient Algorithm to Compute the Genus of Discrete Surfaces 34:7

Fig. 3. All possible configurations of voxels in a 2 × 2 × 2 subvolume considering symmetries. Grey cubes
represent voxels with value 1. The cases are denoted by Cij , where i is the number of voxels with value 1 in
the subvolume.

ALGORITHM 4: Procedure Getconnected1. It Computes the Increment dV for V.
Input: cube1
Output: dV
if cube1 is degenerated case C63 in Figure 3 then

dV ← 2;
else

dV ← number of local objects in cube1;
end

ALGORITHM 5: Procedure Getconnected2. It Computes the Increment dE for E.
Input: cube2
Output: dE
if all the elements equal to 1 in cube2 are locally connected then

dE ← 1;
else

dE ← 2;
end

Procedure getconnected2 is presented in Algorithm 5 and follows the same idea. In
this case, the only possible configuration to obtain more than one local object in the
slide shown in Figure 2(c) is with two voxels that do not share any face. In the rest of
the cases, the number of local objects is one.

ACM Transactions on Mathematical Software, Vol. 42, No. 4, Article 34, Publication date: June 2016.

34:8 A. Lozano-Durán and G. Borrell

Table I. Contribution to the Number of Faces �F, Edges �E, and
Vertices �F of Each Configuration of Voxels in the 2 × 2 × 2

Subdomains Shown in Figure 3

Case �F �E �V Case �F �E �V
C01 0 0 0 C44 8 8 2
C11 3 3 1 C45 8 8 2
C21 4 4 1 C46 12 12 4
C22 6 6 2 C51 5 5 1
C23 6 6 2 C52 7 7 1
C31 5 5 1 C53 9 9 2
C32 7 7 2 C61 4 4 1
C33 9 9 3 C62 6 6 1
C41 4 4 1 C63 6 6 2
C42 6 6 1 C71 3 3 1
C43 6 6 1 C81 0 0 0

4. ALTERNATIVE ALGORITHM

An alternative algorithm is introduced for the purpose of validating the approach
presented earlier. Conceptually, it follows the same ideas discussed in Section 3 but
relies on a precomputed table of cases, as in the work by Toriwaki and Yonekura [2002].
The process involves looping through all vertices of the virtual grid, counting vertices,
faces, and edges, but no effort is made to prevent multiple counts of the last two, as
opposed to the algorithm presented in Section 3. This results in an extra number of
faces and edges that is easily corrected by dividing the total number of faces by four
and of edges by two, the reason being that each face and edge contains four and two
vertices, respectively.

The number of faces and edges at a particular vertex depends on its eight surrounding
voxels as shown in Figure 2(b). In this scenario, there are 256 different cases that
may be reduced by symmetry to those shown in Figure 3. We will use the index l to
sequentially label the vertices of the virtual mesh. The contributions of the l-th vertex
to the total number of faces, edges, and vertices will be denoted by �Fl, �El, and �Vl,
respectively, and their values are tabulated in Table I for all possible cases. F, E, and
V are then obtained as

F =
∑

l �Fl

4
, E =

∑
l �El

2
, V =

∑
l

�Vl, (5)

where the summation extends to all vertices of the virtual mesh. Finally, the Euler
characteristic and the genus are calculated with (4) and (2), respectively.

The alternative algorithm is now briefly described following the same notation used
in the previous section:

(1) Initialize the variables. F, V , and E are equivalent to those described in Section 3
and are initialized to zero.

(2) Loop through all vertices in A. At the l-th vertex, proceed as follows:
(a) Find the case. Considering the eight surrounding voxels at the l-th vertex shown

in Figure 2(b), search for the corresponding case in Figure 3, taking into account
symmetries.

(b) Contributions to F, E, and V . From Table I, obtain �Fl, �El, and �Vl, and
compute F ← F + �Fl, E ← E + �El, and V ← V + �Vl.

(3) Compute the actual number of faces and edges. F ← F/4 and E ← E/2.
(4) Compute the Euler characteristic and genus. X = V − E + F and G = (2 − X)/2.

ACM Transactions on Mathematical Software, Vol. 42, No. 4, Article 34, Publication date: June 2016.

An Efficient Algorithm to Compute the Genus of Discrete Surfaces 34:9

Fig. 4. Examples of synthetic cases used to validate the algorithms. (a) Isolated torus. (b) Concatenated
torus. (c, d) Synthetic random cases generated from the building blocks shown in Figure 5.

The algorithm described in Section 3 is between 1.2 and 2 times faster than the
one presented in this section, and roughly 3 times shorter in terms of lines of code,
which makes it more efficient and simple to implement. For those reasons, the former
approach is preferred, and the alternative algorithm is only considered for validation
purposes in the next section.

5. VALIDATION AND SCALABILITY

Two approaches are followed to validate the algorithms detailed in Sections 3 and 4.
First, synthetic cases whose genus are known beforehand are fed into the algorithms,
and the results are compared to the expected theoretical values. Second, different
datasets are used to compute the genus with both algorithms, and the outputs are
shown to match.

The synthetic cases tested are the following: all possible configurations in a 2 × 2 × 2
volume, n number of isolated solid objects (g = −n + 1), n isolated objects with an
interior cavity each (g = −2n + 1), n isolated torus (g = 1) as in the example shown
in Figure 4(a), and n torus connected by solid bridges (g = n) as in Figure 4(b). More
cases were tested by rotating the previous ones at different angles, such as in the case

ACM Transactions on Mathematical Software, Vol. 42, No. 4, Article 34, Publication date: June 2016.

34:10 A. Lozano-Durán and G. Borrell

Fig. 5. Building blocks of randomly generated test cases. (a) Node. (b) End. (c) Connector type I. (d) Connector
type II.

Table II. Contribution to the Number of Faces �F, Edges �E, and Vertices
�V of the Different Blocks Shown in Figure 5

Case End Node Connector Type I Connector Type II
�F 5 4 28 46
�E 12 12 52 88
�V 8 8 24 40

shown in Figure 4(b). The values of n tested range from 1 to 106. One more synthetic
case tested consists of randomly generated structures built using the blocks shown
in Figure 5, referred to as nodes and ends and linked by two type of connectors. The
number of faces, edges, and vertices of the resulting object is given by

F = ne�Fe + nn�Fn + nI�FI + nII�FII, (6)
E = ne�Ee + nn�En + nI�EI + nII�EII, (7)
V = ne�Ve + nn�Vn + nI�VI + nII�VII, (8)

where ne, nn, nI, and nII are the number of ends, nodes, and connectors of type I and II
that belong to the object. The increments �Fi, �Ei, and �Vi with i = e, b, I, and II are
the contribution to the number of faces, edges, and vertices of each block, respectively,
and its values are tabulated in Table II. Roughly 106 cases were randomly generated
and tested, and two examples are shown in Figure 4(c) and (d). More synthetic cases
similar to those presented earlier but using differently shaped connectors were also
successfully tested (not shown).

We perform a second validation comparing the number of faces, edges, and vertices
computed with the algorithm presented in Section 3 and the alternative one in Sec-
tion 4, which of course must be identical. This was verified for the synthetic cases
described earlier. More test cases are the three models from the Stanford 3D Scanning
Repository [Stanford 2014] voxelized with binvox [Min 2015] (see also Nooruddin and
Turk [2003]) and shown in Figure 6. Finally, we tested 102 cases delimited by a cubical
region and with grid sizes from 163 up to 4, 0963 whose voxels were randomly initial-
ized with zeros and ones filling approximately 50% of the total volume. Two examples
are shown in Figure 7. The two algorithms yield identical results for all cases tested,
counting exactly the same number of faces, edges, and vertices and, therefore, the same
genus.

Table III summarizes the number of voxels, faces, edges, vertices, and genus of some
of the cases tested, which are available for download in our Web page [Computational
Fluid Mechanics Lab 2015].

The algorithm presented in Section 3 was implemented in Fortran, compiled with
Intel Fortran Studio XE 2016 16.0.0 20150815, and tested in an Intel

R©
Xeon

R©
CPU

X5650 2.67GHz with 192GiB of RAM for cubical arrays of different sizes and randomly

ACM Transactions on Mathematical Software, Vol. 42, No. 4, Article 34, Publication date: June 2016.

An Efficient Algorithm to Compute the Genus of Discrete Surfaces 34:11

Fig. 6. Three-dimensional models obtained from the Stanford 3D Scanning Repository and voxelized with
binvox. (a) Bunny [Turk and Levoy 1994]. (b) Buda [Curless and Levoy 1996]. (c) Dragon [Curless and Levoy
1996].

Fig. 7. Test cases of cubical domains with 163 (a) and 323 (b) voxels randomly initialized with zeros and
ones.

generated as those shown in Table III. The average time elapsed to compute the genus
of inputs with different sizes is presented in Figure 8(a), which shows linear scalability
and makes feasible applications to very large datasets.

The code was also parallelized using Fortran coarrays. The domain decomposition
was performed by dividing the z direction in chunks of size Nx × Ny × �Nz, where �Nz
is Nz/nproc rounded to the nearest whole number, and nproc the number of processing
elements. Two overlapped x-y planes are added at the beginning and end of each
chunk to compute faces, edges, and vertices without any extra communication between
images. Once this is done, the genus is obtained by summing the faces, edges, and
vertices of all chunks. The parallelization works for any number of processing elements
smaller than Nz, and the size of the last chunk may differ from the size of the others

ACM Transactions on Mathematical Software, Vol. 42, No. 4, Article 34, Publication date: June 2016.

34:12 A. Lozano-Durán and G. Borrell

Table III. Summary of Some of the Datasets Tested and Available for Download at the Computational
Fluid Mechanics Lab [2015]

Case Size Faces Edges Vertices Genus
Synthetic1 643 1,924 3,848 1,880 23
Synthetic2 643 2,174 4,348 2,120 28
Bunny 2563 309,482 618,964 309,466 9
Buda 2563 129,800 259,600 129,780 11
Dragon 2563 164,494 328,988 164,494 1
Random1 643 297,496 594,992 280,160 8,669
Random2 1283 2,744,830 5,489,660 2,570,182 87,325
Random3 2563 23,530,742 47,061,484 21,985,520 772,612
Random4 5123 194,709,102 389,418,204 181,726,644 6,491,230
Random5 1,0243 1,584,014,008 3,168,028,016 1,477,589,086 53,212,462
Random6 2,0483 12,778,133,206 25,556,266,412 11,916,193,918 430,969,645
Random7 4,0963 102,651,228,492 205,302,456,984 95,713,851,166 3,468,688,664

Fig. 8. (a) For the Fortran serial version, average time in seconds elapsed to compute the genus of cubical
arrays of size N3 randomly initialized to zeros and ones with roughly 50% of the volume occupied. Results
for a single processor. The circles are the measured times, and the solid dashed line is time ∼ N. (b) For the
Fortran coarrays version, strong scaling efficiency as a function of the number of processing elements, nproc,
for three different problem sizes: N = 10243 (�), N = 20483 (◦), and N = 40963 (�).

if Nz is not divisible by nproc. The reader is referred to the software component of
the manuscript to cover all details of the parallelization. The strong scaling efficiency,
where the problem size stays fixed but the number of processing elements increases,
is shown in Figure 8(b). The results are quite satisfactory, and the efficiency always
remains greater than 90%.

6. APPLICATIONS TO TURBULENT FLOWS

We show two examples where the genus is used as a tool to characterize the topology
of regions of interest in turbulent flows. In the first example, the genus is computed for
millions of individual coherent structures extracted from a turbulent channel flow. In
the second one, the genus is used to identify physically meaningful interfaces separat-
ing turbulent and nonturbulent flow in a time-decaying jet.

6.1. Topology of Coherent Regions in Turbulent Flows

We use three direct numerical simulations of turbulent channel flows (two parallel
walls delimiting a flow moving on average in one direction) from Lozano-Durán and

ACM Transactions on Mathematical Software, Vol. 42, No. 4, Article 34, Publication date: June 2016.

An Efficient Algorithm to Compute the Genus of Discrete Surfaces 34:13

Fig. 9. Examples of three vortex clusters (top row) and Q-structures (bottom row) extracted from a direct
numerical simulation of a turbulent channel at Reτ = 4,180 [Lozano-Durán and Jiménez 2014]. The flow
goes from bottom left to top right. The axes are normalized with ν/uτ . The colors change gradually with the
distance to the wall, which is located at y = 0. Note that the objects are not to scale.

Jiménez [2014] at Reynolds numbers Reτ = 934, 2, 004, and 4, 180, with Reτ = huτ /ν,
where h is the channel half-height, uτ the friction velocity, and ν the kinematic vis-
cosity. More details about turbulent channel flows may be found in Chapter 7.1 of
Pope [2000]. The streamwise, wall-normal, and spanwise directions are denoted by
x, y, and z, respectively. Very briefly, we compute the genus of coherent structures,
namely regions of the flow where a variable is higher than a prescribed threshold.
The three-dimensional coherent structures under study are vortex clusters from del
Álamo et al. [2006] and Q-structures from Lozano-Durán et al. [2012]. The former are
defined in terms of the discriminant of the velocity gradient and are connected regions
satisfying

D(x, y, z)/D′(y) > α, (9)

where D is the instantaneous discriminant of the velocity gradient tensor, D′(y) its
standard deviation at each x−z plane, and α = 0.02 a thresholding parameter obtained
from a percolation analysis. Similarly, Q-structures are defined as places where

uv(x, y, z)/uv′(y) > H, (10)

where uv is the instantaneous tangential Reynolds stress, being u and v the streamwise
and wall-normal velocity fluctuations, uv′(y) its rooted-mean-squared value at each y-
position, and H a thresholding parameter equal to 1.75. Three-dimensional objects
are constructed by connecting neighboring grid points fulfilling relations (9) for vortex
clusters and (10) for Q-structures and using the 6-connectivity criteria. Full details for
both types of structures can be found in del Álamo et al. [2006], Lozano-Durán et al.
[2012], and Lozano-Durán and Jiménez [2014]. To compute the genus, each object
is circumscribed within a box aligned to the Cartesian axes, which constitutes the
limits of the array A(i, j, k) discussed in Section 3. Figure 9 shows several examples of
actual objects extracted from the flow and demonstrates the complex geometries that

ACM Transactions on Mathematical Software, Vol. 42, No. 4, Article 34, Publication date: June 2016.

34:14 A. Lozano-Durán and G. Borrell

Fig. 10. (a) PDFs of the genus. The dashed-dotted line is proportional to g−1.2. (b) Average number of holes
(genus) of individual coherent structures as a function of their volume, Vo, in Kolmogorov units. The dashed-
dotted lines are 〈g〉 = 10−3η−3(Vo/η

3) and 〈g〉 = 4 × 10−5η−3(Vo/η
3). For (a) and (b), the solid lines with open

symbols correspond to Q-structures, and the dashed lines with closed symbols correspond to vortex clusters.
Different symbols stand for different Reynolds numbers: ◦, Reτ = 934; �, Reτ = 2, 004; �, and Reτ = 4,180.

may appear. The number of structures computed is of the order of 107, with a wide
spectrum of sizes ranging from ∼303 to ∼2, 0003 voxels.

Each array A(i, j, k) contains just one single object, and hence the only contributions
to the genus are the number of holes and internal cavities. The data reveals that only
0.05% of objects have negative genus, and it was checked that most of structures are
solid. In this scenario, the genus and number of holes can be used interchangeably.

The probability density functions (PDFs) of the genus, g, are presented in Fig-
ure 10(a), and most of the values concentrate around zero or a few holes, although
the long potential tails reach values up to 104 holes. Figure 10(b) shows the aver-
age number of holes in the objects as a function of their volume, Vo, normalized in
Kolmogorov units, η3 (see Chapter 7 of Pope [2000]). It becomes clear that as the vol-
ume of the structures increases, so does the genus, which is reasonable if we consider
that the volume of the object is related to its internal Reynolds number (or complexity),
and increasing its volume results in more complicated topologies. The curves for both
vortex clusters and Q-structures show good collapse for the three Reynolds numbers
and follow the trend 〈g〉 = ρVo, with 〈g〉 the average genus for a given volume and
ρ a constant equal to 10−3η−3 and 4 × 10−5η−3 for vortex clusters and Q-structures,
respectively.

From relation 〈g〉 = ρVo, the genus may be understood as an alternative method to
characterize the level of complexity of the structures, with ρ a density equal to the
number of holes per unit volume. If we define l as the average distance between holes
within the structures, its value may be approximated as l ≈ (10−3)−1/αcη ≈ 30η for
vortex clusters and l ≈ (4 × 10−5)−1/αQη ≈ 90η for Q-structures, with αc = 2 and αQ =
2.25 the average fractal dimensions of the objects computed by Lozano-Durán et al.
[2012]. These lengths are consistent with a model of coherent structures built by small
blocks of length 30 to 90η stacked together to create larger objects but not perfectly
compacted, which results in holes between the blocks. For a given volume, Vo, vortex
clusters have an average of 25 times more holes than Q-structures, suggesting that their
blocks and connections are fundamentally different. This is consistent with Lozano-
Durán et al. [2012], who showed that the Q-structures are flake shaped, whereas vortex
clusters are worm shaped (also visible in Figure 9).

ACM Transactions on Mathematical Software, Vol. 42, No. 4, Article 34, Publication date: June 2016.

An Efficient Algorithm to Compute the Genus of Discrete Surfaces 34:15

Fig. 11. Isocontours of vorticity magnitude |ω| at different thresholds for a turbulent jet. Part (a) corresponds
to a very low value of the threshold |ω|/ωrms = 0.05, and very low genus, where ωrms is the rooted-mean-
squared vorticity magnitude. Part (b) corresponds to the threshold that maximize the genus |ω|/ωrms = 3.
Part (c) corresponds to a threshold slightly higher than (b), |ω|/ωrms = 5.

6.2. Turbulent/Nonturbulent Interface Detection in a Turbulent Jet

We use a direct numerical simulation of a time-decaying turbulent jet (see Chapter 5
in Pope [2000]) by Vela-Martı́n and Borrell [2014] to identify a turbulent/nonturbulent
interface. A brief introduction about such an interface is presented next.

Two regions can be distinguished in an unbounded turbulent flow, the fully turbulent
region, characterized by strong fluctuations, and the irrotational free stream. These
two regions are in most cases separated by a single thin layer, called the turbulent/
nonturbulent interface. The first step to analyze the physical processes that hap-
pen within this interface layer is to locate it. This interface is known to be fractal
like [Sreenivasan et al. 1989], and it contains all of the scales between the smallest and
the largest possible. Such a wide range of scales imposes a strong restriction on the size
of the domain that has to be studied, as small portions would only give reliable results
for the small scales. The most common method to locate the turbulent/nonturbulent
interface is to threshold a scalar field where the two characteristic states of the flow can
easily be distinguished. Sreenivasan et al. [1989] and Westerweel et al. [2009] use the
concentration of a passive scalar injected in the turbulent side and threshold it at the
least probable value of the concentration. Bisset et al. [2002] and da Silva and Taveira
[2010] use a particular isocontour of the magnitude of vorticity |ω|(x, y, z) = ω0, where
vorticity is defined as the rotational of the velocity vector,
ω = ∇ ∧
u. Gampert et al.
[2014] found that the isocontours obtained thresholding concentration and vorticity
magnitude are similar, and da Silva et al. [2014b] found that the least probable value
of vorticity magnitude can be used successfully as a threshold for a variety of turbu-
lent flows. Despite the convergence of some popular methodologies, other authors, such
as Chauhan et al. [2014] have proposed alternative strategies.

One important aspect of the choice of the threshold is the impact it has on the geom-
etry of the interface. If the threshold ω0 is a low value of vorticity, such as the detection
shown in Figure 11(a), the interface is relatively simple, showing that the perturbation
caused by the turbulent motion is smoothed out further down the free stream. On the
other hand, as soon as the threshold is slightly increased, the surface is populated

ACM Transactions on Mathematical Software, Vol. 42, No. 4, Article 34, Publication date: June 2016.

34:16 A. Lozano-Durán and G. Borrell

Fig. 12. The blue line with circles shows a premultiplied PDF of vorticity magnitude |ω| normalized with
its root-mean-squared value in a turbulent temporal round jet. The solid black line shows the genus of the
turbulent/nonturbulent interface as a function of the vorticity magnitude. The vertical dashed lines are the
thresholds used in Figure 11(a) through (c).

with a large amount of handles (or holes), as can be seen in Figure 11(b) and (c). These
handles are most likely a geometrical feature of the fully turbulent flow. Depending on
the value of the threshold, the surface generated has different topological properties.

The geometrical complexity, measured in this case with the number of handles, has
an important side effect on the analysis of the properties of the flow depending on
the relative position to the interface. Two relatively popular assumptions about the
interface are that there is a privileged direction across which the relative distance to
the interface can be measured [Westerweel et al. 2009; da Silva and Taveira 2010], and
that the interface is simple enough so that a local normal is meaningful [Bisset et al.
2002; Chauhan et al. 2014]. These two assumptions are not strictly correct if handles
are a dominant feature of the interface. At the same time, the criterion explored by
da Silva et al. [2014b] depends on the characteristics of the nonturbulent region. The
PDF of vorticity in the same round jet of Figure 11 is shown in Figure 12. It has
been premultiplied to emphasize the fact that the PDF has two major contributions:
one from the bulk of the nonturbulent flow with low vorticity (left peak) and a second
one from the bulk of the turbulent flow with high vorticity (right peak). Note that if
the flow was in an ideal state with no perturbations, the left peak would be in the
limit of vanishing vorticity. As a consequence, the outcome of the criterion defined
by Sreenivasan et al. [1989] applied to the vorticity field can be intuitively defined
as the lowest threshold that is not affected by the spurious vorticity present in the
free stream. This criterion is strictly correct, but it may be more representative of
the smoothed-out perturbations relatively far from the turbulent motion. Therefore,
it is necessary to explore other complementary threshold choices that provide a more
complete description of the vorticity field.

The genus of the surface detected as a function of the value used to threshold the
vorticity magnitude is presented in Figure 12. The results have been averaged using
an ensemble of four equivalent cases. The curve shows that there is a gradual yet
evident change in the topological properties of the vorticity interface from a threshold
ω0 ∼ ωrms. Beyond that value, handles are a dominant feature of the interface, and the
standard tools for the conditional analysis are probably not valid. If the criterion of

ACM Transactions on Mathematical Software, Vol. 42, No. 4, Article 34, Publication date: June 2016.

An Efficient Algorithm to Compute the Genus of Discrete Surfaces 34:17

minimum probability provides a lower limit for the threshold, the genus of the interface
is an useful criterion for an upper limit.

7. CONCLUSIONS

We have presented and validated a simple algorithm to numerically compute the genus
of discrete surfaces using the Euler characteristic formula. The method is valid for
surfaces associated with three-dimensional objects obtained by thresholding a discrete
scalar field defined in a structured-collocated grid and offers several advantages. First,
it does not rely on any direct triangulation of the surfaces, which is usually memory-
and time consuming. In addition, the surfaces of all three-dimensional objects in the
domain are automatically detected, and the genus is exactly computed without any
spurious holes. Last but not least, it needs practically zero memory, it is fast and
scalable, and it has a computational cost directly proportional to the size of the grid
computed. The algorithm is also highly parallelizable, and a Fortran coarrays version
was implemented to take advantage of multicore processors without increasing the
memory usage. This makes the algorithm suitable for large datasets, such as the ones
encountered in direct numerical simulations of turbulent flows. Two applications to
the characterization of complex structures in turbulent flows have been presented. In
the first case, the genus of coherent structures extracted from a turbulent channel
flows is computed and found to be proportional to the volume of the objects. In the
second application, the genus is used to find an appropriate threshold to detect the
turbulent/nonturbulent interface in a turbulent jet.

ACKNOWLEDGMENTS

The authors would like to acknowledge fruitful discussions with Javier Jiménez and José Cardesa-Dueñas,
and to thank Professors Dolors Ayala and Irving Cruz for providing the test data used in the early stages of
the work. We are also very grateful to Tim Hopkins for his assistance with the software component of the
article and to the referees for their very constructive feedback.

REFERENCES

Dolors Ayala, Eduard Vergés, and Irving Cruz. 2012. A polyhedral approach to compute the genus of a volume
dataset. In Proceedings of the International Conference on Computer Graphic Theory and Applications
(GRAPP’12). 38–47.

D. K. Bisset, J. C. R. Hunt, and M. M. Rogers. 2002. The turbulent/non-turbulent interface bounding a far
wake. Journal of Fluid Mechanics 451, 383–410. DOI:http://dx.doi.org/10.1017/S0022112001006759

G. Borrell and J. Jiménez. 2013. Geometrical properties and scaling of the turbulent-nonturbulent interface
in boundary layers. In Proceedings of the 66th Annual Meeting of the APS Division of Fluid Dynamics.
http://adsabs.harvard.edu/abs/2013APS..DFDR31002B.

Kapil Chauhan, Jimmy Philip, Charitha M. de Silva, Nicholas Hutchins, and Ivan Marusic. 2014. The
turbulent/non-turbulent interface and entrainment in a boundary layer. Journal of Fluid Mechanics
742, 119–151. DOI:http://dx.doi.org/10.1017/jfm.2013.641

Isaac Chavel. 2006. Riemannian Geometry (2nd ed.). Cambridge University Press, Cambridge, UK.
Li Chen and Yongwu Rong. 2010. Digital topological method for computing genus and the Betti numbers.

Topology and Its Applications 157, 12, 1931–1936. DOI:http://dx.doi.org/10.1016/j.topol.2010.04.006
Computational Fluid Mechanics Lab. 2015. Index of /Genus. Retrieved May 20, 2016, from http://torroja.dmt.

upm.es/genus/.
Irving Cruz and Dolors Ayala. 2013. An efficient alternative to compute the genus of binary volume models. In

Proceedings of the International Conference on Computer Graphics Theory and Applications (GRAPP’13).
18–26.

Brian Curless and Marc Levoy. 1996. A volumetric method for building complex models from range im-
ages. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH’96). ACM, New York, NY, 303–312. DOI:http://dx.doi.org/10.1145/237170.237269

ACM Transactions on Mathematical Software, Vol. 42, No. 4, Article 34, Publication date: June 2016.

http://dx.doi.org/10.1017/S0022112001006759
http://adsabs.harvard.edu/abs/2013APS..DFDR31002B
http://dx.doi.org/10.1017/jfm.2013.641
http://dx.doi.org/10.1016/j.topol.2010.04.006
http://dx.doi.org/10.1145/237170.237269

34:18 A. Lozano-Durán and G. Borrell

Carlos B. da Silva, Julian C. R. Hunt, Ian Eames, and Jerry Westerweel. 2014a. Interfacial layers be-
tween regions of different turbulence intensity. Annual Review of Fluid Mechanics 46, 1, 567–590.
DOI:http://dx.doi.org/10.1146/annurev-fluid-010313-141357

Carlos B. da Silva and Rodrigo R. Taveira. 2010. The thickness of the turbulent/nonturbulent interface is
equal to the radius of the large vorticity structures near the edge of the shear layer. Physics of Fluids
22, 121702.

Carlos B. da Silva, Rodrigo R. Taveira, and Guillem Borrell. 2014b. Characteristics of the turbulent/
nonturbulent interface in boundary layers, jets and shear-free turbulence. Journal of Physics: Con-
ference Series 506, Article No. 15.

Juan C. del Álamo, Javier Jiménez, Paulo Zandonade, and Robert D. Moser. 2006. Self-similar vortex clus-
ters in the turbulent logarithmic region. Journal of Fluid Mechanics, 329–358. DOI:http://dx.doi.org/
10.1017/S0022112006000814

J. Einasto, M. Einasto, E. Tago, E. Saar, G. Htsi, M. Jeveer, L. J. Liivamgi, et al. 2007. Superclusters of
galaxies from the 2D Redshift survey. Astronomy and Astrophysics 462, 2, 811–825. DOI:http://dx.doi.org/
10.1051/0004-6361:20065296

Markus Gampert, Jonas Boschung, Fabian Hennig, Michael Gauding, and Norbert Peters. 2014. The vorticity
versus the scalar criterion for the detection of the turbulent/non-turbulent interface. Journal of Fluid
Mechanics 750, 578–596.

J. R. Gott III, M. Dickinson, and A. L. Melott. 1986. The sponge-like topology of large-scale structure in the
universe. Astrophysical Journal 306, 341–357. DOI:http://dx.doi.org/10.1086/164347

J. R. Gott III, J. Miller, T. X. Thuan, S. E. Schneider, D. H. Weinberg, C. Gammie, K. Polk, et al. 1989. The
topology of large-scale structure. III—Analysis of observations. Astrophysical Journal 340, 625–646.
DOI:http://dx.doi.org/10.1086/167425

J. R. Gott III, D. H. Weinberg, and A. L. Melott. 1987. A quantitative approach to the topology of large-scale
structure. Astrophysical Journal 319, 1–8. DOI:http://dx.doi.org/10.1086/165427

Alan H. Guth. 1981. Inflationary universe: A possible solution to the horizon and flatness problems. Physical
Review D 23, 2, 347–356. DOI:http://dx.doi.org/10.1103/PhysRevD.23.347

A. J. S. Hamilton, J. R. Gott III, and D. Weinberg. 1986. The topology of the large-scale structure of the
universe. Astrophysical Journal 309, 1–12. DOI:http://dx.doi.org/10.1086/164571

J. Hoshen and R. Kopelman. 1976. Percolation and cluster distribution. I. Cluster multiple labeling tech-
nique and critical concentration algorithm. Physical Review B 14, 8, 3438–3445. DOI:http://dx.doi.org/
10.1103/PhysRevB.14.3438

Sergio Hoyas and Javier Jiménez. 2008. Reynolds number effects on the Reynolds-stress budgets in turbulent
channels. Physics of Fluids 20, 10, 101511. DOI:http://dx.doi.org/10.1063/1.3005862

Yukio Kaneda, Takashi Ishihara, Mitsuo Yokokawa, Kenichi Itakura, and Atsuya Uno. 2003. Energy dis-
sipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a
periodic box. Physics of Fluids 15, 2, L21–L24. DOI:http://dx.doi.org/10.1063/1.1539855

S. E. Konkle, P. Moran, B. Hamann, and K. Joy. 2003. Fast Methods for Computing Isosurface Topology with
Betti Numbers. Kluwer Academic, Norwell, MA, 363–375.

T. Leung, N. Swaminathan, and P. A. Davidson. 2012. Geometry and interaction of structures in ho-
mogeneous isotropic turbulence. Journal of Fluid Mechanics 710, 453–481. DOI:http://dx.doi.org/
10.1017/jfm.2012.373

A. D. Linde. 1983. Chaotic inflation. Physical Letters 129, 34, 177–181. DOI:http://dx.doi.org/10.1016/
0370-2693(83)90837-7

Adrián Lozano-Durán, Oscar Flores, and Javier Jiménez. 2012. The three-dimensional structure
of momentum transfer in turbulent channels. Journal of Fluid Mechanics 694, 100–130.
DOI:http://dx.doi.org/10.1017/ jfm.2011.524

Adrián Lozano-Durán and Javier Jiménez. 2014. Effect of the computational domain on direct simulations of
turbulent channels up to Reτ = 4200. Physics of Fluids 26, 1, 7. DOI:http://dx.doi.org/10.1063/1.4862918

E. Martin-Badosa, A. Elmoutaouakkil, S. Nuzzo, D. Amblard, L. Vico, and F. Peyrin. 2003. A method for the
automatic characterization of bone architecture in 3D mice microtomographic images. Computerized
Medical Imaging and Graphics 27, 6, 447–458.

K. R. Mecke, T. Buchert, and H. Wagner. 1994. Robust morphological measures for large-scale structure in
the universe. Astronomy and Astrophysics 288, 697–704.

Patrick Min. 2015. Binvox: Mesh Voxelizer. Retrieved May 20, 2016, from http://www.cs.princeton.edu/∼
min/binvox/.

ACM Transactions on Mathematical Software, Vol. 42, No. 4, Article 34, Publication date: June 2016.

http://dx.doi.org/10.1146/annurev-fluid-010313-141357
http://dx.doi.org/ ignorespaces 10.1017/S0022112006000814
http://dx.doi.org/ ignorespaces 10.1017/S0022112006000814
http://dx.doi.org/ ignorespaces 10.1051/0004-6361:20065296
http://dx.doi.org/ ignorespaces 10.1051/0004-6361:20065296
http://dx.doi.org/10.1086/164347
http://dx.doi.org/10.1086/167425
http://dx.doi.org/10.1086/165427
http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1086/164571
http://dx.doi.org/ ignorespaces 10.1103/PhysRevB.14.3438
http://dx.doi.org/ ignorespaces 10.1103/PhysRevB.14.3438
http://dx.doi.org/10.1063/1.3005862
http://dx.doi.org/10.1063/1.1539855
http://dx.doi.org/ ignorespaces 10.1017/jfm.2012.373
http://dx.doi.org/ ignorespaces 10.1017/jfm.2012.373
http://dx.doi.org/10.1016/ ignorespaces 0370-2693(83)90837-7
http://dx.doi.org/10.1016/ ignorespaces 0370-2693(83)90837-7
http://dx.doi.org/10.1017/ ignorespaces jfm.2011.524
http://dx.doi.org/10.1063/1.4862918
http://www.cs.princeton.edu/~min/binvox/
http://www.cs.princeton.edu/~min/binvox/

An Efficient Algorithm to Compute the Genus of Discrete Surfaces 34:19

F. S. Nooruddin and G. Turk. 2003. Simplification and repair of polygonal models using volu-
metric techniques. IEEE Transactions on Visualization and Computer Graphics 9, 2, 191–205.
DOI:http://dx.doi.org/10.1109/TVCG.2003.1196006

A. Odgaard and H. J. G. Gundersen. 1993. Quantification of connectivity in cancellous bone, with special em-
phasis on 3-D reconstructions. Bone 14, 2, 173–182. DOI:http://dx.doi.org/10.1016/8756-3282(93)90245-6

C. Park, Y.-Y. Choi, M. S. Vogeley, J. R. Gott III, J. Kim, C. Hikage, T. Matsubara, et al. 2005a. Topology
analysis of the Sloan Digital Sky Survey. I. Scale and luminosity dependence. Astrophysical Journal
633, 11–22. DOI:http://dx.doi.org/10.1086/452625

C. Park, J. Kim, and J. R. Gott III. 2005b. Effects of gravitational evolution, biasing, and Redshift space
distortion on topology. Astrophysical Journal 633, 1–10. DOI:http://dx.doi.org/10.1086/452621

S. B. Pope. 2000. Turbulent Flows. Cambridge University Press, Cambridge, UK.
V. Sahni, B. S. Sathyaprakash, and S. F. Shandarin. 1998. Shapefinders: A new shape diagnostic for large-

scale structure. Astrophysical Journal 495, 1, L5.
Juan A. Sillero, Javier Jiménez, and Robert D. Moser. 2013. One-point statistics for turbulent wall-bounded

flows at Reynolds numbers up to δ+2000. Physics of Fluids 25, 10, 105102.
K. R. Sreenivasan, R. Ramshankar, and C. Meneveau. 1989. Mixing, entrainment and fractal dimensions of

surfaces in turbulent flows. Proceedings of the Royal Society of London. A. Mathematical and Physical
Sciences 421, 1860, 79–108. DOI:http://dx.doi.org/10.1098/rspa.1989.0004

Stanford. 2014. The Stanford 3D Scanning Repository. Retrieved May 20, 2016, from https://graphics.
stanford.edu/data/3Dscanrep/.

Anthony C. Thompson. 1996. Minkowski Geometry. Cambridge University Press, Cambridge, UK.
J. Toriwaki and T. Yonekura. 2002. Euler number and connectivity indexes of a three dimensional digital

picture. Forma 17, 183–209.
Greg Turk and Marc Levoy. 1994. Zippered polygon meshes from range images. In Proceedings of the 21st

Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’94). ACM, New York,
NY, 311–318. DOI:http://dx.doi.org/10.1145/192161.192241

Alberto Vela-Martı́n and Guillem Borrell. 2014. Computation of a Temporal Decaying Turbulent Jet with
GPGPUS. Technical Report. Computational Fluid Mechanics Group, UPM.

M. S. Vogeley, C. Park, M. J. Geller, J. P. Huchra, and J. R. Gott III. 1994. Topological analysis of the CfA
Redshift survey. Astrophysical Journal 420, 525–544. DOI:http://dx.doi.org/10.1086/173583

D. H. Weinberg. 1988. Contour: a topological analysis program. Publications of the Astronomical Society of
the Pacific 100, 1373–1385. DOI:http://dx.doi.org/10.1086/132337

J. Westerweel, C. Fukushima, J. M. Pedersen, and J. C. R. Hunt. 2009. Momentum and scalar trans-
port at the turbulent/non-turbulent interface of a jet. Journal of Fluid Mechanics 631, 199–230.
DOI:http://dx.doi.org/10.1017/S0022112009006600

Received April 2015; revised October 2015; accepted November 2015

ACM Transactions on Mathematical Software, Vol. 42, No. 4, Article 34, Publication date: June 2016.

http://dx.doi.org/10.1109/TVCG.2003.1196006
http://dx.doi.org/10.1016/8756-3282(93)90245-6
http://dx.doi.org/10.1086/452625
http://dx.doi.org/10.1086/452621
http://dx.doi.org/10.1098/rspa.1989.0004
https://graphics.stanford.edu/data/3Dscanrep/
https://graphics.stanford.edu/data/3Dscanrep/
http://dx.doi.org/10.1145/192161.192241
http://dx.doi.org/10.1086/173583
http://dx.doi.org/10.1086/132337
http://dx.doi.org/10.1017/S0022112009006600

