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Appendix A: Three-step fully-explicit Runge–Kutta with analytical integration of the shear
convective terms

Applying the Fourier transform to the governing equations (Eqs. (1,2) in the manuscript),
we have in general,

∂f

∂t
+ ikxSyf = R(t, f), (A1)

where f represent any of ω̂y, φ̂, 〈u〉xz, or 〈w〉xz. We analytically absorb the linear shear
convective term ikxSyf in Eq. (A1) by multiplying it by the integrating factor exp(ikxSyt),

∂(eikxSytf)

∂t
= eikxSytR(t, f). (A2)

The semi-discrete form of the three-step fully-explicit Runge–Kutta scheme1 to advance
from f(t) to f(t+ ∆t) leads to,

f∗ = f + γ1∆tR(t, f),

f1 = e−ikxSyc1∆tf∗, (A3)

R1 = e−ikxSyc1∆tR(t, f), (A4)

f∗∗ = f1 + γ2∆tR(t+ c1∆t, f1) + ζ1∆tR1,

f2 = e−ikxSy(c2−c1)∆tf∗∗, (A5)

R2 = e−ikxSy(c2−c1)∆tR(t+ c1∆t, f1), (A6)

f∗∗∗ = f2 + γ3∆tR(t+ c2∆t, f2) + ζ2∆tR2,

f3 = e−ikxSy(c3−c2)∆tf∗∗∗, (A7)

where f∗, f∗∗, f∗∗∗, f1 and f2 represent the intermediate variables at each Runge-Kutta
sub-step, i={1,2,3}, and f3 = f(t+ ∆t) corresponds to the next time step. The coefficients
are:
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. (A8)

This scheme is third-order consistent. The additional operations over a traditional integra-
tor are the five ‘unmapping’ multiplications in Eqs. (A3)-(A7) by exp[−ikxSy(ci+1− ci)∆t]
(c0 = 0). In our simulations, the cost of mapping is roughly 10% of the total, but it re-
duces the advective CFL by the ratio 2u′/SLy, which can be considerable, especially for
tall computational boxes, Ayz > 1.

A semi-implicit scheme for the viscous term could also be used (e.g., Ref. 1), but it is
useful only at very low Reynolds numbers (roughly Rez < 1000 in the present case) for
which the viscous CFL leads to a smaller time step than the advective one.
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Appendix B: Compact finite differences with a shear-periodic boundary condition

In order to compute derivatives in the vertical direction (y), we use a compact-finite-
differences scheme2 based on a seven-point stencil with 6th- and 8th-order resolution accu-
racy for the first and second derivative, respectively. Exact spectral behavior is enforced
at the wavenumbers k∆y/π = 0.5, 0.7, 0.9 for the first derivative, and k∆y/π = 0.5, 0.9
for the second one. The modified wavenumber k′∆y estimated by Fourier analysis for the
compact finite differences described in this section stays close to the exact differentiation
over a range of wavenumbers k′∆y ≤ 2.5, which is used for the estimation of the resolution
requirements of the DNS. The consistency errors, ε1 ≡ |k′ − k|/k for the first derivative,
and ε2 ≡ |k′2 − k2|/k2 for the second one, are ε1 ≈ 0.006 and ε2 ≈ 0.005, respectively, at
the adopted resolving efficiency k∆y = 2.5.

The discretized form of the n-th derivative of f(yj) ≈ Fj in the y-direction, where yj ≡
(j − 1)Ly/N − Ly/2, j = 1, ..., N , is written as

BF (n) = AF, (B1)

where F (n) represents the n-th derivative of F . Assuming an even derivative, the structure
of the matrix B is

B =



δ α β γ 0 · · · 0 γ′∗ β′∗ α′∗

α δ α β γ 0 · · · 0 γ′∗ β′∗

β α δ α β γ 0 · · · 0 γ′∗

γ β α δ α β γ 0 · · · 0
0 γ β α δ α β γ 0 · · ·
...

. . .
. . .

. . .
...

0 · · · 0 γ β α δ α β γ
γ′ 0 · · · 0 γ β α δ α β
β′ γ′ 0 · · · 0 γ β α δ α
α′ β′ γ′ 0 · · · 0 γ β α δ


, (B2)

and A has the same structure of non-zero entries, with different coefficients. Note that α, β,
γ and δ are constant real values. The application of the shear-periodic boundary condition

Fj(t, kx, kz) = Fj+N (t, kx, kz) exp[ikxSLyt], (B3)

to the compact finite difference matrices appears in its off-band-diagonal elements, which
are complex α′, β′, γ′, and their complex conjugates α′∗, β′∗, and γ′∗. Specifically, α′ =
α exp[−ikxSLyt], etc., which is used to substitute off-grid elements by their shifted copies
near the opposite boundary. I.e., F0 = FN exp[ikx∆Ut], FN+1 = F1 exp[−ikx∆Ut], etc.,
where ∆U = SLy is the mean velocity difference between the two boundaries. Therefore,
A and B are time-dependent Hermitian and need to be updated at each Runge–Kutta
sub-step. Odd derivatives are handled similarly with a skew-Hermitian A.

The linear system (B1) is directly solved by applying the modified Cholesky decomposi-
tion B = LDL∗,

L =



1 0 · · · 0
a2 1 0 · · ·
b3 a3 1 0
c4 b4 a4 1 0
0 c5 b5 a5 1 0
...

. . .
. . .

. . .
...

0 · · · 0 cN−3 bN−3 aN−3 1 0
e1 e2 · · · eN−5 eN−4 eN−3 1 0
f1 f2 · · · · · · fN−4 fN−3 fN−2 1 0
g1 g2 · · · · · · gN−3 gN−2 gN−1 1


, (B4)
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and

D =


d1 0

. . .

di
. . .

0 dN

 . (B5)

The modification in the time-marching in DNS is done only for the three complex lines ei, fi
and gi for the matrix L, and their complex-conjugates for L∗. Note that the band-diagonal
elements ai, bi, ci and the diagonal elements di are real constant.

The one-dimensional Helmholtz equation, expressed generally as F (2) + λF = Rf (where
λ is real) leads to a linear system (A+λB)F = BRf , which can be solved for F by applying
the modified Cholesky decomposition of the Hermitian operator (A+ λB).

Appendix C: Validations

1. Rapid distortion theory

When the velocity gradient fluctuations are small with respect to the mean shear, the
Navier–Stokes equations can be linearized. In this ‘rapid distortion’ limit,

∂tu = −(U · ∇)u − (u · ∇)U −∇p+ ν∇2u , (C1)

where u and p are infinitesimal. Note that when these linearized equations are written in
terms of the variables ∇2v and ωy, they reduce to the classical Orr–Sommerfeld and Squire
equations, respectively.

For individual Fourier modes in a pure shear, the velocities can be expressed as u =∑
m û(t) exp[ikm(t)xm], m = x, y, z, and Eq. (C1) becomes

∂tû = (k2
0x − k2

0z − k2
y)Sv̂/|k |2 − ν|k |2û,

∂tv̂ = 2k0xkySv̂/|k |2 − ν|k |2v̂, (C2)

∂tŵ = 2k0xk0zSv̂/|k |2 − ν|k |2ŵ,
ky = k0y − Sk0xt,

where k0 = (k0x, k0y, k0z) and k = (k0x, ky, k0z) are the initial and time-evolving wave
vectors. These equations can be solved analytically3–5, and are used to exercise the linear
parts of the code.

Fig. 1 shows the time-integrated relative error, u2
e = t−1

l

∫ tl
0
〈|u − uRDT|2〉V /|u0|2 dt,

between the streamwise velocity in the present DNS and the corresponding RDT solution.
Both in DNS and RDT, S = 1 and Rez = 4 × 104. The initial condition is a sine wave,
u0 = (0, v0, 0) sin(k0xx+k0zz), with initial wavenumbers k0Lz = (0.5, 0, 1). In the DNS, the
initial amplitude is |v0|/(SLz) = 10−3, and the box aspect ratios are (Axz, Ayz) = (2, 1/π),
so that the box always contains a single wavelength in the horizontal plane. The simulations
run from t = 0 to Stl = 15, by which time the magnitude of the vertical wavenumber
reaches |ky∆y| ≈ 1 for Ny = 16. This is a typical minimum resolution in later turbulence
simulations. Note that the cases in Fig. 1 imply run times of roughly 2 box periods, in
spite of which the figure shows that the numerical scheme retains its third- and sixth-order
consistency in time and space, respectively.

2. Initial shearing of isotropic flow

To validate the nonlinear terms of the code, the short-term shearing of an initially
isotropic turbulent flow is compared with the classical results of Rogers and Moin,6 as
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FIG. 1. Relative error ue for the streamwise velocity, compared with the corresponding linear RDT
solution. (a) For different grids in y, as a function of the CFL. —◦—, Ny = 16; —M—24; —�—,
32; – – ◦– –, 48; – –M– –, 64. In all cases, Nx = Nz = 18. The chaindotted line has slope 3. For
other parameters, see text. (b) As in (a), as a function of Ny. —◦—, CFL= 0.02; —M—, 0.05;
—�—, 0.1; —O—, 0.2; – – ◦– –, 0.4; – –M– –, 0.6; – –�– –, 0.8. The chaindotted line has slope −6.
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FIG. 2. Effect of the grid resolution. Case HOM23U.6 (a) The time evolution of the effective
resolutions, kmaxη(t). Lines with symbols are kxη; without symbols are kyη. (b) Evolution of the
energy dissipation rate. ◦, HOM23U.6 In both figures, – – – –, fine grid, (510, 384, 254); ——, coarse
grid (126, 192, 126).

given in the dataset HOM23 of the AGARD database,7 whose naming notation we use.
The initial conditions are random isotropic fields with a top-hat one-dimensional energy
spectrum, as in Ref. 8, adjusted to the same parameters as in Ref. 6. They all agree well
with the reference data, but the energy dissipation of our DNSes is slightly higher than in
the reference cases after St ≈ 5 (see later Fig. 2b), probably because of the periodic loss of
the enstrophy in the remeshing process of Rogallo’s Fourier code.8,9 Note that the reference
simulations in Ref. 6 were remeshed every St = 2. Other quantities, such as the two-point
velocity correlation functions, were checked in detail against case HOM23U (Fig. 3). They
also agree well, confirming that the large scales of the present DNS are consistent with those
of the three-dimensional Fourier spectral simulations.

The previous results do not test the effect of dealiasing in y, which is applied in Ref. 6 but
not in our case. This is tested in Fig. 2 by comparing the results of simulating case HOM23U
in its original grid with a much finer grid with (Nx, Ny, Nz) = (510, 384, 254). Fig. 2(a)

shows the temporal evolution of the effective resolutions kmaxη, where η(t) = (ν3/〈ε〉V )1/4 is
the instantaneous Kolmogorov scale, and the maximum effective wavenumbers are kxmax =
π/∆x and kymax = 2.5/∆y. Fig. 2(b) shows the evolution of the dissipation rate 〈ε〉V ≡
ν〈ωiωi〉V of the two simulations. The finer grid case has a slightly larger dissipation rate
at around 5 . St . 10, but the agreement is excellent considering that the larger grid is at
least twice as fine as the coarser one. As an added test, the coarser grid was run at CFLs
from 0.05 to 0.6, but the results agree within the thickness of the lines in Fig. 2(b).
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FIG. 3. Auto-correlation functions for streamwise (a), vertical (b), and spanwise (c) velocities
along x- (black), y- (red), z- (blue). ——, present DNS (192× 192× 192 with CFL=0.6); – – ◦– –,
HOM23U in Ref. 7, from Rogers et al.6. St = 10.0.

TABLE I. Parameters of present DNS (L11 and M11), CFL=0.6, compared with run2 and run10 in
Ref. 10. In all cases, Axz = Ayz = 1. The effective resolution is kη. The total time to accumulate
the statistics is STstat. B2 = (3bijbij/2)1/2 is the second invariant of the Reynolds-stress anisotropy
tensor11, bij = 〈uiuj〉〈ukuk〉 − δij/3, where δij is Kronecker’s delta. The ratio of energy input and

energy dissipation is P/〈ε〉. The root-mean-squared vorticity magnitude is ω′ =
√
〈ωiωi〉.

Run Rez Nx, Ny, Nz kxη kyη STstat Reλ S∗ B2 −bxy P/〈ε〉 ω′/S
L11 2600 62, 96, 62 1.5 1.9 802 52.9 6.4 0.452 0.154 0.990 6.38
run2 2632 643 1.5 1.5 210 51.6 6.6 0.446 0.152 1.004 6.05
M11 8224 108, 162, 108 1.1 1.40 831 91.0 6.9 0.454 0.142 0.989 10.1

run10 8225 1083 1.2 1.2 106 83.4 7.1 0.430 0.141 1.000 9.10

3. Statistically stationary homogeneous shear turbulence

Closer to the subject of this paper than any of the previous tests is the long-term be-
haviour of small computational boxes. It was shown in Ref. 10 that, under those circum-
stances, turbulence grows in size, fills the box, and collapses intermittently, while reaching a
statistically steady state that resembles the bursting cycle of wall-bounded turbulence12,13.
We will see below that a typical bursting period is STb ≈ 25, so that reasonable statistics
require, depending on the box geometry, running times of the order of hundreds of box
periods. In this section we test the ability of our code to run for long times by repeating
two of the simulations in Ref. 10.

Both simulations run in a cubical box (Axz = Ayz = 1), and start from initially turbulent
conditions. In each case, we accumulate statistics for St ≈ 800, after discarding the initial
St ≈ 30. The energy input by action of the the shear on the stress, P ≡ −S〈uv〉, balances
the dissipation rate within 1%.

Table I compares our two simulations (L11 and M11) with those in Ref. 10. It includes
both small- and large-scale quantities, which agree well. It is probably significant that the
quantities that depend on the small scales, such as Reλ or ω′/S, tend to be somewhat
higher in our simulations than in Ref. 10. This is consistent with the loss of enstrophy in
the spectral code due to remeshing, although the difference is too small to decide whether
the reason in this particular case is numerical or statistical.
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