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Vertically localised equilibrium solutions in
large-eddy simulations of homogeneous

shear flow
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Unstable equilibrium solutions in a homogeneous shear flow with sinuous (streamwise-
shift-reflection and spanwise-shift-rotation) symmetry are numerically found in
large-eddy simulations (LES) with no kinetic viscosity. The small-scale properties
are determined by the mixing length scale lS used to define eddy viscosity, and
the large-scale motion is induced by the mean shear at the integral scale, which is
limited by the spanwise box dimension Lz. The fraction RS = Lz/lS, which plays the
role of a Reynolds number, is used as a numerical continuation parameter. It is shown
that equilibrium solutions appear by a saddle-node bifurcation as RS increases, and
that the flow structures resemble those in plane Couette flow with the same sinuous
symmetry. The vortical structures of both lower- and upper-branch solutions become
spontaneously localised in the vertical direction. The lower-branch solution is an edge
state at low RS, and takes the form of a thin critical layer as RS increases, as in the
asymptotic theory of generic shear flow at high Reynolds numbers. On the other hand,
the upper-branch solutions are characterised by a tall velocity streak with multiscale
multiple vortical structures. At the higher end of RS, an incipient multiscale structure
is found. The LES turbulence occasionally visits vertically localised states whose
vortical structure resembles the present vertically localised LES equilibria.

Key words: homogeneous turbulence, nonlinear dynamical systems, turbulent flows

1. Introduction
Nonlinear invariant solutions of the incompressible Navier–Stokes (NS) equations,

such as equilibria (Nagata 1990) or periodic orbits (Kawahara & Kida 2001), are
believed to play an important role in transitional and self-sustaining turbulence.
In particular, it has been proposed that coherent structures in turbulent flows are
incomplete representations of such solutions, corresponding to times in which the
flow approaches an invariant solution in phase space (Jiménez 1987). The solutions
themselves could then be considered ‘exact’ coherent structures (Waleffe 2001). Their
properties and significance are reviewed in Kawahara, Uhlmann & Van Veen (2012).

An additional advantage of invariant solutions in the description of turbulence is
that they can be exactly reproduced numerically, potentially providing a well-defined
dynamical ‘alphabet’ for the flow evolution, and chaotic fluid motions are created

† Email address for correspondence: atsushi.sekimoto@monash.edu.au

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

45
0

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
id

ad
 P

ol
ité

cn
ic

a 
de

 M
ad

ri
d,

 o
n 

26
 A

ug
 2

01
7 

at
 0

9:
02

:2
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

http://orcid.org/0000-0001-9660-3997
http://orcid.org/0000-0003-0755-843X
mailto:atsushi.sekimoto@monash.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.450&domain=pdf
https://doi.org/10.1017/jfm.2017.450
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


226 A. Sekimoto and J. Jiménez

by homoclinic or heteroclinic entanglement of their stable/unstable manifolds. Their
statistical agreement with turbulence at low Reynolds numbers has often been noted
in the literature (Kawahara & Kida 2001; Jiménez et al. 2005; Kerswell & Tutty
2007; Viswanath 2007). Unfortunately, the dynamically important solutions embedded
in turbulence have only been found at low Reynolds numbers in wall-bounded flows
such as plane Poiseuille or Couette flow (Kawahara & Kida 2001; van Veen &
Kawahara 2011; Kreilos & Eckhardt 2012; Park & Graham 2015). From a practical
point of view, they are hard to continue to higher Reynolds numbers partly because
of their increasing complexity and instability, and by the limitations of the numerical
resources. From the theoretical side, their increasing instability as the Reynolds
number increases calls into question whether the flow would approach them often
enough for them to be considered relevant. There has also been a challenge to
estimate turbulence statistics by using all of recurrent flows (Chandler & Kerswell
2013; Cvitanović 2013); however, such an exhaustive study is still limited to low
Reynolds numbers. A more promising method will be required to find invariant
solutions at high Reynolds numbers with a large number of degrees of freedom,
such as the multiple-shooting method (Sánchez & Net 2010; van Veen, Kawahara &
Matsumura 2011). As a consequence they have mostly been discussed in the context
of the transition to turbulence from the laminar state (Schmiegel & Eckhardt 1997;
Faisst & Eckhardt 2003; Wedin & Kerswell 2004; Wang, Gibson & Waleffe 2007;
Itano & Generalis 2009; Avila et al. 2013; Zammert & Eckhardt 2015).

The dynamical system approach to the transition to turbulence advocates that there
is an edge state on the basin boundary between the linearly stable laminar state and
turbulent state, which can be captured by edge tracking (Itano & Toh 2001; Toh &
Itano 2003; Skufca, Yorke & Eckhardt 2006). Typically, it determines how the fluid
behaves as it transitions from laminar to turbulent states and vice versa. Some of
the lower-branch solutions often sit on the edge state, and form a critical layer at
high Reynolds number (Wang et al. 2007; Viswanath 2009). Such critical-layer-type
solutions are described by an asymptotic theory called vortex–wave interaction (VWI)
(Hall & Smith 1991; Hall & Sherwin 2010) and their instability has the edge mode
(Deguchi & Hall 2016). It is shown that vertically localised equilibrium states can be
embedded in any shear flow at high Reynolds number (Blackburn, Hall & Sherwin
2013; Deguchi & Hall 2014a; Deguchi 2015).

The multiscale nature of fully developed turbulence at high Reynolds number and
the possible role of coherent structures in the energy cascade raise the question of
whether invariant solutions may also be relevant in such processes. Van Veen, Kida
& Kawahara (2006) found a periodic orbit in highly symmetric turbulence that results
in a k−5/3 energy spectrum, and could be part of the generic energy cascade (Goto
2008). Similar attempts, however, have not been successful in wall-bounded turbulence
at high Reynolds number, because it is difficult to accommodate the anisotropy and
inhomogeneity of the length scales introduced by the wall.

Here, we simplify the problem in two ways. In the first place we substitute
shear-driven wall-bounded flow by a homogeneous shear without walls, the large-scale
motion of which is limited by the spanwise box dimension in a long-term simulation
(Sekimoto, Dong & Jiménez 2016). Secondly, we substitute the full NS equations by
large-eddy simulations (LES), the small-scale property of which is determined by the
eddy viscosity.

Homogeneous shear turbulence is an idealised case that shares with wall-bounded
flows the basic source of turbulent energy by the shear. Ideal unbounded homogeneous
shear flow has no intrinsic length scale and is believed to grow without bound

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

45
0

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
id

ad
 P

ol
ité

cn
ic

a 
de

 M
ad

ri
d,

 o
n 

26
 A

ug
 2

01
7 

at
 0

9:
02

:2
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2017.450
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Vertically localised equilibria in LES of homogeneous shear flow 227

from any initial condition (Champagne, Harris & Corrsin 1970; Rogers & Moin
1987; Tavoularis & Karnik 1989; Cambon & Scott 1999) but, when simulated in
a finite computational box, it reaches a statistically stationary and homogeneous
state (SS-HST) characterised by repeated bursting reminiscent of near-wall and
logarithmic-layer turbulence (Pumir 1996; Gualtieri et al. 2007). The problem was
recently revisited by Sekimoto et al. (2016) using direct numerical simulations
(DNS), from which the simulation code and parameters in this paper are derived.
They determined which computational boxes best mimic wall-bounded turbulence,
and showed that the relevant limiting dimension is the spanwise box width. In terms
of this dimension, SS-HST is always minimal in the sense that a single velocity
streak tends to fill the whole span, as in minimal channels (Jiménez & Moin 1991;
Flores & Jiménez 2010). They showed that this minimal flow, even with no walls,
is a very promising model for shear turbulence with a non-inflectional mean profile,
and particularly for the logarithmic layer of wall-bounded flows.

LES is based on the idea that the large flow scales, which are explicitly computed,
are essentially independent of the smaller ones, which are typically modelled by some
kind of eddy viscosity (Pope 2000). In shear flows, the larger scales usually account
for most of the kinetic energy and momentum transfer, while the smaller ones tend
to be isotropic and basically provide dissipation and act as random perturbations. In
particular, it is known that the large-scale motion is maintained in channels even when
the small scales have been filtered in LES (Scovazzi, Jiménez & Moin 2001; Hwang
& Cossu 2010). The key idea of extending the dynamical system approach to higher
Reynolds numbers is to focus on the quasi-autonomous behaviour of the larger scales
by modelling the effect of the smaller ones using a subgrid (SG) model (Yasuda, Goto
& Kawahara 2014; Rawat et al. 2015; Hwang, Willis & Cossu 2016; Sasaki et al.
2016), where some LES steady states and periodic orbits are numerically obtained
in wall-bounded flow and they are considered as a representation of large-scale
motions. However, as mentioned above, the anisotropy and inhomogeneity of the
length scales introduced by the wall makes the role of the eddy-viscosity term,
which should be zero on the wall, on the invariant solutions ambiguous. We apply
LES here to the identification of equilibrium structures in SS-HST, where the large
length scale is constrained and represented by the spanwise box dimension and the
smallest scale is imposed by an SG model, so that the scale separation is statistically
homogeneous, and the length-scale ratio is used as a grid-independent LES parameter.
The application of LES greatly also decreases the number of degrees of freedom
required to track invariant solutions at high Reynolds number.

Section 2 presents the numerical method and establishes a baseline LES with
sinuous (streamwise-shift-reflection and spanwise-shift-rotation) symmetry. Equilibria
are numerically obtained and overviewed in § 3, focusing on lower-branch solutions.
The dependences of the lower- and upper-branch equilibria on the computational
domain and on the LES parameters are investigated in § 4, while §§ 4.2 and 4.3
discuss the vertical localisation of the equilibrium solutions and of the baseline LES.
Finally, § 5 offers conclusions and future perspectives. An appendix discusses the
linear stability of the equilibrium solutions.

2. Numerical methods
2.1. The governing equations

We solve the incompressible LES momentum and continuity equations,

∂tui + uj∂jui =−∂ip+ ∂j(2νtσ ij), (2.1)
∂juj = 0, (2.2)
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228 A. Sekimoto and J. Jiménez

where ui are the resolved (large-scale) velocities, and p is a modified resolved
kinematic pressure that includes the diagonal part of the SG stress tensor. The eddy
viscosity is written as νt = l2

S|σ |, in terms of a static length scale lS and of the local
resolved strain rate (Smagorinsky 1963), where |σ |2 = 2σ ijσ ij and σ ij = (∂jui + ∂iuj)/2
is the strain-rate tensor of the filtered velocity. We use (x, y, z) to represent the
streamwise, vertical (cross-shear) and spanwise coordinates, respectively, and (u, v,w)
to denote the respective velocity components. Whenever convenient, as in (2.1), this
notation is substituted by subindices, in which case repeated indices imply summation.
This is always the case for the vorticity components ωi. There is no explicit filtering
in our code, and the smallest flow scales are controlled either by the grid or by the
eddy viscosity.

It is usual in most LES to include the molecular viscosity ν as part of the right-hand
side of (2.1), and to write the length lS in terms of some convenient grid spacing ∆g
and of a ‘universal’ Smagorinsky constant CS. None of those devices are needed here,
and will not be used. The main role of the molecular viscosity in LES is to enforce
the boundary conditions when νt vanishes at the wall. Since there are no walls in
our problem, we set ν = 0, and all our simulations run at infinite molecular Reynolds
number.

Similarly, the role of ∆g in SG models is to accommodate variable grid spacings,
assuming that most of the spectral content of the velocity gradients is concentrated at
the grid scale. Again, the statistical homogeneity of the flow implies that our grids
are uniform, and makes this complication unnecessary.

In fact, the essential role of the eddy viscosity is to introduce a minimum length
scale that takes the role of the Kolmogorov length, η, independently of the grid. If we
estimate the energy dissipation by the SG model as ε= 〈νt|σ |

2
〉 = l2

S〈|σ |
3
〉, and define

an effective Kolmogorov length as ηt = (〈νt〉
3/ε)1/4, it follows from the definition of

νt that ηt ≈ lS. Here 〈·〉 represents time and space average, and will occasionally be
replaced by 〈·〉xz to represent the y-dependent average over horizontal planes, or by 〈·〉c
to represent 〈·〉xz particularised to the central plane y= 0. From now on, capital letters
are reserved for mean quantities and lower-case ones for fluctuations with respect to
that mean, as in U = 〈u〉xz and u = U + u. Primes denote root-mean-squared (r.m.s.)
intensities of the fluctuations.

Since most of the computational effort in DNS is dedicated to resolving the smallest
dissipative scales, the introduction of a cut-off length in LES drastically reduces the
size of the linear systems that have to be solved to obtain invariant solutions.

For the parallel flows that are the subject of this paper, (2.1) can be integrated to

〈−uv + 2νtσ xy〉xz = u2
τ , (2.3)

where uτ is independent of y and can be used to scale the velocities. Variables in this
scaling are denoted by a ‘+’ superscript.

2.2. LES with sinuous symmetry
We study a flow with a nominally uniform mean shear S= dU/dy, which is a given
constant, in a parallelepiped-shaped computational domain that is periodic in the
(x, z) directions, and periodic between points of the lower and upper boundaries
that are uniformly shifted in time by the shear (Gerz, Schumann & Elghobashi
1989). The mean flow for turbulence statistics is Sy plus the vertically periodic
correction, which is an approximately linear profile as evaluated later in this section.
The numerical code for DNS is described in detail in Sekimoto et al. (2016).
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Vertically localised equilibria in LES of homogeneous shear flow 229

Equations (2.1) and (2.2) for LES are formulated in terms of the Sekimoto et al.
(2016). Equations (2.1) and (2.2) for LES are formulated in terms of the vertical
vorticity and of the Laplacian of the vertical velocity (Kim, Moin & Moser 1987;
Hughes, Oberai & Mazzei 2001). The discretisation uses 2/3-dealiased Fourier
expansions in (x, z), and sixth-order spectral-like compact finite differences in y, with
the shear-periodic boundary conditions embedded in the compact finite-difference
matrices for each Fourier mode. As explained in Sekimoto et al. (2016), this avoids
recurrent remeshing and the resulting secular loss of enstrophy over long integration
times.

There are three dimensionless parameters: a Reynolds number, and two box
aspect ratios, Axz = Lx/Lz and Ayz = Ly/Lz, where the Lj are the dimensions of the
computational domain along the three coordinate directions. It was shown in Sekimoto
et al. (2016) that the correct scales for the large-scale length and velocity of SS-HST
are based on the spanwise box dimension, Lz and SLz, so that the Reynolds number
is Rez ≡ SL2

z/ν in DNS. We will extend this definition to LES using the effective
mean eddy viscosity, 〈νt〉, replacing the molecular viscosity ν. However, it is more
convenient to use the length-scale ratio RS = Lz/lS in LES. For example, Piomelli,
Rouhi & Geurts (2015) recently developed a grid-independent LES using as parameter
the ratio of the small (effective Kolmogorov) and integral scales, which is essentially
the inverse of RS. It can be extended to DNS by substituting η for lS (Lz/η ∼ Re3/4

z )
and it turns out that, in DNS of SS-HST, Rez ≈ 4R4/3

S (Sekimoto et al. 2016). We
will also use the integral scale L0 = u3

0/ε, where u2
0 = 〈uiui〉/3.

We study in this paper LES turbulence and invariant solutions in a subspace defined
by enforcing two ‘sinuous’ symmetries: (I) a reflection with respect to the plane of
z= 0 followed by a streamwise shift by Lx/2,

(I): [u, v,w](x, y, z)= [u, v,−w](x+ Lx/2, y,−z); (2.4)

and (II) a rotation by π around x= y= 0 followed by a spanwise shift by Lz/2,

(II): [u, v,w](x, y, z)= [−u,−v,w](−x,−y, z+ Lz/2). (2.5)

Note that no translational symmetries are allowed in this subspace, so that travelling
waves are excluded. Moreover, (I) and (II) together with the boundary conditions
enforce that the instantaneous plane-averaged streamwise velocities at the top and
bottom of the box are U(±Ly/2)=±SLy/2.

Before proceeding to seek equilibrium solutions, the effect of the symmetry
restriction was tested in several LES of symmetric SS-HST, which are summarised
in table 1. Table 1 also includes two reference unconstrained DNS from Sekimoto
et al. (2016), and shows that the length and velocity scales found in DNS also
work well in the symmetric LES. Although not included in table 1, the effective
Kolmogorov scale in the LES is found to be ηt/lS ≈ 0.9, in approximate agreement
with our analysis in § 2.1. Interestingly, both ηt/lS ≈ 0.9–1.0 and L0/Lz ≈ 0.4–0.7
remain good approximations in the localised equilibrium solutions described below.
Note that the vertical translational invariance is broken by the symmetries (2.4) and
(2.5), so that a uniform mean shear is no longer guaranteed. Even so, the LES of
symmetric turbulence retain an approximately linear mean profile (|U− Sy| ≈ 0.01SLz)
and approximately constant fluctuation profiles. We will see below that the same is
not generally true for the profiles of the equilibrium solutions.

Figure 1 displays the longitudinal streamwise-velocity spectrum of the symmetric
LES turbulence, compared to that of the reference DNS. Given the different Reynolds
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230 A. Sekimoto and J. Jiménez

Run Axz Ayz RS Rez Reλ L0/Lz η/Lz u′/SLz v′/SLz w′/SLz

L32 (DNS) 3 2 104 2 000 47 0.41 0.00965 0.208 0.159 0.164
M32 (DNS) 3 2 367 12 500 105 0.38 0.00273 0.182 0.131 0.136
LESs 3 1.33 50.5 1 068 31.6 0.296 0.0170 0.196 0.0915 0.118
LESm 3 1.33 91.2 1 837 52.3 0.384 0.00974 0.232 0.159 0.172
LESt1 3 3 50.0 1 187 42.8 0.476 0.0173 0.225 0.0737 0.0957
LESt2 3 3 101.6 2 324 55.9 0.381 0.00875 0.212 0.141 0.158
LESt3 3 3 203 6 577 85.5 0.354 0.00436 0.181 0.127 0.140

TABLE 1. Parameters for the turbulence runs. L32 and M32 are reference DNS of SS-HST
from Sekimoto et al. (2016). LESs,m,t1,t2,t3 are the present LES in the symmetric subspace
defined by (I)+ (II) in (2.4) and (2.5). The effective Reynolds number, Rez, and the
Kolmogorov viscous scale, η, are computed with the molecular viscosity in DNS, and
with the averaged eddy viscosity in LES. The scale ratio RS is Lz/lS in LES and Lz/η
in DNS. The Reynolds number Reλ ≡ u0λ/〈νt〉 is that based on the Taylor microscale
λ=
√

15u0/〈ωiωi〉
1/2.

10–1

10–2

10–3

10–4

10–5

10–6

102

103

101

100

10–1

10–2

10–3

10–4

102101 10010–110–2

(a) (b)

FIGURE 1. (Colour online) Streamwise velocity spectra Euu(kx). (a) Large-scale
normalisation, Euu/(u′2Lz), as a function of kxLz. (b) Small-scale normalisation,
E∗uu ≡ ε−2/3l−5/3Euu(kxl), with l = lS for LES and l = η for DNS. Curves/symbols:
– –O– – (grey), DNS (L32); —— (grey), DNS (M32); – – •– – (blue), RS = 52.6;
—◦— (red), RS = 101.6; —F— (green), RS = 203. The slope of the chain-dotted diagonal
is −5/3.

numbers and techniques, the agreement is good, showing that symmetry does not
influence turbulence greatly. Note that the three LES in figure 1(b) collapse well in
terms of lS, and that the resolution of the simulations is fine enough to resolve the
smallest LES scales.

The size of the collocation grids for the turbulence LES and for typical equilibrium
solutions are given in table 2. It follows from the definition of the different quantities
that the collocation resolution is 1x/lS = RSAxz/Nx, 1y/lS = RSAyz/Ny and 1z/lS =

RS/Nz, where the Nj are the collocation points along the three coordinate directions.
For example, in the lowest-Reynolds-number LESs in tables 1 and 2, this results in
(1x, 1y, 1z)= (3.6, 1.4, 2.7)lS. If our SG model is interpreted in terms of the usual
Smagorinsky formula νt = (CS∆)

2
|σ |, with ∆ a representative grid spacing, it follows

that CS= lS/∆= 0.42, which is a relatively high value for usual LES practice. In this
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Vertically localised equilibria in LES of homogeneous shear flow 231

Run Axz Ayz RS Nx,Ny,Nz CS ∆g/Lz

EQ (figure 4) 3 1.33 50.5 64, 48, 32 0.42 0.0471
EQs (figure 5a) 3 1.1–4.6 38.60 64, 48–64, 32 0.395–0.586 0.0442–0.0656
EQs (figure 5b) 1.58–3.29 3 38.95 64, 96, 32 0.508–0.649 0.0396–0.0505
tall EQ(L) 3 3 37.9–74.6 64, 96, 32 0.274–0.539 0.0489
tall EQ(L) 3 3 77.3–99.5 64, 192, 64 0.334–0.430 0.0301
tall EQ(L) 3 3 99.6–101.6 64, 256, 64 0.360–0.368 0.0273
tall EQ(U) 3 3 37.9–47.4 64, 96, 32 0.431–0.538 0.0490
tall EQ(U) 3 3 47.4–51.5 64, 192, 64 0.646–0.702 0.0301
tall EQ(U) 3 3 52.4–52.6 64, 256, 64 0.695–0.698 0.0273
tall EQ(U) 3 3 55.5–64.5 64, 384, 64 0.649–0.754 0.0239
LESs 3 1.33 50.5 64, 48, 32 0.42 0.0471
LESm 3 1.33 91.2 64, 64, 32 0.256 0.0428
LESt1 3 3 50.0 64, 384, 64 0.838 0.0259
LESt2 3 3 102 128, 384, 64 0.519 0.0190
LESt3 3 3 203 128, 384, 64 0.260 0.0190

TABLE 2. Grid information for the sinuous-symmetric equilibrium and turbulence LES.
EQ(L) and EQ(U) represent lower- and upper-branch equilibrium solutions, respectively,
and the turbulence LES are defined in table 1. The effective Smagorinsky constant CS is
discussed in § 2.2, with the filter scale defined as ∆g ≡

3
√
1x1y1z.

sense, all our LES are overdamped. Their dynamics are controlled not by the grid,
but by the SG model, and can be expected to be approximately independent of the
resolution. They also only resolved the integral scales of the flow, and very little of
its inertial range. The effective Smagorinsky constant for the different simulations is
included in table 2.

At box aspect ratios (Axz,Ayz)= (3, 1.33), symmetric self-sustaining LES turbulence
exists for RS & 65. There is a transitional range, 45 . RS . 65, in which the kinetic
energy of the flow increases and decreases several times before decaying to laminar
after St=O(1000). Both the transitional range and the decay time depend somewhat
on Ayz. We will see in § 4 that LES turbulence in taller boxes, Ayz ≈ 2–3, survives in
the range 50. RS . 60, but collapses intermittently to vertically localised turbulence.

2.3. Searching for invariant solutions in LES
Our main interest is to characterise invariant solutions in LES of SS-HST. Strictly
equilibrium solutions are technically impossible in this system. The shear-periodic
boundary condition slides the upper computational boundary with a velocity SLy with
respect to the lower one, and the numerical configuration only repeats itself after a
‘box’ period Ts ≡ Lx/(SLy). It was shown in Sekimoto et al. (2016) that this periodic
forcing does not interfere strongly with the turbulent solutions as long as the aspect
ratios are kept in the range 2<Axz. 5 and Axz. 2Ayz. We will approximately respect
these constraints here, and find solutions that are numerically indistinguishable from
fixed points. Vertically localised solutions can be equilibria at the limit of Ayz→∞,
since they are independent of the shear-periodic boundary condition, but it should be
remembered that all of them are conceptually periodic orbits in a finite computational
domain. All of the statistics discussed below are averages over a box period.

Solutions are computed using the Newton–Krylov–hookstep method (Viswanath
2007) on f T(x) − x = 0, where x is the vector of independent variables, and
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f T
: x(0)→ x(T) is the integration of (2.1) over time T , using the evolution code

described in the previous section. Because of the periodicity mentioned above,
the search time is always an integer multiple of the box period, Tm = mTs. The
convergence criterion for the relative error of the Newton method is generally taken
as ‖ f Tm(x)− x‖/‖x‖< 10−5, where ‖ · ‖ is the L2 norm.

The initial condition for the search was taken from snapshots of the LES symmetric
turbulence in the above-mentioned marginal range in which turbulence eventually
decays to laminar, RS < 50, Axz= 3 and Ayz= 1.33. In order to find a solution, we fix
the aspect ratios and the time period Tm ≈ 10 (m= 5), then change RS. For RS ≈ 35,
the Newton search always converges to a trivial laminar state. The first non-trivial
solution is obtained spontaneously at RS = 38.6, and a trial with m= 7 converges to
the same solution. It is, therefore, a periodic orbit with the period of Tm= Ts (m= 1)
close to the bifurcation point that marks the lowest RS of our family of solutions.
The solutions are always unstable and some examples of the linear stability analysis
are shown in the later section and in the Appendix.

From this initial solution, lower and upper branches are continued along the
parameters Axz, Ayz and RS, overcoming the turning points with a pseudo-arclength
method. We have seen that all these solutions are periodic orbits in which the period
is Ts. The periodicity is especially noticeable for the upper-branch solutions in flat
boxes, Ayz = 1.33–1.64 and RS ≈ 45, where the temporal oscillation of the integrated
kinetic energy is of order 1 %. They asymptotically approach a fixed point in the
limit of Ayz →∞, and the oscillations become negligible, O(10−5) for Ayz > 2, for
the vertically localised solutions described later in taller boxes.

3. Lower-branch solutions in LES

Here, we preview the obtained equilibria, and characterise lower-branch solutions in
a computational box, (Axz,Ayz)= (3, 1.33). This is slightly ‘flatter’ than the acceptable
range, Axz . 2Ayz, in which unphysical strong linear bursts appear as described in
Sekimoto et al. (2016), in spite of which the turbulence statistics are reasonably close
to the logarithmic layer of channel turbulence. We investigate in this section the RS

dependence of the equilibria. The effect of the aspect ratios is discussed in § 4.1.
All the equilibria in this section are found using the same numerical grid of the

low-RS turbulence LESs in table 2, (Nx, Ny, Nz) = (64, 48, 32). They are continued
in RS as long as convergence is achieved. This happens in RS . 100 for the lower-
branch solutions, and in RS. 60 for the upper branch. We emphasise that RS depends
on the eddy-viscosity parameter lS, rather than on the numerical grid. As long as the
numerics resolves features of the order of ηt≈ lS, all grids should converge to the same
solution. We saw in the previous section that this is true for most of our simulations.
As a further check, finer grids are used in § 4 to compute equilibria in other numerical
boxes. In the cases in which the same solution is computed with two different grids,
no substantial differences are found (see figure 5).

Although most solutions were converged to a Newton relative error of 10−5, a
few were confirmed to a tighter tolerance. For example, the lower- and upper-branch
solutions at RS = 50.5 discussed in figures 3 and 4 are iterated to an accuracy of
10−12.

Figure 2(a–c) shows continuation diagrams of the lower- and upper-branch solutions
for the box mentioned above, showing the fluctuation intensity of the three velocity
components at y = 0. The lower-branch solutions are characterised by weaker
streamwise velocity fluctuations and stronger transverse velocities than those in
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FIGURE 2. (Colour online) (a–c) Velocity fluctuation intensities at the centre plane y =
0, as functions of RS = Lz/lS, for (Axz, Ayz) = (3, 1.33): (a) streamwise component, u′c;
(b) vertical, v′c; and (c) spanwise w′c. Symbols: (◦, black) the upper branch; (O, blue) the
lower branch; solid symbols are cases plotted in figure 3.

the upper branch, but note that even the more intense transverse velocity fluctuations,
v′ and w′, are an order of magnitude smaller than in the LES and DNS turbulence
at a comparable Reynolds number in table 1(v′ ≈w′ ≈ 0.16SLz).

The identification of which branch is the lower one is not straightforward, but we
will denote as such the lower branch in figure 2(a). This is actually consistent with
the fact that the lower-branch solution typically has low drag, while the upper one
has high drag (figure 6c), as we shall discuss later in § 4.1. Continuation in RS reveals
that, as this branch extends towards higher RS, its solutions concentrate in a relatively
thin critical layer for RS > 70. This is a common feature of lower-branch solutions in
wall-bounded flows at high Reynolds numbers (Wang et al. 2007; Viswanath 2009;
Hall & Sherwin 2010; Blackburn et al. 2013; Deguchi, Hall & Walton 2013). Figure 3
shows isosurfaces of |ωx| = 0.6|ωx|max, and of u = 0, representing the geometry of
the vortical structures and of the velocity streak in the upper- and lower-branch
solutions, showing that they are localised around y = 0. The streamwise-velocity
streak of the lower-branch solutions meanders more deeply than the one in the upper
branch, leading to stronger cross-flow velocity fluctuations. As RS increases, the
vortical structure of lower-branch solutions becomes flatter. This occurs drastically,
but smoothly, at around RS ≈ 60, after which it becomes a critical-layer-type solution
similar to those described by the VWI theory for the lower-branch solutions in
plane Couette flow (Blackburn et al. 2013). This transition probably corresponds to a
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FIGURE 3. (Colour online) Vortical structures and the velocity streaks in a box (Axz,Ayz)=
(3, 1.33): (a) RS= 50.5, upper branch; (b) RS= 38.2 at the bifurcation point; (c) RS= 50.5,
lower branch; (d) RS = 69.8, lower branch. The shaded backgrounds in the left panels
are isocontours of the streamwise-averaged ωx(y, z)/S= [−0.3 : 0.03 : 0.3]. The light-grey
dashed line is the streamwise-averaged u= 0. The right panels shows the isosurfaces of
ωx = 0.6|ωx|max (red; dark-grey in black/white), ωx =−0.6|ωx|max (blue; black) and u= 0
(yellow; light-grey), gradually coloured by y.
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FIGURE 4. (Colour online) LES equilibrium solutions, (Axz,Ayz)= (3, 1.33) and RS= 50.5.
(a) Mean streamwise velocity. The thin diagonal is U = Sy. (b) Resolved strain rate.
In (a,b): ——, lower branch, as in figure 3(a); - - - -, upper branch, as in figure 3(c).
(c) Stability eigenvalues (µr + iµi)/S of the equilibria in (a,b): O (blue), lower branch;
◦ (red), upper branch. (d) Temporal evolution of the fluctuation velocity magnitude of
symmetric LES initialised from the equilibria in (a,b). The darker lines are initialised
without any disturbance except numerical inaccuracies: —— (dark blue), initialised from
the lower branch; - - - - (dark red), from the upper branch. The lighter grey lines are
initialised from the lower branch with a small disturbance along the unstable direction
corresponding to the real unstable mode: ——, attracted to the turbulence state; - - - -,
attracted to the laminar state. All attempts to perturb the upper branch along its unstable
modes led to laminarisation. The short thick dotted line represents the fluctuation intensity
of LESs in table 1, using the same box and Reynolds number.

complex set of bifurcations, since several eigenvalues change stability around that RS,
but tracking them is difficult in our flow. For example, a new complex pair appears
around RS = 55, but the associated branch cannot be followed by the present method
because its period is not a simple multiple of the box period Ts.

In the high-Reynolds-number limit, Blackburn et al. (2013) have shown that the
VWI states begin to localise at y = 0 as spanwise wavenumbers increase, i.e. as Lz

narrows. Waleffe (1997) showed that equilibrium solutions similar to those of Couette
flow are generic to many shear flows, and Deguchi & Hall (2014a) and Deguchi
(2015) have described more recently how a VWI state can be embedded in any
shear flow at high Reynolds number. There is an inviscid mechanism as in VWI-type
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solutions of the Navier–Stokes equation, whose streamwise velocity structure is shown
to be thinner for increasing Re. ‘The singularity occurs where the wave propagates
downstream with the local fluid velocity and defines the location of a critical layer
in which viscosity smooths out the singularity’ (Deguchi & Hall 2016). The critical
layers in LES equilibria must be similar to those in DNS and the singularity occurs,
but the eddy viscosity smooths it out.

Upper-branch solutions are characterised by their taller streamwise-velocity streaks.
Their height increases with increasing RS, while their quasi-streamwise vortices
become more inclined (see figure 3a). The relatively tall streaks suggest that the
effect of the vertical box aspect ratio may be important for these solutions. This will
be investigated in the next section.

Mean profiles for upper- and lower-branch solutions at the same RS are shown in
figure 4(a,b). The lower-branch solution is the one shown in figure 3(c), and the
upper-branch one is in figure 3(a). Both solutions are concentrated around y= 0, but
the concentration is more pronounced in the lower branch. This is seen in the more
horizontal quasi-streamwise rollers in figure 3(c), and in the shallower mean velocity
profile near y= 0 in figure 4(a).

Since it follows from the momentum conservation equation (2.3) that the total shear
stress has to be independent of y, the shallower profile of the lower branch suggests
a higher eddy viscosity, and consequently a higher total strain. The opposite turns out
to be the case. Figure 4(b) displays the mean profile of the mean total strain rate for
the two solutions, which can also be interpreted as a profile of eddy viscosity. The
flatter profile of the lower branch is due to higher resolved Reynolds stresses. Beyond
|y|/Lz≈ 0.5, the mean strain tends to 〈|σ |〉xz≈ dU/dy, and most of the momentum flux
is carried by the SG term.

The simplest interpretation is that the Reynolds stresses created by the transverse
velocities of the equilibrium state flatten the profile into a local region of lower
shear. This results in a locally lower eddy viscosity and a locally higher Reynolds
number, which helps to sustain the solution. However, the requirement from the
boundary condition that the total velocity difference across the domain is constant
prevents the low-shear layer from spreading over the whole box, and results in a local
high-Reynolds-number ‘turbulent’ layer within a box in which all other fluctuations
are damped by the model.

The linear stability eigenvalues of the two solutions in figure 4(a,b) are shown in
figure 4(c). The upper branch has two unstable complex-conjugate pairs, while the
lower-branch solution has a pair of unstable complex-conjugate modes and a real
unstable mode. Since we have already noted that all solutions are periodic orbits,
all these eigenvalues are actually Floquet exponents that have an underlying periodic
component. The period of the real unstable mode of the lower branch in figure 4(c)
is the box period, representing an exponentially growing oscillation synchronous with
the numerics. The complex-conjugate pairs have periods that are not simple multiples
of the box period, and represent bifurcations into a torus. Further details of the
distribution of the unstable modes and their dependence on Ayz are in the Appendix.

Figure 4(d) shows the results of initialising symmetric LES from the equilibria
just discussed. At first, the LES is initiated from the equilibrium without adding any
disturbances beyond numerical errors. The result is that the lower branch transitions
rather quickly to a turbulence-looking bursting state, while the upper branch does not
separate from equilibrium during the time plotted in figure 4(d). This is consistent
with the stability analysis in figure 4(c), which shows that the instability eigenvalues
of the upper branch are weaker than for the lower one.
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FIGURE 5. Reynolds stress averaged over the y= 0 plane, RS= 38.9, Nx= 64 and Nz= 32.
(a) As a function of Ayz for Axz = 3: ——, Ny = 48; �- - - -�, Ny = 48. (b) As in (a), but
as a function of Axz for Ayz = 3, Ny = 64.

Next, the LES are initiated by perturbing the equilibria along the eigenfunction
of individual unstable modes. The grey lines in figure 4(d) show the result of
perturbations of the lower branch along the eigenfunction of its real unstable
eigenvalue. One direction leads to exponential growth of the kinetic energy into
a burst and chaotic turbulence, while the opposite direction laminarises. None of the
LES initialised from the unstable complex modes of the lower branch leads to bursts
or to self-sustaining turbulence, and neither do the perturbations of the upper branch.
The lower-branch solution thus behaves as a torus ‘edge’, which has not only a single
unstable real mode, like simple ‘edge states’, but also two complex unstable modes.
However, the most interesting part of this observation is not the detail of this ‘edge’,
but the burst originating from the unstable manifold of the real saddle. A similar
behaviour was found by van Veen & Kawahara (2011) in Couette flow.

4. Vertical localised upper-branch equilibria, and localised turbulence
4.1. The effect of box aspect ratios and characterisation of equilibria

Figure 5(a) shows the dependence on Ayz of the Reynolds stress at the central plane
for RS = 38.9 and Axz = 3, close to the initial bifurcation. Solutions exist only for
Ayz > 1.1. The Reynolds stress decreases as Ayz increases, and may approach a non-
zero constant in the limit Ayz→∞. The same is true for the velocity fluctuations (not
shown). Note that, since the grid becomes relatively coarser as Ayz increases, a finer y
grid is used for taller boxes (dashed lines), and that the good agreement of the results
whenever the two grids overlap confirms numerical convergence.

The dependence on the streamwise aspect ratio Axz is shown in figure 5(b).
Solutions exist for 1.58 . Axz . 3.29, which covers the range of box aspect ratios
(Axz ≈ 3) identified by Sekimoto et al. (2016) to be good models for wall-bounded
shear turbulence. It is interesting that the minimum aspect ratio for steady Nagata
equilibrium solutions in plane Couette flow is Axz ≈ 1.62 at low Reynolds numbers
(Jiménez et al. 2005), and that Deguchi (2015) showed that they exist only for
Axz & 1.5, even at high Reynolds numbers. On the other hand, Kawahara & Kida
(2001) found unstable periodic orbits for somewhat shorter boxes, Axz = 1.46.

Figure 6 shows the continuation along RS for Axz = 3 and several Ayz. The
box-averaged statistics of LES (symmetric) turbulence are also shown for comparison.
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FIGURE 6. (Colour online) Equilibrium solutions for Axz= 3 and different Ayz: solid with
O, blue, Ayz = 1.33; dashed with G, blue, 1.5; dashed with 4, green, 1.64; solid with
F, green, 1.8; dashed with �, black, 2.0; solid with ◦, black, 3.0. Plots of: (a) u′c/SLz;
(b) v′c/SLz; (c) resolved-scale Reynolds stress −〈uv〉c; and (d) 〈|σ |〉c/S ≡ R2

S/〈Rez〉c.
The filled and open symbols represent lower and upper branches, respectively. The red
diamonds are box-averaged statistics of symmetric LES turbulence in a box (Axz, Ayz)=
(3, 3).

For RS . 60, those turbulence simulations occasionally become vertically localised
around y = 0, but they spread again to fill the whole domain (see § 4.3). The
box-averaged turbulence statistics in figure 6 include such locally quiescent regions,
leading to weaker v′ and w′ fluctuations than would otherwise be obtained at the
central plane. When RS . 50, LES turbulence often decays to laminar after these
localisation events.

The velocity fluctuations for the upper-branch solutions are quite large in flat boxes
and at low Reynolds number, Ayz= 1.5 and RS≈ 45, but that behaviour disappears for
taller boxes and saturates beyond Ayz ≈ 3. These large fluctuations are thus probably
an effect of the shear-periodic boundary condition. This is also the range in which the
shear periodicity results in the strongest temporal oscillations of the kinetic energy, of
the order of 1 %, but we tested that the fluctuations in figure 6(a,c) are not due to
the temporal variability. They are also present in the spacial average of instantaneous
snapshots. The temporal oscillation of solutions with Ayz > 2 is of the order of 10−5.

The relatively poor scaling of the velocity fluctuations of the LES equilibria
with SLz can be traced to the poor scaling of |σ |/S. Figure 6(d) shows that
the dimensionless strain rate of the upper-branch equilibria is roughly unity for
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FIGURE 7. (Colour online) (a,c,d) As in figure 6, but scaled by uτ at y = 0: (a,b) u′+c ,
(c) v′+c , (d) w′+c . (b) Detail of (a): solid with 4, red, Axz= 2; solid with �, blue, Axz= 2.5;
black with ◦, Axz = 3.

RS = 50–100, while that of turbulence is in the range of 2–5. It was shown by
Sekimoto et al. (2016) that, although SLz is the natural velocity scale for ‘good’
DNS boxes, the fluctuations in non-optimal boxes scale better with the friction
velocity obtained from their total measured stress. In essence, the Reynolds stress
and the velocity fluctuations scale with each other.

The same is true for LES and for equilibrium solutions. Figure 7(a,c,d) shows
that the fluctuations collapse to a common curve in these ‘wall’ units. The vorticity
components also scale well with uτ/lS (not shown). In this normalisation, the velocity
fluctuations of symmetric LES turbulence at RS = 100 are u′+ ≈ 2, v′+ ≈ 1.2 and
w′+≈ 1.4, which agree well with those at the top of the logarithmic layer of turbulent
channels. When RS < 60, the velocity fluctuations of the LES equilibria are not very
different from those of turbulence, but we have seen that the lower-branch solutions
tend to get concentrated around the critical layer as RS increases. Their statistics then
become very different from turbulence.

Figure 7(b) is an enlargement of figure 7(a), showing the dependence on Axz of the
minimum bifurcation Reynolds number of equilibria with Ayz= 3. It turns out that the
bifurcation is more dependent on Axz than on Ayz. At a fixed Axz = 3, the minimum
RS is (38.11, 38.00, 37.94, 37.91, 37.89, 37.90) for Ayz= (1.33, 1.5, 1.64, 1.8, 2.0, 3.0),
with a maximum scatter of 0.6 %. On the other hand, when Ayz is fixed at 3, RS

changes by 8 %, from 35.05 to 37.90, as Axz changes from 2 to 3.
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FIGURE 8. (Colour online) Velocity fluctuations for Axz = Ayz = 3: (a) RS = 50, (b) RS =

62.5; only half of each plot is shown, using the symmetry in y. Left side is lower branch.
Right side is upper branch. Curves: - - - - (black), u′; —— (blue), v′; – - – - – (red), w′.

0 0.5 1.0 1.5–1.5 –1.0 –0.5 0 0.5 1.0 1.5–1.5 –1.0 –0.5

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

(a) (b)

FIGURE 9. (Colour online) (a,b) As in figure 8, for the momentum balance: ——
(blue), 〈−uv〉xz/u2

τ ; - - - - (red), 〈2νtσ xy〉xz/u2
τ ; —— (black), total stress.

4.2. The structure of the upper-branch equilibria
We focus next on the flow structure of the vertically localised upper-branch equilibria
in a box with Axz = 3 and Ayz = 3. The right-hand side of the two panels in figure 8
shows that the velocity fluctuations of these solutions decay exponentially away
from y = 0, which is a common feature of localised solutions in other shear flows
(Schneider, Gibson & Burke 2010; Gibson & Brand 2014). The tail of u′ is much
stronger than those of v′ and w′. This can be shown to be due to a streamwise-constant
‘streak’ of the streamwise velocity that can be approximated as a roughly sinusoidal
spanwise perturbation of the mean profile, us ∼ sin(2πz/Lz). This weak perturbation
is the far tail of the stronger sinuous streak of u concentrated near y= 0 and, because
it is almost independent of x, is essentially independent of v, w and the shear. The
left-hand part of both panels in figure 8 represents lower-branch solutions, which
share many of the characteristics of the upper branch. As the Reynolds number
increases, all structures become more complex, as seen in figure 8(b) and later in
figures 11 and 12, and the core of the structures develop substructures that could
perhaps be interpreted as a first indication of a turbulent cascade. The momentum
balance of these flows is shown in figure 9. The Reynolds stress is dominant in the
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FIGURE 10. (Colour online) Height of the velocity streak, defined by the distance ds
between the peaks of u′ in the core part of the solutions in figure 8. Only peaks in the
inner core are considered, and the secondary peaks in the outer one-component layer are
ignored. (a) Plot for Axz = 3 and Ayz = 1.33, 1.5, 1.64, 1.8, 2, 3. Lines and symbols as in
figure 6. (b) Plot for Axz = 2, 2.5, 3 and Ayz = 3. Lines and symbols as in figure 7(b).

0.50

0.5
0

 –0.5
 –1.0
 –1.5

1.0
1.5

0.5

0

 –0.5

 –1.0

 –1.5

1.0

(a)

–0.1

0.1

0.2

0.3

–0.2

0

0.50

0.5
0

 –0.5
 –1.0
 –1.5

1.0
1.5

(b)

–0.1

0.1

0.2

0.3

–0.2

0

FIGURE 11. (Colour online) Vertically localised upper-branch solutions. Plots as in
figure 3, for Axz = 3, Ayz = 3 and (a) RS = 42.7 and (b) RS = 62.5.

core, |y|/Lz < 0.5, but only the mean shear dU/dy contributes to the eddy viscosity
in the outer part.

Figure 10 presents the height of the velocity streak for the different equilibria,
defined as twice the distance to y= 0 of the first maximum of the u′ profile of the
solutions in figure 8. The height of the lower-branch streak stays roughly constant
below RS≈ 50, and approaches zero quickly above that limit, as the solutions collapse
to the critical layer. In contrast, the height of upper-branch solutions increases
drastically near the bifurcation point and reaches a maximum near RS ≈ 45. This
is also the range in which the velocity fluctuations become very strong in figure 6,
and only appears in flat boxes with Ayz = 1.33–1.64. We argued in the discussion
of figure 6 that upper-branch solutions tend to be limited by the height of these flat
boxes, and figure 10(a) confirms this interpretation by showing that the maximum
height of the streak reaches the box height. On the other hand, this interaction does
not take place when Ayz& 2, confirming the independence of those solutions from the
box dimensions.

The flow structures of the upper-branch solutions at RS = 42.7 and 62.5 are
visualised in figures 11 and 12. The streak is represented by the u = 0 isosurface
that spans |y|/Lz < 0.5 in figure 11 (see also figure 3a,b). The corresponding vortical
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FIGURE 12. (Colour online) Isosurfaces of the second invariant of the velocity gradient
(Q= 0.2Qmax) coloured by ωx, with the same colour code as in the streamwise-averaged
ωx maps in the left panels of figure 11(a,b): ωx < 0 (dark grey), ωx > 0 (light grey). From
top to bottom, each panel shows: a three-dimensional view, a side view of the region
0.56 z/Lz 6 1, and a cross-section of cross-flow velocity vectors at x/Lz = 2.25, marked
as a chain-dotted vertical line in the side views. The primary streamwise rollers visible
in these cross-sections are not always compact enough to appear in the Q isosurfaces and
are marked as A in the lateral views. Flow as in figure 11(a,b). Only the active part,
|y|/Lz < 0.5, is shown in all cases.

structures are located in the flanks of the streak, as seen in the streamwise-averaged
cross-stream maps of ωx in figure 11. The vortical structures are shown by themselves
in figure 12, and are surprisingly complex for an equilibrium solution. This is
especially true for the higher-Reynolds-number case in figures 11(b) and 12(b), which
appear to include a double structure that is nevertheless in equilibrium. In fact, there
is a first indication of two separate scales in these flow fields. The smaller tube-like
vortical structures are isosurfaces of the second invariant of the velocity gradient
tensor (Q criterion), and are coloured by the streamwise vorticity. They do not
always coincide with the larger-scale structures of the cross-stream velocity, which
are visible in the cross-sections in the bottom part of figure 12. These ‘rollers’ are
too diffuse to appear in the Q-map, which may actually appear empty in the region
in which the roller is dominant (see the region labelled as A in the side view in
figure 12b, and note that, because of the symmetry of the flow, a mirror-symmetric
arrangement is present in the upstream half of the box). On the other hand, it is clear
from the cross-sections that the roller dominates the velocity field.

The low-Reynolds-number solution in figure 12(a) shows that the Q-vortices are
parts of the larger streamwise rollers that have been sheared and stretched by the
mean flow. The cross-sections in the bottom part of figure 12 show that these vortices
are long enough to spill into neighbouring periodic boxes, so that they appear as
double in the cross-section. The inclination angle of these streamwise rollers and
vortices is roughly 15◦ at all Reynolds numbers. In the higher-Reynolds-number
case in figure 12(b), the streamwise vortices are strong enough to create new vortices,
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FIGURE 13. (Colour online) Streamwise velocity spectrum E∗uu = Euu(kx)ε
−2/3l−5/3

S as a
function of kxlS: O (blue), upper-branch solution at RS = 42.7; ◦ (black), upper-branch
solution at RS = 62.5; 4 (red), turbulence LES at RS = 62.5. The dash-dotted line
represents the inertial theory E∗uu(kx) = 0.6(lSkx)

−5/3. The spectra and dissipation rates of
the upper-branch solutions are averaged over |y|/Lz < 0.5.

roughly perpendicular to them, which are labelled as B in the side view in figure 12(b).
They rotate in the opposite sense to the primary streamwise rollers and are aligned
in the direction of the strain produced by them. A similar generation mechanism
of secondary smaller vortices has been investigated in the homogeneous isotropic
turbulence (Goto 2012).

The velocity spectra in figure 13 show that the upper-branch solutions acquires more
small-scale structures as RS increases, approaching the spectrum of turbulence LES at
similar Reynolds numbers. Even though the turbulence state has more small scale, the
large-scale end of its spectrum is quantitatively similar to the upper-branch solutions.

4.3. Intermittent visiting of turbulence to vertically localised states
We mentioned in § 4.1 that, when RS is relatively low, LES turbulence collapses
intermittently to a localised state around y = 0, and that these states persist for a
long time when RS & 50. These are the statistics plotted as diamonds in figure 6.
Figure 14(a) shows the temporal evolution of the profile of local v′. Light colours
represent active turbulent regions and dark ones are overdamped ‘laminar’ areas.
Localised turbulence occurs when laminarisation does not extend over the whole
height of the box, such as in St= 1500–2000.

Note that localisation only takes place in flows with sinuous symmetry, so that the
profiles are symmetric with respect to y= 0, but that the symmetry allows localisation
either at the centre plane, y= 0, or at the top or bottom of the box, y=±Ly/2. The
strongest event in figure 14(a) is localised at y = 0 (St = 1500–2000), but there are
several minor ones (e.g. at St≈ 400) localised at the top of the box.

The structure of the flow at a fully turbulent moment is shown in figure 14(b), and
shows that vorticity is spread over the whole box. Figure 14(c) represents the flow
during a localisation event. Its similarity to the localised lower-branch equilibrium
solutions is striking. Since we saw in § 3 that these solutions are edge states whose
unstable manifold leads to bursting, it is tempting to interpret localisation as the
occasional approach of fully developed turbulence to the localised solution along
its stable manifold, and its later spreading to a fully turbulent state along the
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FIGURE 14. (Colour online) (a) Vertical velocity fluctuation intensity profiles,
〈v2
〉

1/2
xz /(SLz), as a function of y/Lz and St. The contours are [0.02 : 0.02 : 0.08],

and the mean value of v′ is approximately 0.07SLz (see figure 6). Here Axz = 3, Ayz = 3
and RS = 50. (b) Homogeneous turbulence at St= 1318. (c) Localised state at St= 1525.
The left panels in (b) and (c) show the streamwise-averaged ωx, and the right ones show
isosurfaces of ωx and u, as in figure 3.
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FIGURE 15. (Colour online) (a) The local cross-flow velocity fluctuation intensity u⊥
defined in (4.1) at: (black) y=Ly/2 (ut); (grey) y/Lz= 0 (uc). The black dashed line is the
mean value, 〈u⊥〉, and the red dashed lines are 〈u⊥〉±σ , where σ is the standard deviation.
They are defined as averages over the centre and top of the box, as explained in the
text. (b) The intermittency factor (1− γ ), where γ is defined in (4.2): —◦—, RS = 50.0;
—•—, RS= 52.6; —O— (grey), RS= 55.5; – –M– –, RS= 62.5; —�— (grey), RS= 101.6.

unstable manifold. A similar behaviour was reported in a plane channel by Itano
& Toh (2001), and Kawahara (2005) used the occasional approaches to the edge state
to laminarise turbulent Couette flow.

We next quantify the frequency of these localisation events. Figure 15(a) shows the
evolution of the transverse velocity fluctuation intensity, defined as

u⊥(y)≡ (〈v2
〉xz + 〈w2

〉xz)
1/2. (4.1)
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The darker line is the intensity at y = 0, and the lighter one is the intensity at y =
±Ly/2. The thin straight solid and the dashed lines are the mean, 〈u⊥〉, and deviation,
σ , which are the averages of these two positions. By defining uc = u⊥(0) and ut =

u⊥(Ly/2), fully turbulent profiles should have large uc ≈ ut ≈ 〈u⊥〉, while localised
states are characterised by having one of these intensities much weaker than the fully
turbulent one. The quantity

γ ≡

∫
∞

tu

∫
∞

tu

P(uc, ut) duc dut, (4.2)

where P(uc, ut) is the joint probability density function of both intensities, and tu is
a threshold, measures the probability that the points y = 0 or Ly/2 are turbulence
according to uc > tu or ut > tu. Since the localised state has the overdamped laminar
region, which appears intermittently as shown in figure 15(a), (1 − γ ) indicates the
intermittency factor of the localised turbulence. Figure 15(b) shows that the frequency
of localisation decreases as RS increases.

5. Conclusions
We have performed LES of SS-HST in a subspace with sinuous symmetry, and

found equilibrium solutions with the same symmetry. We use a Smagorinsky-type
model with no molecular viscosity, which is not required because of the absence
of walls, so that the eddy viscosity νt ≡ l2

S|S| acts as the only energy sink. It is
parametrised by a mixing length lS that plays the role of the Kolmogorov scale in
LES, independent of the numerical grid. For the grids used in this study, the flow is
independent of the numerical resolution. The integral scale in the LES of the SS-HST
is comparable to the spanwise box dimension, L0≈ 0.4Lz, as in the DNS of the same
flow in Sekimoto et al. (2016) and as in wall-bounded turbulence in spanwise-limited
boxes (Flores & Jiménez 2010). The effective Kolmogorov scale is ηt ≈ 0.9lS, and
the velocity fluctuations scale well with SLz, as in DNS. Even if we introduce the
molecular viscosity in our LES, considering the effective Kolmogorov length, η̃t≈ l̃S≡

lS(1 + ν/νt)
1/2 (see Pope 2000), the results would not change as long as ν is small

enough with respect to the mean νt.
The length-scale ratio RS = Lz/lS is used as a continuation parameter for LES

equilibria, playing the role of a Reynolds number, and it is found that vertically
localised equilibrium solutions appear by a saddle-node bifurcation at RS = 37.9 for
Axz = 3. The dependence of the equilibrium solutions on the box aspect ratios has
been investigated, and it is revealed that both lower- and upper-branch solutions tend
to localise vertically around the central plane of the box. The initial bifurcation point
is roughly independent of Ayz, and much more dependent on Axz. These solutions
exist in 1.58 . Axz . 3.29 and Ayz > 1.1 at RS = 39.0. This range of aspect ratios
spans those found by Sekimoto et al. (2016) to be good models for unconstrained
shear flows in general. The minimum limit of Axz& 1.6 is also similar to those found
for the existence of equilibria in plane Couette flow by Nagata (1990) and Deguchi
(2015). These and other authors have mentioned that such equilibria can be embedded
in general unbounded shear flows, but the localisation of the present solution in an
approximately linear shear is almost surely due to the interaction with the local
eddy-viscosity profile. As RS increases, the lower-branch solutions take the form of
a critical layer, such as those found in previous works on wall-bounded flows (Wang
et al. 2007; Viswanath 2009; Deguchi & Hall 2014b), and described by VWI theory
(Hall & Smith 1991; Hall & Sherwin 2010).
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The length scales of the LES equilibria are lS for the small scale and Lz for the
large one, as in LES turbulence. The comparison of the contribution of the eddy
viscosity and of the Reynolds stress to the momentum balance reveals that the former
is weak within the localised equilibrium solutions, and predominates outside it. The
velocity fluctuations of the present equilibria are substantially smaller than those of
self-sustaining turbulence, especially in the VWI limit, and do not scale well with
SLz. However, they scale well with their own uτ , with similar values to those of
wall-bounded flows expressed in wall units.

At low Reynolds numbers, lower-branch solutions act as edge states. Although their
eigenvalue structure is more complicated than a simple saddle, one of the unstable
directions of the saddle leads to an exponential burst and to chaotic turbulence, while
the other laminarises. In turbulent LES, the flow occasionally collapses to a localised
state that resembles the equilibrium solutions. Depending on the Reynolds number, the
outcome of these events is more often reinjection to turbulence, or laminarisation.

Upper-branch solutions have tall velocity streaks associated with small-scale
vortices, whose complication increases with increasing RS. It is interesting that,
even at the relatively low RS ≈ 62, small secondary vortices begin to appear in these
solutions, aligned perpendicularly to the primary streamwise rollers in a manner
strongly reminiscent of the multiscale process frequently invoked as models for the
turbulent cascade. Further continuations to higher RS are hardly successful, probably
because of their increasing complexity and instability, which is a similar limitation to
the one we encounter when searching for dynamically important invariant solutions
in the Navier–Stokes computations at high Reynolds numbers.

In all, the localised LES equilibria discovered here represent a promising model
for generic isolated turbulent structures in shear flows. Most intriguingly, the higher
Reynolds numbers contain what appear to be the first stages of a multiscale cascade.
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Appendix. Linear stability analysis of equilibria in LES
We discuss in this section the linear stability of the vertically localised symmetric

equilibria described in the body of the paper. Even if we saw in figure 7(a) that the
continuation diagram of these solutions is roughly independent of the vertical box
aspect ratio, it turns out that this aspect ratio affects the stability of the equilibria,
especially that of the upper-branch solutions. Since we showed in figure 10 that these
solutions are tall enough to span the full height of the box, especially in the case
of the flatter boxes with Ayz 6 1.5, the artificial interactions with the shear-periodic
copies in y is inevitable. Figure 16 shows the distribution of a few of the least stable
eigenvalues obtained from the linear stability analysis of equilibria with Axz = 3 and
Ayz = 1.5, 2 and 3. The vertically localised equilibrium solution appears through a
saddle-node bifurcation as RS increases. The upper branch always has at least one pair
of unstable complex-conjugate modes, and becomes more stable as Ayz decreases.

In taller boxes, with Ayz= 2–3, the distribution of unstable eigenvalues of the upper-
branch solutions is not strongly affected by the box aspect ratio, in rough agreement
with the criterion, Axz.2Ayz, found in previous DNS studies of SS-HST to be required
for box independence (Sekimoto et al. 2016).
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FIGURE 16. (Colour online) The real-part of non-dimensional eigenvalues obtained by
the linear stability analysis of equilibria for Axz = 3 and (a) Ayz = 1.5, (b) Ayz = 2,
(c) Ayz = 3: O, lower branch; ◦, upper branch. The filled (open) symbols represent real
(complex-conjugate) modes. Positive values represent unstable modes, and the square is
the bifurcation point.
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