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This article discusses the description of wall-bounded turbulence as a deterministic
high-dimensional dynamical system of interacting coherent structures, defined as
eddies with enough internal dynamics to behave relatively autonomously from any
remaining incoherent part of the flow. The guiding principle is that randomness
is not a property, but a methodological choice of what to ignore in the flow, and
that a complete understanding of turbulence, including the possibility of control,
requires that it be kept to a minimum. After briefly reviewing the underlying
low-order statistics of flows at moderate Reynolds numbers, the article examines
what two-point statistics imply for the decomposition of the flow into individual
eddies. Intense eddies are examined next, including their temporal evolution, and
shown to satisfy many of the properties required for coherence. In particular,
it is shown that coherent structures larger than the Corrsin scale are a natural
consequence of the shear. In wall-bounded turbulence, they can be classified into
coherent dispersive waves and transient bursts. The former are found in the viscous
layer near the wall, and as very large structures spanning the entire boundary
layer. Although they are shear-driven, these waves have enough internal structure
to maintain a uniform advection velocity. Conversely, bursts exist at all scales,
are characteristic of the logarithmic layer, and interact almost linearly with the
shear. While the waves require a wall to determine their length scale, the bursts
are essentially independent from it. The article concludes with a brief review of
our present theoretical understanding of turbulent structures, and with a list of open
problems and future perspectives.

‘Chance is the name we give to what we choose to ignore (Voltaire)’
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1. Introduction

Turbulence is often treated as a random process in which important questions
are posed in terms of statistics. In addition, whenever the equations of motion
are explicitly invoked, they are often seen as ‘filters’ modifying the effect of
random noise (Landau & Lifshitz 1959). This article takes the alternative view
that randomness is an admission of ignorance that should be avoided whenever
possible (Voltaire 1764), and that turbulence is a dynamical system which satisfies
the Navier–Stokes equations and can be treated deterministically over time intervals
and spatial domains that, even if limited, are of theoretical and practical relevance.
Specifically, we will be interested in whether the description of the flow can
be simplified by decomposing it into ‘coherent’ structures that can be extracted by
observation and predicted from theoretical considerations. In this sense, we continue
a tradition of ‘eddy chasing’ that, as we shall see, has been pursued in the past few
decades with as much vigour as the purely statistical approach.

However, any attempt to simplify complexity has to be treated with caution,
because it usually implies neglecting something that may be important. For
example, the motion of the molecules in a gas cannot be simplified without
cost. Thermodynamics follows simple rules, but only at the expense of hiding
the instantaneous motion of individual molecules, preventing us from building
‘Maxwell demons’. This does not mean that simplification should not be pursued. It
may be the only way of making the system tractable, but it should be undertaken
with proper care to distinguish between what is important for the system and what
is convenient for us.

The structural view of turbulence is based on the hope that at least part of its
dynamics can be described in terms of a relatively small number of more elementary
processes than the full Navier–Stokes equations.

There are several ways of approaching this goal. Reduced-order models seek to
project the equations of motion onto a smaller set of variables that approximate the
solution in some global sense, typically a linear subspace or a few Fourier modes
(see, for example, Rowley & Dawson 2017). The key word in this sentence is
‘global’, and becomes less justified as the system becomes more extended. Consider
a turbulent boundary layer over a wing, where the wall-parallel dimensions can be
several hundred times the flow thickness. We can expect to find several thousands of
‘largest’ eddies in such systems, many of which will be so far apart from each other
as to be essentially independent. Global definitions fail in those cases, essentially
because they treat together unrelated quantities.

Our approach will rather be to acknowledge that the evolution of the flow is
largely local, and to look for solutions that are intense enough to evolve on their
own, relatively independently from other solutions far away. We will refer to these
putative solutions, different from global modes, as ‘coherent structures’. The two
outlooks are in some ways similar to the wave and particle representations in
quantum mechanics.
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Structures in wall-bounded turbulence

Structure Structure

(a) (b)

FIGURE 1. (a) Conceptual sketch of a possible definition of coherent structure. The
remainder implied by the dots at the end of the equation is assumed to be ‘small’.
(b) Structures need not describe the full flow to be useful (image courtesy of NASA).

It would be useful for our purpose that structures, if they exist, depend
predominantly on other structures and on themselves, at least for some time, with
relatively small contributions from the ‘unstructured’ background (see figure 1a).
Such ‘self’-dependence suggests several properties that structures should possess. In
the first place, they should be strong with respect to their surroundings and have
some dynamics of their own, e.g., a vortex would do, but a blob of red dye may
not. They should also be relevant enough to the flow not to be considered trivial,
even if it should be noted that relevance is a subjective property more related to the
observer than to the flow, and that it depends on the application. For example, a
strong Kolmogorov-scale vortex is not very relevant to the overall energy balance of
the flow, but it might be important for the behaviour of a premixed flame. Finally,
to be useful, structures should be observable, or at least computable.

These requirements generally imply that coherent structures should either be
‘engines’ that extract energy from some relevant forcing, ‘sinks’ that dissipate it, or
‘repositories’ that hold energy long enough to be important for the general energy
budget of the flow.

It follows from the above arguments that the first questions to be addressed
should be whether structures satisfying these requirements are possible, which
simplifications they imply, and whether the parts that can be described structurally
are relevant for the flow as a whole.

In common with other models, structural descriptions should not conflict with
known evidence, but they should not necessarily be required to explain all the
evidence. They may be useful even if part of the flow, or even most of it, is
structureless. For example, the tall cumulus cloud at the centre of figure 1(b) will
probably result in a strong shower. This is a useful local prediction, even if most
of the rest of the sky is clear.

Turbulence, and in particular wall-bounded turbulence, is a complex chaotic
system with many degrees of freedom, with some superficial similarity to the
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molecular description of a gas. In fact, entropy considerations have been used to
motivate the direction of the turbulence cascade (Onsager 1949; Kraichnan 1971).
The evolution of the Fourier coefficients of inviscid turbulence with a bounded set of
wavenumbers, k, can be written as a Liouville system that conserves volume in phase
space, and which can therefore be expected to evolve towards a maximum-entropy
state in which energy is equipartitioned over the wavenumbers. In three-dimensional
flows, this would result in an energy spectrum, E(k) ∼ k2, in which most of the
energy is in the highest wavenumbers, simply because the surface of a sphere
increases with its radius, and Fourier shells with larger wavenumbers contain more
Fourier modes. In this view, the three-dimensional energy cascade of the viscous
Navier–Stokes equations is an attempt by the flow to fill the more numerous
wavenumbers at small scales, frustrated by the vigorous viscous dissipation at those
scales.

This would appear to argue against the possibility of representing turbulence in
terms of structures that are ‘coherent’ enough to be identified as ‘objects’, because
any amount of organisation reduces entropy, but there are several reasons why this
is not true. The first one is that turbulence is very far from equilibrium. Even
assuming statistical stationarity, and disregarding viscosity in the inertial range,
energy flows on average from its injection at large scales to dissipation at small
scales. The implied model is not so much an equilibrium gas, but one in which
heat flows from a hot wall to a cold wall. A succinct discussion of the relation
between non-equilibrium systems and macroscopic structures is Prigogine (1978).

Another reason is that even equilibrium thermodynamic systems fluctuate,
although the relative magnitude of the fluctuations decreases exponentially with
the number of degrees of freedom. This number is typically large in turbulence,
Ndof ∼ Re9/4 for a Reynolds number Re of the energy-containing eddies, but much
smaller than in thermodynamics. Even for a ‘high’ Re= 105, Ndof ≈ 1011 is ten or
twelve orders of magnitude less than the typical number of molecules in a gas.

But the most compelling reason is that, in the far-from-equilibrium state of
Kolmogorov (1941) turbulence, all degrees of freedom are not equivalent and that,
when speaking about structures, we are typically only interested in a small fraction
of modes. The probability of random fluctuations is controlled by their effect on
the entropy (Landau & Lifshitz 1958), which depends on the number of degrees of
freedom involved, but their practical significance is linked to the energy or to the
Reynolds stresses that they contain. In Kolmogorov (1941) turbulence, energy is
associated with a relatively small number of large-scale degrees of freedom, which
are therefore relatively free to fluctuate strongly. These large-scale fluctuations also
tend to maintain coherence over long times which are at least of the order of their
eddy turnover.

We will centre on identifying and characterising such coherent structures. There
are many reasons why we may want to do so, although some of them are probably
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Structures in wall-bounded turbulence

more relevant to the kind of understanding that appeals to the human mind than
to the flow dynamics. To retain some connection with applications, and although
the issue of control will not be addressed explicitly in this paper, the question of
building a ‘Maxwell demon’ to manipulate the energy flux in turbulence using a
structural representation will always be in the background of our discussion. The
most familiar consequence of thermodynamics is that we cannot extract work from
the thermal motion of the molecules in an equilibrium system (Earman & Norton
1998), but we have argued that equilibrium thermodynamics is not applicable here,
and anybody who has flown a glider in thermals, or manoeuvred a sail boat, knows
that it is possible to extract work from turbulence by taking advantage of its
structures. The literature on turbulence control is far too extensive to be reviewed
here, but some idea of the flavour of the discussions on the relevance of structures
for control can be gained from Lumley, & Blossey (1998), for wall-bounded flows,
or Choi, Jeon & Kim (2008), for free-shear flows.

Coherent structures are often found in transitional flows, where they are typically
described as arising from linear modal instabilities of the base laminar flow. This
modal origin gives rise to well-ordered patterns and wavetrains for which there is a
rich and well-developed theory. A classical description of this line of work is Drazin
& Reid (1981). However, we are interested here in the asymptotic state of turbulence
at high Reynolds numbers, far from transition, and the ordered patterns of linear
instability are soon lost to nonlinearity and to the chaotic interaction of the large
number of degrees of freedom. Part of the goal of this paper is to enquire whether
transitional structures play any role in fully developed turbulence, in the hope that
linearly unstable growth may provide a framework on which to ‘hang’ nonlinearity,
even at the cost of considering the flow in some smoothed or averaged sense.

Several relatively new developments help us in this task. The first one is the
realisation that modal growth is not the only possible way in which perturbations
can grow linearly. When the evolution operator is non-normal, i.e. when it cannot
be expanded in a set of mutually orthogonal eigenfunctions, even completely stable
perturbations can grow substantially before they eventually decay. The linearised
Navier–Stokes equations are highly non-normal for several reasons, and the modal
instabilities of individual eigenfunctions give a very partial view of their behaviour.
A modern account of these techniques is Schmid & Henningson (2001), and we
will discuss this approach in more detail in § 6.

Another modern development is the computation of fully nonlinear invariant
solutions of the Navier–Stokes equations, either permanent waves or relative periodic
orbits, starting with Nagata (1990). These solutions have often been described as
‘exact coherent structures’ (Waleffe 2001), which they strongly resemble (Jiménez
et al. 2005), but the similarity is only partial. In the first place, the known solutions
are typically restricted to a single structure in a ‘minimal’ flow unit and, although it
has been shown that the temporally chaotic flow in such minimal units shares many
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properties with turbulence in extended systems (Jiménez & Moin 1991), it fails in
important aspects. Most crucially, minimal units are essentially single-scale systems,
which cannot reproduce the multiscale interactions of high-Reynolds-number flows.
Most of the above discussion on entropic behaviour does not carry over to minimal
units and, although there is a general feeling that it should be possible to ‘synthesise’
large-scale turbulence from an ensemble of minimal units of different size, the
details remain unclear. Invariant solutions are typically unstable, and are not
expected to be found as such in real flows. This is probably helpful in connection
with their role as building blocks for multiscale solutions, because it prevents the
system from getting ‘stuck’ in an attractor that is too simple to be considered
turbulent. It has often been noted that an invariant solution is a fixed point (or a
permanent orbit) in the space of possible flow configurations, and that the system
could spend a relatively large fraction of the time in its neighbourhood as it
‘pinballs’ among different solutions. The properties of invariant solutions could
therefore be important for the overall flow statistics (Ruelle 1978; Jiménez 1987b;
Cvitanović 1988), even in the context of fully developed turbulence. A modern
review of this point of view is Kawahara et al. (2012).

The third modern development that will help us in our goal is the direct
numerical simulation (DNS) of turbulence, which, although initially restricted
to low Reynolds numbers (Rogallo 1981; Kim, Moin & Moser 1987), was later
extended to increasingly higher values. Simulations today span a range of Reynolds
numbers that overlaps the range of most experiments, and which often exceeds that
of the experiments for which reasonably complete measurements are possible. The
main advantage of simulations is that they are ‘observationally perfect’. This is, in
fact, the reason for their high cost. The equations have to be simulated in full to
properly represent the flow and, although some information can be discarded during
postprocessing, it is impossible to restrict direct simulations to partial solutions. As
a consequence, simulations potentially provide the answer to ‘any’ question, and
allow us to see the Navier–Stokes equations as a dynamical system. It is routinely
possible to compute and, up to a point, to store, temporally and spatially resolved
sequences of three-dimensional fields of any required variable. These sequences
reside in computer storage, and can be interrogated forwards and backwards in time
with any desired technique, and as often as required. The pacing item is no longer
how to obtain answers, but how to pose questions. Turbulence research, in common
with other sciences at some point in their development, has changed from a subject
driven by the need for good data, to one driven by the need for new ideas.

Before continuing, it is useful to make explicit the distinction between eddies
and structures, which are often treated as equivalent but are conceptually very
different (Adrian & Moin 1988). In the sense used in this paper, eddies are
statistical representations of the most probable state of the flow, while structures
need dynamics. Going back to the example in figure 1(b), the statistically most
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Structures in wall-bounded turbulence

probable cloud in most weather patterns is unlikely to be an active storm cumulus,
but cumuli are locally very significant.

This article is organised in three broad sections. Section 3 addresses the classical
view of wall-bounded turbulence, considered independently of whether coherent
structures exist or not. Sections 4 and 5 review what is meant by structures, how
they are detected, and what is the experimental evidence for their existence, and
§ 6 summarises some of the models that have been developed to explain them. Two
appendices collect details of the methods of analysis, and a short initial § 2 explores
the interplay between coherence and chaos. Roughly speaking, the three parts of
the paper deal with what happens, how it happens, and why it happens. None of
them should be considered a full review, and readers are encouraged to consult
the original references provided. Most people will feel that important references
are missing. This is unfortunately unavoidable if an article as broad as this one is
to stay within the size limitations. I have tried to incorporate most points of view,
albeit sometimes briefly, but I am obviously biased towards the particular one that
I have tried to make explicit in this introduction. Mostly, I have been interested
in enquiring how the different strands of research are related to each other, and
what facts and observations should be taken into account by any future explanation.
I also apologise for using mostly data from our group. I have them more readily
available than those of others, and the original publications make the necessary
comparisons.

2. An example of coherence in a chaotic system

Before moving to the study of coherent structures in turbulence, it might be useful
to clarify the idea of coherence in a simpler system. The equations

dθ1/dt= σ(θ2 − θ1),

dθ2/dt= (ρ − θ3)θ1 − θ2,

dθ3/dt= θ1θ2 −Qθ3,

 (2.1)

were introduced by Lorenz (1963) as a model for thermal convection in a
two-dimensional box heated from below. The parameter σ is the Prandtl number,
ρ is proportional to the Rayleigh number, and Q is related to the box aspect ratio.
The components of the state vector θ = [θj], j = 1 . . . 3 represent, respectively, the
fluid velocity and the horizontal and vertical temperature gradients. The solutions
to (2.1) have been studied extensively, often for the parameters σ = 10, ρ = 28
and Q= 8/3 used in this section (e.g., see Bergé, Pomeau & Vidal 1984, § VI, for
many of the results cited below). They are chaotic, and trajectories collapse to a
quasi-two-dimensional fractal attractor of dimension approximately 2.06. A sample
trajectory is shown in figure 2(a), and the corresponding evolution of the horizontal
temperature gradient is in figure 2(b).
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FIGURE 2. Properties of the solutions of the Lorenz system (2.1) for σ = 10, ρ =
28, Q= 8/3. (a) Sample trajectory in the three-dimensional state space, starting from the
initial condition marked as a solid circle. (b) Temporal evolution of the horizontal velocity
gradient, θ2: ——, as in (a); - - -, with initial conditions displaced by 10−3 in all three
variables. (c) The shaded contours are the joint p.d.f. of the two temperature gradients,
p.d.f.(θ2, θ3)/p.d.f.max= 0.033(0.066)1, increasing from light to dark. The solid line is the
initial part of the trajectory in (a). +, Equilibrium saddle; ×, equilibrium foci. (d) The
shaded contours are the leading short-time Lyapunov exponent, Lτ = 0.1(1)11.1, increasing
from light to dark, with τ = 0.3. The solid lines are sets of ten trajectories each, randomly
initialised within two neighbourhoods (|δθ |6 0.5) centred on the attractor. The trajectories
starting near point ‘A’ barely diverge over the time displayed (t = 0.5). Those starting
near ‘C’ bifurcate randomly towards one of the foci. (e–g) Flow configuration for the
three states marked by letters in (d). The shaded background is the temperature, increasing
from dark to light. Arrows are the velocity field. Units are arbitrary, but the scale is
preserved among the three panels. (e) Point ‘A’, θ = [15, 15, 15]. ( f ) ‘B’, [10, 10, 35].
(g) ‘C’, [0, 0, 15].
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Structures in wall-bounded turbulence

Figure 2(b) includes a second simulation in which the initial conditions have been
slightly displaced with respect to the first one. Both solutions eventually drift apart,
and this characteristic sensitivity of chaotic systems to small perturbations has often
been used to argue that individual trajectories are not relevant to problems such
as turbulence, which should primarily be studied statistically (see Pope 2000, § 3).
The objects of interest in those cases would not be trajectories such as those in
figure 2(a,b), but long-term probability density functions (p.d.f.) such as the one in
figure 2(c).

However, inspection of figure 2(a–c) suggests a more nuanced interpretation.
There are three unstable equilibrium points: two foci at θ2 ≈±15, where the p.d.f.
is minimum, and a saddle at θ2 = 0 where it is maximum. The trajectories evolve
on two time scales: a short one, T ≈ 0.9, over which the state vector circles fairly
regularly one of the foci, and a longer irregular one over which it switches from
one focus to the other. Only the latter behaviour is chaotic. The short-time evolution
is essentially deterministic, and can be considered coherent in the sense discussed
in the introduction, although embedded in a chaotic system which has to be treated
statistically over longer times.

This idea of coherence can be quantified. The sensitivity of the system to a
linearised infinitesimal perturbation of the initial conditions, δθ(0) = [δθj(0)], can
be measured over a time interval τ by the leading short-time Lyapunov exponent,

Lτ = τ−1 max
δθ(0)

log (‖δθ(τ )‖/‖δθ(0)‖) , (2.2)

where the maximum is taken over all possible orientations of δθ(0), and which
reflects the exponential growth of the norm of the perturbation. This short-time
exponent depends on the initial conditions, and any given state can be considered
predictable for times such that τLτ . 1. In addition, an overall measure of the
predictability of the system is the global Lyapunov exponent,

L∞ = lim
τ→∞

Lτ , (2.3)

which is typically independent of the initial conditions. In this global sense, any
system with a positive Lyapunov exponent should be treated statistically, at least
for times longer, on average, than τ & 1/L∞. It can be shown that L∞ ≈ 0.9 for
the case in figure 2(a), suggesting that no useful predictions can be done for times
longer than τ ≈ 1.

However, the global Lyapunov exponent hides a wide variation in the predictability
of the individual states of the system. This is seen in figure 2(d), which maps the
short-time exponent, for τ = 0.3, as a function of the initial conditions on the
attractor. It ranges from Lτ ≈ 0.1 in the neighbourhood of the foci, to Lτ ≈ 10
near the central saddle, implying a range of predictability times from τ = 10 to
τ = 0.1. This is confirmed by the two sets of trajectories included in figure 2(d).
Both sets are initialised with the same initial scatter, but the trajectories originating
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near the low-Lτ point ‘A’ complete an almost full orbit around their focus without
any visible scatter, while those initialised around point ‘C’, near the saddle, exit
randomly towards one or the other wing of the attractor.

The flow structures associated with different points of state space are displayed in
figure 2(e–f ). The flow at the point marked as ‘A’ in figure 2(d), which was shown
above to be predictable, is displayed in figure 2(e). The uniformity of the warm
layer near the bottom wall has been broken, and part of the warmer fluid is being
carried upwards by the convection vortices. The evolution of the flow is predictable
because buoyancy and advection reinforce each other. Eventually, as in figure 2( f )
for point ‘B’, advection overshoots and carries too much warm fluid towards the
upper cold plate. The convective vortices weaken and eventually disappear near
point ‘C’ (figure 2g), which is close to the unstable conduction equilibrium. The
indeterminacy in the location of any subsequent instability of ‘C’ is substituted in
this simplified model by the ambiguity in the direction of rotation of the convective
vortices, which is the property that distinguishes the two foci.

It is interesting to remark, in view of our discussion in the introduction, that the
predictable (coherent) structures at points ‘A’ and ‘B’ are both far from equilibrium.
In addition, given our underlying interest in flow control, it may be useful to note
that, if control were to be applied to (2.1), the optimum moment would be near the
unpredictable point ‘C’, rather than when the flow is already committed to circle
one of the foci.

3. The mean-field theory of wall-bounded turbulence

We may now abandon general considerations and centre on the problem of wall-
bounded turbulence. Although this article is mainly concerned with the search for
structures, we first consider the geometric and scaling aspects of the flow, in what
is usually described as the ‘mean-field’ approximation. This is the classical view of
turbulence, and defines the framework within which structures may or may not exist.
Textbook accounts are Tennekes & Lumley (1972), Townsend (1976) or Pope (2000),
and modern reviews can be found in Smits, McKeon & Marusic (2011) and Jiménez
(2012, 2013b).

We mostly use supporting data from equilibrium wall-bounded turbulent flows
driven by mild pressure gradients, such as channels and circular pipes, or from
undriven zero-pressure-gradient boundary layers, which evolve slowly downstream.
The channel half-height, the pipe radius, or the boundary-layer thickness, are
denoted by h. The streamwise, wall-normal and spanwise coordinates and velocity
components are xi and ũi, respectively, with i = 1 . . . 3 and x2 = 0 at one wall.
Vorticities are ω̃i, and repeated indices generally imply summation. Ensemble
averages are 〈·〉, usually implemented as averages over all homogeneous directions
and time. More restricted averages are distinguished by subindices. For example,
the average along x1 is 〈·〉1, and is a function of x2, x3 and time. Mean values are
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Structures in wall-bounded turbulence

Abbreviation Flow type h+ L1/h L3/h Reference

CH950 Plane Poiseuille 935 8π 3π Del Álamo et al. (2004)
CH2000 Plane Poiseuille 2000 8π 3π Hoyas & Jiménez (2006)
CH5200 Plane Poiseuille 5200 8π 3π Lee & Moser (2015)
BL6600 Boundary layer 1500–2000 21π 3.2π Sillero, Jiménez & Moser (2013)
HSF100 Homogeneous shear Reλ = 105 3 1 Sekimoto et al. (2016)
HSF250 Homogeneous shear Reλ = 245 3 1 Sekimoto et al. (2016)

TABLE 1. Summary of the cases most often used in the article as sources of data. L1 and
L3 are numerical box sizes in the streamwise and spanwise direction, respectively. In all
cases, L2 = 2h, except in the zero-pressure-gradient boundary layer BL6600, where h is
the boundary layer thickness at the middle of the box.

denoted by capitals, U = 〈ũ〉, and fluctuations with respect to these averages by
lower-case letters, as in ũ=U+ u. Primes are reserved for root-mean-square values,
u′2 = 〈u2

〉. The fluid density is assumed to be constant and equal to unity, and is
dropped from all equations.

Whenever Fourier or other expansions are used, the expansion coefficients
are denoted by carats, as in u(x) =

∑
k û(k) exp(ikjxj). Wavelengths are defined

from wavenumbers, λj = 2π/kj, and spectra are often presented as spectral
densities, as in φaa(k1)= k1Eaa(k1)∼ k1〈|â|2〉, or their two-dimensional counterparts,
φaa(k1, k3)= k1k3Eaa(k1, k3). These are proportional to the energy per unit logarithmic
band of wavenumbers (or wavelengths), and therefore give an intuitive graphical
representation of the predominant wavelength of a given quantity when displayed in
a semilogarithmic plot. They are normalised so that 〈a2

〉 =
∫

Eaa dk=
∫
φaa d(log k).

We occasionally make reference to statistically stationary uniform-shear turbulence
(Pumir 1996; Sekimoto, Dong & Jiménez 2016), which shares with the wall-bounded
case the role of shear as the ultimate source of energy, but without the walls. It
thus allows us to distinguish between the effects of the wall and those of the shear.
Other wall-less shear flows, such as free-shear layers or jets, are less relevant to
our discussion because they extract their energy from a Kelvin–Helmholtz modal
instability of the mean velocity profile (Brown & Roshko 1974; Gaster, Kit &
Wygnanski 1985), which is not present in wall-bounded turbulence (Reynolds &
Tiederman 1967) or in the uniform-shear case.

To save repetition in figure captions, Table 1 summarises the data sets most
commonly used in the paper. For their details, the reader is directed to the original
references.

When used without subindices, S≡ ∂2U1 is the shear of the mean velocity profile.
Although shear-driven flows are generally not isotropic, we will define an ‘isotropic’
velocity fluctuation intensity, q2

= u′iu
′

i, and an enstrophy ω′2 = ω′iω
′

i. The ‘isotropic’
dissipation rate for the fluctuating kinetic energy is ε = 2νsijsij, where ν is the
kinematic viscosity, sij = (∂iuj + ∂jui)/2 is the fluctuating rate-of-strain tensor, and
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∂j = ∂/∂xj. Spectra of the energy or vorticity norm are defined as the sum of the
spectra of the three respective components, as in φqq =

∑
i φuiui ≡ φii. Based on

these quantities, we define the integral length scale Lε = q3/〈ε〉, the Kolmogorov
viscous length η= (ν3/〈ε〉)1/4, and the ‘integral’ Reynolds number, ReL= qLε/ν. The
Taylor-microscale Reynolds number is Reλ = (5ReL/3)1/2.

Wall units are denoted by a ‘+’ superscript. They are defined in terms of ν
and of the friction velocity uτ , which measures the total momentum transfer
in the cross-shear direction and can be expressed in terms of the shear at the
wall, Sw, as u2

τ = νSw. Lengths expressed in these units, such as x+ = xuτ/ν,
are Reynolds numbers, and the flow thickness h+ is used as the characteristic
Reynolds number of wall-bounded flows. In this normalisation, ν+ = 1 and can
be left out of the equations. Because we will see that q ∼ uτ , and that the largest
energy-containing eddies have sizes O(h), h+ is roughly equivalent to the integral
Reynolds number ReL. Wall units, which depend on viscosity, are essentially the
same as the Kolmogorov length and velocity scales, which are also based on
viscosity. Although the exact correspondence depends on the flow, η+ ≈ 2 at the
wall, and η+ ≈ 0.8(x+2 )1/4 in the logarithmic range of wall distances defined in the
next section (Jiménez 2013b). It is useful fact that, although not strictly equivalent,
〈ε〉 ≈ νω′2 within 2 % at all wall distances, so that dissipation and enstrophy can be
used interchangeably for most purposes.

3.1. Length scales and the classification into layers

The length scales of turbulence range from a small limit of the order of a few
viscous Kolmogorov lengths, η, to a large limit of the order of the integral length,
Lε, and it follows from the definitions in the previous section that Lε/η=Re3/4

L . This
ratio is usually large, and there is an intermediate ‘inertial’ range in which neither
of the two scales is important, and where eddies can only be self-similar.

The best-known self-similar range is the Kolmogorov (1941) inertial energy
cascade, but more relevant to our discussion is the logarithmic layer of wall-bounded
flows. For an equilibrium shear flow that is statistically homogeneous in the
streamwise and spanwise directions, the conservation of streamwise momentum
can be written as (Tennekes & Lumley 1972),

0= ∂tU1 =−∂2〈u1u2〉 − ∂1P+ ν∂22U1 =−∂2〈u1u2〉 + u2
τ/h+ ν∂22U1, (3.1)

where P = 〈p̃〉 is the ensemble-averaged kinematic pressure. Far enough from the
wall for viscosity to be unimportant, x+2 � 1, but close enough for pressure gradients
and other streamwise non-uniformities to be negligible, x2�h, (3.1) requires that the
tangential Reynolds stress satisfies −〈u1u2〉≈ u2

τ (1− x2/h)≈ u2
τ . This implies that the

‘correlated’ parts of u1 and u2 scale with uτ , and suggests that the same should be
true for the full intensities, u′j ∼ q∼ uτ . In addition, neither the flow thickness nor
viscosity can be relevant in this range of wall distances, and there is no length scale.
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10−2

10−1

100

10−2 10−1
100

(a) (b)

FIGURE 3. (a) The line contours are the premultiplied spectrum of the kinetic energy
φqq/uτ 2

= 0.5(1)4.5, as a function of the wall-parallel wavelength, λI , and of the distance
from the wall. The shaded contours are the normalised premultiplied spectrum of the
vorticity magnitude νφωω/ε = 0.5(1)4.5. Channel CH5200. - - -, λI = 5x2; – · – · –, λI =

25η. (b) Turbulent boundary layer BL6600 at h+ ≈ 1800. The large central object is
an isosurface of the streamwise velocity (u+1 = 2). It is approximately 2.5h long, and
spans most of the thickness of the layer. The smaller objects are vortices visualised as
isosurfaces of the discriminant of the velocity gradient. Flow is from left to right (picture
credits, J. A. Sillero).

The result is that structures in this intermediate region can only have a characteristic
aspect ratio, but not a characteristic size, and that the size of the largest momentum-
and energy-carrying eddies has to grow linearly with x2.

It follows from these considerations that the possible structures of wall-bounded
flows are stratified in scale space by their size, and in position by their distance
from the wall, and that the flow can be approximately classified into three layers: a
viscous or buffer layer, where all eddy sizes scale in wall units; an outer layer, where
the length scale of the energy and of the energy production is the flow thickness h;
and a scale-less intermediate layer in which the length scale of the energy production
is proportional to x2. Everywhere, the velocity scale is uτ , and the dissipation length
is η.

Spectra of the energy and enstrophy are presented in figure 3(a) in terms of an
‘isotropic’ wall-parallel wavelength

λI = 2π/kI, where k2
I = k2

1 + k2
3, (3.2)

which represents the size of the eddy, but neglects for the moment the possible
anisotropies of the flow. Each horizontal section of this figure is a spectral density at
a given distance from the wall and, as expected, the peak of the enstrophy spectrum
is everywhere near some small multiple of the Kolmogorov scale, λ+I ≈ 25η+ ≈
20(x+2 )1/4. For these small scales, most of the enstrophy is concentrated near k1≈ k3,
so that λI ≈ λ3/

√
2 and the above relation is equivalent to λ1 ≈ λ3 ≈ 35η (Jiménez
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2013b). On the other hand, the scale of the energy-containing eddies grows linearly
away from the wall. We will see later that k1� k3 for these eddies, so that λI ≈ λ3.

The boundary between the intermediate and outer layers, conventionally taken
to be x2/h ≈ 0.2, is defined by the end of the linear growth of the size of the
energy-containing eddies. The transition between the intermediate and buffer layers
is defined by the level, x+2 ≈ 80 (x2 ≈ 0.015h in figure 3a), at which the length
scales of the energy and of the enstrophy become comparable. Below this point,
viscosity is important for all eddies, including the energy-containing ones. Above
it, the vortices contain very little energy, and we will see below that they do not
participate in the energy production.

A flow snapshot displaying the separation between the energy and dissipation
scales is figure 3(b), where a perturbation velocity isosurface is shown together
with the much smaller vortices. Even at this moderate Reynolds number (h+ =
1800, Reλ ≈ 110), the range of lengths is Lε/η ≈ 150, and it is hard to avoid
the conclusion that the two types of eddies can only interact indirectly across an
intermediate range in which neither the small nor the large length scale are relevant.
A more extreme example is the atmospheric surface layer, where η ≈ 30 µm, and
h=O(100 m). The two scales are then separated by a factor of 106.

It is shown in appendix A that the functional relation between two variables can
often be derived from their scaling properties. For example, the power law in the
Kolmogorov (1941) inertial energy spectrum is a consequence of the lack of both a
velocity and a length scale. The intermediate layer in wall-bounded turbulence lacks
a length scale but not a velocity scale, and its mean velocity profile is bound to be
logarithmic (see appendix A),

U+1 = κ
−1 log x+2 + A, (3.3)

from where the layer takes its common name. The constants A and κ have to be
determined experimentally. The Kármán constant, κ ≈ 0.4, reflects the dynamics of
turbulence in the logarithmic layer and is approximately universal, but A is not.

The reason for the latter is that (3.3) is only a particular self-similar solution
of the equations of motion, to which other solutions tend in the range of wall
distances where boundary conditions can be approximately neglected. Typically,
this self-similar range only exists in some limiting case (h+ � 1 in wall-bounded
turbulence), outside which (3.3) is only an approximation that requires additional
adjustable parameters. For example, the assumptions leading to (3.3) do not hold
near the wall, and A substitutes for the missing no-slip boundary condition. It
depends on the details of the wall and of the viscous layer, and is A≈ 5 for smooth
walls. Additional boundary-condition surrogates have been proposed, such as a
virtual origin for x2 (Oberlack 2001). They improve the agreement in experiments
at moderate Reynolds numbers (Mizuno & Jiménez 2011), but can be neglected as
the Reynolds number increases. In the case of a truly asymptotic logarithmic layer,
even A becomes negligible compared to log x+2 � 1.
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FIGURE 4. (a) Mean velocity profile for the channel CH2000. (b) Velocity fluctuation
intensities: ——, u′1; - - - -, u′2; – · – · –, u′3. The dashed vertical lines are conventional upper
limits for the buffer (x+2 = 80), and logarithmic (x2/h= 0.2) layers.

3.2. The energy balance

Even if they are relatively thin, the viscous and logarithmic layers are important
for the flow as a whole. The thickness of the buffer layer with respect to the total
thickness is 80/h+, which ranges from 40 % for barely turbulent flows (h+≈ 200) to
10−4 for large water mains (h+≈ 5× 105), but it follows from (3.3) that, even in the
latter case, 40 % of the velocity drop takes place below x+2 = 80 (see figure 4a). The
maximum turbulence intensity is also found in the buffer layer, and the fluctuations
decay away from the wall (see figure 4b). The mean shear derived from (3.3),
S = uτ/κx2, which is the energy source for the turbulence fluctuations, is also
maximum near the wall.

Consider the energy balance in a turbulent channel (Tennekes & Lumley 1972).
Energy enters the system through the work of the pressure gradient ∂1P=−u2

τ/h on
the volumetric flux 2hUb, where Ub= h−1

∫ h
0 U1 dx2 is the bulk velocity. This energy

input has to balance the total dissipation if the flow is to be statistically stationary.
In wall units, this is expressed as

h+U+b =
∫ h+

0
U+1 dx+2 =

∫ h+

0
(ε+ + S+2

) dx+2 , (3.4)

where ε in the last integral is the ‘turbulent’ dissipation due to the gradients of the
velocity fluctuations, and S+2 is the dissipation due to the effect of the viscosity on
the mean velocity profile. When the balance leading to (3.4) is applied to a layer
stretching from the wall to x2 it gives an idea of the contributions to the dissipation
from the different parts of the flow. The equation takes the form,

I+(x2)=−〈u1u2〉
+U+1 +

∫ x+2

0
U+1 dξ =

∫ x+2

0
(ε+ + S+2

) dξ + · · · , (3.5)
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FIGURE 5. (a) Contribution to the energy dissipation below a given wall distance from
the different terms in the right-hand side of (3.5). — ◦—, Dissipation due to the mean
shear; ——, total dissipation; - - - -, total energy input on the left-hand side of (3.5). The
dashed vertical lines are conventional upper limits for the buffer (x+2 =80), and logarithmic
(x2/h=0.2) layers. Channel CH2000. (b) Fraction of the dissipation due to different layers
in channels, versus the Reynolds number. ◦, from the mean shear;A, below x+2 = 80; C,
below x2/h= 0.2. The trend lines are the semiempirical fits discussed in the text: – · – · –,
9.1/U+b ; - - - -, 15.5/U+b ; ——, 1− 2.5/U+b .

where the extra term in the energy input in the left-hand side is the work of the
tangential Reynolds stress against the mean profile. The two terms in the right-hand
side of (3.5) are plotted in figure 5(a). The small difference between the energy
input (dashed) and the dissipation (solid line) in this figure is the effect of the small
internal energy fluxes represented by the trailing dots in (3.5). They are negligible
at high Reynolds numbers.

In shear flows without walls, the dissipation due to the mean velocity profile is
O(ε/Re), and can be neglected. In the wall-bounded case, figure 5(a) shows that
both contributions are of the same order, although the dissipation due to the mean
profile resides almost exclusively below x+2 = 20. Because the shear in that region
scales well in wall units, this part of the dissipation is very nearly independent of
the Reynolds number,

∫ h
0 S+2 dx2≈ 9.1. Figure 5(a) also shows that a relatively large

fraction of the turbulent dissipation, denoted as ε80, takes place below x+2 = 80. The
velocity gradients in this part of the flow are also approximately independent of the
Reynolds number, and ε+80 ≈ 6.4.

Most of the remaining dissipation takes place within the logarithmic layer,
80ν/uτ < x2 < 0.2h, and can be estimated from (3.3). The energy balance of
the fluctuations, averaged over wall-parallel planes, takes the form (Tennekes &
Lumley 1972)

0=Dt〈q2/2〉 =−S〈u1u2〉 − 〈ε〉 + · · · , (3.6)

where Dt = ∂t + U1∂1 is the mean advective derivative. The trailing dots stand for
transfer terms that are not important in the logarithmic layer, where the dissipation
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is almost exclusively due to ε, and has to be approximately balanced by the local
energy production, −S〈u1u2〉. This can be written as

ε+ ≈−〈u1u2〉
+S+ ≈ (1− x2/h)/κx+2 , (3.7)

which can be integrated to

ε+log ≈

∫ 0.2h+

80
ε+ dx+2 ≈ κ

−1 log h+ − 15.5. (3.8)

A similar estimate for the total energy input shows that

U+b ≈ κ
−1 log h+ + 2.5 (3.9)

also grows logarithmically with h+, so that the remaining dissipation above the
logarithmic layer is approximately independent of the Reynolds number, ε+out ≈ 2.5.
As a consequence, the relative contributions of the buffer and outer layers to the
dissipation decrease logarithmically as the Reynolds number increases. This is shown
in figure 5(b), which includes simulation results from channels at several Reynolds
numbers, and logarithmic fits based on the arguments above. In the asymptotic limit
of an ‘infinite’ Reynolds number, most of the dissipation resides in the logarithmic
layer, but figure 5(b) shows that the fraction of the dissipation due to the mean and
fluctuating velocities in the buffer layer is still of the order of 50 % of the total at
the largest ‘realistic’ Reynolds numbers, h+ =O(106).

Because of this ‘singular’ nature, the near-wall layer is not only important for the
rest of the flow, but it is also essentially independent from it. This was shown by
Jiménez & Pinelli (1999) using ‘autonomous’ simulations in which the outer flow
was artificially removed above a certain distance, δ, from the wall. The dynamics
of the buffer layer was unaffected as long as δ+ & 60. The same conclusion can
be drawn from the minimal flow experiments by Jiménez & Moin (1991), who
simulated channels in numerical boxes small enough for no large flow scales to be
possible above x+2 ≈ 100. Again, the buffer layer remained essentially unaffected.
Minimal flows were extended to the logarithmic layer by Flores & Jiménez (2010)
with similar results: the dynamics of the higher-shear region near the wall is
essentially independent from outside influences. These observations should not be
interpreted to mean that there are no interactions between the inner and outer layers.
These interactions will be documented below, but they can mostly be expressed as
modulations or superpositions, which are not required for the maintenance of the
flow.

Understanding the structure of this near-wall region has practical implications.
Energy dissipation by turbulence is the root cause of hydrodynamic friction drag,
which is estimated to be responsible for 5 % of the total energy expenditure of
humankind (Jiménez 2013b). The energy input, U+b = (2/cf )

1/2, determines the
friction coefficient cf , and it follows from figure 5 that any attempt to understand or
to control wall friction has to take into account the buffer and logarithmic layers.
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FIGURE 6. (a) Corrsin (1958) integral shear parameter S∗. ——, Channels and boundary
layers h+ = 2000–5200 (various sources); ◦, statistically stationary homogeneous shear
turbulence, plotted at the equivalent Reλ (Sekimoto et al. 2016). (b) The line contours are
the spectral energy density of the kinetic energy, as in figure 3(a). The shaded contours
are the spectral Corrsin shear parameter s∗(λI)= 2(×10)2000, from light to dark. Channel
CH5200. ——, λI = x2; - - - -, λI = 5x2; – · – · –, λI = 25η. The horizontal dashed line is
x+2 = 80.

3.3. The scales of the energy production

The above discussion says little about how turbulence extracts energy from the mean
flow. We saw in (3.6) that the average energy production in a parallel shear flow
is −S〈u1u2〉, which depends on the coupling of the Reynolds stress with the mean
shear.

The coupling criterion was established by Corrsin (1958). The turnover time over
which the nonlinear self-interaction of an eddy of size ` and characteristic velocity
u` changes its energy is of order τto= `/u`, while its deformation by the shear takes
place in τs= S−1. The Corrsin parameter is the ratio of these times, s∗(`)= τto/τs=

S`/u`. If s∗(`)� 1, the eddy evolves independently of the shear and there is little
or no energy production. This is the regime of the inertial cascade. If s∗(`)� 1,
the eddy is controlled by the shear, and can extract (or lose) energy from (or to) it.
This is the range of the energy production. Note that this implies that the energy-
producing eddies of a shear flow are quasilinear, in the sense that they are controlled
by the interaction of the fluctuations with the mean flow, with only slower nonlinear
effects. The inertial cascade is fully nonlinear.

When this criterion is applied to the integral scales, where `= Lε and u`= q, we
obtain an integral Corrsin parameter, S∗ = Sq2/ε, which determines whether some
part of the flow is involved in the production of turbulent energy (if S∗� 1), or just
transfers or dissipates it (if S∗� 1).

Figure 6(a) shows that equilibrium shear flows tend to have S∗ ≈ 10, at least
above the buffer layer in the wall-bounded case. This is a moderately large number
that implies a quasilinear interaction of the energy-containing eddies with the mean
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flow throughout the whole logarithmic layer. Linear processes do not have an
intrinsic amplitude, and the fact that S∗ is similar for fairly different flows suggests
that the ‘linear’ energy production eventually saturates by means of a relatively
universal mechanism that drains its energy to the cascade, roughly equivalent to
an eddy viscosity (del Álamo & Jiménez 2006). This recalls the engineering rule
of thumb that the Reynolds number based on the eddy viscosity of turbulent flows
is always of order 10–30 (Tennekes & Lumley 1972). The very high value of S∗

in the buffer layer is not an indicator of extremely sheared flow in the sense just
discussed. The shear in this region is the highest in the flow, but the argument of
Corrsin (1958) assumes that the balance is between nonlinearity and shear, while
the fastest evolution time near the wall is viscous. For eddies of size ` the viscous
decay time is Tν = `2/ν, and the relevant shear parameter is S∗ν = S`2/ν. In fact,
the transition of S∗ from its near-wall peak to the outer plateau can be used as a
convenient definition of the upper edge of the buffer layer, and is the origin of the
value used in this article, x+2 ≈ 80.

The spectral shear parameter for individual wavelengths, s∗(λI, x2), can be
estimated by identifying the eddy size ` with the wavelength λI , and the eddy
velocity scale with the spectral energy density u`= φ1/2

qq . The resulting s∗= SλI/φ
1/2
qq

is overlaid in figure 6(b) to the energy spectrum from figure 3(a). It increases
sharply towards the longer wavelengths near the wall, and falls below s∗ = 2 to
the left of λI ≈ Lc = x2. The Corrsin length Lc defined in this way represents the
scale of the smallest eddies that interact directly with the shear, and is typically a
fixed small fraction of the integral length, Lc/Lε ≈ (S∗)−3/2. As in figure 6(a), the
shear-dominated region below x+2 ≈ 80 should be interpreted as viscous, including
the highest s∗ in the very long near-wall region in the lower right-hand corner of
figure 6(b).

Note that, as expected, the length scale of the vorticity, λI ≈ 25η, is below the
Corrsin scale for x+2 &50, equivalent to x2/h≈10−2 in the case of figure 6(b). Except
in the buffer layer, these viscous vortices do not interact with the shear, and do not
participate in the turbulence-production process.

3.4. Anisotropy

Although figure 3(a) is drawn in terms of an isotropic wavelength and of the kinetic
energy, shear flows are not isotropic. Figure 4(b) shows that the intensities of the
three velocity components are different. The largest share of the kinetic energy is
contained in u′21 . This is especially true in the buffer layer, but the contribution of
this component is at least half of the total at all wall distances. The other two
velocity components split the rest of the energy approximately evenly, at least far
from the wall. This is most easily understood in terms of the energy equation for
individual components (Tennekes & Lumley 1972), although we will see later how
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this difference is implemented in detail by the energy-production mechanisms. In a
channel,

0=Dt〈u2
1/2〉 =−S〈u1u2〉 + 〈p ∂1u1〉 − ν〈|∇u1|

2
〉 + · · · , (3.10)

for the streamwise component, and

0=Dt〈u2
m/2〉 = 〈p ∂mum〉 − ν〈|∇um|

2
〉 + · · · , m= 2, 3, (3.11)

for each of the two transverse components, where the repeated indices in the
pressure term do not imply summation. The streamwise component is special
because, on average, it is the only one that receives energy directly from the
shear through the production term, −S〈u1u2〉. Approximately half of this energy
is dissipated to viscosity, and the rest is transferred to the other two velocity
components by the pressure–strain term, 〈p ∂1u1〉. This is a redistribution term,
because it follows from continuity that 〈p ∂juj〉 = 0, so that the net effect of the
pressure on the kinetic energy vanishes. Its effect on the velocities is approximately
isotropic, and each of the two transverse components receives roughly equal amounts
of energy (Hoyas & Jiménez 2008). Roughly speaking, the kinetic energy of the
streamwise velocity is twice that of the other two components because it receives
twice as much energy as they do.

The details of the distribution of the kinetic energy among the three velocity
components depend on the flow. The buffer layer is approximately universal, but
the outer layers are not. The contribution of the transverse velocities to the kinetic
energy is somewhat larger in boundary layers than in channels, most probably due
to the intermittency at the turbulent–non-turbulent interface (Sillero et al. 2013). In
contrast, the streamwise component is substantially stronger in Couette flow than
in either boundary layers or channels, reflecting the presence of strong persistent
streamwise ‘rollers’ which are not found in other flows (Pirozzoli, Bernardini &
Orlandi 2014).

Figures 7(a)–7(c) display wall-parallel two-dimensional spectral densities for
the three velocity components at the location of the buffer-layer peak of u′1. The
streamwise-velocity spectrum in figure 7(a) has two well differentiated parts (Hoyas
& Jiménez 2006): a near-wall one for λ+I . 103, which scales in wall units; and a
ridge along λ1≈ 8λ3, which gets longer as h+ increases, and is therefore associated
with the outer flow. Figures 7(a)–7(c) also contain an isocontour of the vertically
integrated energy densities, Φ = (1/h)

∫ h
0 φ dx2, showing that the large-scale energy

in the buffer region is generally only associated with the long-wavelength edge of
the integrated spectrum. Most of the kinetic energy, which resides in the outer part
of the flow, does not reach near the wall.

The wall-normal structure of these spectra is displayed in figure 7(d–f ) as
spanwise-integrated one-dimensional spectral densities, plotted as functions of the
distance from the wall and of the streamwise wavelength. The first conclusion from
figure 7 is that the wall-normal velocity is damped in the neighbourhood of the wall,
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FIGURE 7. (a–c) Two-dimensional spectral densities of the velocity components at x+2 =15.
The dashed diagonal is λ1 = 8λ3, the hyperbolic curve is λ+I = 1000, and the circles are
λ1 = λ3. The grey patch is the integrated energy density, Φ = (1/h)

∫ h
0 φ dx2 for h+ =

5200. (a) φ+11 = (0.25, 0.5, 1.0). Φ+11 = 0.1 (b) φ+22 = (0.006, 0.012, 0.025). Φ+22 = 0.02 (c)
φ+33 = (0.05, 0.1, 0.2). Φ+33 = 0.05 (d–f ). One-dimensional streamwise spectral densities as
functions of wall distance. The two diagonals are approximately: ——, λI = x2; - - - -, λI =

5x2, converted to λ1 by taking into account the aspect ratio of the outer-layer spectra.
(d) φ+11 = 0.2(0.4)1.8. The grey patch is the vertically correlated region near the wall for
h+ = 2003, from figure 11(e). (e) As in (d), for φ+22 = 0.1(0.2)0.9. ( f ) φ+33 = 0.1(0.2)0.9.
Channels: – · – · –, CH950; - - - -, CH2000; ——, CH5200.

and that the damping is strongest for the largest eddies. There is no large-scale φ22

in figure 7(b), even if the contours in this figure are forty times weaker than those
for φ11 in figure 7(a). Farther from the wall, the transverse velocities in figures 7(e)
and 7( f ) are weaker than u1, but only by a factor of two, which is also the ratio of
their overall intensities. Moreover, the comparison of the different spectra, using as
reference the various trend lines in the figures, shows that u2 and u3 tend to occur
at similar scales far from the wall, suggesting that they may be part of a common
structure in that region, while u1 and u3 are similarly paired near it. This is also
suggested by the shaded grey patches in figure 7(d–f ), which mark the depth of the
near-wall vertically coherent layer for the three velocities. This information cannot
be obtained from the spectra, and will be discussed in detail in § 3.5, but the results
have been added to figure 7(d–f ) to aid in their interpretation. There is a near-wall
layer in which all the velocity components are vertically correlated, but the coherent
layer of u2 does not extend beyond λ+1 ≈ 5000 and x+2 ≈ 80, scaling in wall units.
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The coherent layer of u1 and u3 extends up to λ1 ≈ 7h and x2/h≈ 0.1–0.2, scaling
in outer units. Beyond λ1 ≈ 7h, the near-wall coherent layer of u3 disappears, but
u1 continues to get taller until it fills most of the channel at very long wavelengths.

The grey patches in figure 7(a–c) show that the spectra of the three velocities
are very different above the buffer layer. The two transverse components are
approximately equilateral, λ1 ≈ λ3, but the spectrum of the streamwise velocity is
longer. Its short-wavelength edge, λ1≈ 2λ3, is only slightly more elongated than for
the transverse velocities, but its longest wavelengths are at least ten times longer
than for the two transverse velocities, and extend to the longest dimension of the
computational box. This long-wavelength behaviour will be discussed in the next
section, and suggests that, if there are coherent structures in the flow, there are at
least two kinds: very elongated ‘streaks’ of u1, and shorter structures of (u2, u3).

3.5. Correlations

While spectra describe the size of eddies along homogeneous directions, non-
homogeneous directions have to be analysed using two-point covariances, defined
for ui as

Rii(x, x̃)= 〈ui(x)ui(x̃)〉, (3.12)

where the repeated index does not imply summation. The covariance is symmetric in
its two arguments, but we will define x̃ as the reference point, and x as the variable
argument. Along homogeneous directions, Rii depends only on the coordinate
increment, 1xj= xj− x̃j, and forms a Fourier-transform pair with the power spectrum
(see appendix B.2). For example, in channels, Rii = Rii(1x1, x2, x̃2, 1x3). At the
reference point, the covariance reduces to the variance Rii(x̃, x̃) = u′2i (x̃), and the
dimensionless version of the covariance is the two-point correlation,

Cii(x, x̃)=
〈ui(x)ui(x̃)〉
u′i(x)u′i(x̃)

, (3.13)

which is unity at x= x̃. Correlations and covariances are high-dimensional quantities.
In channels, the correlation is four-dimensional. In boundary layers, where the only
homogeneous direction is the span, it is five-dimensional. This means that, except
for relatively low Reynolds numbers, it is difficult to compute and store correlations
or covariances for more than a few reference points. For a channel simulation
using a moderately sized grid with m = 10003

= 109 points, the correlation is an
(m × m) matrix, which can be reduced, using homogeneity, to a block-diagonal
form of m2/3

= 106 submatrices of size (m1/3
×m1/3). The total number of non-zero

elements is m4/3
= 1012, although the rank is only m. The problem of using empirical

correlations is more fundamental than a practical question of computer storage. It is
shown in appendix B that the covariance can be represented as a matrix R = UU∗,
where U is an (m× n) matrix whose columns are the n observations (‘snapshots’),
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Structures in wall-bounded turbulence
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FIGURE 8. Three-dimensional representation of the correlation function of the streamwise-
velocity fluctuations, C11, with respect to the reference point x̃2/h= 0.6. Boundary layer
BL6600 at h+ = 1530. The flow goes from left to right. Several isosurfaces are shown,
with C11 = −0.09 (white), +0.09 (turquoise), +0.4 (yellow) and +0.8 (blue). In the
different planar cross-sections, the contour lines of positive and negative values are
coloured red and white, respectively. Reproduced with permission from Sillero, Jiménez
& Moser (2014).

and the asterisk denotes Hermitian transpose. It is clear from this definition that
the rank of R constructed in this way is at most n. The consequence is that the
computation of the covariance requires as many independent snapshots as degrees of
freedom, which increases with the cube of the grid diameter. Any smaller number of
independent samples only provides an approximation to the covariance. In practice,
this means that covariances are typically only used in the form of incomplete
approximations of deficient rank, usually through some variant of the method of
snapshots (Sirovich 1987, see appendix B.1).

In spite of these limitations, correlations give useful information about the
three-dimensional structure of the flow variables. Figure 8 is an example of C11

for a boundary layer. It shows an inclined central positive lobe surrounded by
smaller negative lobes. The cross-flow sections are approximately circular, while the
streamwise sections are elongated. Most of the data in this subsection are drawn
from Sillero et al. (2014), which should be consulted for further details. As in
spectra, it is striking that the correlations of the different velocity components have
very different geometries. While the inclination angle of the streamwise-velocity
correlation in figure 8 is approximately 10◦ with respect to the wall, the correlation
of the wall-normal velocity is vertical, and that of the spanwise velocity is tilted
approximately 30◦. These values remain approximately constant away from the
buffer and outer layers, apply to boundary layers and channels, and are independent
of the Reynolds number within the range in which they have been studied. The
correlation of the pressure fluctuations is also vertical, broadly similar to that of u2.
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FIGURE 9. Two-dimensional sections through the reference point (x̃2/h = 0.35) of the
two-point autocorrelation function of the three velocity components. Channel CH2000.
(a) Spanwise velocity. (b) Wall-normal velocity. (c) Streamwise velocity. Contours are
C= [−0.1,−0.05, 0.05, 0.1, 0.3]. Negative contours are dashed. The grey patches in (a–b)
are the C = 0.05 contour of the other transverse-velocity component. It has been shifted
horizontally by 0.25h in the cross-flow sections to suggest a possible completion of the
streamwise roller. The grey patch in (c) is C33.

Streamwise and cross-flow sections of the velocity autocorrelation function of
the three velocity components are given in figure 9 for a reference point in the
outer edge of the logarithmic region, x̃2/h= 0.35. This is approximately where the
correlations of u1 are longest in channels. The correlations of the two transverse
velocities in figure 9(a,b) have comparable dimensions. As mentioned above, the
correlation of the spanwise velocity in figure 9(a) is tilted at approximately 30◦ to
the wall. It has relatively strong negative lobes which are tilted at approximately the
same inclination, located above and below the main positive lobe. The cross-flow
section in the right-hand part of figure 9(a) shows that the positive correlation
lobe is flat and wide with respect to its height. Conversely, the correlation of the
wall-normal velocity in figure 9(b) is relatively isotropic in the streamwise section,
slightly tilted backwards, and tall and narrow in the cross-flow plane.

It should be noted that the centres of the two correlations do not necessarily
correspond to the same location in the homogeneous wall-parallel directions.
Correlations describe the relation between the same velocity component at two
points. For example, a positive C22 means that u2(x2) has, on average, the same
sign as u2(x̃2), but their common sign can be positive or negative. Similarly, C22

and C33 say little about the relative position of u2 with respect to u3. However, if
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Structures in wall-bounded turbulence

figures 9(a) and 9(b) are taken together, they are consistent with a ‘roller’, oriented
approximately streamwise and inclined at 30◦ to the wall. The positive lobe of C33

would correspond to the top or to the bottom of the roller, where the transverse
velocity is directed spanwise. Its negative lobe corresponds to the other edge of the
roller, where u3 has opposite sign. The positive lobe of C22 would correspond to
the two ‘sidewalls’ closing the circuit. Grey patches of C22 have been added to the
C33 plot, and vice versa, to suggest the relation implied by this model between the
two components. The two correlations have been shifted by 0.25h in the spanwise
direction, to make C22 coincide with a possible lateral edge of the roller. This offset
would imply a roller diameter of approximately 0.5h, of the same order as the
distance from the wall to the reference point, x̃2 = 0.35h, and consistent with the
vertical distance between the positive and negative lobes of C33. The negative lobes
in the transverse cross-section of C22 in figure 9(b) are also at the right distance and
position to represent the opposite lateral wall of the roller. Note that the symmetry
of C22 with respect to x3 = 0 is statistical, and does not imply the symmetry of
individual eddies. The presence of both an upper and a lower negative lobe in C33

is also statistical. Some rollers are detected at their upper edge, and others at their
lower edge.

Inclined ‘vortices’ have often been mentioned in descriptions of boundary-layer
eddies (Adrian 2007), and detected in shear flows by stochastic estimation (Adrian
& Moin 1988). We shall see later that they appear as parts of conditional Reynolds-
stress structures (Dong et al. 2017), but it should be stressed that the dimensions
of the correlations in figure 9(a,b) are much larger than those of individual vortices.
The diameter of the roller implied by them is approximately 1000 wall units, or
300η, and it can be shown that these dimensions scale with h as the Reynolds
number changes. On the other hand, figure 3(a) shows that the size of the vorticity
scales in viscous units, and is always approximately 30η.

The correlation of u1 in figure 9(c) is much longer streamwise than those of the
transverse velocities, although not much wider in the cross-plane. The shadow of C33

included in figure 9(c) emphasises the relation of the respective sizes. It is interesting
that, even at this relatively small distance from the wall, there is a negative lobe of
C11 near the opposite wall. The streamwise-velocity eddies are large enough to be
‘global’, involving the whole channel. Although the energy considerations in § 3.2
imply that the u1 streak and the cross-flow rollers have to be related, and we shall
see later that they appear together in conditional flow fields, the difference in their
size makes it difficult to describe them as parts of a single eddy. At the very least,
each streak must contain several rollers. It should also be noted at this point that,
because the correlations are second-order quantities, they favour the locations and
times where the velocity is strongest, which need not occur simultaneously for all
the velocity components.

The correlation functions for the cross-flow velocities are relatively independent
of the Reynolds number, and vary little among the flows in which they have been
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studied (Sillero et al. 2014). They are good candidates for ‘universal’ features of
shear flows. Those of u1 are not, and are known with less certainty. The lengths
implied by figure 9(c) for channels (λ1 ≈ 20h) are, unfortunately, comparable
to the length of the computational box (L1 = 25h), and vary by ±20 % among
different simulations, including those performed within the same research group
using similar codes (Sillero et al. 2014). Experiments are also ambiguous because it
is difficult to deduce long spatial dimensions from temporal data, or to collect spatial
measurements over very long distances. Nevertheless, the lengths in figure 9(a) are
probably approximately correct. A simulation in a very large box (L1 = 190h) was
performed by Lozano-Durán & Jiménez (2014a) at h+ = 550, and did not result in
longer eddies. The length-to-width ratio, λ1/λ3 ≈ 8, of the spectral ridge in figure
7(a) is consistent with λ1= 16h for streaks of width λ3= 2h, which is the maximum
value implied by the cross-flow section in figure 9(c). This width is much narrower
than the spanwise dimensions of the computational box, and there is no reason to
believe that it is numerically constrained. The shorter end of the spectral ridge in
figure 7(a) is also short with respect to the computational box, and its aspect ratio
should not be numerically constrained. The fact that it does not change with the
Reynolds number, which modifies the ratio between the length of these streaks and
the size of the box, and that the aspect ratio of the shorter streaks is similar to that
of the longer streaks, gives some confidence on the results for the longer eddies.

On the other hand, the correlation length of u1 in boundary layers is shorter than
in channels, λ1 ≈ 4h (Sillero et al. 2014), while that in Couette flows appears to
be longer than any of the experiments or simulations that have been performed; it
might be infinite (Pirozzoli et al. 2014). The reason for these differences is unclear,
although reasonable models can be advanced in some cases. For example, very
long streaks presumably require very long times to organise (see the discussion of
figure 29 in § 6.1). Visually tracking the large scales in simulations of channels
confirms that they evolve extremely slowly, with evolution times of the order of
many turnovers, tuτ/h� 1. Assuming that the relevant deformation velocity is uτ ,
the time needed to organise an eddy of length λ1 is λ1/uτ , during which time the
flow is advected approximately by Ubλ1/uτ ≈ 30λ1. In a uniform channel, very
long advection lengths are available, but, in a boundary layer, a streak of length
λ1 = 4h would be advected by approximately 100h during its formation. Over
that distance, the thickness of the boundary layer grows by a factor of two. In
essence, streaks in boundary layers do not have time to become very long before
the mean velocity profile changes enough to require them to adapt to a new size. A
similar argument could explain the scatter among the measured correlation lengths
of different channel simulations, because not all of them are run for the same time.
The streaks that we see in channels could still be slowly growing in some cases.
This problem also applies to the development length of laboratory experiments.

Hutchins & Marusic (2007) have proposed that real streamwise-velocity eddies
may be very long, meandering on a shorter scale. They note that the meanders
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FIGURE 10. (a) One-dimensional two-point correlation, C(2)(x2, x̃2), as a function of x2.
Above the diagonal, C(2)22. Below the diagonal, C(2)11. Contours are C(2)=[0.3, 0.5, 0.7, 1].
(b) Correlation depth at C(2) = 0.3 of the different velocity components, as a function of
the distance from the wall to the reference point.A, u1; ◦, u2; C, u3. Channel CH2000.

hide the real length of the streaks in spectra and correlations, and they present
visual evidence of lengths of 20h in boundary layers, meandering at the spectrally
measured length of 6h. Unfortunately, their argument does not explain why channels
or Couette flows should meander less than boundary layers, and thus appear longer
in the spectra. Neither do the estimates of the evolution time in the previous
paragraph explain the differences between Couette flow and channels. The question
of the real length of the large velocity streaks in wall-bounded turbulence, and the
reasons for it, remain at the moment unsettled. This question will be revisited when
discussing individual velocity structures in § 5.3.

3.6. Filtered correlations

Consider next the question of defining the correlation depth of the velocities at
different distances from the wall. In channels, we can define a one-dimensional
vertical correlation profile,

C(2)ii(x2, x̃2)=max
1x1

Cii(1x1, x2, x̃2), (3.14)

where the value at 1x1 = 0 is substituted by the maximum over 1x1 to take
into account the inclination of the correlations. This quantity is represented in
figure 10(a) for u1 and u2, using the symmetry of C(2) with respect to its two
arguments to include the two velocity components in the same figure.

There are many ways of defining the correlation depth, Λj(x̃2), of uj at a given
distance from the wall, but the simplest way is to measure the width at a given level
of the correlation profile centred at x̃2. Figure 10(b) displays the correlation depth
defined at C(2)ii=0.3 for the three velocity components. It is evident that u1 is deeper
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than u2 or u3, and that all the velocities are more deeply correlated away from the
wall than near it. But it is difficult to extract other conclusions from the figure. In
particular, since the spectra in figure 7(d–f ) show that all the velocity components
get longer as they move away from the wall, it is unclear from figure 10(b) whether
the growth in depth is due to the differences in wall distance, or to the longer eddies.
An interesting related question, when the reference point x̃2 is chosen in the buffer
layer, is how far from the wall are the eddies responsible for the spectral ridge in
figure 7(a).

Fortunately, the Fourier duality between covariances and spectra along homogen-
eous directions allows us to filter the covariance to only include a restricted range
of wall-parallel wavelengths.

Consider a generic variable, u, whose covariance is Ruu(1x1, x2, x̃2). Its spectrum,
Euu(k1, x2, x̃2) = 〈û(k1, x2)û∗(k1, x̃2)〉, is the Fourier transform of Ruu (see appendix
B.2). This is true for any spectrum. In particular, if we apply to û a spectral
filter G(k1) that restricts it to some range of wavenumbers, û(k1) = û(k1)G(k1),
its spectrum is similarly filtered to Eūū(k1, x2, x̃2) = Euu(k1, x2, x̃2)|G(k1)|

2. The
covariance of the filtered variable can then be obtained as the inverse Fourier
transform of the filtered spectrum. A similar procedure can be applied to k3 and to
three-dimensional covariances.

Filtered correlation functions can be defined by normalising the covariance with
the standard deviation of the filtered variables, but it is more useful to normalise
them with the total fluctuation intensities,

Cūū(x, x̃)=
〈u(x)u(x̃)〉
u′(x2)u′(x̃2)

(Nbands). (3.15)

This has the advantage of keeping some spectral information about the relative
intensity of the filtered variable in the different wavenumber ranges, but at the
price of lacking a well-defined maximum value. The value of Cūū at x = x̃ is the
relative energy of the filtered variable with respect to the total. In (3.15), and in
the figures in the rest of this section, we have assumed that the filter is used to
separate the flow into Nbands approximately equal logarithmic bands, and we have
multiplied the filtered correlations by Nbands to get maxima of order unity. Even so,
the filtered correlations of the different variables reach different maximum levels,
and the threshold used to determine correlation depths has to be adjusted to some
fraction of the empirical maximum of each case.

Using these definitions, the effect of filtering the C11 correlation in figure 9(c) is
shown in figure 11(a–c). The streamwise coordinate is filtered with a family of self-
similar sharp spectral box filters in which the maximum and minimum wavelengths
differ by a factor of 1.6. The central filter wavelength increases from figure 11(a)
to 11(c), and the longest filter spans roughly half of the length of the computational
box. It can be shown that the streamwise average of any correlation which does
not include k1 = 0 has to vanish, and all the filtered correlations in figure 11 are
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FIGURE 11. Two-dimensional sections through the reference point (x̃2/h = 0.35) of the
two-point filtered autocorrelation function of the streamwise velocity. (a) λ1/h∈ (1.4, 2.2),
(b) (5.0, 8.2) and (c) (13.6, 22.0). Contours are C11 = ±[1, 2], and negative contours
are dashed. (d) One-dimensional filtered correlation, C(2)11(x2, x̃2; λ1), of the streamwise
velocity, as a function of the distance from the wall. Above the diagonal, as in (a). Below
the diagonal, as in (b). Contours are C(2)11 = [0.3, 0.5, 1]. (e) Correlation depth of u1, as
a function of the central filter wavelength. Each pair of lines represents the upper and
lower limits within which C(2)11 > 0.4. x̃2= [15/h+, 0.1, 0.2, 0.35, 0.6], as marked by their
common origin at λ1 = 0. The circles are x2 = 0.03λ1. Channel CH2000.

oscillatory. As the central wavelength is made shorter, the depth of the correlation
decreases, until it eventually separates from the wall.

This is made clearer by the correlation profile C(2)11(x2, x̃2; λ1) in figure 11(d),
built from the filtered correlations in figure 11(a,b), which should be compared with
the unfiltered figure 10(a). The main difference between the two figures is that the
depth of the filtered correlations in figure 11(d) is more independent of x̃2 than it
was in figure 10(a). Moreover, different filter wavelengths produce very different
depths, answering the question of whether the correlation depth is linked to the
length of the eddies or to their distance from the wall.

Figure 11(e) displays the minimum and maximum distances from the wall at
which the filtered correlation profiles exceed the arbitrary threshold C(2)11= 0.4. The
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depth at short wavelengths is very small, and the maximum and minimum heights
coincide. As the central wavelength of the filter increases, so does the depth, and
the lower limit reaches the wall at some wavelength that depends on the reference
height x̃2. Eddies longer than that limit ‘attach’ to the wall and link directly the
inner- and outer-flow regions. The solid line starting near the origin in figure 11(e)
corresponds to the upper correlation limit of eddies centred at x̃+2 = 15, and marks
the depth of the correlated wall layer as a function of the streamwise wavelength.
It grows approximately linearly as x2 ≈ λ1/30, until it saturates to x2 ≈ 0.3h for
very long wavelengths. The slope of this line depends on the correlation level
used to define the depth, but it is clear from figure 11(e) that other thresholds
behave similarly. For short wavelengths, λ+1 . 2000, the correlation depth settles to
approximately x+2 ≈ 30, and the vertically correlated layer does not extend above the
buffer layer. Similarly defined coherence limits for the three velocity components
have been incorporated as grey patches to the spectra in figure 7(d–f ).

It is interesting to note that a large coherence depth is a property of long eddies,
independently of whether they are attached to the wall or not. For example, the pair
of lines corresponding to x̃2= 0.6 in figure 11(e) define a correlation depth spanning
half of the channel for wavelengths that are much shorter than the wavelength at
which this particular correlation attaches to the wall, λ1≈15h. The message of figure
11(e) is that long eddies are also deep. They attach to the wall when they grow to
be too deep to do otherwise, but they do not appear to originate from the wall.

3.7. The effect of the Reynolds number

The resulting organisation of the velocity eddies is sketched in figure 12(a). Eddies
of all sizes can be found at all heights, but they cannot grow larger than their
distance from the wall. Statistically, this means that the size of the largest eddies
scales linearly with the wall distance.

The relevance of attached eddies was first stressed by Townsend (1961) and
developed by Perry, Henbest & Chong (1986). They noted that, if the intensity
of eddies centred within the logarithmic layer scales with uτ , and if those eddies
retain their intensity down to the wall, the fluctuation energy near the wall should
increase with the logarithm of the Reynolds number. The argument hinges on the
approximately uniform long-wavelength spectral ‘skirt’ of φ11 and φ33 in figure
7(d, f ). It does not apply to φ22, where the damping of u2 by the impermeability
condition ensures that the near-wall coherent layer in figure 7(e) contains no energy
at long wavelengths.

It can be shown that the longest wavelengths of the spectra in figure 7 scale
in outer units, while their short-wavelength end scales in wall units. The range of
energy-containing eddies near the wall thus scales like λmax/λmin∼ h+, and the total
fluctuation energy is

∫
φ d(log λ1)∼ log(h+). Figure 12(b) shows that this is true for

the maxima of u′2+1 and u′2+3 , but not (or much more weakly) for u′2+2 .
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FIGURE 12. (a) Sketch of attached and detached eddies in a channel, created with
independent random sizes and positions. The thicker (red) objects are attached. (b)
Maximum value of the velocity fluctuation intensities. Various experimental and numerical
flows: open symbols, u′2

+

1 ; closed, u′2
+

2 ; light blue fill, u′2
+

3 . C, Boundary layers; A,
channels; ◦, pipes. Each velocity component has been offset by a different constant, so
that the trend lines cross zero at h+ = 100. The trend lines are: u′2

+

1 = 3.58+ 0.65 log h+,
u′2
+

2 = 0.51+ 0.1 log h+, and u′2
+

3 =−0.60+ 0.4 log h+. (c) Correlation limits for x̃2/h= 0.6,
as functions of the central filter wavelength. C, C(2)11 = 0.4;A, C(2)33 = 0.25;@, C(2)pp =

0.25. Each pair of lines represents the upper and lower limits within which C(2) exceeds
the specified level. (d) One-dimensional streamwise spectral density of the pressure, as a
function of the wall distance. The two diagonals are approximately: ——, λI = x2; - - - -,
λI= 5x2, reduced to λ1 assuming λ1≈λ3. The grey patch is the region vertically correlated
with the wall. Channel CH2000.

Figure 12(c) shows the vertical correlation limits of u1 and u3 for eddies centred
at one particular location in the outer layer (x̃2= 0.6h). The main difference between
the two variables in this figure is that, while the depth of u1 increases with the
wavelength over the whole range of the figure, that of u3 only grows up to λ1≈ 3h,
beyond which the energy of u3 decreases, and the filtered correlation becomes too
weak to show at the selected threshold. As a consequence, the wall-attached eddies
of u1 eventually fill the whole channel in figure 7(d), but those of u3 never reach
above x2/h≈ 0.2 in figure 7( f ).
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J. Jiménez

More surprising is the correlation depth of the pressure, which is included in
figure 12(c) and in the pressure spectrum in figure 12(d). The pressure is an attached
variable, with deep eddies that span a large fraction of the channel, but only at the
comparatively short wavelengths of the (u2, u3) eddies discussed in figure 9. Given
the irrotational character of the longest u1 eddies, whose vorticity is very low, one
would expect their dynamics to be mainly controlled by the pressure. Indeed, the
pressure correlation and the pressure spectrum are long, but the correlation in figure
12(c) gets thinner for the longer wavelengths, and detaches from the wall. Figure
12(d) shows that only a very weak vertical correlation of the pressure reaches the
wall beyond λ1 ≈ 5h. The implication is that the near-wall long and wide eddies
in the spectral ridge of figure 7(a) are mostly maintained by weak but persistent
Reynolds stresses. The pressure appears to be mostly associated with the rollers
discussed in figure 9.

Figures 7(d) and 7( f ) show that arguments similar to those above imply that the
fluctuation profile above the buffer layer should be u′2+j ∼ log(h/x2), for u1 and
u3. Both predictions have been confirmed observationally: by numerical simulations
in the case of u3 (Jiménez & Hoyas 2008), and experimentally in the case of u1

(Marusic et al. 2013).
It should be mentioned at this point that there is some controversy about the

behaviour of even basic flow statistics at very high Reynolds numbers (h+ & 104).
This range is still inaccessible to simulations, and hard to measure experimentally.
For example, the presence of an ‘outer’ kinetic energy peak in the middle of
the logarithmic layer has been variously reported (Smits et al. 2011) as an outer
maximum of the total fluctuation intensity, or as a peak in the spectral energy
density. The two claims are different, and both have proved hard to confirm by
high-resolution experiments (Örlü et al. 2017). The second claim, a peak in the
spectral density φ11, could be due either to a peak in the total energy (the first claim),
or to the concentration of the same energy into a narrower range of wavelengths.
The latter would be a natural consequence of the narrowing of the spectrum as
the flow gets closer to a single scale far from the wall (see figure 7e), presumably
because, as discussed in § 3.1, this layer has a natural unit of length. However, in
the absence of unambiguous experimental confirmation, it is possible that a different
kind of eddies than those described here exists at high Reynolds numbers, and that
they are not captured by the simulations used in this article.

Summarising the results up to now, we have shown that the one- and two-point
statistics of wall-bounded turbulent flows suggest the existence of two types of
eddies: a self-similar family of inclined large-scale rollers that mostly involve
the transverse-velocity components, and which are restricted to the logarithmic
layer; and the much longer streaks of the streamwise velocity, also self-similar
in the spanwise direction, that exists at all heights from the wall. The largest of
these streaks fill most of the width of the flow. For sizes λI & x2, both types of
eddies interact directly with the shear, and are therefore presumably involved in
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Structures in wall-bounded turbulence

the energy-generation cycle, but their very different sizes suggest that they are only
indirectly related to one another. Long eddies are deep in the wall-normal direction,
but only attach to the wall if they become so large that they do not fit into the
flow otherwise. Examples of structures of the transverse velocities are given later
in figures 20 and 21. Examples of streaks are figure 23.

4. Eddies and coherence

We noted in the introduction that our definitions of eddies and structures are
conceptually different, because the former are statistical constructs while the latter
should also include dynamics. Most of our discussion up to now applies to eddies
rather than to structures, since we have made very few references to temporal
evolution. Even so, being able to describe eddies as particularly probable states of
the flow is useful, and many techniques have been developed for doing it. A short
summary of the methods used in this review, and of their relation to one another,
is in appendix B. In this section we collect some useful results about eddies,
and start investigating their temporal evolution. We will then be in a position to
classify the parameter plane of eddy size and wall distance in terms of where the
different dynamical models are most likely to apply, although we delay to § 5 the
consideration of coherent structures.

The definition of eddies depends, to some extent, on the application for which
they are intended. As mentioned in the introduction, the question of whether the
flow can be described in terms of eddies recalls the wave–particle duality of
quantum mechanics. The problem is there how to describe ‘ostensibly’ localised
objects, such as particles, in terms of extended fields, while our problem is how
to describe an ostensibly field-like flow in terms of localised structures. Turbulent
flows are often expressed as Fourier expansions because sines and cosines have
well-defined wavelengths, and size is a crucial aspect of the turbulence problem
(Richardson 1920). However, the Fourier basis functions are spatially homogeneous
and do not describe location. Conversely, points are perfectly localised, but have no
size. A packet of several Fourier modes can be localised, but only at the expense of
some spread 1k in its wavenumber. This is related to the spread 1x of its position
by the uncertainty relation (Gasquet & Witomski 1998), 1k1x & O(1); but this
is only a lower bound. Most superpositions of wavetrains of different wavelengths
have no obvious spatial structure (see figure 30 in appendix B.2). A definition that
has often been proposed for an ‘eddy’ is a Fourier packet for which the above
inequality is satisfied as tightly as possible (Tennekes & Lumley 1972). Algorithmic
definitions have been given, for example, by Berkooz, Holmes & Lumley (1993),
who approximate the covariance as a superposition of randomly distributed compact
eddies, or by Moin & Moser (1989), who construct ‘most-compact’ eddies by
adjusting the relative phases of several proper orthogonal (POD) modes. This last
method is described in appendix B.2, and has been used to construct the eddies in
figure 13(a–d).
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FIGURE 13. (a–d) Most-compact eddies for pressure and for the individual velocity
components, as discussed in the text, normalised to unit maximum amplitude and
computed from correlations in the half-channel x2 < h, filtered in the band λ1/h= 1.4–2.2.
Black patches are uj,mc > 0.5, and grey patches are uj,mc <−0.5. Channel CH2000. (a) p.
(b) u1. (c) u2. (d) u3. (e) Profiles of the maximum eddy amplitude for u1, as functions
of the wall distance. Filter bands centred at: ——, λ+1 = 280; - - - -, λ1/h = 1.0; – · – · –,
λ1/h = 1.8; · · · · · ·, λ1/h = 6.5. ( f ) Height of the centre of gravity of the compact
eddies computed from the leading PODs, in outer scaling. The two thicker diagonals are
approximately: ——, λI = x̄2,j; - - - -, λI = 5x̄2,j, reduced to λ1 assuming λ1≈ λ3. Channels:
——, h+ = 550 (del Álamo et al. 2004); - - - -, CH950; – · – · –, CH2000. @, p; C, u1; ◦,
u2;A, u3. (g) As in ( f ), in wall units.

POD modes are optimal basis functions, φ(α), which provide an expansion of the
flow that approximates the covariance with as few degrees of freedom as possible,

u(x)=
∑
α

û(α)φ(α)(x). (4.1)

Unfortunately, it is shown in appendix B.1 that the PODs are Fourier modes along
homogeneous coordinate directions,

φ(α,k)(x)= φ̂(α)(x2) exp[i(k1x1 + k3x3)], (4.2)

and are therefore poor representations of coherent structures.
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Structures in wall-bounded turbulence

The POD modes are eigenfunctions of the two-point covariance. The eigenvalue
of the eigenfunction (4.2) measures the average contribution to the variance of the
corresponding term of the expansion (4.1), and it is typically true that the first
few eigenvalues account for most of the variance. The eddies in figure 13(a–d) are
constructed using the leading (i.e. highest eigenvalue) PODs, φ(1)j, of the filtered
correlations in figure 11. For this case, the most-compact eddy of u1 contains
approximately 30 % of the total energy of the filtered u1. Those of u2 and u3

contain approximately 45 % in both cases. The corresponding percentages for the
sum of the first five PODs are 80 % for u1, and 90 % for the two transverse
components. These percentages increase for filters with longer wavelengths, and
decrease for shorter wavelengths.

The most-compact eddies do not form an orthogonal basis, as the PODs do, nor
are they optimum in the sense of generating a most efficient expansion, because they
are sums of eigenfunctions that are only optimal for a single wavenumber. Therefore,
they are not very useful for constructing global reduced-order models of the flow.
They represent the most localised eddies whose covariance approximates the two-
point covariance of the flow, and they are useful in constructing the local models
discussed in the introduction as one of the reasons to consider coherent structures.
Their streamwise shape depends on the window used to filter the covariance from
which they are obtained. The eddies in figure 13(a–d) could be made to contain
fewer side bands by choosing a wider filter, but only at the expense of making their
vertical structure less representative of the flow, because they would mix PODs with
more diverse vertical structure. Conversely, they could be made more representative
of a single POD by choosing a narrower filter, but only at the expense of increasing
the number of side bands. Filters such as those used in figure 13(a–d), in which the
wavenumber interval is approximately half the central wavenumber, are probably a
good compromise in most cases.

Figure 13(e) shows the wall-normal structure of the maximum over x1,

u1,max(x2; λ1)=max
x1

u1,mc(x1, x2; λ1), (4.3)

of the most-compact eddies, u1,mc. They are constructed from correlations which
have been filtered over bands with various central wavelengths and uniform relative
width in Fourier space (λ1,max/λ1,min ≈ 1.6). The profile defined in (4.3) plays the
same role as the one-dimensional correlation profile defined in (3.14) and, as in that
case, longer wavelengths are vertically deeper. This is quantified in figure 13( f,g) by
the centre of gravity of the wall-normal distribution,

x̄2,j =

∫ h

0
x2uj,max dx2∫ h

0
uj,max dx2

. (4.4)
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Figure 13 shows that eddies separate into a short family (for u2, u3 and p) in which
λI ≈ x̄2,j, and a longer family for u1 in which λI ≈ 5x̄2,1. These two trend lines,
plotted either in terms of λ1 or of λI , have been incorporated in all the figures
containing spectra in this article, for reference. The shorter line, λI ≈ x̄2, is the
Corrsin length, below which the flow decouples from the energy-containing eddies.
The longer line coincides with the approximate position of the core of the φ11

energy spectrum. Most of the energy of the two transverse-velocity components is
contained between these two lines. Figures 13( f ) and 13(g) show that short and
shallow eddies scale in wall units, while long and tall eddies scale in outer units.
Although not shown in the figure, the eddies of u1 and p remain attached to the
wall at all wavelengths (see figure 13e), those of u2 have negligible energy near the
wall and are always detached, and those of u3 detach for λ1/h & 2.

4.1. Advection velocities

We have not discussed up to now the temporal evolution of eddies, but whether they
can be considered coherent or not depends on whether they are able to keep their
shape for dynamically significant times. This depends, among other things, on how
their propagation velocity changes with the wavenumber and with the location along
inhomogeneous directions.

Consider a variable χ that we wish to approximate as a wave with phase velocity
cχ along the direction x1. A simple definition of the phase velocity was introduced
by del Álamo & Jiménez (2009) by minimising 〈(∂tχ + cχ∂1χ)

2
〉. The result is

cχ =−
〈∂tχ∂1χ〉

〈(∂1χ)2〉
, (4.5)

which can be expressed as

cχ(k)=−
Im〈k1χ̂

∗∂tχ̂〉

〈k2
1|χ̂ |

2〉
(4.6)

for individual Fourier modes, where the asterisk stands for complex conjugation, and
Im for the imaginary part.

Denoting by cj the advection velocity of the uj velocity component, the spectral
phase velocity of the streamwise-velocity component, c1, is shown in figure 14
at three heights in the channel, normalised with the mean flow velocity at each
height. Del Álamo & Jiménez (2009) showed that the phase velocity agrees with
the local velocity for most wavelengths, except for very large scales, where c1≈Ub

independently of x2, and in the buffer layer, where c+1 ≈ 11. Figure 14 shows that
this remains approximately true in the present case, at a higher Reynolds number
than in del Álamo & Jiménez (2009), and that the scale dependence is reasonably
well described as a function of the wall-parallel isotropic wavelength λI .

Figure 15(a) summarises the wall-normal dependence of c1, and shows that the
transition to the large-scale behaviour in which the eddies do not follow the flow
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FIGURE 14. Phase velocity for u1 normalised with the mean velocity at each height,
c1/U1(x2). Channel CH2000. Contours are spaced by 0.1, drawn only where the spectral
density φ11 is greater than 2 % of its maximum. (a) x+2 = 15. (b) x+2 = 80; (c) x2/h =
0.15 (x+2 = 300). The hyperbola-like thicker lines are: ——, λI = x2; - - - -, λI = 5x2.

takes place at λI ≈ 5x2 above x+2 ≈ 100. Closer to the wall, the transition wavelength
saturates at λ+I ≈103, which is also the boundary in figure 7(a) between the near-wall
spectral energy component and the self-similar outer ridge. A similar behaviour is
found for the other two velocity components, although there is very little large-scale
energy in the case of u2.

The propagation velocity of wave packets is the group velocity (Whitham 1974),

cgχ(k)= ∂k1(k1cχ)= cχ + k1∂k1cχ . (4.7)

The difference between the phase and group velocities is generally small, but
significant. For example, it was shown by del Álamo & Jiménez (2009) that it
influences the reduction of experimental frequency spectra to their wavenumber
counterparts. In the present context, the dispersion lifetime of a wave packet
depends on the difference between the two velocities. Assume that the wave packet
is chosen such that 1k1 ≈ k1, as discussed in the previous section. The packet
disperses at a rate 1c ≈ |∂k1c|1k1 ≈ |∂k1c|k1 = |cg − c|. We can then define an
analogue of the Corrsin parameter discussed in § 3.3,

c∗j (λI, x2)= |cgj − cj|/φ
1/2
qq , (4.8)

which compares the dispersion and turnover times. If c∗j � 1, the lifetime of the
packet is determined by its nonlinear turnover; otherwise, it is limited by dispersion.
Figure 15(b) shows that dispersive eddies of u1 are only found at long wavelengths,
λI & h, and near the wall. Approximately the same limits apply to the other two
velocity components. Figure 15(b) should be used in conjunction with the Corrsin
parameter in figure 6(b), which measures the importance of the shear with respect
to nonlinearity. A comparison of the contour levels of the two figures shows that
deformation by the shear is faster than wavenumber dispersion almost everywhere.
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FIGURE 15. Advection velocity parameters for u1 in channels, as a function of x2,
averaged over shells of constant λI . Shaded contours are CH2000. The thicker lines are:
– · – · –, h+=550 (del Álamo et al. 2004); - - - -, CH950; ——, CH2000. (a) Phase velocity
normalised with the mean flow velocity. Shaded contours are c1/U1(x2)= 0.9(0.1)1.4, and
thick lines are c1/U1(x2) = 1. (b) Wavenumber dispersion parameter, as defined in (4.8).
Shaded contours are c∗ = 1.0(0.3)2.2, and thick lines are c∗1 = 1. (c) Shearing parameter,
as defined in (4.9). Shaded contours are γs1 = 0.2(0.2)1.0, and thick lines are γs1 = 0.2.
The straight lines in (a–c) are: ——, λI = x2; - - - -, λI = 5x2 and x+2 = 80. (d) Instantaneous
snapshots of an attached logarithmic-layer ejection in a channel at h+ = 4200. The flow
(and time) goes from left to right, and the streamwise displacement of the structure
has been shortened in order to fit its complete lifetime in the figure. The structure is
coloured with the distance from the wall. Reproduced with permission from Lozano-Durán
& Jiménez (2014b).

This could suggest that all large eddies are sheared by the mean flow, but this
turns out not to be the case. The actual effect of the shear on the deformation of
the wave packets can be quantified by a ‘shear-deformation parameter’ that compares
the shear with the wall-normal variation of the phase velocity,

γsj = 1−
∂2cj

S
. (4.9)

When γs ≈ 1, the (nonlinear) self-interaction sustains the shape of the structure
against the effect of the mean flow, and cj is approximately independent of x2.
When γs� 1, eddies are advected and deformed by the shear. This does not imply
that the sheared eddies are not coherent, but suggests that their interaction with the
mean flow is essentially linear, and that they are unlikely to survive much longer
than the shearing time, STs =O(1).

The Corrsin parameters s∗ and c∗ quantify processes acting on the eddies, while
γs measures the result of those processes. The difference between s∗ and c∗ on one
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Structures in wall-bounded turbulence

side and γs on the other, encapsulates the difference between statistically defined
eddies, and the internal dynamics of the structures. The shear-deformation parameter
for u1 is shown in figure 15(c). Only structures in the buffer layer, x+2 .50, and those
longer than λI/x2 ≈ 5 are nonlinearly coherent.

The dispersive behaviour implied by figure 15(b) is reasonably well understood
in the case of the buffer layer, and illustrates the relation between coherence and
dispersion. Lozano-Durán & Jiménez (2014b) measured the propagation velocity
of individual structures defined by intense isosurfaces of the tangential Reynolds
stress, −u1u2 (see § 5). They measured the phase velocity at each wall distance
by tracking the motion of small-scale features within individual structures, and the
group velocity by tracking the motion of the rectangular box circumscribing each
structure. All the structures in the sample were relatively large, and attached to
the wall in the sense of having roots well within the buffer layer. They found that
the two propagation velocities were similar above x+2 ≈ 100, but different below
that level. An example is given in figure 15(d), which shows the evolution of an
ejection (u1 < 0, u2 > 0) throughout its lifetime. The upper part of the ejection
extends into the logarithmic layer and moves approximately as a unit. It drags
underneath a dispersive viscous root that moves more slowly, and which keeps
getting left behind (second to fourth attached frames), and reforming at its leading
edge (frame five).

In essence, dispersion happens because eddies at a given distance from the wall
are superpositions of eddies of different sizes and heights. Larger eddies, with longer
wavelengths, tend to be centred at higher distances from the wall, and move with
the faster velocity corresponding to their taller vertical range. This dependence of
the phase velocity on wavelength defines dispersion.

The conclusions from this first part of the paper can be summarised in the sketch
in figure 16. There are two coherent parts of the (x2, λI) parameter plane: the buffer
layer, where structures are held together by viscosity, and the very large structures
in the outer region, which presumably survive because they draw their energy from
the high shear near the wall, but are only slowly deformed by the weaker shear in
the outer part of the flow. This agrees with our previous argument that these are the
only two parts of the flow that possess an intrinsic unit of length: the wall unit near
the wall, and the flow thickness for the very large eddies. It also suggests that the
structures in these two ranges could be approximately described as semi-permanent
solutions of the Navier–Stokes equations. They draw their energy from the shear, but
possess enough internal dynamics to maintain a uniform propagation velocity across
their wall-normal extent.

The eddies in the trapezoidal region labelled as ‘shear-driven bursts’ in figure 16
possess no such unit of length, and are therefore difficult to describe as equilibrium
solutions. Accordingly, this is also the region in which the propagation velocity is
found to track the mean profile, and where the life of the structures is determined

842 P1-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

14
4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
id

ad
 P

ol
ité

cn
ic

a 
de

 M
ad

ri
d,

 o
n 

15
 M

ar
 2

01
8 

at
 1

2:
20

:5
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.144
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


J. Jiménez

?

Viscous waves

Inertial
waves

Sh
ea

r-d
riv

en
 b

ur
sts

The
 ca

sc
ad

e

10−2 100 102

10−2

10−1

100

FIGURE 16. Sketch of the expected behaviour of the flow structures in channels, as
a function of the wavelength and of the distance from the wall. All limits should be
understood as approximate.

by their deformation by the shear. Finally, structures to the left of the Corrsin length
are too small to couple with the shear, and constitute the quasi-isotropic Kolmogorov
cascade. The question mark to the right of λI/h≈ 30 reflects the uncertainty in the
maximum length of the large-scale velocity streaks. As discussed in § 3.5, this limit
probably depends on the flow involved.

The effect of the behaviour of the advection velocity on the kinetic energy
profiles is shown in figure 17. Figures 17(a)–17(c) display the profiles of the
kinetic energy integrated over spectral regions corresponding, respectively, to the
near-wall viscous waves, the large-scale inertial waves, and the logarithmic-layer
sheared structures. The corresponding spectral ranges are plotted in figure 17(d–f )
at wall-parallel planes characteristic of the corresponding structural regimes, and the
vertical profiles of the phase velocities for the three cases are compared with the
mean velocity profile in figure 17(g–i). The point where the phase and mean velocity
profiles intersect defines the critical layer at which a permanent wave resonates with
the mean flow and is expected to reach its maximum amplitude. This resonance is
both a linear result (McKeon & Sharma 2010), and an approximate nonlinear result
(Hall & Sherwin 2010). It is clearly visible in figure 17(a,b), where the structures
in the viscous and outer layers reach a maximum close to the level at which their
approximately constant phase velocity crosses the mean velocity profile.

Figures 17(c), 17( f ) and 17(i) contain results for the self-similar structures of the
logarithmic layer. For them, figure 17(i) shows that the phase velocity follows very
closely the mean profile, and a critical layer cannot be defined. We have already
seen that these are not permanent waves. They have a finite lifetime due to their
deformation by the shear, and display no amplitude maximum in figure 17(c).
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FIGURE 17. Behaviour of the velocity fluctuations integrated over the spectral ranges
sketched in figure 16, as functions of the distance from the wall. – · – · –, CH950; - - - -,
CH2000; ——, CH5200. (a,d,g) Near-wall viscous waves; λ+1 6 104, λ+3 6 2× 103. (b,e,h)
Large inertial waves; λI > 2h. (c, f,i) Shear-driven eddies; x2 6 λI < 2h. (a–c) Total
integrated fluctuation intensity, q=

√
uiui/3. The horizontal line in (a) is the wall distance

at which U+1 (x2)= 11; the one in (b) is U1(x2)= Ub. (d–f ) Spectral densities, φ+qq = 0.1.
The shaded regions are the ranges used in (a–c) to integrate the different intensity profiles.
Drawn at: (d) x+2 = 15, (e) x2/h= 0.35, ( f ) x2/h= 0.2. (g–i) - - - -, Profiles of the phase
velocity of u1 at the spectral points marked with a circle in (d–f ); ——, mean velocity
profile. Channel CH2000.

5. The evidence for structures

There are several ways to relate coherent structures to statistical eddies, the
simplest of which is to look for objects whose properties suggest that they should
evolve more or less autonomously. This often takes the form of visualisation of
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some intense property, whether in the form of interactive graphics or of automatic
machine processing. Well-known examples are the streamwise-velocity streaks (Kline
et al. 1967), and the Reynolds-stress quadrant events (Lu & Willmarth 1973), both
of which were first observed experimentally and will be discussed below. Velocity
and Reynolds stress are quantities of independent interest, but the structure of their
intense regions had to be discovered by direct observation.

The second approach is to seek events that are coherent in time, rather than in
space, such as the ‘bursts’ in shear flow. They signal dynamical processes, and can
be taken as indicators of the presence of dynamically relevant structures. The first
evidence for bursts in wall-bounded turbulence was also experimental (Kim, Kline
& Reynolds 1971), but the question of whether they reflected temporal or spatial
intermittency could not be usefully discussed until temporally resolved complete flow
fields began to be available from simulations (Robinson 1991). The minimal flow
unit in Jiménez & Moin (1991) was particularly useful in this respect because it
simplified the temporal tracking of individual structures (Jiménez et al. 2005).

The third approach is to test the predictions of theoretical models. This is the most
satisfactory of the three, because a good model usually predicts more than what
it was originally developed for. It is also the hardest, especially in the context of
chaotic nonlinear turbulence, but we will see that the situation is not hopeless, and
that partial models are beginning to appear.

Even a cursory review of each of these approaches would fill a longer article
than the present one, and will not be attempted. Instead, we organise our discussion
around individual types of structures and their relations, and point in each case to
sources where more information can be found.

5.1. Intermittency

Consider first the intensity as an indicator of coherence. Isolating individually
connected regions of the flow by thresholding their intensity is a classical way of
identifying coherent structures, but it implies the choice of a threshold. This is
easiest for intermittent quantities, for which high intensity is localised. There is a
well-developed theory of the intermittency associated with a singular behaviour in
the limit of very high Reynolds numbers (Sreenivasan 1991), but we will use a
less rigorous definition. If, for a quantity χ with p.d.f. p(χ), we define the volume
fraction of the data above a threshold χ0 as

Vχ(χ0)=

∫
∞

χ0

p(χ) dχ, (5.1)

and the fraction of χ above that threshold as

Fχ(χ0)= 〈χ〉
−1

∫
∞

χ0

χ p(χ) dχ. (5.2)
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FIGURE 18. (a) Probability density function of several quantities, illustrating the effect
of different representations. (b) Cumulative property fraction (5.2) against cumulative
probability (5.1). Channel CH2000. ——, χ = −u1u2; - - - -, |u2|; , u2

2; – · – · –,
|ω|; , ω2. The shaded patch in (b) is Vχ ∈ (0.05− 0.1).

χ will be considered to be intermittent if a threshold can be found such that F(χ0)

is relatively large for a relative small volume V(χ0).
Unfortunately, this definition is physically ambiguous. Consider the problem of

isolating velocity structures in which the absolute value of u2 is above a threshold.
The p.d.f. of the velocity is known to be approximately Gaussian, as shown by the
dashed curve in figure 18(a). Correspondingly, figure 18(b) shows that the velocity
fraction (5.2) grows relatively slowly with the volume fraction (5.1).

However, the distribution of the same quantity becomes more intermittent if we
consider u2

2 (dashed line with symbols in figure 18a). As a consequence, the fraction
of the wall-normal component of the kinetic energy also grows more steeply with
the volume than in the case of |u2| (figure 18b). The same is true of the vorticity
magnitude, which has been included in figure 18(b). Even for such a technically
intermittent variable, the fraction of |ω| included in a given volume fraction of
strong vorticity grows approximately as that of |u2|, while that of the enstrophy,
|ω|2, behaves approximately as u2

2. Any p.d.f. can be made more intermittent by
representing it in terms of a higher power of its variable. Of particular interest
is the product −u1u2, which we will use in the next section to classify the flow
into regions of active wall-normal transfer of the streamwise momentum. Its p.d.f
has been added to figure 18(a,b) and behaves as a quadratic variable. In fact, it
was shown by Antonia & Atkinson (1973) and Lu & Willmarth (1973) that the
probability distribution of −u1u2 is essentially that of the product of two Gaussian
variables. The main reason why we can partition the flow into discrete intense
regions that contain a relatively large fraction of quantities of interest within a
small volume fraction, is that the interesting quantities in fluid mechanics (energy,
enstrophy and Reynolds stresses) are often quadratic.
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A systematic way of choosing a threshold to partition the flow into separate
intense regions was introduced by Moisy & Jiménez (2004). Consider the enstrophy.
A very high threshold isolates a few very intense vortices which account for a very
small fraction of the total enstrophy. Conversely, a very low threshold includes a
larger enstrophy fraction, but at the price of linking all the vortices into a single
large tangle. The ‘percolation’ transition between the two limits is typically abrupt
(Stauffer & Aharony 1994), and can be used to define a threshold that includes as
much enstrophy as possible while still segmenting the flow into individual structures.
While the percolation threshold depends on the shape of the individual objects being
thresholded, it typically takes place for volume fractions of the order of 5–10 % in
three dimensions. This range has been added to figure 18(b), and shows that we
can expect to identify intense structures accounting for approximately 40–60 % of
the quadratic quantities of the flow, but for a much smaller fraction (15–25 %) of
the linear ones. Details of the application of this technique to wall-bounded flows
can be found in del Álamo et al. (2006) for the vorticity, in Lozano-Durán, Flores
& Jiménez (2012) and Dong et al. (2017) for the Reynolds stresses, and in Sillero
(2014) for individual velocity components. The resulting structures will be discussed
in the rest of this section.

It is clear that the percolation threshold is only one among many possible
threshold choices, and that conclusions derived from the structures thus obtained
have to be tested against other methods of analysis. For example, individual
structures should only be treated as indicative, while the statistical properties of
classes of structures are more meaningful. Also, the percolation analysis described
above typically results in a range of thresholds approximately spanning a decade.
Choosing its midpoint as a nominal threshold is reasonable, but any conclusion
should be tested against the results of thresholding above and below the nominal
value. Finally, although it should be taken into account that different quantities and
methods often result in different statistics, any conclusion derived from thresholded
structures should be complemented by the analysis of the statistical eddies discussed
in §§ 3 and 4.

5.2. The tangential Reynolds stress

The first coherent structures to be treated quantitatively in wall-bounded flows were
those of the tangential Reynolds stress, −u1u2, which is the quantity associated with
mean momentum transfer in (3.1), and with the mean production of turbulent energy
in (3.6). Consider the joint p.d.f. of the two velocity components in figure 19(a),
which can be classified into the four quadrants labelled Q1 to Q4. Most points for
which |u1u2| is large either belong to Q2 (ejections), where positive u2 carries low
streamwise velocity from the wall upwards, or to Q4 (sweeps), where the opposite is
true. Wallace, Eckelman & Brodkey (1972) and Lu & Willmarth (1973) argued that
these events are the dominant contributors to the exchange of streamwise momentum
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FIGURE 19. (a) Joint p.d.f. of (u1, u2). ——, Joint-Gaussian p.d.f. with correlation
coefficient 〈u1u2〉/u′1u′2 = −0.4; - - - -, homogeneous shear turbulence, HSF100; – · – · –,
channel CH950 at x2/h= 0.15. Contours contain 70 %, 30 %, and 5 % of the total mass
of the p.d.f. The hyperbolic lines are u1u2 =±1.75u′1u′2. (b) Sketch of a Reynolds-stress
structure (Q2) within its circumscribed parallelepiped, coloured by the distance from the
wall. The flow is from left to right, and the top of the structure is at x2,max = x2,min +∆2.
(c) Joint p.d.f. of the streamwise and wall-normal dimensions of the Q− structures. ——,
Attached Q−s in channel CH2000; – · – · –, detached Q−s in CH2000; - - - -, homogeneous
shear turbulence HSF250, with dimensions normalised by the span of the computational
box. The diagonal is ∆1 = 2∆2, and contours contain 90 % of the p.d.f.s. (d) As in (c),
for the spanwise dimension. The diagonal is ∆3 =∆2.

among different layers of the flow, and ultimately to the generation of turbulent
drag. They introduced the analysis of the flow in terms of strong ‘quadrant’ events,
defined by an empirically determined threshold for |u1u2|. These early single-point
velocity measurements eventually evolved into fully three-dimensional structures in
direct simulations, denoted here as Qs. In agreement with our discussion of figure
18(b), the percolation analysis described in the previous section isolates Qs that
fill approximately 7 % of the volume, and 60 % of the total momentum transfer.
It is encouraging that the threshold defined in this way agrees approximately with
those found by other groups from single-point temporal signals, using very different
methods. A typical value |u1u2| > 1.75 u′1u′2 has been added to figure 19(a) as the
four hyperbolic lines bounding the Qs.
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Qs have been studied for wall turbulence by Lozano-Durán et al. (2012), and for
homogeneous shear turbulent flows (HSF) by Dong et al. (2017). Their temporal
evolution, including mergings and splits, has been documented in Lozano-Durán &
Jiménez (2014b). The interested reader should consult these papers for details. We
only summarise here their most salient features.

When structures are circumscribed in a parallelepiped aligned with the coordinate
directions, as in the sketch in figure 19(b), they can be classified according to their
position and dimensions. Structures separate into two clearly distinct classes: those
which are attached to the wall, and those which are not. This distinction appears
clearly in the joint p.d.f. of minimum and maximum distances from the wall, and
applies to all the structures that have been studied up to now in wall-bounded
turbulence, not only to the Qs. It is determined by whether the minimum distance
from the wall is below or above x+2 ≈ 20 (del Álamo et al. 2006). In the example
in figure 15(d), this corresponds to whether the structures have developed a viscous
dispersive root near the wall. As seen in that figure, a given structure need not
be attached or detached over its full lifetime. Ejections, which tend to move away
from the wall, start their lives as attached, and eventually detach. Sweeps behave the
other way around. Notwithstanding these differences, the properties of Q2s and Q4s
are fairly similar, and we will treat them together from now on as Q−s. Although
detached structures are numerically much more common than attached ones, they
are also smaller, and most of the volume associated with intense Reynolds stress
is in attached structures. In the case of Qs in channels, approximately 60 % of all
the intense structures are Q−s, but only 25 % of them are attached to the wall. In
spite of this, attached structures account for approximately 70 % of the volume of
intense structures, and carry approximately 60 % of the total tangential Reynolds
stress (Lozano-Durán et al. 2012).

Figure 19(c) shows p.d.f.s of the streamwise and wall-normal dimensions of Q−s
in three classes of structures: attached and detached Q−s in a channel, and Q−s in
HSF, where the absence of walls makes attachment irrelevant. All of them describe
self-similar families, at least above the buffer layer. Detached and HSF Q−s have
similar aspect ratios (∆1/∆2 ≈ 2), while attached Q−s are slightly more elongated
(∆1/∆2≈ 3). This discrepancy was investigated by Dong et al. (2017), who showed
that it is due to ‘spurious’ connections between neighbouring attached Q−s through
their viscous roots. If the points below x+2 = 100 are removed from the identification
of connected structures, even objects that would otherwise be attached have the same
aspect ratio as the detached ones. Note that these aspect ratios are approximately
consistent with those in figure 9(a,b), where the correlations of u2 and u3 have
heights of order h, and streamwise lengths of order 2h. They also agree with the
‘short’ POD reconstructions of u2 and u3 in figure 13( f ), but they are much shorter
than the ‘long’ correlations of u1 in figures 9(c) and 13( f ). The spanwise aspect
ratios in 19(d) are identical for the three families (∆3/∆2 ≈ 1), in agreement with
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Structures in wall-bounded turbulence

the cross-flow correlations in figure 9. In all these cases, there is essentially no
difference between the channel and the wall-less HSF, reinforcing the conclusion in
§§ 3 and 4 that coherent structures and eddies are a consequence of the shear, not
of the wall. Structures attach to the wall when they become too large to fit in the
channel otherwise.

The fact that the attached Q−s in channels are longer than the detached ones,
but not wider, suggests that neighbouring Q−s are arranged streamwise from one
another. This was confirmed by Lozano-Durán et al. (2012), who showed that
attached Q−s of the same kind (e.g., a Q2 and its nearest Q2) are preferentially
located streamwise from each other, while those of different kind (i.e., Q2 and
Q4) form spanwise pairs. Interestingly, the same is only true in HSF for Qs whose
diagonal dimension is larger than the Corrsin scale. Smaller structures, whose
internal turnover time is too fast to couple with the shear, do not have a frame of
reference from which to determine their orientation, and are statistically isotropic
(Dong et al. 2017). For these small structures, it is possible to define Qij’s based
on the intensity of the Reynolds stress −uiuj. Many of their characteristics are the
same as the more classical Qs based on −u1u2, but the statistics of their relative
positions are oriented in each case with respect to the velocity components with
which they are defined. In this sense, only larger-than-Corrsin Qs are physically
relevant for the energy and momentum balance of shear turbulence. As discussed
in § 3, smaller structures are part of the isotropic Kolmogorov cascade. Note that,
since the Corrsin scale in channels is Lc≈ x2, all attached structures are larger than
Lc, and most structures larger than Lc are attached.

It is interesting in this respect that there are essentially no large Q1 or Q3
structures in HSF (Dong et al. 2017), in the same way that there are very few
attached Q1 and Q3 in channels (Lozano-Durán et al. 2012). Large eddies with
u1u2 < 0 draw energy from the shear, while those with u1u2 > 0 lose it. As a
consequence, the former grow while the latter dwindle, and the only Qs which are
approximately evenly distributed among the four quadrants are the smaller ones
uncoupled from the shear. In this sense, attached eddies in wall-bounded turbulence
are equivalent to larger-than-Corrsin eddies in HSF.

Conditional flow fields around pairs of attached Q−s in a channel are shown
in figure 20(a,b). Since we saw in figure 19(c,d) that pairs come in all sizes
with self-similar aspect ratios, the conditional average is compiled after rescaling
each pair to a common size and centring it on the centre of gravity of the pair.
Therefore, the coordinates in figure 20(a,b), δi= xi/x̄2, are multiples of the distance,
x̄2, from the wall to the centre of gravity of each individual pair. Also, because the
equations are symmetric with respect to reflections along x3, the ejection is always
defined to lie to the left of the picture. Figure 20(a) displays the mean conditional
geometry of the Q-pair, and is actually an isosurface of the probability of finding
a point belonging to a structure in the similarity coordinates. The object to the left
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FIGURE 20. Flow fields conditioned to attached Q2–Q4 pairs reaching into the logarithmic
layer. Channel CH2000. Flow is from top-left to bottom-right, and axes are scaled with
the distance from the centre of gravity of the pair to the wall. (a) P.d.f.s of the points
belonging to the Q2 (yellow at left) and Q4 (blue at right). The isosurfaces plotted are
0.75 times the maximum value of each p.d.f. (b) Conditional streamwise perturbation
velocity. The yellow object at left is the low-speed isosurface, u+1 =−0.5. The blue one
is u+1 = 0.5. The arrows in (a,b) are transverse velocities in the cross-flow plane, with the
longest one approximately 0.5uτ . (c) Instantaneous Q2–Q4 pair, with its associated vortex
tangle. Yellow is the ejection, blue is the sweep, and red are the vortices. Flow is from
left to right.

is the ejection, and the one to the right is the sweep. The arrows in the central
cross-section are conditional velocities in that plane. They reveal an approximately
streamwise roller, rising out of the ejection and sinking into the sweep. There are
secondary counter-rollers to both sides of the pair, but they are much weaker than
the primary central one, and there is little evidence of symmetric ‘hairpin legs’. The
Qs in figure 20(a) are in the logarithmic layer (x+2,max > 100). Their rollers can only
be identified as conditional objects, and it is difficult to relate different rollers to
one another, but the arrangement of streamwise vortices in the buffer layer has been
studied extensively. They are arranged antisymmetrically, with vortices of opposite
sign alternatively staggered along each side of a streak (Stretch 1990; Schoppa
& Hussain 2002). The lack of strong counter-rollers in figure 20(a) suggests that
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Structures in wall-bounded turbulence

the average arrangement in the logarithmic layer is similar. The aspect ratio of
the Q-pair in figure 20(a) is approximately 4 : 1 : 1.5 along the three coordinate
directions (Lozano-Durán et al. 2012).

Because u1 < 0 in ejections, and u1 > 0 in sweeps, the ejection sits in a
low-velocity streak, and the sweep in a high-velocity streak. The pair sits at
the border between the two, and the intervening roller has the direction of rotation
required to reinforce both streaks. Figure 20(b) shows the conditional streaks
associated with the pair in figure 20(a). The high-velocity streak is larger than the
low-velocity streak. The early experimental perception was the opposite, probably
because ejections collect tracers from the wall, and are easier to visualise, but
high-speed regions are fed from above, while low-speed regions are blocked by the
wall. This intrinsic asymmetry was shown by Orlandi & Jiménez (1994) to be at
the root of why the skin friction is higher in turbulent flows than in laminar flows.
The size relation between the two streaks in figure 20(b) is statistically robust, and
is evident both in instantaneous pictures and in conditional ones. Both conditional
streaks are longer than the Qs, especially the high-velocity streak, but not as much
as the very long structures implied by the correlations of u1 in figure 11(e). In
fact, the dimensions of the low-speed streak in figure 20(b) are very similar to
those of the conditional ejection in figure 20(a). The high-speed streak is longer,
but also taller, and its length-to-height ratio, approximately 5 : 1, is also not very
different from either the Qs or from the low-velocity streak, although shorter than
the 20 : 1 ratios for attached eddies implied by figure 11(e). This point will be
further discussed in § 5.3, after we see examples of instantaneous streaks.

It should be made clear that the rollers in figure 20(a,b) are not vortices, and
that individual structures are not as smooth as the conditional ones. A typical
instantaneous sweep–ejection pair is shown in figure 20(c). Its width is 0.5h, or
1000 wall units. The much smaller vortices in the vorticity cluster associated with
the pair have been added to the figure, for comparison. The dimensions of the
conditional rollers in figure 20(a,b) are similar to those of the correlation rollers
discussed in connection with figure 9(a,b).

The three-dimensional geometry of the conditional rollers associated with the
Q− pairs is displayed in figure 21. The three figures correspond to different flow
configurations. They are reproduced from Dong et al. (2017), which should be
consulted for details. Figure 21(a) corresponds to homogeneous shear turbulence,
and is the clearest. Because of the statistical symmetries of this flow, the conditional
sweep and ejection (not shown in the figure, for clarity) are equivalent, and are
arranged antisymmetrically with respect to the centre of gravity of the pair. The
roller is located between them, approximately aligned to the (x1, x2) plane, and
inclined at 45◦ with respect to the mean flow velocity. This is the direction of
maximum extension by the shear (Rogers & Moin 1987). At both sides of the
roller are the high- and low-velocity streaks, each one extending downstream from
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FIGURE 21. Effect of the inhomogeneity of the mean velocity profile on the flow field
conditioned to Q2–Q4 pairs. The central opaque S-shaped object is the isosurface of
the magnitude of the conditional perturbation vorticity, at 25 % of its maximum. The
two translucent objects are isosurfaces of the conditional perturbation streamwise velocity,
u+1 = ±0.6. (a) Homogeneous shear turbulence, HSF100. (b) Detached Qs in channel
CH950. (c) Attached Qs in channel CH950. Adapted with permission from Dong et al.
(2017).

the roller: the high-speed streak extends towards the right of the figure, and the
low-speed streak extends to the left. The implication is that the roller moves at
an intermediate velocity from that of the two streaks, so that the faster high-speed
streak moves ahead of it while the slower low-speed streak is left behind. It is
known that the streamwise advection velocities of the sweeps, which are located in
high-speed streaks, are approximately 3uτ faster than those of the ejections, which
are located in low-speed streaks (Lozano-Durán & Jiménez 2014b). The roller in
figure 21(a) is capped at its top and bottom by two ‘hooks’ resembling incomplete
hairpins. These are also conditional structures.

Figure 21(b) is plotted with the same parameters as figure 21(a), but for detached
pairs in the logarithmic layer of a channel. The arrangement is similar, but the roller
is less symmetric, and less inclined to the free stream (20◦). The high-speed streak,
which is now farther from the wall than the low-speed streak, is also substantially
larger. The conditional geometry of wall-attached pairs is displayed in figure 21(c). It
can best be understood as a further evolution of the transition from figures 21(a) to
21(b). The roller is almost parallel to the wall, and the low-speed streak has almost
disappeared underneath the surviving upper hook of the roller, which now looks as
an essentially full asymmetric hairpin. Note that the lower hook is still visible in
the figure, although almost completely truncated by the wall and hidden underneath
the high-speed streak.

As we have already seen several times in this article, the conclusion has to
be that the structures depicted in figure 21(a–c) are aspects of the same process,
although both the low-speed streak and the lower hook of the roller get increasingly
modified by the non-uniformity of the mean shear. They are also damped by the
impermeability of the wall as they approach it.
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FIGURE 22. (a) One-dimensional p.d.f.s of the logarithm of the streamwise length, ∆1,
of intense attached structures of u1, as functions of ∆2. (b) Same for the transverse
velocities. (c) Same for the spanwise length, ∆3. In all cases: ——, |u1|

+ > 2 in
BL6600 at h+ ≈ 1600 (Sillero 2014); · · · · · ·, same for CH2000 (Lozano–Durán, private
communication); - - - -, |u2|

+ > 1.3 in BL6600; – · – · –, |u3|
+ > 1.6 in BL6600. The

diagonals in (a,b) are: ——, ∆1 = 2∆2; - - - -, ∆1 = 5∆2. The diagonal in (c) is ∆3 =∆2.
(d) Two-dimensional streamwise section through the reference point (x̃2/h = 0.4) of the
two-point autocorrelation function of u1. Contours are C11=[0.05, 0.1, 0.3]. ——, Channel
CH2000; - - - -, boundary layer BL6600 at h+ = 1530; the grey patch is the C33 = 0.05
contour of the u3 correlation in the channel.

5.3. The velocity structures

The intense structures of individual velocity components were studied by Sillero
(2014). They also separate into attached and detached families, and are self-similar
in the logarithmic layer. Figure 22 displays the p.d.f.s of their aspect ratios. The
elongation of the structures of u1 in figure 22(a), ∆1/∆2≈ 5, is higher than for the
transverse velocities in figure 22(b), ∆1/∆2 ≈ 2, although, somewhat surprisingly,
not much more so. The latter value is also the aspect ratio of the Qs discussed in
figure 19(b), showing that the elongation of the Qs is that of the transverse-velocity
components. The spanwise aspect ratio is shown in figure 22(c), and approximately
agrees for all variables, including u1 and the Qs.

More interesting is the comparison in figure 22(a) between the u1 structures of
channels and of boundary layers. Figure 22(d) shows that, as already discussed in
§ 3.5, the correlations of u1 in boundary layers are considerably shorter than those
in the channels, but it turns out that the intense u1 structures in the logarithmic
layer are very similar in the two flows. If we interpret the reference height of
the two-point correlation as the centre of gravity of the structures, the p.d.f.s in
figure 22(a) would imply that the structures of u1 responsible for the correlation
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in figure 22(d) would have ∆1/h ≈ 2–6. This is in reasonable agreement with the
correlations of the boundary layer, and with the approximate size of the individual
velocity substructures in figures 3(b) and 23(b), but is too short for the correlations
of the channel. Figure 22(a) suggests that the difference between the correlations
of boundary layers and channels is mostly due to the very long and tall ‘global’
modes that dominate the outer part of the flow, and which appear in the p.d.f.s as
‘overhangs’ at the upper end of the self-similar region. These structures contribute
strongly to the correlations in the channel because they are large, but figure 22(a)
shows that they are not particularly intense, or at least that they do not strongly
affect the smaller structures in the logarithmic layer. Lozano-Durán et al. (2012)
mention that there is at least one very large Q4 that crosses the whole computational
box in most flow fields, but that those objects are concatenations of smaller ones.
The suggestion is that the difference between the correlation of u1 in boundary
layers and channels lies in the details of the concatenation mechanism, rather in
the substructures themselves. Given our discussion in § 3.5, it would be interesting
to repeat the present analysis for Couette flow.

The long and narrow structures of u1 are the well-known streamwise streaks,
which are found at all sizes and at all distances from the wall. Illustrating their
range of scales, figure 23(a) displays isosurfaces of the perturbation velocity in the
buffer layer, and figure 23(b) displays the large outer streaks spanning most of the
thickness of the flow. The geometry of u1 is similar in the two figures, but the
sizes are very different. While the streaks in figure 23(a) have widths of the order
of ∆+3 ≈ 100, those in figure 23(b), have ∆+3 ≈ h+ ≈ 1500. The main difference
between them is that the larger structures have a higher intrinsic Reynolds number,
which results in a wider range of scales and in a rougher appearance. Another
difference is that the near-wall structures are less uniformly distributed than the
outer structures. This reflects the modulation of the near-wall layer by the outer
flow. The isosurfaces in figure 23(a,b) are defined in wall units that use a uniform
friction velocity, while different parts of the wall ‘live’ in the local environment
created by the larger outer eddies. It was shown by Jiménez (2012) that some of
the non-uniformity of the wall can be absorbed by scaling the fluctuations with a
‘local’ friction velocity. Similar models have been used as boundary conditions in
large-eddy simulations for a long time (Deardorff 1970; Piomelli & Balaras 2002),
and a related idea has been expressed as a modulation of the inner flow by the outer
flow in Marusic, Mathis & Hutchins (2010). This works well for the intensity of the
fluctuations, but it does not fully describe the effect of the outer flow on the wall
structures. Continuity requires that large-scale ejections (u2 > 0) should be regions
of local lateral convergence, which tend to concentrate the streaks underneath. The
opposite is true underneath large-scale sweeps for which u2 < 0 (Toh & Itano 2005).
Although figure 23(a,b) correspond to different flows, the spanwise width of the
emptier regions with few streaks in figure 23(a) is approximately the same, O(h),
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FIGURE 23. Perturbation velocity isosurfaces, with the flow from lower left to upper right.
(a) Buffer-layer low-velocity streaks, u+1 = −2 (light grey). Channel CH2000. Structures
higher than x+2 = 150 and smaller than 106 cubic wall units have been removed for clarity.
The plot spans (L+1 ×L+3 = 2300× 1000). The darker (red) objects are |u2|

+
= 2. (b) Outer-

flow high-velocity streaks, u+1 = 2. Boundary layer BL6600 at h+≈ 1200–1400. Structures
shorter than ∆1 = h/2 have been removed. (L+1 × L+3 = 21 000 × 9000) (picture credits,
J. A. Sillero).

as the width of the large streaks in figure 23(b). We saw in figure 22(c) that the
width of all the velocity structures is ∆3 ≈ h when ∆2 ≈ h.

It is interesting that the outer flow in figure 23(b) is relatively well organised,
suggesting that, in the absence of exogenous modulation by still larger structures,
and when stripped of small-scale instabilities, the largest scales of the channel tend
to form a relatively organised pattern which could perhaps be described by some
simple theoretical model of coherence. This agrees with the narrowing of the energy
spectra in figure 7 away from the wall, and with the evidence from the advection

842 P1-53

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

14
4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
id

ad
 P

ol
ité

cn
ic

a 
de

 M
ad

ri
d,

 o
n 

15
 M

ar
 2

01
8 

at
 1

2:
20

:5
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.144
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


J. Jiménez

velocity discussed in § 4.1. It is also interesting that, independently of the differences
between small and large streaks, the absolute magnitude of the u1 isocontours in
figure 23(a,b) is the same in wall units, in agreement with the role of uτ as a
universal velocity scale.

Figure 23(a) includes isosurfaces of the wall-normal velocity. They are located
near the streaks, but they are much shorter than them, as already implied by the
correlations in § 3.5. The spanwise velocity and the strong vortices near the wall
(not shown) have sizes comparable to u2, but the structures of u3 tend to be flat
‘flakes’ parallel to the wall, in agreement with the transverse correlation in figure
9(a). The vortices are quasi-streamwise ‘worms’ with sizes comparable to the width
of the streaks. This suggest that the vortices are responsible for the wall-normal
velocities in the buffer layer, at least for short stretches comparable to the length
of the u2 structures in figure 23(a), but the same is not true farther from the wall.
The large central structure in figure 3(b) is a substructure of the velocity streaks
in the flow in figure 23(b). Figure 3(b) also includes vortices, but they are much
smaller than the velocity structures, and cannot create wall-normal velocities on a
scale appropriate to modify u1 (see also figure 20c). It was shown by del Álamo
et al. (2006) that the ejections of the logarithmic layer are associated with large
vortex clusters, rather than with individual vortices, and by Jiménez (2013b) that
the vortices away from the wall are essentially isotropically oriented, and generate
little net large-scale velocity. The counterpart of the near-wall vortices far from the
wall are the conditional rollers discussed in § 5.2. They are the collective effect of
the residual anisotropy of the vorticity organisation in the presence of the shear of
the mean velocity profile.

On the other hand, examples of well-organised hairpin forests have been shown
to exist in turbulent flows (Adrian 2007), although they tend to be more common at
relatively low Reynolds numbers, and to become disorganised when the Reynolds
number increases. Somewhat confusingly, this disorganised vorticity is sometimes
referred to as hairpin ‘fragments’, which makes it difficult to distinguish it from
regular vortices. An exception may be the structures reported in Wu et al. (2017).
Hairpin forests have always been known to form in the turbulent spots that mediate
bypass laminar–turbulent transition. In this sense they are low-Reynolds-number
structures. The observation in Wu et al. (2017) is that very similar spots and
hairpins form intermittently underneath fully turbulent boundary layers (x+2 . 100
and h+ . 1000), although they also tend to disorganise as they move farther from
the wall. In this sense they may be important contributors to the regeneration of
turbulence in the buffer layer.

It is striking that neither far nor near the wall are there indications of the long
streamwise rollers that are often important ingredients of low-order models of the
turbulence energy cycle. The observations support shorter structures that would not,
by themselves, create a long streak. On the other hand, we saw in § 5.2 that the
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Structures in wall-bounded turbulence

conditional rollers are arranged with respect to the streaks in such a way as to
always help to sustain them: clockwise rollers are located on the left-hand edge
of a high-velocity streaks, and counter-clockwise streaks are located on the right
hand. Thus, the streamwise average of all the shorter rollers can be modelled as
a long average roller that creates a long average streak, even if the flow is better
described locally as a concatenation of the smaller aligned units in figure 23(b). The
mechanism for this alignment is unclear, and we will come back to it in § 7.1 as one
of the open problems in modelling wall-bounded turbulence.

Note that the streaks are different from the ‘hairpin packets’ often proposed as
building blocks for the logarithmic layer (Adrian 2007). Even if hairpins, rather
than just isolated inclined vortices or conditional rollers, could be shown to exist
at high Reynolds numbers, the individual hairpins would be equivalent to the u2–u3

structures whose aspect ratio is displayed in figure 22(b). The packets would be
the somewhat longer u1 structures in figure 22(a), whose dimensions suggest that
each of them contain at most three or four shorter structures. The streaks themselves
are the overhang at the top of the p.d.f.s in figure 22(a), and correspond to the
approximately linear arrangement of substructures spanning the full thickness of the
boundary layer in figure 23(b).

5.4. Other variables

The main arbitrariness in the definition of the structures described in the previous
sections is the choice of the variable being thresholded. For example, while
the streamwise velocity can be considered a surrogate for kinetic energy, it is
unclear why the velocity fluctuations, u1, rather than the full velocity, ũ1, should
be considered as the variable of interest. In terms of the total energy equation,
the fluctuating u1 is negligible, and the transverse-velocity fluctuations even more
so. On the other hand, the total kinetic energy is not a Galilean invariant quantity.
Unfortunately, the geometry of the two fields is quite different. While the streaks of
u1 can be attached or detached from the wall (Sillero 2014), the instantaneous profile
of the full velocity is almost always monotonic. Thresholding ũ1 always results in
an irregular layer attached to the wall, and the streaks become uniform-momentum
regions in which the mean velocity profile has been mixed by the tangential
stresses. These are the very large uniform-momentum zones mentioned by Adrian,
Meinhart & Tomkins (2000). They are not part of the self-similar organisation of
the logarithmic layer, and are at least ten times longer than individual u1 structures.

The Reynolds stresses discussed in § 5.2 appear to be a more objective choice,
because they are in the equation for momentum transfer, and ultimately determine
drag. However, it was noted by Jiménez (2016) that the quantity in the momentum
equation is the divergence of the stresses, and that the stresses themselves can
be modified by adding any symmetric tensor of zero divergence without changing
anything. As an example, he introduced an ‘optimal’ stress tensor, φij, which
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minimises the integrated squared magnitude of the stresses over the channel. This
tensor field is an arbitrary modification of the classical stresses, but not more
arbitrary than the classical one, and it turns out that its statistics are rather different
from those of uiuj. In particular, the p.d.f. of φ12 in a channel is much closer to
Gaussian than that of u1u2, and the amount of ‘counter-gradient’ momentum flux
in figure 18(b) is much reduced. Conversely, the product ũ1u2, which uses the
full streamwise velocity rather than the perturbations, and which correspond to a
different rearrangement of the momentum equation, is much more intermittent than
the classical Reynolds stress, and involves much more counter-gradient backscatter
(Jiménez 2016).

None of this should be fundamentally troubling, because these alternative fluxes
are just different choices of the gauge used to represent the Reynolds-stress field,
and they leave the equations invariant. But it raises the question of what is the real
significance of the quadrant analysis in § 5.2, and of whether the properties that
we have discussed for the Qs might be artefacts linked to a particular form of the
equations.

There are two options. The first one is to renounce to the Reynolds stresses, and
to consider the geometry of its divergence. This ‘Lamb vector’ has been studied,
for example, by Wu et al. (1999) in the context of modelling, and it changes the
character of the stress field completely. The stresses are large-scale quantities, while
their divergence is associated with much smaller scales. The question is akin to
whether the quantity of interest in a flow is the pressure or the pressure gradient. The
gradient is the only term in the equations of motion, and determines the acceleration
of the fluid; but the pressure, which is the integral of the gradient, is more directly
related to the velocities. Think of Bernoulli’s equation.

Similarly, while the Lamb vector is the quantity directly related to the acceleration
of the fluid particles, its integral determines the overall velocity profile. However,
this leaves open the question of which gauge to use, and of whether we should
study the properties of the Reynolds-stress Qs, as in § 5.2, the thresholded regions
of strong φ12, or something else. The most direct way of answering this question is
to repeat the analysis in § 5.2 for φ12. This was done recently by Osawa & Jiménez
(2018), and the tentative result is that the streamwise elongation of the optimal flux
structures (‘op-sters’) is similar to that of the Qs, while their spanwise aspect ratio
is twice as wide. Other correlations suggest that, since op-sters do not differentiate
between sweeps and ejections, they approximately correspond to the combined
Q2–Q4 pairs.

Note that, because the difference between φij and uiuj is divergence-free, the
integral of the two quantities over any sufficiently large volume only differs by
a small boundary term. In particular, the ensemble-averaged stresses of the two
representations are identical. The preliminary analysis just discussed suggests that
their structures are also essentially similar, giving some hope that they are not
artefacts, and that they are physically significant in both cases.
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Structures in wall-bounded turbulence

5.5. Small and minimal flow units

Minimal simulations began to appear in the 1980s as devices to isolate invariant
(initially meaning ‘simple’) solutions in two-dimensional channels (Herbert 1976;
Jiménez 1987a). Turbulent channels are typically simulated in numerical domains
that are periodic in the two wall-parallel directions, so that a fundamental flow unit
repeats itself in a doubly infinite sequence of identical copies. Usually, simulation
boxes are chosen large enough for the periodicity not to interfere with the solution,
making sure that copies are ‘far enough not to see each other’.

A different approach is to do the opposite, choosing a periodicity so short that,
if individual structures exist, the fundamental cell contains a single structure with
just enough dynamics to sustain itself. The original hope was that, if the flow was
constrained enough, individual structures could be made to be steady, or otherwise
simpler to describe than the chaotic structures in real flows. This, for example, was
found to be the case in the two-dimensional turbulent channels mentioned above.
Even if that flow is different enough from three-dimensional turbulence to be
irrelevant to the present article, those results proved that single nonlinear structures
with a well-defined characteristic size could survive in a sheared environment, and
that incrementally releasing the computational constraints could lead to bifurcations
into temporally periodic orbits, chaos, and spatially localised states.

Minimal simulations of three-dimensional channels appeared soon after (Jiménez
& Moin 1991). They were at first restricted to the viscous layer near the wall,
where they provided the first evidence that the empirical spanwise streak separation,
∆+3 ≈ 100, is essentially a critical Reynolds number below which turbulence
cannot be sustained. These solutions were not steady, but they contained a wavy
streamwise-velocity streak with two flanking staggered quasi-streamwise vortices
(see the individual frames in figure 24c), strongly reminiscent of the structures that
had been educed from visual inspection of boundary-layer simulations by Robinson
(1991), or by machine processing of large-box channels by Stretch (1990).

An intuitive interpretation of minimal flow simulations is that they substitute the
disordered arrangement of the structures in real turbulence by a periodic ‘crystal’ in
which the structures can be studied more easily. The surprising observation is that,
even after what is clearly a major change in the dynamics, the low-order statistics of
the minimal flow are essentially correct (figure 24a). This strongly suggests that the
structures isolated by a minimal cell are fundamentally autonomous, with dynamics
that depend only weakly on the interaction with their neighbours, or at least on the
detailed geometry of those interactions. They therefore satisfy the basic criterion for
a coherent structure, as defined in the introduction to this article.

A striking characteristic of minimal turbulent solutions is that they burst
intermittently and irregularly. The streak is approximately straight and steady most
of the time, and occasionally meanders and breaks down into a burst of vorticity
and wall-normal velocity that recalls the observations of tracers in early experiments
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FIGURE 24. (a) Velocity fluctuation profiles of: ——, a minimal channel at h+ = 181,
L+1 = 460, L+3 = 127; - - - -, a full-sized channel at h+ = 180. (b) Evolution during a burst
in the minimal channel in (a) of the instantaneous: – · – · –, box-averaged velocity gradient
at the wall; ——, root-mean-squared intensity of the streamwise-averaged value of u1 in
x+2 ∈ (25–50), representing the strength of the streak; - - - -, same for ω1, representing
the strength of the streamwise roller. All quantities are normalised with their long-time
average. The symbols correspond to the snapshots in (c), which show the evolution of
the buffer layer before and during the burst. The grey central object is the low-velocity
streak, u+1 = −4, and the shorter coloured objects are the vortices, ω+1 = ±0.25. Objects
taller than x+2 = 80 have been removed for clarity. The view looks towards the wall, with
the flow from top to bottom; time moves from left to right, with an interval between
frames 1t+ ≈ 8. Axes move downstream with a velocity c+ = 7.6, to keep the wave in
the streak approximately fixed.

with boundary layers (Kline et al. 1967). The cycle then restarts (Jiménez & Moin
1991). The evolution of several box-integrated quantities during a burst is presented
in figure 24(b). Different quantities peak at different moments during the burst. The
streamwise-averaged streamwise velocity grows first, followed by the formation of
a roller indicated by the growth of the streamwise-averaged ω1, and finally by the
velocity gradient at the wall. These quantities are compiled in figure 24(b) over a
flow slab near x+2 = 40, which is where the flow in figure 24(c) suggests that most
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of the bursting activity is concentrated. Averages at different distances from the wall
result in slightly different timing relations, and it is risky to draw conclusions from
a single flow realisation, but the general sequence of events is consistent with the
picture derived by Jiménez (2013a) using the temporal cross-correlation of different
variables in bursts farther from the wall. It is interesting that the wall friction is
a trailing indicator of bursting, and that the velocity gradient at the wall is still
increasing when most of the burst appears to have subsided. This suggests that the
burst originates far from the wall and migrates downwards. The evolution of the
corresponding flow fields is given in figure 24(c), which only includes structures
fully contained below x+2 = 80. Soon after the last frame in figure 24(c), most of
the vorticity fluctuations migrate above the buffer layer, and disappear from our
visualisation box. The streak disorganises for a while, to reform later.

Refinements of the idea that an instability of the streak originates streamwise
vortices, which in turn reinforce the streak, led to the codification of a self-sustaining
process (SSP), first in minimal low-Reynolds-number flows by Hamilton, Kim &
Waleffe (1995), and eventually in the near-wall layer of larger-scale channels by
Schoppa & Hussain (2002).

At about the same time, numerically exact three-dimensional permanent-wave
solutions of the Navier–Stokes equations were found for minimal Couette flow by
Nagata (1990). They also contain a streak flanked by staggered vortices, and have
dimensions that, when expressed in wall units, agree with those of minimal turbulent
flows. These solutions are unstable to perturbations, and can only be computed by
numerically imposing stationarity or temporal periodicity, although enough numerical
constraints stabilises them in the same way as in the two-dimensional experiments
mentioned at the beginning of this section. As in that case, progressively releasing
the constraints leads to bifurcations into limit cycles and chaos (Jiménez & Simens
2001). Two examples are given in figure 25. The example in figure 25(a) is a
permanent wave, and the example in figure 25(b) is an oscillatory solution in
which the two wavelengths in the box exchange amplitudes periodically. The
geometry of the two solutions is similar, and also similar to the chaotic minimal
channel in figure 24(c), but the unsteadiness in figure 25(b) is relatively weak. The
temporal oscillation of its friction coefficient is approximately 5 %, compared to
approximately 20 % in the minimal channel in figure 24(c). Most known exact
periodic solutions share this weakness, but some of the homoclinic orbits that have
also been found do not. A quantitative comparison of the properties of simple flow
solutions, chaotic minimal flows, and large-scale wall turbulence can be found in
Jiménez et al. (2005).

These separate lines of research eventually merged into a model in which the
steady solutions are understood as ‘frozen’ versions of the SSP (Waleffe 1997),
while related periodic and homoclinic or heteroclinic orbits represent the bursts. A
review can be found in Kawahara et al. (2012), but this is a rapidly growing field,
and interested readers are encouraged to check recent individual research papers.
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FIGURE 25. Two examples of simple solutions in a minimal box that has been stabilised
by filtering the simulation above a distance δ from the wall (Jiménez & Simens 2001).
View and notation, as in figure 24(c), but the flow is from left to right, and the isolevels
are, u+1 =−3.5 and ω+1 =±0.18. (a) A steady wave with h+ = 118, L+1 = 146, L+3 = 177,
δ+= 49. (b) An oscillatory wave. The two wavelengths exchange amplitudes with a period
of T+≈370 and an amplitude of the friction coefficient, c′f /〈cf 〉≈0.05. h+=124, L+1 =520,
L+3 = 185, δ+ = 51.

Although the first minimal simulations were truly minimal, in the sense of having
the smallest dimensions that can sustain turbulence, their main advantage from the
point of view of turbulence research is that they contain a single structure that
can be easily studied and followed in time without the need for tracking it in
space. When the structure crosses the downstream end of the computational box,
an identical copy enters upstream. Minimal boxes also allow low-order quantities,
such as the intensity of the bursting structures, to be studied by integration over
the whole computational box, as in figure 24(b). It was eventually realised that
what could be called ‘small-box’ simulations can be used in similar ways to study
the larger structures of the logarithmic layer. If the box size is large enough to
contain several buffer-layer structures, but only one of the larger structures that
reach up to, say, x2 = 0.2h, that simulation can be used as a tool to study the
logarithmic-layer structure in isolation. Flores & Jiménez (2010) found that the
critical box dimension is the spanwise period, L3, and that boxes are minimal
with respect to the flow at x2 ≈ L3/3. If we identify this height with the centre
of gravity of the largest structure fitting in the computational box, the resulting
aspect ratio, ∆3 = L3 ≈ 3x2 ≈ 1.5∆2, is consistent with the p.d.f.s in figure 22(c)
and with the cross-plane correlations in figure 9. These maximal structures are not
as smooth as the buffer-layer ones in figure 24(c), and the geometry of the burst is
correspondingly more complex, but they can be identified as coherent by neglecting
the superimposed small scales, in the same sense as for the streaks in figure 23(b).
In particular, Flores & Jiménez (2010) showed that logarithmic-layer structures also
burst intermittently, and that the process is a larger-scale version of the one in the
buffer layer. The largest structure that fits in the box is a streamwise streak flanked
by a sweep and an ejection. The streak occasionally meanders and destroys itself
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FIGURE 26. (a) Lifetime of sweeps and ejections, as a function of the average distance
from the top of the structure to the wall (Lozano-Durán & Jiménez 2014b). ——, CH950;
- - - -, CH2000. The contours contain 50 % and 75 % of the data. The chain-dotted diagonal
is T+ = 0.6x+2,max; the dashed one is T+ = 3x+2,max. (b) Evolution of the kinetic energy of
the streamwise velocity during a burst in a small channel (h+= 1850, L1/h=π/2, L3/h=
π/4) which is minimal at x2/h ≈ 0.25 (Flores & Jiménez 2010). - - - -, Averaged over
x2/h ∈ (0.05, 0.1); ——, x2/h ∈ (0.1, 0.25). Each curve is normalised with its long-time
average, and time is scaled with the shear of the mean velocity profile at x2/h= 0.2. The
symbols correspond to the snapshots in (c), which show the evolution of the low-velocity
streak, u+1 =−2, leading to the burst. Only the layer x2/h∈ (0.1, 0.25) is represented. The
view looks towards the wall, with the flow from top to bottom. Time moves from left
to right, with an interval between frames S1t≈ 0.7 (1t+ ≈ 106). Axes move streamwise
with c+ = 20, approximately equal to U1 at x2/h= 0.2.

while creating a pulse of wall-normal velocity, Reynolds stresses, and dissipation.
It eventually reforms.

These logarithmic-layer bursts were studied in large-box simulations by Lozano-
Durán & Jiménez (2014b) as part of their detailed study of wall-attached sweeps and
ejections. The dependence of their lifetimes on the maximum height of the structure
is given in figure 26(a). There is a self-similar regime in which the lifetime is
proportional to the height, T+≈ 0.6x+2,max, and a lower range in which the structures
stay within the buffer layer, and their lifetime is T+ ≈ 30. The two regimes appear
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as continuations of each other, giving credence to the idea that they are different
aspects of the same phenomenon. If we empirically identify x2,max ≈ 2x2,c, where
x2,c is the average height of the centre of gravity of the structures during their
lifetime, the self-similar relation in figure 26(a) is equivalent to T+ ≈ 1.5x+2,c, or
ScT ≈ 4, where S+c = 1/κx+2,c is the mean shear. This is the order of magnitude of the
lifetimes deduced by Jiménez (2013a) for any shear flow, on the basis of the time
it takes for a structure to be sheared. The history of the box-averaged intensities
of one such logarithmic-layer burst is given in figure 26(b), and the width of the
burst approximately agrees with the above estimate. The duration of the buffer-layer
structures in figure 26(a) also agrees approximately with the width of the peaks in
figure 24(b).

A different definition of the bursting period was used by Flores & Jiménez (2010),
as the spectral peak of the frequency spectrum of box-integrated quantities in small-
box simulations. Their result, T+= 6x+2 ≈ 3x+2,max is approximately four times longer
than the tracking result in figure 26(a). The two trend lines have been included
in that figure. They refer to different quantities: the Fourier result measures the
time interval between bursts, while the tracking one measures the duration of its
intense phase. The difference between the two periods measures the fraction of time
(20 %) that the flow is bursting. This minimal-box result probably overestimates the
prevalence of bursting in large-scale flows; Lozano-Durán et al. (2012) find that
attached Q−s only cover approximately 8 % of the wall.

The meandering streak corresponding to figure 26(b), filtered to the same relative
resolution as the buffer-layer figures 24 and 25, is shown in figure 26(c).

5.6. Causality

We have mentioned in several occasions that turbulent structures can form far from
the wall, and that they appear to only require the presence of shear. Of course, this
does not rule out the possibility that in wall-bounded turbulence, where a wall is
present, structures may predominantly form near it, and it is interesting to ascertain
whether, under those circumstances, the structures of wall-bounded flows originate
at the wall, or away from it. At first sight, it looks that the wall should be the
origin. We mentioned in § 3.2 that the highest turbulence intensities are in the buffer
layer, and that so is the strongest shear, which is the source from which turbulence
draws its energy. Equation (3.7) shows that the balance between dissipation and the
production, both of which are proportional to the shear, requires that ω′2+ ∼ 1/x+2
in the logarithmic layer, so that vorticity is also concentrated near the wall. We
discussed in § 3.2 experiments that show that the dynamics of the near-wall region
wall is essentially independent of the outer flow, and it is tempting to hypothesise,
from this evidence, that turbulent fluctuations are created in the buffer layer and
diffuse outwards in some unspecified manner (see, for example, Adrian 2007).
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Structures in wall-bounded turbulence

However, none of these results prove that the converse cannot also be true, and
that the outer flow can survive independently of the wall. It is clear that the wall
is required to create a shear, but it is possible that this is its main role, and that
structures are created everywhere, with each wall distance basically independent
from others. In this alternative model, turbulence draws its energy from the local
shear, and either decays locally or diffuses away from its origin, including towards
the wall. The arguments for this view have also been repeated often. The earliest
one is the lack of influence of wall roughness on the properties of the logarithmic
and outer flows (Townsend 1976). Roughness destroys the details of the near-wall
region, including the near-wall peak of the turbulence intensity, but it only has
minor effects above a layer of the order of a few roughness heights (Jiménez 2004).
Similarly, large-eddy simulations, which tend to represent poorly the near-wall layer,
reproduce features of the outer flow relatively well (Moin & Kim 1982; Kravchenko,
Moin & Moser 1996; Piomelli & Balaras 2002). Mizuno & Jiménez (2013) present
computations of a turbulent channel in which the wall is substituted by an off-wall
boundary condition that mimics the logarithmic, rather than the buffer layer, with
relatively few deleterious effects, and we saw in figure 21 that there is a smooth
transition between the attached eddies of wall-bounded flows and the structures of
homogeneous shear turbulence, in which there is shear but no walls.

All these experiments strongly suggests that the dominant root cause of the
structures of wall turbulence is the shear rather than the viscous wall, and it was
indeed shown by Tuerke & Jiménez (2013) that even minor artificial changes
of the mean shear produce major effects in the fluctuations. However, the most
direct evidence for the direction of causality comes from simulations in the small
channels discussed in the previous section, in which individual structures manifest
themselves in the global averages. The channels in Flores & Jiménez (2010) are
minimal with respect to structures of height x2/h≈ 0.2–0.3, within the logarithmic
layer, and the corresponding structures can be detected by averaging the intensities
over wall-parallel planes. These planar averages are only functions of the wall
distance and of time, and are represented in the x2–t maps in figure 27(a,b). The
first of these two figures displays the evolution of the plane-averaged intensity of
the streamwise velocity, and figure 27(b) displays the tangential Reynolds stress.
In both cases, it is evident that eddies move both towards and away from the
wall, with wall-normal velocities of the order of ±uτ (Flores & Jiménez 2010).
The dominant direction of causality is tested in figures 27(c) and 27(d), which
plot the cross-correlation of the planar averages of the fluctuations in the buffer
layer with those at different distances from the wall. Within the distances plotted
in the figure, the peak of the cross-correlation of the planar average 〈u2

1〉13 stays
centred near t= 0, but it gets wider and develops a flat top as x2 moves away from
the wall, probably reflecting that the taller eddies are related to those at the wall
either at earlier or at later times. On the other hand, the correlations of the mean
Reynolds stress, 〈u1u2〉13, drift towards earlier times as x2 increases, implying that
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FIGURE 27. Temporal evolution of the Reynolds stresses in the small channel in figure
26(b,c). (a) Evolution in the (x2, t) plane of the streamwise-velocity fluctuations, averaged
over wall-parallel planes. The colour range (dark to light) is 〈u2

1〉
+

13 ∈ (0, 11). The two
dashed diagonals have slope dx2/dt = ±uτ . (b) As in (a), for −〈u1u2〉

+

13 ∈ (0, 1.8). (c)
Temporal cross-correlation coefficient between 〈u2

1〉13 at x̃+2 = 25 and: ——, x+2 = 25; @,
70;A, 140; ◦, 275; C, 460 or x2/h= 0.25. (d) As in (c), for 〈u1u2〉13.

the dominant evolution of these eddies in the logarithmic layer progresses from
the outside towards the wall, rather than the other way around. Different variables
behave differently, although most tend to behave like u1 in figure 27(c). We could
not find any case in which correlations moved outwards on average at a rate similar
to the inwards velocity of the Reynolds stress in figure 27(d).

It should be cautioned that these results could be affected by the small
computational box. It can indeed be shown that they are corrupted by the box
above x2/h≈ 0.5, where causality reverses, but the wall-normal propagation velocity
of individual strong (u1u2) structures was measured by Lozano-Durán & Jiménez
(2014b) in large channels, free of minimal-box effects. They found that ejections
(u2 > 0) move away from the wall with a distribution of velocities centred around
uτ , while sweeps (u2 < 0) move towards the wall at approximately the same rate.
Since the two types of structures tend to forms pairs of one sweep and one ejection,
the net wall-normal velocity of the pair approximately vanishes. Note that, in this
description, the wall only plays an essential role in creating the shear, but not in
the generation of either sweeps or ejections.
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Structures in wall-bounded turbulence

6. Theoretical models

Turbulence has defied a theoretical solution for almost 200 years. Traditionally,
the main problem has been the description of the inertial scales, with their large
number of degrees of freedom and the intuitively paradoxical property that the
viscous energy dissipation is empirically believed to remain finite even when
viscosity tends to zero. In this article, we have been interested in the apparently
simpler problem of the large scales that extract energy from a mean shear and
transfer it to the cascade, but even they are not fully understood. Because they
draw energy from the shear, large scales have to be, up to a point, ‘linear’ in
the sense that their dynamics is tightly coupled to the mean flow. This led to the
hope that the large eddies of turbulent shear flows would be related to those of
transition, with whom they share the energy-extracting role. This hope was partly
realised by the discovery of large coherent structures in free-shear flows, such as
shear layers, jets and wakes, which were soon understood to originate from the
Kelvin–Helmholtz instability of the inflectional mean velocity profile (Brown &
Roshko 1974). In free-shear layers, the correspondence between linear theory and
empirical observations remains quantitative even when the amplitude of the turbulent
fluctuations is not infinitesimal, suggesting that the energy-containing structures can
be described linearly as long as the flow is unstable. Only when the flow grows
to be thick enough to make the linear instability neutral (itself a nonlinear effect),
does nonlinearity become relevant to the structures (Gaster et al. 1985). This is
the model encapsulated by the observation in § 3.3 that the Corrsin parameter S∗ is
large in shear flows.

Linearised models of wall-bounded flows predate those in free-shear layers.
The early hope was that their mean velocity profile would be determined by the
requirement that it should be marginally stable with respect to linearised instabilities
similar to those in boundary-layer transition (Malkus 1956). Similar models later
became popular in other areas of physics under the name of self-organised criticality
(Bak, Tang & Wiesenfeld 1987), and posit that any deviation from the equilibrium
profile triggers an instability that restores the marginal state. Unfortunately, Reynolds
& Tiederman (1967) showed that the mean profile of a turbulent channel is far from
being linearly unstable. As we will see below, this does not necessarily mean that
linear processes are irrelevant, but it makes wall-bounded turbulence harder to model
than the free-shear case. In the latter, the role of nonlinearity is mostly restricted to
limiting the amplitude of linear instabilities. In wall-bounded turbulence, the Corrsin
(1958) argument still holds: the shear is the fastest dynamical process for the large
scales, and linear mechanisms dominate, but the lack of linearly unstable modes
implies that some form of nonlinearity has to be an integral part of the energy
extraction process.

Large scales do not typically have a dimensionality problem, because their size is
of the order of the thickness of the flow, and they carry most of its energy. However,
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wall-bounded turbulence is special in this respect because the number of structures
involved in energy generation increases without bound with the Reynolds number.
The reason is that the integral scale is proportional to x2 in the logarithmic layer.
The number of integral-scale structures per unit volume is then proportional to x−3

2 ,
whose integral over x2 is dominated by the lower limit at the edge of the buffer
layer. The result is that the number of integral-scale structures per unit projected
area is proportional to h+2 (Mizuno & Jiménez 2013) and, while the large scales of
free-shear turbulence can approximately be treated as a relatively low-dimensional
dynamical system in which most degrees of freedom are relegated to the dissipative
cascade, the logarithmic layer is intrinsically high-dimensional and multiscale.

6.1. Linear approximations

The key dichotomy in the linear behaviour of shear flows is between the modal
instabilities characteristic of self-adjoint operators, and the transient growth in
non-normal ones. In the former, fluctuations can be expanded in a set of orthogonal
eigenfunctions, and stability analysis reduces to determining the properties of
the corresponding eigenvalues. If a temporal eigenvalue has a positive real
part, the associated eigenfunction grows exponentially and eventually dominates.
Stable eigenfunctions die exponentially, and orthogonality ensures that individual
eigenfunctions can be treated as essentially independent of one another as long as
the system remains linear and autonomous.

On the other hand, the eigenfunctions of non-normal operators are not necessarily
orthogonal. In general, there will be cancellations among some of the eigenfunctions
contributing to a given initial condition and, even if the evolution of the system is
such that all the eigenvalues are stable and decay exponentially, the balance of those
cancellations may change during the decay. The result is that some initial conditions
grow for a while, typically algebraically, even if they eventually decay exponentially
when all the involved eigenfunctions do so. If a group of eigenfunctions are almost
parallel to each other, the effect can be large. A recent survey of applications to
hydrodynamic transition is Schmid (2007), and a textbook account is Schmid &
Henningson (2001).

For parallel flows, the linearised version of the Navier–Stokes equations is

(∂t +U1∂1) ui =−u2U′1δ
1
i − ∂ip+ ν∇2ui, (6.1)

where primed capitals denote derivatives with respect to x2, and δ
j
i is Kronecker’s

delta. It can be reworked into the Orr–Sommerfeld equation for u2 (Drazin & Reid
1981),

(∂t +U1∂1) ∇
2︸︷︷︸

Orr

u2 =U′′1∂1u2︸ ︷︷ ︸
K-H

+ν∇2
∇

2u2, (6.2)
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Structures in wall-bounded turbulence

and the Squires equation for the wall-normal component of the vorticity,

(∂t +U1∂1) ω2 =−U′1∂3u2︸ ︷︷ ︸
lift-up

+ν∇2ω2. (6.3)

Several terms in these equations can amplify fluctuations. The leading operator
in the left-hand side of (6.1)–(6.3) is advection by the mean profile. It does not
amplify fluctuations by itself, but, because U1 is a function of x2, it deforms them,
generally tilting them forward. Because (6.2) is autonomous in u2, it determines
whether the flow is stable or not. The term marked ‘K–H’ on its right-hand side
is the deformation of the mean shear by the cross-shear velocity fluctuations. It
rearranges the distribution of vorticity without amplifying it, but it is responsible
for the Kelvin–Helmholtz modal instability when the mean velocity profile has a
shear maximum (i.e., an inflection point) because it moves vorticity fluctuations to
where originally there were none. Because wall-bounded flows are not inflectional
in the absence of strong pressure gradients, this term is generally not important for
them.

The advection of ω2 in Squires equation (6.3) is forced by the wall-normal
fluctuations generated by (6.2). This does not create instability by itself, but it
can amplify fluctuations considerably. The relevant term is marked as ‘lift-up’, and
represents the deformation of the mean velocity profile by the spanwise variations
of u2. This is one of the terms responsible for non-orthogonal eigenvectors of the
evolution operator (6.2)–(6.3). It leads to the formation of the streaks of u1, because
it acts most strongly on long narrow features for which ω2 ≈ ∂3u1. A sketch is
given in figure 28(a), drawn in the (x3, x2) cross-flow plane for simplicity. The
solid contours are U1, which in this case increases from bottom to top. The arrows
are the field of transverse velocities due to a pair of streamwise vortices, shown here
as stationary. Lift-up works by moving low-velocity fluid from the wall upwards
and vice versa. In the particular case of figure 28(a), it is creating a low-velocity
streak in the centre of the sketch, where the U1 contours move away from the
wall. Figure 28(b) shows the growth of the perturbation energy, which is typically
algebraic. Unless the mean velocity profile stops growing far from the wall, there
is no obvious way to limit the growth of the lifted streak, because high-velocity
fluid keeps being moved towards the wall, and vice versa. However, the growth rate
typically slows after some time, because fast fluid has to be drawn from the upper
layers where the transverse velocities created by vortices located near the wall are
weaker. Nonlinearity also limits the rate of growth by mixing laterally the fluid
in the streak, as is beginning to happen in the right-most snapshot in figure 28(a).
The net effect is to rearrange the mean velocity profile. In the case of the figure, it
flattens the profile near the wall, and creates a sharper shear layer above the vortex
pair.

The other non-normal part of the evolution is the Laplacian marked as ‘Orr’ in the
left-hand side of (6.2). If the advection in (6.2) acted on u2 instead of on ∇2u2, its
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FIGURE 28. (a) Sketch of the evolution of the lift-up mechanism in the cross-plane
(x3, x2). A pair of stationary vortices with zero net circulation, represented as red circles,
deforms the background shear, represented by the solid isolines. Time increases from left
to right. (b) Evolution of the perturbation energy 〈u2

1〉 during (a). Time is normalised
with the maximum of u2 and with the distance from the wall to the centre of gravity
of the vortex pair. (c) Sketch of the evolution of the Orr mechanism in the streamwise
plane (x1, x2). Time increases from left to right. As the upper vortex is advected by the
ambient shear above the lower one, their wall-normal velocities reinforce each other. When
the vortices are not vertically aligned, their velocities tend to cancel. (d) Evolution of
the integrated energy of the wall-normal velocity during the evolution in (c). Time is
normalised with the shear advecting the vortices. The symbols in (b,d) are the times of
the snapshots in (a,c), respectively. The units for the amplitudes are arbitrary.

effect would just be to reorganise the velocity fluctuations without changing their
amplitude. However, this deforms their shape, violating continuity. The Laplacian
represents the reaction of the pressure to restore continuity. The effect of this term,
first discussed by Orr (1907), is to amplify backwards-tilting packets of u2 as they
are carried towards the vertical by the shear. The effect is transient, with a time
scale O(S−1), because u2 is eventually damped again as the packets are tilted past
the vertical. However, the net effect of a transient burst of u2 is to create a streak
of u1 through the lift-up mechanism mentioned above. The damping effect of the
tilting on u2 is due to the change of ∂2u2 as the structure becomes vertically stacked.
The streaks created by the lift-up are also tilted and vertically thinned by the shear,
but ∂2u1 is not in the continuity equation, and pressure does not damp them. As a
consequence, the effect of the Orr bursts of u2 is long-lasting.
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Structures in wall-bounded turbulence

The intuitive mechanism behind the Orr amplification is sketched in figure 28(c),
which portraits, for simplicity, a two-dimensional case in the longitudinal (x1, x2)

plane. The figure shows two co-rotating vortices being advected by the mean flow in
such a way that vortex ‘A’ overtakes ‘B’. When the two vortices are far apart, their
velocity fields are independent. As they get closer, the downwash of ‘A’ initially
cancels the upwash of ‘B’, and the total energy of the pair decreases slightly. Later,
when they pass above each other, their velocities mutually reinforce, the maximum
wall-normal velocity doubles and, even if the integral of u2

2 is concentrated over
a smaller area, the integrated energy doubles. As the vortices separate again, the
reinforcement decreases and the energy amplification is lost. The evolution of the
integrated energy during the events in figure 28(c) is plotted in figure 28(d). It
should be clear from this explanation that Orr’s is a robust mechanism which does
not depend on the details of the velocity profile responsible for the overtaking of the
two structures, and that similar results would be obtained if the two vortices were
substituted by a tilting elliptical vorticity patch, or by a three-dimensional vorticity
distribution. Note that pressure is not explicitly invoked by this second explanation,
but that the expression for the velocity in terms of the vorticity distribution implies
the Biot–Savart law, which incorporates continuity.

It is important to stress that neither lift-up nor Orr are intrinsically linear
processes, although they subsist in the linear approximation, and are most easily
analysed in that limit. The effects depicted in figure 28 work equally well for
strong perturbations as for weak ones. In particular, the Orr superposition of flow
fields in figure 28(c) only depends on having eddies moving on average at different
speeds at different heights, and it does not require that the mean velocity profile
exists as such at any moment. Of course, if the overtaking eddies interact with
other perturbations of comparable intensity, the effect of Orr superposition might
be difficult to isolate. Linearisation does not add anything to the equations, and
the effects surviving the removal of the nonlinear terms constitute the core of the
evolution operator under the conditions in which linearisation makes sense. The
linearity to which we allude in this subsection is a simplification that recognises
that, for the large scales in the presence of shear, the mechanisms in the linearised
equations are fast enough to remain relevant even in the presence of nonlinearity,
and strong enough to be responsible for many of the locally intense structures.

The viscous terms on the right-hand side of (6.2) and (6.3) act to damp the
fluctuations, specially when the eddies are thinned by tilting at the beginning or at
the end of a burst. Viscosity can be responsible for instabilities that are important
in transition, but the times involved are much longer than the shear time, and they
are not usually relevant in turbulence.

Because we are considering linear dynamics in this section, the evolution of any
initial condition subject to (6.2)–(6.3) is most easily analysed for individual spatial
Fourier modes. An appendix in Schmid & Henningson (2001) provides a practical
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J. Jiménez

computer code to optimise the amplification history of some chosen norm,

Aχ = ‖χ(t)‖2/‖χ(0)‖2, (6.4)

where ‖χ‖2
=
∫
|χ |2 dV is integrated over the whole flow as a function of time. The

analysis provides the most amplified initial condition and its temporal evolution,
including the time for maximum amplification. The only input required is the
mean velocity profile and the viscosity. The most amplified initial conditions play
the same role as the most unstable eigenfunctions of modal instabilities. For any
random initial condition, the system tends to select the projection over the most
amplified direction, whose evolution eventually dominates the flow. The difference
is that, while modal eigenfunctions grow while retaining their shape during their
evolution, non-normal initial conditions change as they evolve. The shape of the
most dangerous initial condition is in general very different from the final amplified
perturbation that dominates the statistics. Also, because the growth in the amplitude
of each initial condition is not a simple exponential, the dominant perturbation at
different times may correspond to different initial conditions, as each perturbation
grows and decays, to be substituted by another one with a slower evolution time.

This analysis was first applied to the velocity profile of a turbulent channel by
Butler & Farrell (1993), who found that the most amplified initial condition is a
backwards-leaning set of oblique rollers with weak u1, which evolve into strong
streaky structures of the streamwise velocity. The aspect ratio of the different
perturbations is fixed by the wavelengths chosen for the analysis, but the most
amplified initial conditions are those which evolve into infinitely long structures
with λ3/h ≈ 3, filling most of the height of the channel. The buffer-layer streaks,
with λ+3 ≈ 100, only become prominent if the time during which the system is
allowed to evolve is artificially restricted.

The analysis was repeated by del Álamo & Jiménez (2006) by adding to the
right-hand side of (6.2)–(6.3) the eddy viscosity required to maintain the mean
velocity profile (for the extra terms arising in the equations, see Pujals et al. 2009).
Because the eddy viscosity depends on x2, the results are roughly comparable to
introducing a damping time that varies with the distance from the wall, and both the
outer and the buffer-layer streaks appear naturally. An example of the results is given
in figure 29(a–c), where the maximum amplification of each velocity component is
compared to the vertically integrated spectral density of a turbulent channel at the
same Reynolds number. The three figures refer to the histories and initial conditions
that maximise the amplification, Aq, of the kinetic energy. The maximum energy
amplification is given in figure 29(a) as a function of the wall-parallel wavelengths,
and reflects mostly the growth of u1. The outer streaks appear at long wavelengths
(λ1 � h) and λ3 ≈ 3h, and it is interesting that they approximately agree with
the results of Butler & Farrell (1993) using a very different viscosity model. This
supports our previous observation that viscosity is secondary to the mechanism of
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Structures in wall-bounded turbulence
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FIGURE 29. Maximum amplification under linearised dynamics of the energy integrated
over the whole channel height, as a function of the wall-parallel wavelengths. Full eddy
viscosity and h+ = 2000. (a) ——, Kinetic energy amplification, Aq,max =

√
2, 2, 2

√
2, . . .;

- - ◦ - -, time for maximum amplification, uτ tmax/h= 1 and 2; the shaded contours are the
vertically integrated energy spectrum, Φqq, for CH2000. The dotted diagonal is λ1 = λ3.
(b) Amplification of u2 for the optimal histories in (a), and Φ22. (c) For u3 and Φ33. (d)
Amplification history of the three velocity components in the linearised case marked by
a symbol in (a–c): λ1/h= 3.9, λ3/h= 5.55. ——, u1; - - - -, u2; – · – · –, u3. Symbols are
the snapshots in ( f –h). (e) Leading PODs of the three velocity components for CH2000
and λ1/h= 3.2. From top to bottom, u1, u2 and u3. Black patches are uj > 0.5, and grey
ones are uj <−0.5. ( f ) Evolution of the most amplified linearised solution for the case
in (d). Time and flow run from left to right, with 1tuτ/h≈ 0.15. The advection velocity
is adjusted arbitrarily to fit all the snapshots within the plot. From top to bottom, the
contours are u1 = 4, u2 = 1 and u3 = 3, in arbitrary units.

energy production. In fact, the analysis of the evolution of u2 can be done using
an inviscid code, because the impenetrability boundary condition is inviscid, but u1

and u3 require some viscosity to enforce no slip at the wall (Jiménez 2013a).
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J. Jiménez

As in Butler & Farrell (1993) the intensity profiles of the large amplified structures
in del Álamo & Jiménez (2006) fill most of the channel height. They have
dimensions that scale in outer units for different Reynolds numbers, and appear
to be fairly universal features of equilibrium shear flows. The spectrum in figure
29(a) shows that the spanwise wavelength of this outer amplification peak agrees
well with that of the longest turbulent energy in channels.

There is a secondary, weaker, amplification ridge near λ+3 = 100, which
corresponds to the buffer-layer streaks. It has intensity profiles concentrated
near the wall, and scales in wall units with the Reynolds number. A curious
feature of both ridges is that the maximum amplification occurs for infinitely
long structures, while we have seen that the streaks in real flows are long, but
probably not infinite. This discrepancy should not be taken too seriously. The use
of a wavelength-independent eddy viscosity for all the fluctuations should only be
understood as a rough approximation to the energy dissipation by smaller-scale
turbulence. Actual nonlinear processes can be expected to act over times of the
order of the eddy turnover, which is O(h/uτ ) for the scales represented by the outer
ridge. It is intuitively clear that the higher amplification of the longest structures
can only be achieved at the expense of longer amplification times. This is confirmed
by the analysis. Isolines of the time required to reach maximum amplification are
included in figure 29(a), and suggest that the length of the streaks is probably
limited by evolution times longer than a few turnovers. We gave a similar argument
in § 3.5 to justify the shorter streamwise correlations of boundary layers, and we
mentioned above that Butler & Farrell (1993) used a time limit to retrieve the inner
amplification ridge. Note that the turnover time, as well as the eddy viscosity, are
nonlinear effects that depend on the finite amplitude of the fluctuations, and have
been artificially superimposed on the linear analysis.

Transient-growth analysis selects the maximum singular value from the spectrum
of the evolution operator, but there often are other singular values which are close
to the first one. Because of the symmetry of the velocity profile in channels,
the spectrum is formed by pairs of very similar magnitude, corresponding to
perturbations that are symmetric or antisymmetric with respect to the centreline. For
short wavelengths, the amplification of the two members of the pair is almost the
same, because they represent essentially independent solutions evolving near one
of the walls. This symmetry breaks for longer or wider wavelengths, and solutions
with a symmetric u2 spanning the whole channel tend to be slightly more amplified.
The optimal solutions represented in figure 29(a) mostly have this symmetry, but
both symmetric and antisymmetric solutions can be expected to occur in real cases.

This mix of symmetry classes is found both in the correlations and in the
PODs. For example, the correlation of u1 in figure 9(c) has a negative lobe on the
opposite half of the channel, even if it is compiled relatively near the lower wall,
suggesting an antisymmetric u1. The issue was avoided for the filtered PODs in § 4

842 P1-72

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

14
4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
id

ad
 P

ol
ité

cn
ic

a 
de

 M
ad

ri
d,

 o
n 

15
 M

ar
 2

01
8 

at
 1

2:
20

:5
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.144
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Structures in wall-bounded turbulence

by restricting the analysis to the lower half of the channel, because using the whole
channel interferes with the compactification of asymmetric variables whose integral
vanishes. This is why the PODs of all variables in figure 13 appear to be restricted
to a half-channel, but we will see below that full-channel structures reappear when
the correlation of long wavelengths is analysed over the whole flow.

Figures 29(b) and 29(c) display the maximum amplification of the two transverse-
velocity components for the same optimal histories used in figure 29(a). The
strongest amplification of the different components does not take place for the same
wavelengths, nor at the same times. For example, the maximum amplification of
u2 occurs at the two ends of the φ22 spectrum, but it is also large at very wide
wavelengths for which the kinetic energy is not amplified, and where the spectrum
of turbulence has no energy. The linear evolution of u2 is controlled by the Orr
mechanism, which is most efficient for wide (λ3 � λ1) waves. But the lift-up
depends on the spanwise derivative in the right-hand side of (6.3). Very wide u2

perturbations, even if they are amplified, cannot create a streak and do not result
in long-lasting energy amplification. This also means that these perturbations are
not found in turbulence, because there are no initial conditions in that range of
wavelengths to serve as seeds for two-dimensional waves of u2. A similar analysis
applies to u3 in figure 29(c).

Figure 29(d) shows the amplification history of the wavelength combination
marked by a symbol in figure 29(a–c). The different evolution of the three velocity
components is clear, as is the transient nature of their amplification. Six snapshots
of the evolution of the perturbation field of each of the three velocity components
are shown in figure 29( f ). Note the difference between the initial and final shape of
the perturbations, as mentioned when discussing transient growth at the beginning
of this subsection. All the structures are progressively tilted forward during their
evolution, and it is interesting to note the similarity between the shape of the
structures at their most amplified stage (between snapshots three and four) and the
PODs of a real channel at a similar λ1, displayed in figure 29(e).

A quantitative comparison of the correspondence between bursting in fully
nonlinear small-box channel simulations and linear analysis is given in Jiménez
(2015). While that reference should be consulted for details, a short summary of
its conclusions is that the evolution of intense ‘minimal’ Fourier modes of the
wall-normal velocity (i.e. those with wavelengths similar to the box dimensions)
can be described well as a linearised transient Orr burst. For the simulations
in that paper, which are minimal around x2/h = 0.25, linear prediction works
for time intervals of the order of tuτ/h ≈ 0.15, which is approximately half the
bursting lifetime. The time fraction of the flow history that can thus be described
is approximately 65–70 %, and accounts for an even higher fraction of the total
Reynolds stress. Bursts are essentially inviscid, and the addition of an eddy viscosity
does not improve predictions.
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J. Jiménez

Linearisation fails during periods of weak perturbations because the flow cannot
be described by a few wall-normal eigenfunctions, but nonlinearity is overwhelmed
by the linear process while bursting is active. This recalls the observation at the
beginning of this section that nonlinearity in free-shear layers only matters when
the thickening of the layer pushes the prevailing wavelength outside the instability
range of the linear Kelvin–Helmholtz mechanism. In both cases, nonlinearity only
becomes important for the large scales after the flow decouples from the shear, and
it is striking and contrary to common intuition, that the strongest events are those
best described by linearised models.

On the other hand, it should be emphasised that these conclusions refer to the
dynamics of a few Fourier modes chosen to represents coherent structures. For
example, each snapshot in figure 29( f ) represents a single period of a uniform
wave train, and the PODs in figure 29(e) are spatially periodic. Any discussion
of the evolution of realistic initial conditions should be able to deal with wave
packets that include a range of wavelengths, in the same spirit as the compact
eddies discussed in § 4.

A summary of the ongoing work on the generalisation to full-sized simulations, in
which several large scales coexist, is Encinar & Jiménez (2016). Early indications
are that the above results continue to hold for individual wavelengths, with relatively
little interaction among sufficiently different scales.

6.2. Nonlinearity

6.2.1. The relevance of streaks
Even if transient linear amplification explains most of the dynamics of shear

flows, it cannot constitute a complete theory for them, because perturbations do
not survive after a long time. Any initial condition eventual dies, and the flow
laminarises. The piece missing from the puzzle is what closes the self-sustaining
process qualitatively described in § 5.5. The linear mechanism in the previous
section describes the formation of the streaks by the vortices (or by the rollers in
the logarithmic layer), and the strengthening of the rollers once they have been
initiated, but it lacks a way of initiating them. This initiation mechanism cannot
be linear, because we know from Reynolds & Tiederman (1967) that the linearised
equations for a channel are stable. Nonlinearity is required as an integral part of
the regeneration cycle.

Most nonlinear proposals centre on the influence of the streaks. This is probably
unavoidable, because we have seen that the rollers, or their associated sweeps and
ejections, are damped at the end of a burst, and that the mean profile is stable. Only
the streak is left. Note that, even if many of the analyses mentioned below are linear
with respect to the streaky flow, they all require that the streak have non-infinitesimal
amplitude, and are therefore nonlinear with respect to the mean flow.
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Structures in wall-bounded turbulence

Early models centred on inflectional instabilities associated with the flanks of the
streaks (Swearingen & Blackwelder 1987), and many later studies examined the
structure of these instabilities. The details depend on the velocity distribution within
the streak, and Schoppa & Hussain (2002) performed the analysis using empirical
flow fields obtained from direct simulations of channels. Their results were twofold.
In the first place, they found many streaks whose intensity was too low to be
modally unstable, and many fewer that were strong enough to be unstable. In the
second place, they noted that even the stable streaks were subject to non-modal
growth. They concluded that modal instability was irrelevant to streak breakdown,
and that transient growth driven by the streak profile was the dominant process.
While suggestive, there are two problems with this conclusion. Firstly, the absence
of unstable streaks can be equally interpreted as an indication that instability is
important. Unstable flow patterns would not be found precisely because instability
destroys them. One may think of the low probability of finding upright pencils on
a shaking table.

The second objection is more subtle. Transient growth is presented in Schoppa &
Hussain (2002) as a property of the streak profile, implying that the energy of the
fluctuations is drawn from the energy of the streak. This is not a problem near the
wall, where the energy of the cross-flow velocities (u′22 + u′23 ) is a small fraction of
u′21 , but it is more problematic farther from the wall, where we saw in § 3.4 that both
energies are comparable. If the transverse velocities had to obtain their energy from
the streak, one would expect a negative correlation between the two energies. The
opposite is true: although the streamwise energy leads the transverse energy in the
temporal cross-correlation of the two quantities, the correlation is always positive,
and both energies grow together over most of the burst (see figure 6 in Jiménez
(2013a)).

We saw in the previous section that the alternative model in which the transverse
velocities draw their energy directly from the mean shear explains the dynamics
of the burst well, independently of the presence of a streak, but the two models
need not be incompatible. The streak profiles used by Schoppa & Hussain (2002)
include the mean shear, and it is possible that their transient growth is driven by the
shear instead of by the presence of a streak. This is made more plausible by their
observation that the transient amplification is relatively independent of the streak
intensity, even in cases in which viscosity damps the initial streak fast enough to
essentially erase it during the growth of the perturbation (see their figure 11). A
possibility is that the role of the streak is to be a catalyst for the rollers, rather than
their engine.

In fact, the nonlinear effect of the streaks is important for a more fundamental
reason. We have seen that the linearised Orr mechanism followed by lift-up explains
a lot of the dynamics of the velocity. It creates a transient burst followed by a more
permanent streak. Because the streak has a longer lifetime, it can also be sheared by
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the mean profile for a longer time, resulting in somewhat longer structures than those
of the transverse velocities. But this cannot explain the large observed differences
in the length of the three velocity components, and we concluded in § 3.5 that each
streak should contain several bursts. This observation has been popularised elsewhere
as that hairpins collect into packets (Adrian 2007).

Linear perturbations of the mean velocity profile cannot explain this organisation,
because a linear process has no amplitude selection mechanism, and in particular
has no definite sign. The streak created by a given burst can equally be positive or
negative. Most often, it forms pairs of a high- and a low-speed streak, as seen in the
examples in figure 21, and the newly created pair can either reinforce or weaken pre-
existing ones. The problem is the spanwise homogeneity of the mean profile, which
lets bursts be created at any spanwise location with equal probability, while what is
needed is a mechanism to ensure that new rollers are created approximately aligned
to pre-existing ones, in such a way as to reinforce their streaks. The most important
nonlinear effect of streaks is probably to break spanwise homogeneity and to localise
the transient modes. On the other hand, streaks are also important in triggering the
generation of new bursts. Jiménez & Pinelli (1999) showed that, when the streaks
in the buffer layer are filtered to lengths shorter than L+x ≈ 600, turbulence decays.
The quasi-streamwise vortices were not explicitly filtered in those experiments, but
they stopped being created, and decayed viscously.

6.2.2. Random forcing
A possibility that has attracted a lot of attention is to represent nonlinearity

as a random force acting on the linear part of the Navier–Stokes operator. The
underlying assumption is that the linear and nonlinear components of the equations
are statistically independent. We will pay relatively little attention to this possibility
on the grounds that it contradicts the rules about chance that we imposed on
ourselves in the abstract and in the introduction to this article, but the approach
has to be discussed. Randomness bypasses the need to restart transient growth
by constantly seeding it. It is clear that any random forcing would occasionally
contain components along some initial condition leading to growth, and that, if the
most dangerous initial condition is dominant enough, the result of forcing would
be reasonably close to the optimally growing perturbation. The most elaborate
applications of this idea are probably those by the group of McKeon & Sharma
(2010), which are broadly based on the theory of control. With some physically
motivated assumptions about the forcing noise, they report forced solutions which
are very similar to the optimally growing perturbations discussed above, and,
therefore, to the statistics of nonlinear flows. This approach has been the subject of
a recent Perspective by McKeon (2017).

A related question is how much of those results are due to the choice of
forcing, and how much to the structure of the system. Equivalently, the question

842 P1-76

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

14
4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
id

ad
 P

ol
ité

cn
ic

a 
de

 M
ad

ri
d,

 o
n 

15
 M

ar
 2

01
8 

at
 1

2:
20

:5
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.144
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Structures in wall-bounded turbulence

is whether we should worry about nonlinearity, or whether it is enough to rely
on the linear kernel of the Navier–Stokes equations to describe, and eventually to
control, turbulence. A partial answer is due to Zare, Jovanović & Georgiou (2017),
who look at the theoretical question of which are the requirements on the forcing
noise to reproduce the second-order statistics of the flow. They show that some
constraints on the noise are necessary.

From our point of view, as discussed in the introduction, randomness is a choice
rather than a property, and these models do not answer the question of whether
some approximately autonomous set of structures can be identified in the flow, or
of whether it can be used as a basis for control. There is a well-developed theory
of optimal control in the presence of noise, which motivates many of these models,
but our interest here is to avoid noise as much as possible, rather than to minimise
its deleterious effects.

Moreover, we know that simple deterministic solutions exist (although it is
unclear whether they are the ones that predominate in real turbulence), because the
unforced nonlinear invariant solutions discussed in § 5.5 contain both the growth
and the trigger.

There is a more serious objection to substituting noise for the nonlinearity of
turbulence. It is well known that turbulence, in common with most high-dimensional
nonlinear systems, is characteristically sensitive to initial conditions, which results
in its tendency towards a chaotic attractor. This is a property that no autonomous
statistically steady linear system can reproduce. Noise therefore substitutes a
fundamental property of turbulence by an external input. This may not be very
relevant in the short term for the large scales, whose Lyapunov exponents are
typically much slower than those of the small scales, but it raises the question of
what exactly is being reproduced. This is specially relevant regarding the multiscale
nature of the flow, which is most likely intrinsically unsteady.

6.2.3. Lower-order nonlinear models
More interesting from our point of view are models which discard as much of

the nonlinearity of the equations as possible, while retaining enough to preserve
some property of interest. The best-known examples are the large-eddy simulations
(LES) to which we have referred occasionally in the course of this article, in which
the nonlinear inertial range is substituted by a simpler subgrid model. LES is an
engineering tool whose aim is mainly to reproduce the low-order statistics of the
flow (e.g., the friction coefficient). As such, it is mostly an unintended bonus that
some subgrid models produce essentially correct multipoint statistics for the resolved
scales (Moin & Kim 1982; Kravchenko et al. 1996), although this agrees with the
canonical cascade theory in which energy and causality flow from large to small
scales (Richardson 1920). More recently, LES has been used as the base equation
from which to compute invariant flow solutions that strongly resemble those of direct
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simulations (Hwang, Willis & Cossu 2016). Ideally, these solutions would include
part of the inertial range of scales, and provide some indication of how multiscale
turbulence works. In practice, they resemble more the single-scale solutions of low-
Reynolds-number flows.

Another popular line of enquiry is the class of reduced-order models in which
the energy-generation cycle is represented by the interaction of a few modes,
usually loosely motivated by the observation of low-Reynolds-number minimal
flows (Waleffe 1997). Contrary to LES, these models are not directly derived from
the Navier–Stokes equations, and their aim is not to reproduce the flow statistics,
which they typically do not, but to clarify characteristics and mechanisms of the
flow that are deemed important by their originators. The best of them include
components corresponding to streaks and rollers, and result in bursting and, most
importantly, in a self-sustaining cycle.

Because of their relative simplicity, reduced-order models are often used as
proxies for true wall-bounded turbulence when developing diagnostic or control
schemes. They are attractive for such purposes, particularly as indications of which
aspects of the problem are fundamental for some particular purpose, and which
ones are accessory. However, their lack of a clear connection with the original
equations raises the question of whether the result of such exercises can be used
for predictive purposes. A recent review of the systematic use of model reduction
for flow analysis is Rowley & Dawson (2017).

6.2.4. Quasilinear models
An attractive variation of reduced-order models is the work of the group of Farrell

& Ioannou (2012) on quasilinear approximations to the wall-bounded Navier–Stokes
equations. The simplifying assumption is the division of the flow into an infinitely
long streak, defined as all the streamwise Fourier components with k1 = 0, and
everything else, which is treated as small scales (Gayme et al. 2010). The streak
itself is nonlinear, although two-dimensional in the cross-flow plane, and driven by
the nonlinear Reynolds stresses created by the small scales. The latter evolve within
the non-uniform flow field of the streak, but all the nonlinear interactions among
themselves are neglected. In its original version, only the statistical second-order
moments of the small scales are computed, including the stresses that feed back
into the streak. An equilibrium is attained in which the highest Lyapunov exponent
of the streak vanishes, reflecting the absence of secular growth or decay.

The method itself is an evolution of classical multiple-scale averaging schemes,
whose use in celestial mechanics dates back to Gauss and Poincaré. In these
procedures, the system is also separated into slow and fast time scales. The slow
scale is linear, or otherwise simple to solve, but is forced by a nonlinear combination
of the fast variables. The latter satisfy linearised equations, but feel the nonlinearity
through slowly varying coefficients that depend on the slow scale. There is typically
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a parameter in the solution of the slow equations, equivalent to the amplitude of
the fluctuations in the channel, that has to be adjusted to prevent secular terms.
Two accounts of the averaging method, with very different flavour, are § 3 in Cole
(1968) and § 4 in Arnold (1983).

The original version of the quasilinear approximation of Farrell & Ioannou (2012)
was stochastically forced. At small forcing amplitudes, the only stable equilibrium of
the model system is laminar, but, as the forcing increases, there is first a bifurcation
to a steady streak and roller, and later another one to an unsteady ‘bursting’ state.
These unsteady solutions connect to a turbulent branch in which forcing can be
removed.

In a latter version of the same idea, a direct simulation of a channel flow is
separated into ‘long’ (k1 = 0) and ‘short’ modes (|k1| > 0). As in the stochastic
version, the long modes are fully nonlinear and see the Reynolds stresses of
the short modes, but the latter are nonlinearly coupled only to the long modes.
There are no nonlinear interactions among short scales, and there is no stochastic
forcing. Somewhat surprisingly, considering that most of the nonlinear machinery of
turbulence has been suppressed, the system self-sustains and settles into a chaotic
bursting behaviour that is strongly reminiscent of true turbulence (Farrell et al.
2016). Even more interestingly, all but a few short modes spontaneously decay after
a while, leaving a self-sustaining system with only the nonlinear infinitely long
streak and a few relatively long linearised streamwise modes (λ1/h& 0.5), although
with full resolution in the spanwise and wall-normal directions.

Even if, as with most reduced-order models, the statistics of this truncated
turbulence only qualitatively approximate those of real flows, the mechanism by
which such a simple system self-sustains is intriguing, and could give clues about
which is the key self-sustaining event in real turbulence. It is clear from the
original papers that the amplification processes involved are non-modal, and it is
indicative that the stochastic system only becomes independent of the forcing after
it has bifurcated to unsteadiness. In fact, Farrell & Ioannou (1996) had argued
that non-stationarity is a fundamental ingredient in turning transient growth into
permanent growth. In essence, the growth of the short scales forces the temporal
oscillation of the long scales, and the non-stationarity of the latter continuously
restarts the transient growth.

It is clear that the model just described is minimal in the sense that all the
nonlinear modes have a single length scale (infinitely long), and that it assumes a
separation of scales that does not exist in reality. There are no gaps in the energy
spectra in § 3. The definition of large scales as a streamwise mean value (k1= 0) is
also troubling because it depends on the size of the computational domain. On the
other hand, the model is rigorously derived from the Navier–Stokes equations, and
we saw in figure 9 that there is a relatively large difference between the average
length of the correlations of u1 and those of the two transverse components. The
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quasilinear approximation can probably best be understood as a model for the
very-large-scale structures in the central part of the channel, which it treats as
simplified and lumped into a single infinitely long proxy.

This may be a good point to reflect on how much of what we believe that we
understand about the dynamics of coherent structures is derived from minimal or
small-box simulations. These reduced systems have undoubtedly been a boon for our
understanding of the dynamics of wall-bounded turbulence, but an excessive reliance
on them is a potential problem. Minimal units are, by definition, single-scale flows,
and we should ask ourselves whether they really represent multiscale turbulence.
For example, we have seen that the time fraction during which structures burst in
minimal boxes is approximately twice higher than the corresponding area ratio in
full-sized boxes, and we had to warn in § 5.6 that the causality relations among
different wall distances reverse when they interfere with the box size. Moreover,
even if it turns out that the structures in minimal flows are truly representative
of those in fully turbulent large-scale flows, minimal simulations give us little
information on how to address multiscale dynamics.

Although a fully multiscale model of turbulence may be challenging at our present
stage of knowledge, what we could call ‘weak multiscaling’ need not be impossible.
For example, some of the randomly forced solutions in McKeon (2017) contain
two discrete scales, and the same is true of some of the equilibrium solutions in
Sekimoto & Jiménez (2017). In another example, it is hard not to speculate whether
the temporal variability of the infinitely long streaks discussed in this section could
more realistically be substituted by a long-wave multiscale spatial modulation.

7. Discussion and open problems

We have tried to summarise in this article what is known about coherent structures
in wall-bounded turbulent flows, particularly regarding the large scales responsible
for the conversion of the velocity difference across the mean shear into the kinetic
energy of the turbulence fluctuations. Structures are important for turbulence, and we
have given in § 2 a simple example of how they appear naturally when otherwise
chaotic systems are examined over limited times. The same is presumably true of
spatially extended systems, such as turbulence, when examined locally in space. An
obvious example where this might be required is when considering control strategies.

Over longer times or larger regions, statistics, in the sense of probability
distributions rather than specific events, are probably a more natural representation of
the system, and they have to be taken into account. One-point statistics measure the
intensity of the fluctuations, and two-point statistics, such as spectra and correlations,
give an idea of their spatial scales. They define the underlying physics that has to
be described correctly by any model of turbulence. For many applications, they are
also the important quantities to be predicted. But they are not enough to describe a
functioning turbulent flow. For example, it is well known that a negative skewness
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of the velocity increments is required for turbulence dissipation (Betchov 1956),
but skewness is unrelated to either intensity or spectra, and is only found in the
presence of structure. A Gaussian noise, even with a coloured spectrum, has zero
skewness. In spite of this, we have dedicated § 3 to reviewing the basic facts
about correlations and spectra in wall-bounded turbulence because, if structures
exist, correlations measure their size. The conclusion of this section is that there
are at least two kinds of correlations: short ones for the two transverse-velocity
components, and long ones for the streamwise velocities. The transverse dimensions
of these correlations are very similar, of the order of the distance from the wall,
but their length is not. The correlation of the streamwise velocity in channels is at
least ten times longer than those of the transverse velocities.

The meaning of these correlations is explored in the next two sections. Section
§ 4 looks at advection velocities as indicators of coherence. Again, we find that
eddies can be divided in two groups. Long coherent eddies are found either in the
viscous layer near the wall or in the central part of the channel. They move as units
with a relatively uniform velocity. Although this property applies to all the velocity
components, most of the kinetic energy of these long structures is in the streamwise
velocity. The other class of eddies is closely associated with the logarithmic layer.
They exist at all length scales with self-similar aspect ratios, ∆1 :∆2 :∆3≈ 4 : 1 : 1.5,
and are not coherent enough to maintain a uniform advection velocity. They are
advected by the local flow, and are deformed by it. As such, they cannot be expected
to have lifetimes much longer than the shear time, S−1. An interesting conclusion
from this section is that deep eddies, ∆2=O(h), are not necessarily attached to the
wall. Long and wide eddies are generically deep, and they are found at all distances
from the wall. Only when they become so large that their depth is larger than their
distance from the wall, do they attach to it, but there appear to be no statistical
differences between attached and detached large eddies. Finally, eddies smaller than
the local Corrsin scale, Lc ≈ x2, are isotropic and decoupled from the shear; they
form the local Kolmogorov inertial range.

Section 5 examines the evidence from structures that are strong enough to be
isolated from the rest of the flow by thresholding. Several flow variables are
examined this way. In most cases, structures are found to correspond to the eddies
discussed in § 4. In particular, the transverse-velocity eddies correspond to structures
defined by strong u2, u3, or by the Reynolds stress, −u1u2. Because intense structures
can be identified and measured individually, a lot is known about them, including
their temporal evolution. In this way, for example, we show that the lifetime of the
logarithmic-layer eddies is indeed a low multiple of the shear time, as suggested
by the wall-normal variation of their advection velocity. Somewhat surprisingly, the
long correlations of the streamwise velocity do not correspond to particularly intense
structures. The thresholded structures of u1 are longer than those of u2 or u3, but
not by much. The very long correlations of u1 appear to be due to the concatenation
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of smaller units with individual aspect ratio ∆1/∆2≈ 5, instead of the ∆1/∆2≈ 2 of
the transverse velocities. Boundary layers have shorter u1 correlations than channels,
but the difference can be traced to the details of how units are concatenated. The
basic units appear to be the same in both cases.

Structures similar to those in channels are found in turbulent homogeneous shear
flows (HSF), allowing us to distinguish the effect of the shear from that of the
wall. In all cases, figure 21 shows that the conditional flow field around structures
of intense u1u2 is an inclined roller located between a high- and a low-velocity
streak of u1. The roller corresponds to the transverse-velocity eddies described above,
and the streaks to the streamwise-velocity eddies. The streaks appear to be causally
associated with the roller, because they extend downstream from it: the high-speed
streak forwards, and the low-speed streak backwards. The streak–roller structure is
symmetric in the HSF, with the roller aligned to the most extensive direction of
the shear, at 45◦ from the flow direction. This symmetry is progressively lost as we
move from HSF to channels far from the wall, and to channel structures attached to
the wall. In the process, the high-speed streak becomes stronger than the low-speed
streak, the inclination of the roller decreases, and the lower end of the roller is
truncated by the wall. Far from the wall, both ends of the conditional roller are
capped by hooks reminiscent of incomplete forward and backward hairpins. In the
case of the attached structures, only the upper (forward) hook survives.

Section 5.5 reviews the evidence obtained from minimal or otherwise small
simulation boxes, defined as those which contain a single structure of some
particular size. The most important information derived from these simulations
is that rollers burst intermittently with a time scale of the order of the shear
time, in agreement with the lifetime found by tracking intense Reynolds-stress
structures. We argue that minimal structures, attached structures in channels, and
eddies larger than the Corrsin scale in HSF, are different manifestations of the same
phenomenon. When the simulation box is chosen small enough to contain a single
logarithmic-layer roller, but much larger than the viscous structures near the wall,
it can be used to study the dynamics of the lower part of the logarithmic layer. We
use it in § 5.6 to show that the temporal correlation between the Reynolds stress
at different distances from the wall moves downwards across the logarithmic layer,
from the outside to the wall, rather than the other way around. Other quantities
move both ways, in agreement with tracking results for individual structures in
larger simulation boxes. We find no example of quantities moving predominantly
from the wall outwards.

Finally, § 6 briefly surveys present theoretical approaches to the description of
the structure of wall turbulence. We conclude that the Orr and lift-up mechanisms,
best known from the linearised stability equations, explain most of the formation of
bursting rollers and streaks, and we remark that neither process is intrinsically linear.
Together with the Kelvin–Helmholtz instability mechanism, they form the ‘core’ of
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Structures in wall-bounded turbulence

the interaction of velocity fluctuations with the ambient shear, and are therefore
robust enough to survive linearisation. They should be expected to remain relevant
at all intensities in most shear flows. However, we note that the combination of
Orr and lift-up is not enough to explain the complete self-sustaining cycle of wall-
bounded turbulence, because both processes are transient. Something else is required
to restart the cycle, and that extra process is not contained in linear approximations.
We argue that this is the main difference between free-shear flows and wall-bounded
flows. The former are modally unstable, and linear stability controls most of their
dynamics. The latter are modally stable, and their persistence requires an intrinsically
nonlinear component. In other important respects, they are more similar. In particular,
as long as some linearisable process is active, it dominates the energy-production
cycle, because the shear is the fastest time scale. Somewhat counter-intuitively, these
linearisable periods are the most active ones in the flow. Only when they become
inactive, for reasons that differ among flows, does nonlinearity have a chance to act.

We review in § 6.2 the different proposals for the nonlinear closure of the
generation cycle in wall-bounded flows. Most of them centre on the role of
the streaks, although we argue that their most important role is probably not
to destabilise the flow, but to catalyse the formation of pre-existing non-modal
instabilities due to the ambient shear, and to guide their location. Most likely, this
is the reason for the streamwise concatenation of smaller structures into longer
ones.

To conclude, we remark that most of the available structural theories for
wall-bounded flows refer to minimal or single-harmonic situations. The common
reference to a ‘self-sustaining cycle’ (in singular) indicate that most theories address
single structures. We argued in the introduction that equilibrium thermodynamics is
not a good model for turbulence, but this should not be taken to mean that statistical
mechanics has no role to play, particularly regarding the interaction among many
coherent structures of different sizes. Stretching an analogy, minimal flow units are
the molecules of wall-bounded turbulence. A lot can be learned about materials by
studying their molecules, and minimal units have allowed us to do the equivalent
of chemistry. The next step of turbulence theory should be to move from chemistry
to condensed-matter physics or to materials science.

7.1. Some open problems

It could be concluded from the previous summary that almost everything is known
about the mechanics of individual structures in turbulent wall-bounded flows. This is
probably true, although there are bound to be differences in interpretation. But this
does not mean that we understand everything about wall-bounded turbulence, and it
is the nature of articles like the present one to consider some of the open problems
left in the field. The following are a few representative examples.
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(1) The simplest question left open by the discussions above is how to precisely
characterise what is the nonlinear event that restarts the self-sustaining cycle.
We listed in § 6.2 some of the possibilities that have been discussed in the
literature, but none of them is definitive enough to provide a predictive criterion
for the location and time where a new cycle is about to begin. Since one of
the most important applications of such a criterion is to inform active control
strategies, it would be most useful if it could be reduced to a few variables,
preferably at the wall. Given how much information we have on individual
structures, this is the sort of problem that can probably be solved from existing
data and in the next few years.

(2) How does a short roller become a long streak? We have already discussed
this question in § 6.2.1, where we distinguish between the factor of two or
three between the length of the intense structures of the streamwise and of
the transverse velocities in figure 22, and the much larger difference among
the correlation functions in figure 9. We have seen that the geometry of the
structures of u1 is consistent with the concatenation of shorter units. The p.d.f.
of the length of the sublayer streaks was examined by Jiménez & Kawahara
(2013), who showed that it has an exponential tail, suggesting the concatenation
of individual units of length L+c ≈ 500–1000. This is consistent with the length
of minimal boxes (Jiménez & Moin 1991), but the study was limited to x+2 6
60, and we are not aware of similar studies in the logarithmic layer. Minimal
simulations are not very informative in this respect, because their streaks are
always found to cross the box, and are therefore infinitely long. Simulations
in longer boxes of minimal span do not result in longer rollers, but in several
rollers along a longer streak (see figure 25b).
The question is how the concatenation takes place. Equivalently, why sweeps
and ejections tend to form on the correct side of the streak to reinforce it, as in
figure 21. We argued above that one of the effects of pre-existing streaks is to
break the spanwise translational symmetry for the generation of new bursts, but
the precise mechanism is unclear, as are its quantitative aspects. For example,
how often are new bursts created in the ‘correct’ location? It could be the case
that the long streaks that we observe are an example of observational bias:
streaks grow by random superposition, and we are distracted by the streaks that
happen to be long. The exponential p.d.f.s mentioned above would be consistent
with this accretion model. The infinitely long streaks of minimal boxes would
not be, but they could be an artefact of minimality.

(3) Perhaps the problem farthest from solution, and arguably the most important
one, is how the multiscale nature of the flow is organised. We have a reasonable
understanding of individual structures, but we know very little about their
multiscale interactions. For example, each of the conditional structures in
figures 20 and 21 is associated with a given length scale and with a given

842 P1-84

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

14
4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
id

ad
 P

ol
ité

cn
ic

a 
de

 M
ad

ri
d,

 o
n 

15
 M

ar
 2

01
8 

at
 1

2:
20

:5
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.144
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Structures in wall-bounded turbulence

distance from the wall, but we saw in figure 19(c,d) that these structures exist
at all scales in the logarithmic layer, and that they form a self-similar hierarchy.
Geometrically, structures of different sizes coexist everywhere overlapping each
other, and we have mentioned that they carry approximately 60 % of the
tangential Reynolds stress.
Presumably, the requirement that they should provide a given mean stress sets
their velocity scale. Momentum conservation requires that the average of the
Reynolds stress of all the structures that intersect a given plane has to be u2

τ , but
how is this information communicated to individual structures? What happens
to structures which are too weak or too strong? Do they interact with each other
to ‘reach a consensus’ on the right intensity, or do they interact directly with
the mean flow?
It is easy to construct feed-back models in which the shear of the mean
velocity profile controls the intensity of the bursts, especially if we admit,
as we have argued, that bursts form at all heights instead of growing from
the wall. Qualitatively, if the mean intensity of the structures in some layer
is too weak, the shear increases, and the structures intensify. However, such
‘one-stage’ models are unlikely to be the whole story. Consider the structures
reaching up to a given x2 (e.g. one metre) within the logarithmic region of
the atmospheric surface layer, whose thickness h is O(100) metres. How do
these structures receive the information of the mean profile, which can only
be defined by averaging over distances of several boundary-layer thicknesses?
In this example, the problem of setting the velocity scale is not restricted
to structures whose size is one metre, but also to everything bigger, because
momentum conservation requires that the mean Reynolds stress of all the
structures intersecting that plane has the right value. But the ratio of the
turnover times of the largest and the smallest structures intersecting our plane
is h/x2 = O(100). If the small scales adjust to the stress missing from the
largest scales, how do they measure it? If the large scales adjust to the small
scales, how do they do the average?
The problem is not only that we do not know the answer to this question, but
that we do not have the right tool to investigate it, and that we need to develop
a system equivalent to minimal simulations for multiscale problems.

(4) A final unsolved problem is the one with which we opened § 6: what
determines the mean velocity profile in wall-bounded turbulence? Motivated by
it, a lot of progress has been made on the mechanisms of elemental structures,
but very few things in § 6 refer to how the mean profile is put together. We
mentioned in (3) that part of the problem is that we lack a multiscale theory,
but it is not immediately clear how would we use such a theory if we had
it. It may be time to revisit Malkus (1956) idea of criticality. The quasilinear
model in § 6.2.4 can be interpreted as a requirement of marginal stability
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for a base flow that now includes the infinitely long streak (Ioannou, private
communication). The null Lyapunov exponent in that model takes the place of
the neutral eigenvalue in Malkus (1956).
In a simpler modal setting, we have mentioned that linear theory can be used
to quantitatively describe unstable free-shear layers, and that nonlinearity only
takes effect when the linear modes become neutral. But that is not the whole
story. The Reynolds stress is a nonlinear effect that depends on the amplitude
of the fluctuations, and it controls the growth of the shear-layer thickness
that eventually drives the Kelvin–Helmholtz eigenvalue to become neutral. A
Malkusian interpretation would be that nonlinearity adjusts itself to keep the
mean velocity profile at a state of (self-organised) criticality.

There are many more open questions that do not fit in the present article, and
probably still more that I am not able to see at the present time, but, if I may finish
the article on a personal note, this is what still makes wall-bounded turbulence fun.
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Appendix A. Similarity solutions and invariances

We mentioned in § 3.1 that not just the existence, but the functional form of some
similarity solutions, can be derived from symmetry considerations. Two examples
that are important in turbulence are the power law of the inertial energy spectrum,
and the logarithmic velocity profile of wall-bounded flows. In this appendix we
outline how this is done, but remark that obtaining the specific exponents and
coefficients usually depends on physics beyond simple invariance. A more rigorous
presentation of this material is Oberlack (2001).

A.1. The logarithmic law

Consider first the logarithmic law (3.3) for a mean velocity profile that depends
only on the transverse coordinate x2, and assume that the Reynolds number is high
enough for viscosity to be negligible. The equations for inviscid flow are invariant
under independent scalings of the velocities and of the space coordinates, as well as
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Structures in wall-bounded turbulence

under coordinate translations and the Galilean addition of a uniform velocity. Unless
these symmetries are broken, either spontaneously or by boundary conditions, the
velocity U should be expressible in the form

(U − V)/B= f (ξ), with ξ = x2/δ +H, (A 1)

where B and δ are associated respectively with the scaling of the velocities and
of lengths, and the origins V and H are associated with Galilean invariance and
with space translation. Invariance means that the value of U resulting from applying
(A 1) should not depend on our particular choice of the values of the parameters,
but it is important to understand that, although the parameters are arbitrary, they are
not necessarily independent from one another. For example, a coordinate shift x2→

x2+H in a linear velocity profile U= Sx2 implies a velocity increment U→U+ SH.
In general, the problem of finding laws that are invariant to all the independent
symmetries above is too restrictive, and we have to look for laws that satisfy the
invariances of (A 1) together with the functional dependences among the parameters.

In most situations, some scales and origins are imposed by the boundary
conditions, and not all the parameters in (A 1) can be chosen arbitrarily, but the free
parameters impose restrictions on the form of the function f . In essence, if there
is no physical reason to fix the value of some parameters, the form of f can be
determined by assuming arbitrary values for them, expressing the law in the most
general form compatible with its invariances, and requiring the final expression to
be independent of the arbitrarily chosen parameters.

In the case of the logarithmic velocity profile (3.3), dynamics provides a velocity
scale, uτ , and a preferred origin at the wall, x2= 0. These assumptions determine B
and H in (A 1) but not V and δ, and the general form of the profile can be written
as

U = uτ f (x2/δ)+ V. (A 2)

The requirement that U cannot depend on the choice of parameters can be expressed
as

dU
dδ
=−

uτ
δ
ξ fξ (ξ)+ Vδ = 0, (A 3)

where subindices indicate differentiation. This can be rearranged into

ξ fξ =
δVδ
uτ
, (A 4)

where the right-hand side has to be a constant, independent of δ and ξ . Integration
of (A 4) leads to the logarithmic law (3.3).

Note that the law itself is a direct consequence of the assumed invariances, but
that the information of which parameters should be treated as fixed is a physical
argument that depends on the existence of a constant-stress layer near the wall, and
on the importance of wall distance as the relevant coordinate. The value of the
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Kármán constant, κ = uτ/(δVδ), also has to be determined from arguments beyond
invariance. On the other hand, the result that the arbitrariness in the length scale
should be linked to the Galilean invariance (Vδ 6= 0) reminds us that the logarithmic
law cannot be extended to the wall, and that it does not contain the no-slip boundary
condition.

A.2. Power laws

It is easy to see the need for a linkage between V and δ in the above derivation,
since making them independent would lead to a zero right-hand side, and to a
constant velocity as the unique solution. This is generally true, and at least a pair
of linked symmetries are needed to avoid trivial solutions.

Power laws occur when there is neither a velocity nor a length scale, but the
origins are fixed. Consider the Kolmogorov (1941) argument for the dependence of
the velocity increment 1u on the length of the interval ` across which it is measured.
Since both 1u= 0 and `= 0 have physical meaning, V and H can be set to zero
in (A 1), which becomes

1u= Bf (`/δ), (A 5)

where B and δ are arbitrary. Differentiation with respect to B leads to

f +
δ

BδB
ξ fξ = 0, (A 6)

and to f ∼ ξα, with α = δ/BδB. Note that, as with the logarithmic profile, the
exponent α cannot be found from the invariance properties, and depends on the
physical argument that the energy transfer rate, 1u3/`, is conserved (Kolmogorov
1941).

A.3. Fourier expansions

A case of particular interest in parallel shear flows is that of functions or vectors
defined by operators which are invariant to translations along some coordinate
direction. An example are the PODs used in § 4, which are defined in appendix B
as eigenvectors, φ, of the two-point covariance,∫

R(x, x̃)φ(x̃) dx̃=µφ(x). (A 7)

Assume that the flow is homogeneous along x1, so that the covariance is R(x, x̃)=
R(x1 − x̃1, y, ỹ), where y stands for those directions in x which are not x1. The
covariance is then invariant to translations, x1 → x1 + c, and the eigenvector of
a given eigenvalue can at most change by a normalisation factor, φ(x1 + c, y) =
C(c)φ(x1, y). Differentiating with respect to c at c= 0 yields

∂φ(x1, y)/∂x1 = (dC/dc)c=0 φ(x1, y), (A 8)
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which integrates to an exponential in x1. If we also require that φ remains bounded
at |x1|→∞, the only options are the Fourier basis functions,

φ(x1, y)= φ̂(y) exp(ik1x1). (A 9)

This is inconvenient when considering individual structures in statistically homoge-
neous systems, because it requires a method to combine several PODs into a
compact wave packet (see § 4 and appendix B.2). There are many variants of
this result, and perhaps the most interesting are those in which the homogeneous
direction is time. For example, the evolution of linear autonomous dynamical
systems can be expanded in terms of exponentials, which have to be Fourier
functions for statistically steady systems. Even in nonlinear dynamical systems, it
turns out that the evolution operator acting on all possible observables is linear. If
the underlying system is invariant to temporal translations, so is this ‘Koopman’
operator, and its eigenfunctions (Koopman modes) are also exponential in time. As
with their spatial counterparts, several Koopman modes have to be combined, with
mutually correct phases, to represent temporally localised events such as bursts.
Recent reviews of the use in fluid mechanics of the spectral properties of the
Koopman operator are Mezić (2013) and Rowley & Dawson (2017).

Appendix B. The statistical representation of eddies

This appendix reviews the theory of optimal representation of flows in terms
of ‘eddies’. It briefly surveys such subjects as proper orthogonal decomposition,
compact eddies, and linear stochastic estimation. This is a well-trodden field, much
of which was initially developed in the context of the theory of communication. As
such, it has relatively little to do with fluid mechanics or with the Navier–Stokes
equations. In particular, it is indifferent to the dynamics of the physical system
which is being represented, including to whether it is linear of not. In the simplest
cases, it reduces to Fourier analysis. Those interested in the early history of the
subject may consult Shannon & Weaver (1949) or Wiener (1961). Those seeking to
apply any of these techniques should study the original references mentioned below.

Communication theory deals with how to represent and send information
as economically as possible. The requirements of physical modelling may not
necessarily be the same, and optimal representations in the sense of this appendix
may not always be ideal for the purpose of physics. To begin with, we will see
that most reduced-order representations are linear transformations. When they are
used to create reduced models, they result in a restriction to a linear subspace.
However, the attractor of turbulent flows is usually not a hyperplane and, even if
the subspace is made ‘fat’ (i.e. high-dimensional) enough to include the curvature of
the attractor, it may still miss important physics. For example, a projection chosen
to optimally represent the energy of the flow would probably miss most of the
dissipation, because the dissipative scales contain very little energy. However, both

842 P1-89

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

14
4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
id

ad
 P

ol
ité

cn
ic

a 
de

 M
ad

ri
d,

 o
n 

15
 M

ar
 2

01
8 

at
 1

2:
20

:5
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.144
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


J. Jiménez

energy and dissipation are important to model turbulence (on the other hand, see
Rowley & Dawson 2017, for ways to balance two metrics.)

Even so, there may be some advantages to representing a system compactly.
Even if, as we have just discussed, retaining the nonlinearity may require that the
approximation has to be made ‘fatter’ than it otherwise should be, any reasonably
optimal representation will probably eliminate many irrelevant details, and can be
considered as an optimised filter. Communication theory was originally developed
in parallel with applications to control, which share with turbulence the importance
of nonlinearity. The mismatch between the nonlinearity of the turbulence attractor
and the geometry of linear subspaces was understood from the very beginning, and
has been discussed often (e.g., Berkooz et al. 1993).

The approximation theory described in this appendix is essentially statistical. It
applies to ‘ensembles’ of individual functions, which are sets of functions with a
probability distribution (Shannon & Weaver 1949). For a given cost (e.g. number of
coefficients), the goal of these approximations is not to find the best representation
of a particular flow field, or even the most probable model for a given ensemble,
but to find the model that maximises the probability that a member of the ensemble
agrees with its predictions. Therefore, models are not adjusted to sets of functions
(flow fields) but to their probability distribution. In practice, they are typically
adjusted to match their statistical moments.

It is easy to show that the best model for the first-order moments of an ensemble
is the mean. This is what is being done when flow velocities are represented by
their mean profiles. The next step, having more to do with eddies and structures, is
to take into account the second-order quantities.

To fix ideas, consider a discrete set of observations, each of which is represented
by a finite-dimensional vector u( j), where ( j) labels observations. This discretisation
is not as restrictive as it may appear. One of the central sampling theorems of
Fourier analysis is that any function of time, u(t), whose spectrum is band-limited
to frequencies below Ω (e.g., by viscosity), can be exactly represented by discrete
samples at uniformly spaced times, tm=m/(2Ω) (Shannon & Weaver 1949; Gasquet
& Witomski 1998),

u(t)=
∞∑

m=−∞

u(tm)
sin 2πΩ(t− tm)

2πΩ(t− tm)
. (B 1)

Thus, for a flow field u(x, t), the number of independent flow snapshots per unit
time is 2Ω . If the flow is also band-limited in space to wavenumbers below Ξ , each
three-dimensional snapshot can be similarly represented by (2Ξ)3 discrete samples
per unit volume.

Although each snapshot corresponds to an instant in time, we will initially treat
them as independent samples, and only model their spatial statistics. The second-
order structure of a scalar field is expressed by its covariance

Ruu(x, x̃)= 〈u(x)u∗(x̃)〉. (B 2)
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Structures in wall-bounded turbulence

If continuous functions are discretised as explained above, all operations reduce to
algebraic manipulations with vectors and matrices. This is the operating mode in
simulations and experiments, and we will use it in the rest of the appendix.

Form the m× n matrix U = [uij], whose columns are observations, and whose ith
row contains the ith component of each sample. Assume that all the rows have zero
mean. The two-point covariance of the ensemble u( j) is the Hermitian m×m matrix

R =
∑

j

u( j)u∗( j) = UU∗, (B 3)

where averaging has been substituted by summation over all samples, and the
asterisk denotes the Hermitian transpose. Note that the right-hand side of (B 3)
should have been divided by n, to make it closer to an average. In fact, there
usually are other weighting factors in the inner product implied by (B 3), which are
needed to reduce it to whatever is the desired definition of the norm (e.g., some
discrete integration formula). Such weights can always be incorporated into U, and
will not be explicitly displayed here. The same will be true of the normalisation
by n.

B.1. Proper orthogonal decomposition

The goal of optimal stochastic decomposition is to find a set of orthonormal
(column) basis vectors, Φ = [φ(k)] = [φik], such that, for example, projecting over
the first one explains as much as possible of the variance of the observations.
The projection of u( j) on a basis vector φ(1) is the inner product φ∗(1)u( j) = uijφi1.
Projecting all the snapshots over φ(1) results in the row vector φ∗(1)U, whose norm,
φ∗(1)UU∗φ(1), is what we want to maximise. This is the classical characterisation of
an eigenvector of the Hermitian matrix R = UU∗. Briefly, given a flow field whose
covariance function is R, the optimum expansion basis is given by the set of m
eigenvectors defined by

Rφ(k) =µ
2
(k)φ(k), (B 4)

where repeated indices do not imply summation. The covariance matrix can then be
expressed as

R =ΦM2Φ∗, (B 5)

where M is the diagonal matrix of the µ(k), and Φ = [φik] is a unitary matrix whose
columns are the eigenvectors.

The optimal expansion of an arbitrary flow field is

u=
∑

k

ûkφ(k), (B 6)

and it follows from (B 5) that the variance of the expansion coefficients for fields
in the same statistical ensemble as the observations is 〈|ûk|

2
〉 = µ2

(k). The sum of
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all the eigenvalues is the variance (or energy) of the original ensemble, and how
many eigenvalues are required to represent a given fraction of the total variance
measures the compression efficiency of the expansion. Although a typical flow field
from DNS can have several billion components, and the matrix R cannot typically
be constructed or diagonalised, it is found empirically that a few eigenvalues often
contain most of the energy. The covariance in (B 5) can then be approximated by
retaining a few eigenvectors, which can be computed by some variant of Arnoldi’s
method (Press et al. 1986). This expansion has been rediscovered several times,
initially as Principal Component Analysis by Pearson (1901). In fluid mechanics, it
takes the name of Proper Orthogonal Decomposition (POD, Berkooz et al. 1993).

There is an interpretation of (B 5) that suggests an alternative technique for the
computation of the leading PODs. The covariance in (B 3) can be understood as the
sum of the covariances, u( j)u∗( j), of the flow fields of individual snapshots. Similarly,
the expansion in (B 5) is the sum of the covariances, φ(k)φ

∗

(k), of the individual PODs,
weighted by their eigenvalues. It is then natural to interpret each eigenvector as
representing a group of flow fields, and its eigenvalue as a measure of ‘how often’
that eigenvector has been used in computing the statistics. This suggests that the
leading eigenvectors are those found most often in the flow, and that, if it were
possible to isolate them within individual samples, it should be possible to compute
them using fewer snapshots. What would be neglected by this procedure would be
the less important eigenvectors, of which there are many, but which appear only
seldomly. Moreover, (B 4) generates m eigenvectors, while (B 3) shows that the rank
of R is at most n. In most situations, the number of samples is much smaller than
the number of degrees of freedom, n� m, and the majority of the eigenvalues in
(B 5) are zero.

This is the basis for the ‘method of snapshots’ (Sirovich 1987), which starts by
factoring both (B 3) and (B 5). Consider a set, U, of n̄� m snapshots, where n̄ is
typically of the order of the number of PODs to be retained. Perform the singular-
value decomposition of U (SVD, Press et al. 1986),

U = Φ̄MA∗, (B 7)

where A and Φ̄ are unitary (AA∗ = Φ̄Φ̄∗ = I), and M is a reduced, n̄× n̄, diagonal
matrix of singular values, each of which is real and non-negative. Note that, because
U only has a few columns, the SVD is relatively cheap, and M only contains a few
singular values. Substituting the decomposition (B 7) in (B 3), we obtain

R = Φ̄MA∗AMΦ̄∗ = Φ̄M
2
Φ̄∗. (B 8)

Comparing (B 8) with (B 5) shows that M
2 is a statistical estimate of a few

eigenvalues of (B 5), hopefully the most significant ones, while the columns of
Φ̄ contain the principal PODs. The method of snapshots does not provide a full
POD representation, and assumes that the chosen snapshots are representative of
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Structures in wall-bounded turbulence

the flow statistics, but it is typically much cheaper than the diagonalisation of the
full covariance, and works well when a few PODs are clearly dominant over the
rest.

B.2. Most-compact eddies

Even if the PODs form an optimal expansion basis, they are not very good
models for localised eddies, because we saw in appendix A that they are Fourier
modes along the homogeneous directions of the flow. If the flow is statistically
homogeneous along x1, the covariance depends only on the distance increment along
that direction, Ruu(x1, x̃1, y, ỹ)= Ruu(x1 − x̃1, y, ỹ), where y represents the remaining
coordinates in x. The covariance and the spectrum then form a Fourier-transform
pair,

Ruu(x1 − x̃1)=

∫
R̂(k1, y, ỹ) exp [ik1(x1 − x̃1)] dk1, (B 9)

where R̂(k1, y, ỹ)= 〈û(k1, y)û∗(k1, ỹ)〉, and û(k1, y) are the coefficients of the Fourier
expansion of u along x1. The POD modes can also be written as

φ(k)(x1, y)= φ̂(k)(y) exp(ik1x1) (B 10)

for any wavenumber k1, where φ̂(k) is an eigenfunction of the Fourier coefficient of
the covariance, R̂uu(k1, y, ỹ). This simplifies the calculation of the PODs, because
φ̂(k) can be computed from the covariances of the Fourier coefficients of u, but
it also makes φ(k)(x1, y) a bad eddy model. As already discussed in the body of
the paper, Fourier functions are unlocalised, while dynamically significant structures
should have some degree of localisation because the Navier–Stokes equations are
differential equations in physical space, not in Fourier space. A summary of early
attempts of how to construct localised eddies out of the PODs is Berkooz et al.
(1993). Here we just discuss the particularly intuitive method of Moin & Moser
(1989), which was used to generate figure 13 in the body of the article.

A localised eddy can be constructed from Fourier PODs by adding a band of
wavenumbers. The amplitude of each Fourier component is known, because we saw
after (B 6) that 〈|û|2k〉 =µ

2
(k), but the derivation of the PODs says nothing about the

phase of the coefficients. This is crucial. Adding Fourier wavetrains with random
phases typically results in functions without recognisable structure (see the bottom
part of figure 30a). This has nothing to do with the uncertainty relation that links
the width of the spectrum with the length of the signal in physical space. The two
signals in figure 30(a) have the same spectral content and the same total energy.
The only difference is the relative phase of their harmonics. Moin & Moser (1989)
reasoned that, since the integral of the square of the velocity is given by its spectrum,
a localised eddy would also be tall, and they introduced the condition that the phase
of all the harmonics should vanish at some chosen ‘central’ location. In that way,
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(a) (b)

FIGURE 30. (a) The two signals have the same intensity and an identical Gaussian
spectrum with a standard deviation equal to σ/k0 = 0.17 with respect to the central
wavenumber (see text). The Fourier components of the bottom line have random phases.
All the phases of the upper line are zero at the centre of the plot. (b) As in the upper
signal in (a), with σ/k0 = 0.17, 0.11, 0.055, top to bottom.

all the wavetrains contribute as much as possible to the function at that point. For
example, if we wish our eddy to be centred around x1= 0, the ‘most-compact’ eddy
(MCE) would be

umc(x1)=
∑

k

|ûk| exp(ikx1). (B 11)

This is how the upper pulse in figure 30(a) is generated, and is always probably
close to the narrowest possible signal for a chosen spectrum |ûk|. In a case with
several dimensions, such as in figure 13 in the body of the article, it is usually not
possible to zero the phases at all wall distances. The solution of Moin & Moser
(1989) is to zero the phase of each vertically averaged wavetrain, γk =

∫
ûk(y) dy,

umc(x1, y)=
∑

k

ûk(y)(γ ∗k /|γk|) exp(ikx1). (B 12)

This construction results in reasonably looking flow fields, but its wealth of
adjustable parameters makes it less than general. The most obvious arbitrariness is
the position of the pulse, which can be located anywhere. Next is the bandwidth
with which to construct it, and the shape of the spectral filter used to isolate
the desired wavenumbers. Figure 30(a) is generated with a Gaussian spectrum,
|ûk| = exp[−(k − k0)

2/2σ 2
]. The central wavenumber, k0, defines the wavelengths

being considered, and the width of the pulse, measured in terms of the basic
wavelength, is determined by the ratio σ/k0 (see figure 30b). A consequence of
this freedom is that there are too many possible localised eddies to serve as basis
functions for an orthogonal or complete expansion in the sense of the PODs. The
MCEs do not necessarily describe the mean structure of the flow, because they
do not form a basis in which to expand the covariance, and they are usually not
orthogonal. However, if there are strong localised structures in the flow which are
common enough to influence the statistics, the MCEs suggest their form.
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Structures in wall-bounded turbulence

A more rigorous procedure for isolating eddies with some desirable characteristics
is the use of wavelets, which can be seen as Fourier packets with a predefined shape.
The examples in figure 30 are wavelets of a particular kind (Morlet), and so are
(approximately) the base functions used in the Shannon expansion (B 1). Once a
‘mother’ wavelet (i.e., its shape) is defined, signals can be expanded into weighted
sums or integrals of resized and translated versions of that shape, and, if certain
characteristics are satisfied, the expansion can be inverted. Because of the multiple
freedoms in choosing a wavelet shape, position and scale, wavelets share with
compact eddies the property of not forming a unique expansion basis, and there
is usually a wide latitude on how to compute the wavelet coefficients, and on
which family of wavelets to use for reconstruction. Not all of these freedoms
are necessarily useful in fluid mechanics. This often makes the use of wavelets
too restrictive for the advantages gained, but many common operations can be
expressed in terms of wavelets. For example, convolution with a family of translated
single-scale wavelets is a band-pass filter, and there are decimated families of
wavelets that form an orthogonal basis which can be used as an alternative to
Fourier analysis in the identification of localised flow features. The mathematical
theory of wavelets is very well developed. An elementary textbook introduction can
be found in Gasquet & Witomski (1998), and an excellent account of the use of
wavelets in fluid mechanics is Farge (1992).

B.3. Conditional averages and Linear stochastic estimation

A further method of local statistical approximation deserves a short comment
because of its historical importance, and because we have used its results at several
points of our discussion. It is intuitively obvious that the only way to defeat
statistical homogeneity is to choose a particular location in the flow as more
important than others.

For example, we have done this when computing the conditional flow fields in
figure 20(a,b) and in figure 21 in § 5.2. If the conditioning event is physically
motivated and if enough statistics are available, the best conditional approximation
is the average of all the events satisfying the condition. Both requirements are
met in § 5.2, where Qs have a specific physical meaning, and several hundreds of
thousands of samples are available for each type of structure.

An alternative in more poorly specified cases is linear stochastic estimation (LSE)
which seeks to find the best linear approximation of the second-order moments
of the statistics of the sample. The details are beyond the scope of this appendix,
but a good introduction of its applications to turbulence is Adrian & Moin (1988).
Stochastic estimation has a long history in statistics, and is a generalisation of
linear least-square approximation. As such, it is intimately connected with the
two-point correlation function, from which it inherits the geometrical structure and
the symmetries. For example, the optimum LSE flow field in isotropic turbulence,
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given the velocity vector at one point, is a vortex ring. In homogeneous shear
turbulence, the ring deforms into a hairpin, either trailing or leading with respect to
the flow. In wall-bounded turbulence, one of the two hairpin orientations dominates.
A similar evolution can be seen in figure 21, but it should be remembered that,
both in LSE and in the conditional flow, the symmetries or the result are inherited
from the symmetries of the statistics.
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