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The effect of different definitions of the momentum flux on the properties of the coherent
structures of the logarithmic region of wall-bounded turbulence is investigated by comparing
the structures of intense tangential Reynolds stress with those of the alternative flux proposed
in [Jiménez, J. Fluid Mech. 809, 585 (2016)]. Despite the fairly different statistical properties
of the two flux definitions, it is found that their intense structures show many similarities,
such as the dominance of “wall-attached” objects, and geometric self-similarity. The new
structures are wider, but not taller, than the classical ones, and include both high- and
low-momentum regions within the same object. It is concluded that they represent the same
phenomenon as the classical groups of a sweep, an ejection, and a roller, suggesting that
these groups should be considered the fundamental coherent structures of the momentum
flux. The present results show that the properties of these composite momentum structures
are robust with respect to the definition of the fluxes.
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I. INTRODUCTION

Understanding the physical mechanism of momentum transfer in wall turbulence is crucial both
theoretically and in applications, because it is connected with the mechanical equilibrium of the flow
and with the possible control of the wall friction. Traditionally, since the average of the tangential
Reynolds stress over wall-parallel planes is equal to the total wall-normal transfer of streamwise
momentum, its local value has been interpreted as a local momentum flux, and regions of intense
Reynolds stress have been identified and studied as coherent structures of the momentum transfer.
They are usually referred to as “quadrant” structures [1–3], because they are associated with different
quadrants in the joint probability density function (PDF) of two velocity components, and their spatial
and temporal characteristics have come to be considered properties of the momentum transfer itself
[1,4].

However, it has been repeatedly pointed out that it is the divergence of the Reynolds stresses,
and not the stresses themselves, that enters the equations of motion [5,6], and that the definition of
local flux is ambiguous because any divergence-free flux field can be added to it without changing
the physics. Recently, Jiménez [7] revisited this question, and studied in some detail a definition
of the momentum flux which is “optimal” in the sense of having a minimum integrated norm for
a given divergence. Somewhat disturbingly, he found that the instantaneous fields and many of the
statistical properties of the new fluxes differ considerably from those of the Reynolds stress, raising
some doubts about whether the previously mentioned studies of coherent structures and, indeed, a lot
of the effort dedicated to modeling locally the Reynolds stress tensor, may only apply to a particular
flux definition, and be therefore largely irrelevant.
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There is little in this new definition to make it better, or worse, than the classical Reynolds stress,
although minimizing the norm should also help in minimizing any spurious flux component. Its real
interest is that the new fluxes are different from the classical ones, although equally valid, so that any
interpretation of properties that are not shared by the two definitions may be considered as physically
“suspect.”

An obvious alternative would be to abandon the use of fluxes and stresses, and to fall back on
their divergence. This approach was discussed in some detail in Ref. [7], and had been considered
before [5,6], although mostly from the point of view of modeling [8,9]. It changes the character of the
analysis, because fluxes are large-scale quantities, while their divergence is associated with smaller
scales. The question is similar to whether to focus on the pressure or on the pressure gradient [10].
The gradient appears in the equations of motion and determines the acceleration of the fluid, but, as
shown by Bernouilli’s equation, the pressure is more directly related to the velocities.

In the context of wall-bounded turbulence, the point-wise identification of the momentum flux with
the Reynolds stress is the central assumption that allows us to scale the velocity fluctuations with the
friction velocity, as well as to classify motions into active or inactive [11]. It is also behind classical
quadrant analysis, including the idea that the properties of quadrants reflect those of the momentum
flux, and therefore of the energy production. Thus, it is important to determine whether it is at least
approximately correct. To assess its “robustness,” we repeat here the identification and classification
of intense structures using the new “optimal” definition of momentum flux, and compare them with
the coherent structures based on the classical Reynolds stress.

The organization of this paper is as follows. The simulations used for the analysis, and the
identification criteria for the structures, are introduced in Sec. II. The geometry of the identified
structures is discussed in Sec. III, and their relative position with respect to high- and low-momentum
regions and to other flux structures is presented in Secs. IV and V. Finally Sec. VI examines the
conditional velocity fields relative to the new structures, and Sec. VII concludes.

II. NUMERICAL EXPERIMENTS AND STRUCTURE IDENTIFICATION

We use data from direct numerical simulations of turbulent channel flow at two Reynolds numbers,
periodic in the two wall-parallel directions and of half-height h. The streamwise, wall-normal, and
spanwise directions are x, y, z, respectively, and u, v,w are the corresponding components of the
velocity fluctuations with respect to its mean. Overlines, ( ), denote y-dependent ensemble averages,
usually implemented as spatial averages over x, z planes and time. Whenever subindices are added
to an average, they represent the variables over which the average is taken. Thus ( )xz defines a
time-dependent average over wall-parallel planes. The ensemble-averaged mean streamwise velocity
is U (y), and primes are reserved for the root-mean-square fluctuation intensities. Variables with a
“+” superscript are normalized in wall units, defined from the kinematic viscosity, ν, and from the
friction velocity, uτ , which is in turn defined from the shear stress at the wall as u2

τ = ν∂yU |
y=0. The

friction Reynolds number is Reτ = uτh/ν.
The simulations use Fourier spectral discretization in (x, z), dealiased by the 2/3 rule. The wall-

normal discretization is Chebyshev spectral for the lower-Reynolds-number case [12], and compact
finite differences for the higher one [13]. Time stepping is third-order semi-implicit Runge-Kutta,
keeping the mass flux constant. Some numerical parameters are collected in Table I, and further
details can be found in the original publications.

A. The momentum flux

We focus on the structures of the classical tangential Reynolds stress, uv, and of the corresponding
optimal flux, φxy . Details of the computation of the φij tensor can be found in Ref. [7], and will not
be repeated here. Basically, it is a symmetric tensor that shares its divergence with the Reynolds
stress,

∂jφij = ∂j (uiuj ), (1)
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TABLE I. Parameters of the channel flow databases. Lx, Lz, 2h are the streamwise, spanwise, and wall-
normal domain size, respectively. �x, �z are spatial resolutions, in terms of Fourier modes, and Ny is the
number of wall-normal grid points. Ns is the number of snapshots used in the analyses.

Reτ Lx/h Lz/h �x+ �z+ Ny Ns Symbol Ref.

934 8π 3π 11 5.7 385 20 none [12]
2003 8π 3π 12 6.1 633 9 ◦ [13]

while minimizing the norm ∫
φijφij d

3x, (2)

where the integral extends over the whole channel, indices range from x to z, and repeated indices
imply summation. In general, because φij has the same divergence as the classical Reynolds stress, it
generates the same integrated flux across any closed surface. In particular, φxy plays the same role as
uv, transferring streamwise fluctuating momentum along y, and the instantaneous integral of the two
quantities over wall-parallel planes is identical, (φxy )

xz
= (uv)xz. This integral is the net result of

fluxes that change sign locally, with some cancellation between positive and negative contributions.
That only the divergence of the flux tensor enters the equations of motion suggests that at least some
of this cancellation is arbitrary and could be avoided. The minimization of (2) is intended to avoid
as much unnecessary cancellation as possible, and it was indeed found in Ref. [7] that there is much
less momentum backscatter in the optimum φxy than in the classical Reynolds stress, and that a large
part of the local intermittency of the Reynolds stress is not present in the optimal flux.

B. The identification of structures

Intense structures of φxy are identified by the same method used in Ref. [2] for the quadrant
structures of uv. Namely, the intense regions of a generic quantity q are extracted by thresholding,

|q| > Hf (y), (3)

with respect to some y-dependent flow statistics f (y). Each set of mutually contiguous points
satisfying (3) is defined as an individual structure. The constant H is chosen using the percolation
analysis developed in Ref. [14]. The threshold used for uv is the same as in Ref. [2],

|uv| > 1.75 u′(y)v′(y). (4)

After some experimentation, the threshold for φxy was chosen to be

|φxy | > 2.00 φ′
xy (y). (5)

Figures 1(a) and 1(b) show that both thresholds are in the midst of the respective percolation transition.
It was checked that the results presented below are qualitatively independent of the threshold as long
as it is within the transition range (1.4 < H < 2.4 for φxy). It was also checked that using a different

thresholding quantity, f (y) = (φ2
xy )1/2 = (φ′2

xy + φxy
2
)1/2, had a small effect on the properties of the

structures. Recall that, although quantities such as u denote zero-mean fluctuations, neither φxy nor
uv have zero mean. In what follows, the coherent structures identified for uv and φxy are denoted as
Qs and Ops, respectively.

III. THE GEOMETRY OF INDIVIDUAL STRUCTURES

Table II shows the number and volume fraction occupied by the objects identified by the procedure
explained above, oriented in each half of the channel with respect to their closest wall. With this
notation, the average momentum flux is negative, and objects carrying a net negative momentum flux
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FIG. 1. Percolation diagram for the identification of (a) Qs of uv, adapted from [2], and (b) Ops of φxy . The
solid lines are the ratio of the volume of the largest object to the volume of all identified objects; the dashed
ones are the ratio of the number of identified objects to the maximum number of objects. The vertical line is
the nominal threshold: H = 1.75 in (a), and H = 2 in (b). Symbols denote the two Reynolds numbers, as in
Table I.

will be called co-gradient. Individual objects can carry either a net positive or a net negative flux,
but Table II shows that co-gradient ones are more common, both for uv and for φxy . They also tend
to be larger than counter-gradient ones, as seen by the larger relative difference between the volume
contributions of the two kinds, compared to their number frequency. In the case of Qs, for which
the sign of the velocity fluctuations is fixed by their definition, co-gradient objects are classified as
“sweeps” or “ejections” [1] depending on whether their streamwise velocity fluctuation is positive
or negative, respectively. In the case of Ops, that distinction is not clear, and the relation of Ops with
the two types of Qs will be one of the questions to be discussed below.

Each object is circumscribed within a parallelepipedic box aligned to the Cartesian axes, which
is used to define both its position, and its dimensions �x , �z and �y = ymax − ymin, where ymin

and ymax are the minimum and maximum distance of the object from the nearest wall, respectively.
Figure 2 shows the joint probability density function (PDF) of ymin and ymax. Lozano-Durán et al. [2]
showed that Qs can be classified into two families based on their minimum distance from the wall.
The “attached” Qs in the left-most side of Fig. 2(a) have y+

min < 20, but some of them are very large,
growing to be as tall as the channel half-height. The “detached” structures in the diagonal band of
Fig. 2(a) never approach the wall, and their height �y depends little on the wall distance. The same
classification into attached and detached families applies to vorticity [15] and velocity structures [16],
with minor variations in the limiting ymin that separates the two families. In the logarithmic layer of
channels, around 60% of the Reynolds stress is carried by attached Qs, while detached objects carry
a much smaller fraction of the total stress. In fact, it was shown in Refs. [2,17] that detached objects
are random fluctuations which are too small to couple with the mean shear, and that they are present
in all shear flows. They are isotropically oriented, and do not collectively contribute to the mean
momentum flux. Attached objects are also common features of shear flows, and they can even be

TABLE II. Number fraction of identified objects with respect to their total number, and volume fraction
with respect to the flow domain. Superscripts show the sign of the mean momentum flux within each structure.

Reτ N−
Qs N+

Qs V −
Qs V +

Qs N−
Ops N+

Ops V −
Ops V +

Ops

934 0.60 0.40 0.081 0.011 0.64 0.36 0.073 0.006
2003 0.61 0.39 0.073 0.020 0.67 0.33 0.068 0.008
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FIG. 2. Joint PDF of the distance from the closest wall to the bottom (ymin ) and top (ymax) of the structures.
(a) Qs, (b) Ops. Contours include 40%, 90%, and 98.8% of data. Reτ = 934.

identified in flows without walls [17]. They are large enough to couple with the mean shear, and are
responsible for most of the mean momentum flux. This coupling also means that large co-gradient
Qs extract energy from the mean flow, which allows them to grow even larger. In essence, “attached”
objects are defined by being large, rather than by being attached to the wall, but the geometry of
flows over walls is such that objects cannot grow to be large enough to couple with the shear without
also hitting the wall [18].

As can be seen in Fig. 2(b), Ops also separate into attached and detached families. In the logarithmic
layer, attached Ops carry 30% of the mean momentum flux, which is close to the overall contribution
of all the Ops. Co-gradient detached Ops carry approximately 7% of the flux, which is is partially
compensated by about −2% from the counter-gradient ones. As in the case of Qs, attached Ops are
dominant, and we mostly focus on co-gradient attached objects in the following.

Especially relevant are attached objects that are large enough to reach above the buffer layer,
�+

y > 100, and are therefore largely inviscid. Most of the discussion in the previous paragraphs
applies to these “tall” objects. They were also the main focus of the discussion in Refs. [2,15–17].

It should be mentioned at this point that the smaller contribution of the Ops to the total flux, when
compared to the Qs, is mainly, but not wholly, due to the choice of the identification threshold H .
The total contribution of Qs to the momentum flux varies from 95% to 30% as the threshold changes
across the percolation range from H = 1 to H = 3, while that of the Ops only varies from 65% to
20% as H changes from 1.4 to 2.4. Overall, φxy is less intermittent than uv, and a given fraction of
the momentum flux requires a larger volume in the former than in the latter [7].

The dimensions of attached Qs and Ops are compared in Fig. 3(a), which shows the joint PDF of
the logarithms of the wall-parallel sizes of the attached objects, as determined from their bounding
box. The PDF follows a linear trend in both cases, but with a different slope for Qs and for Ops.
The PDFs of the aspect ratio �x/�z, shown in Fig. 3(b) for tall attached objects, indicate that the
Ops are almost twice wider than the Qs. A similar linear relation applies to the wall-parallel and
wall-normal dimensions of the objects, confirming that both Qs and Ops form self-similar families
in the logarithmic layer, but Fig. 3(c) shows that the wall-normal aspect ratio of Qs and Ops is very
similar. Ops are wider than Qs but not taller.

Figure 3(d) shows the joint PDF of the volume and height of attached Qs and Ops. For the tall
objects defined above, the relation between �y and the volume approximately follows a power law,
similar in both structures. The exponent changes slightly with the Reynolds number, and with the
range of wall distances considered, but it is always close to 2.5, with a slight tendency to higher
exponents in Ops than in Qs. If interpreted as a fractal dimension, it implies fairly full shell- or
flake-like objects [2].
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FIG. 3. (a) Joint PDF of the wall-parallel dimensions (�x, �z ) of attached structures. Contours include
50% and 99.8% of the data. The two diagonals are �x = 1.3�z and �x = 2.5�z. (b) PDF of the wall-parallel
aspect ratio �x/�z of tall attached objects (y+

min > 100). The two vertical lines mark the peak value of the
PDF, obtained by parabolic fitting: �x/�z = 1.3 and �x/�z = 2.5. (c) As in (b) for the wall-normal aspect
ratio �x/�y of tall attached objects. The vertical lines are �x/�y = 1.8 and �x/�y = 2.0. (d) Joint PDF of
the volume and height of attached structures. Contours include 50% and 99.8% of data. The diagonal line is
V ol. ∝ �2.5

y . In all panels, solid and dashed lines correspond to Ops and Qs, respectively, and symbols denote
the two Reynolds numbers, as in Table I.

In all these results, it is important to note the excellent collapse of the two Reynolds numbers
used in the study.

IV. RELATION TO LOW- AND HIGH-MOMENTUM REGIONS

In the rest of the paper, we will only consider tall attached objects (�+
y > 100) that do not extend

beyond the logarithmic layer (�y/h < 0.2). This is the same restriction applied to Qs in Ref. [2],
and will facilitate the comparison.

The first point to consider is the relation of Qs and Ops to the high- and low-momentum regions
(streaks) of the flow. In the case of Qs, it follows from their definition that sweeps (u > 0) reside in
high-speed regions, and ejections (u < 0) in low-speed ones. It was found in Ref. [2] that sweeps
and ejections tend to be paired side by side, with each pair straddling the border between a high-
and a low-speed streak. Figure 4(a) is a snapshot of u at y+ = 200, showing how Qs are restricted
to one or the other sign of u. The same snapshot is repeated in Fig. 4(b), but showing the contours
of φxy , instead of uv. In contrast to Qs, the figure shows that many Ops intersect both a high- and a
low-momentum region. This can be quantified by the volume fraction occupied by low-momentum
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FIG. 4. (a) Snapshot of low/high-momentum regions (blue for u < 0, and red for u > 0), and uv above the
identification threshold for Qs (translucent contour). Flow is from left to right. (b) As in (a), for Ops. Reτ = 2003
at y/h = 0.10.

points within each object,

F =
∫
�u<0

dV∫
�u�0

dV + ∫
�u<0

dV
, (6)

where � is the interior of the object and subscripts represent conditioning by the sign of u. Objects
with F = 0 are completely within a high-momentum region, and those with F = 1 are within a
low-momentum one.

For the reasons mentioned above, most Qs are in one of these two limits, so that the PDF of F

for Qs is essentially formed by two delta functions at F = 0 and F = 1. On the other hand, the PDF
in Fig. 5(a) shows that the distribution for the Ops is more uniform. Except for an excess of purely
low-momentum Ops, their PDF is approximately uniform. Moreover, Fig. 5(b) shows that “pure”
Ops tend to be smaller than those with mixed momentum regions, so that their contribution to the
overall object volume is less than implied by their PDF. In fact, the number fraction of the pure
Ops (F < 5% or F > 95%) is 26% of the total, but their contribution to the volume is only 14%.
Moreover, when all the tall attached objects are considered, including those taller than �y/h = 0.2,
the volume fraction of the pure Ops is only 3%. The result is that, as opposed to Qs, the Ops cannot
be classified into sweeps and ejections.

The reason for the excess of low-momentum Ops is unclear, but it is known that low-momentum
regions in wall-bounded flows contain more coherent vortices than high-momentum ones [19], and
that ejections, which are objects of low streamwise velocity, are more common than sweeps above the
buffer layer [2]. There are several possible explanations for this inhomogeneity, ranging from artifacts
due to using a uniform threshold across a non-uniform flow plane, to actual physics. The most likely
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FIG. 5. (a) PDF of the low-momentum fraction, F , as defined in Eq. (6), for tall attached Ops in the
logarithmic layer. (b) Conditionally averaged volume of Ops as a function of F , where the overline denotes
averaging over all the tall attached objects in the logarithmic layer. Symbols denote the two Reynolds numbers,
as in Table I.

reason, which is supported by informal visual inspection of individual flow fields, is that low-velocity
regions are associated with positive wall-normal velocities, which bring active turbulence from the
high-shear region near the wall, while high-velocity ones receive relatively quiescent flow from the
low-shear region in the center of the channel.

V. THE RELATIVE POSITION OF OBJECTS

The relationships among different objects is discussed next by means of the PDF of their relative
position, which is defined for object j relative to object i as the vector

δ(ij ) = x (j )
c − x (i)

c

�y
(ij ) , (7)

with components δ
(ij )
k , k = x, . . . , z. Positions are referred to the center, x (i)

c , of the circumscribing
box of object i, and lengths are normalized with the mean wall-normal height of the two objects,

�y
(ij ) = (�(i)

y + �
(j )
y )/2. As in Ref. [2], only objects with similar size,

1/2 < �(j )
y /�(i)

y < 2, (8)

are considered to be related, but we follow in this work the practice in Ref. [17] of compiling the
PDFs using only the closest object to the reference one, instead of using all the neighbors satisfying
(8), as was done in Ref. [2]. The statistical spanwise symmetry of the flow is used to improve the
convergence of the PDFs.

Figure 6(a) shows the two-dimensional PDF of the relative position of the closest Op relative to
another Op. Related Ops tend to be located streamwise from one another, separated by the mean
streamwise length of the reference Op, and 85% of the Ops find another Op satisfying condition (8)
at Reτ = 2003.

This arrangement is similar to the relative position of Qs of the same kind (e.g., sweep-sweep), but
Qs of different kinds, such as a sweep and its closest ejection, tend to form pairs aligned spanwise
from one another. In the logarithmic layer, 80% of the Qs form such pairs, or similar composite
structures [2]. We have seen that Ops cannot be classified into sweeps and ejections, but the relative
position of predominantly low-momentum Ops (F > 0.5) with respect to high-momentum ones
(F � 0.5) is shown in Fig. 6(b). There is also in this case a tendency to spanwise organization,
although the convergence of the PDF is poor because only 41% of the low-momentum Ops have a
high-momentum neighbor satisfying (8).
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FIG. 6. Two-dimensional PDF of the relative position of (a) Closest Op relative to another Op. (b) Closest
low-momentum Op (F � 0.5) relative to a high-momentum Op (F < 0.5). (c) Closest Q relative to an Op.
(d) Closest sweep-ejection Q pair relative to an Op. Bold line contours and darker filled areas contain 10% of
the data. Thinner contours and lighter areas contain 50% of the data. Shaded contours are Reτ = 934 and lines
are Reτ = 2003. The dashed ellipses correspond to the mean size of the reference object.

The relative position between Ops and Qs is shown in Fig. 6(c). Most Ops (98%) have at least a Q
satisfying (8), and 50% of these Qs are closer than the mean diameter of the reference Op. Essentially
Ops and Qs are collocated.

Finally, the distance from Ops to the closest sweep-ejection pair, defined as in Ref. [2], is examined
in Fig. 6(d). In this case, the center of the pair is defined as

x (p)
c = x (Q2 )

c + x (Q4 )
c

2
, (9)

and its size is defined as the mean of the wall-normal size of the two components of the pair. Most
(87%) Ops have a closest Q pair satisfying (8), and Fig. 6(d) shows that most Q pairs are found within
the mean length and width of the reference Op. As with individual Qs, Ops and Qpairs overlap.
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FIG. 7. Instantaneous three-dimensional representational of a strong Op (yellow central object), and its
closest sweep (red) and ejection (blue). Flow is from lower left to upper right. Reτ = 2003.

This result is consistent with Sec. III, which showed that attached Ops are twice wider than
Qs, but not taller, and with Sec. IV, where we found that most Ops intersect both high- and
low-momentum regions. Together with the results in Fig. 6, the logical conclusion is that tall
attached Ops correspond to the sweep-ejection pairs discussed in Ref. [2]. A representative example
of this instantaneous configuration is shown in Fig. 7, where an Op is seen spanning the sweep
and the ejection in a pair. This arrangement will be confirmed by the conditional fields in the next
section.

VI. CONDITIONALLY AVERAGED FIELDS

We next consider the conditionally averaged flow field around Ops. As was the case with the
comparable conditional fields around Q pairs in Refs. [2,17], this implies defining both a common
center and a common scale for the individual objects, so that the conditional average is a scale-less
function of a dimensionless vector coordinate δ. Thus, the conditional field for a set of N individual
fields q (i)(x) is

q̃(δ) = N−1
N∑

i=1

q (i)
(
�(i)

y δ + x (i)
c

)
, (10)

where x (i)
c is the center of the box circumscribing the ith object, so that

δ = (
x − x (i)

c

)
/�(i)

y . (11)

Individual fields are centered, rescaled with the height of its object, �(i)
y , and averaged. In computing

the conditional fields around Q pairs in Refs. [2,17] it was found convenient to take advantage
of the statistical spanwise symmetry of the flow to reorient each pair so that the sweep is always
on the same orientation with respect to the flow direction. We have seen that sweeps and ejections
are not relevant for Ops, but individual Ops can be reoriented so that the highest u is always on the
right-hand side, looking in the direction of the flow. To avoid the indeterminacy of this reorientation
for Ops with F ≈ 0 or F ≈ 1, which we saw in Fig. 5 to be high in number but low in volume, only
objects with 0.2 < F < 0.8 are considered for the conditional fields.

Figure 8(a) shows a section through the δx = 0 cross-flow plane of the conditional field around
tall attached Ops in the logarithmic layer. The colors indicate ũ and the arrows are the cross-flow
velocity. The average position of the Op is given by the heavy contour of φ̃xy , which intersects both
the high- and the low-u region. It has a single peak near the center of the conditional box, whose
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FIG. 8. (a) Cross section at δx = 0 of the conditionally averaged field around tall attached Ops in the
logarithmic region, looking in the direction of the flow. The color background is ũ, increasing from blue to red;
arrows are the velocity in the cross-plane; the heavier contour is φ̃xy

+ = −2.1, and the lighter double one is
ũv+ = −2.1. (b) As in (a), for the conditionally averaged field around tall attached sweep-ejection pairs in the
logarithmic region. Symbols are as in (a), but the heavier double contour is ũv+ = −1.3, and the lighter one is
φ̃xy

+ = −1.3. Reτ = 934.

position is approximately independent of the choice of the δx slice and of the contour magnitude.
The position of the associated Qs is marked by the lighter contours of ũv, which has two peaks
corresponding to the average location of the sweep and of the ejection. The cross-flow velocities
form a circular roller around the box center, reminiscent of the conditional rollers associated with
sweep-ejection pairs in Refs. [2,17].

For completeness, Fig. 8(b) shows the conditionally averaged velocity field around a sweep-
ejection pair, confirming the similarity of the flow around Ops and Q pairs. It includes the mean
position of the associated Op, in the form of a line contour of φ̃xy , and it is clear from Figs. 8(a) and
8(b) that Ops and sweep-ejection pairs are collocated on average.

Figure 9 shows the three-dimensional counterpart to the conditional field in Fig. 8(a). There is
a strong sweep-ejection pair at the same location as the conditional Op. As seen from the arrows
at the two cross planes, the circular motion in Fig. 8(a) is part of an inclined quasi-streamwise
roller, whose orientation can be evaluated by tracking the maximum of the averaged fluctuation
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FIG. 9. (a) Three-dimensional plot of the conditionally averaged field around tall attached Ops in the
logarithmic layer. The translucent isosurface is φ̃xy

+ = −2.1, colored by ũ; the yellow solid isosurfaces are
ũv+ = −2.1; arrows are the conditional cross-flow velocity: gray ones at δx = 0, and black ones at δx = 3.
Flow is from lower left to upper right. (b) Enlargement of the smaller sub-box in (a). Reτ = 934.
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vorticity,1 |ω̃|. A least-square fit to these local maxima in 0 � |δx | � 1 results in a roller inclined
at 24◦ to the wall, and tilted 7.9◦ towards the low-momentum side. These angles are approximately
twice larger than those of other streamwise eddies described in the literature [20,21], but comparable,
for example, to the inclination of the roller of large detached pairs in Ref. [17]. That the different
results do not agree in detail is not particularly surprising. They are defined by different procedures,
including, for example, the present restriction to the logarithmic layer, and it was noted in Ref.
[21] that the inclination of eddies depends on how they are defined and on the length scales being
considered.

VII. CONCLUSIONS

We have presented in this paper a detailed comparison between the intense structures (Ops) of the
alternative momentum flux φxy defined in Ref. [7], and the classical quadrant structures (Qs) based
on the tangential Reynolds stress uv. Since both fluxes are equivalent in the mean, the emphasis
has been on identifying similarities and differences between their intense structures, with a view to
ascertaining which of their properties are associated with a particular flux definition, and which ones
are more general, presumably characteristic of the momentum flux as such.

Even if the one- and two-point statistics of the two quantities are known to differ considerably [7],
the two types of structures share many characteristics. For example, objects large enough to attach to
the wall are responsible for most of the momentum transfer in both cases, and those mostly located
within the logarithmic layer form self-similar families characterized by fixed aspect ratios, rather
than by a fixed size. These results are found to be independent of the Reynolds number for the two
cases considered in this work.

However, the tall attached Ops are twice wider than the Qs, although not taller, and they intersect
both high- and low-momentum regions, while Qs, because of their definition, tend to be associated
with one or with the other. A consequence is that it is difficult to classify Ops into the equivalent of
the sweeps and ejections found for Qs.

In fact, the PDFs of the relative positions of Ops with respect to other Ops, as well as with respect
to Qs and to sweep-ejection pairs, strongly support the idea that most Ops are manifestations of
the same phenomenon as the sweep-ejection pairs. Both are associated with an inclined conditional
roller in the border between a high- and a low-speed streak.

We should recall at this point that the purpose of the paper was to test the relevance of the classical
quadrant analysis of momentum transfer based on the local Reynolds stress. As we mentioned in
the introduction, any gross violation of the hypothesis that the local uv product is representative of
the average Reynolds stress would throw doubt, for example, on the validity of the friction velocity
as a velocity scale. It is reassuring that none has been found using a different definition of the local
flux, but it would be unwise to expect the same to be true for all possible flux definitions. Since
fluxes are only determined up to an arbitrary solenoidal tensor, it is clear that we can add a very
large spurious component that locally overwhelms the Reynolds stress, and therefore changes all
the structures based on the local flux intensity without changing the mean. The question is whether
the spurious component in the classical uv product is enough to invalidate the conclusions that
have been accumulated in the literature about the dynamical significance of sweeps and ejections.
The optimal fluxes, which are designed to minimize the magnitude of the flux and therefore of any
added sterile component, should give a fair estimate of the ambiguities involved in both cases. A
related question is why there are such relatively mild differences between the structures of both
flux definitions even if the statistics differ considerably. Part of the reason is simply algebraic. It
was mentioned in Ref. [7] that much of the intermittency of uv has to do with it being a quadratic
quantity. This makes its relative maxima stronger than those of φxy , but has much less influence on

1Note that ω̃ is different from the vorticity of the conditional velocity ∇ × ũ, because of the variable rescaling
of the spatial coordinates.
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the lower flux levels used to define the surface of the structures. A more important difference is the
amount of momentum backscatter, which was shown in Ref. [7] to be considerably lower for φxy

than for uv. As mentioned in the previous paragraph, the reason for defining the optimum fluxes is
to minimize spurious components, and, from this point of view, backscatter could be considered an
artifact of using uv as a local momentum marker. From the PDFs in Ref. [7] the difference is mostly
in the weaker levels, but it also appears in the relative volumes of the counter- and co-gradient strong
structures in Table II, where the volume ratio V +/V − is approximately twice larger for Qs as for
Ops.

Our results indicate that the strong co-gradient coherent structures of the momentum flux and
the associated streamwise rollers are robust with respect to the definition of the fluxes, and are truly
representative of flow features in the logarithmic layer. They also suggest that sweeps and ejections
should not be studied as individual objects, but as members of a composite structure containing both.
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