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September 2019

Department or School Web Site URL Here (include http://)
albertovelam@gmail.com
albertovelam@gmail.com




“I do not find the Hanged Man. Fear death by water.”

The Wasteland, T.S. Elliot





Abstract

This thesis studies the turbulent energy cascade from the perspective of statistical

mechanics and relates inter-scale energy fluxes to information-entropy production. The

microscopical reversibility of the energy cascade is tested by constructing a reversible

3D turbulent system using a dynamic model for the sub-grid stresses. This system, when

reversed in time, develops a sustained inverse cascade towards the large scales, evidenc-

ing that the characterization of the inertial energy cascade must consider the possibility

of an inverse regime. This experiment suggests the introduction of a probabilistic con-

cept, namely entropy, to explain the prevalence of direct over inverse energy cascades.

Entropy production, as a statistical property of ensembles in phase space, is connected

to the dynamics of the energy cascade in physical space by considering the space locality

of the energy fluxes and their relation to the local structure of the flow. An entropic

mechanism for the prevalence of direct energy transfer is proposed based on the dynam-

ics of the rate-of-strain tensor, which is identified as an important indicator of statistical

irreversibility in the energy cascade. A deeper analysis of the entropy generation mech-

anisms is accomplished by defining a space-local measure of phase-space mixing based

on the Lyapunov exponents. The statistics of this quantity consistently reveal that the

dynamics of the rate-of-strain tensor are fundamentally connected to entropy production.

This analysis, which also describes the spatio-temporal structure of chaos in the energy

cascade, reveals a strong localization of highly chaotic and entropy-producing events in

the vicinity of interacting vortical structures.





Resumen

Esta tesis estudia la cascada de enerǵıa turbulenta desde la perspectiva de la mecánica

estad́ıstica, y relaciona los flujos de enerǵıa entre escalas con la producción de caos y

entroṕıa. Se estudia la reversibilidad microscópica de la cascada de enerǵıa mediante

la construcción de un sistema turbulento reversible, que utiliza un modelo dinámico

para modelar los esfuerzos de submalla. Este sistema, cuando se invierte en el tiempo,

desarrolla una cascada inversa sostenida hacia las escalas grandes, evidenciando que la

caracterización de la cascada de enerǵıa inercial debe considerar la posibilidad de un

régimen inverso. Este experimento sugiere la introducción del concepto probabiĺıstico de

la entroṕıa para explicar la prevalencia de cascadas directas sobre inversas. Este trabajo

conecta la producción de entroṕıa, como una propiedad estad́ıstica de los conjuntos de

experimentos en el espacio de fases, con la dinámica de la cascada de enerǵıa en el

espacio f́ısico. Para ello se considera la localidad espacial de los flujos de enerǵıa y su

relación con la estructura local del flujo. En base a este análisis, se propone un mecanismo

entrópico para la prevalencia de transferencia de enerǵıa directa basado en la dinámica

del tensor de velocidades de deformación, que se identifica como el principal indicador

de irreversibilidad estad́ıstica en la cascada de enerǵıa. Un análisis más profundo de los

mecanismos de generación de entroṕıa se lleva a cabo definiendo una medida local, en

el espacio f́ısico, de la generación de entroṕıa basada en los exponentes de Lyapunov.

Las estad́ısticas de esta cantidad indican que la dinámica del tensor de velocidad de

deformación esta fundamentalmente relacionado con la producción de entroṕıa. Este

análisis, que describe la estructura espacio-temporal del caos en la cascada de enerǵıa,

revela una fuerte localización de eventos áltamente caóticos y productores de entroṕıa

en la vecindad de estructuras vorticales que interactuan entre ellas.





Acknowledgements

I would like to thank my family, specially Nadia, friends, and work colleagues for their

support and encouragement during the final stages of this thesis. I thank Lindy Hop for

making these years probably one of the happiest times in my life, and for not letting me

take anything too seriously.

I would like to thank my advisor, Javier Jiménez, for choosing a beautiful topic that has
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Chapter 1

Introduction

Turbulence is an ubiquitous phenomena in nature and constitutes one of the most impor-

tant unsolved problems of classical mechanics. The energy cascade is the fundamental

process shared by almost all turbulent flows, and plays a central role in turbulence the-

ory. The study of the cascade has been addressed in different ways, and the objects used

to describe it are many. In this thesis, we approach the study of the cascade from the

perspective of statistical mechanics and dynamical system theory.

Here, we offer an informal and brief introduction, first, to turbulence and the energy

cascade, and, second, to dynamical system theory and statistical mechanics. For a more

detailed introduction to turbulence the reader is referred to the work of Lesieur [1] and

Pope [2]. An extensive account of the theory of the cascade is given in the remarkable

book of Frisch [3], and a critical review of the state of turbulence theory can be found

in the work of Tsinober [4]. We also propose [5] and [6] as more extensive introductions

to dynamical system theory and statistical mechanics.

1.1 The turbulent energy cascade

1.1.1 What is turbulence and what equations describe it?

Describing turbulence in a few sentences is perhaps as difficult and as impossible as the

‘problem’ of turbulence itself. Such effort would imply reducing the results of countless

1
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experiments, empirical observations and potential theories to a few words. As a short

definition, we choose the words of Tsinober [7]:

“Turbulence is the manifestation of the spatio-temporal chaotic behaviour of fluid flows

at large Reynolds numbers, i.e. of a strongly nonlinear dissipative system with a extremely

large number of degrees of freedom (most probably) described by the Navier-Stokes equa-

tions.”

We also refer to the appendices of the same reference [7], where the reader can find a

collection of short descriptions of turbulence by relevant figures in turbulence research.

In this chapter we will address many of the relevant features of turbulent flows, which

serves as a firsthand introduction to the phenomena of turbulence.

Let us start by introducing the Navier–Stokes (NS) equations, which govern the evolu-

tion of incompressible fluids,

Btui ` ujBjui “ ´Bip` νBkkui,

Biui “ 0,
(1.1)

where ui is the i-th component of the velocity vector, u, Bi is the partial derivative with

respect to the i-th direction, p is a modified pressure, and ν is the kinematic viscosity

of the fluid. Repeated indices imply summation. It is widely accepted that, these equa-

tions, together with appropriate initial and boundary conditions describe the evolution

of incompressible turbulent flows.

Dimensional analysis shows that the NS equations depend only on a single dimen-

sionless number, the Reynolds number Re “ UL{ν, which compares the advection of

momentum with the diffusion of momentum. Here U is a characteristic velocity and L

is a characteristic length of the flow.

1.1.2 The classical theory of the cascade

The turbulent cascade is a scientific paradigm that dates back to the pioneering work of

Richardson [8] and the celebrated papers of Kolmogorov [9, 10], who laid the theoretical

foundations for the study of turbulence. Generally speaking, the energy cascade is the

process that transports energy from the large to the small scales, accounting for the

gap between scales where energy is produced, and scales where it is dissipated. This
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process is intrinsically related to the ability of turbulent flows to dissipate energy even

at vanishing viscosity.

Let us consider a flow in the absence of walls, or a mean shear, contained in a volume

V , and a forcing mechanism acting at scale L with a typical velocity U. In the steady

state, the temporal average of the amount of energy injected per unit volume by the

forcing mechanism is equal to the volume-averaged energy dissipation,

ǫ “ 1

V

ż

V

νpBjuiq2dV, (1.2)

which depends on the kinematic viscosity and on the intensity of the velocity gradients.

Empirical evidence show that, in the limit of vanishing kinematic viscosity, the average

energy dissipation is not zero, and depends only on L and U, such that ǫ „ U3{L2 [11, 12].

Surprisingly, the kinematic viscosity might become arbitrarily small while keeping the

dissipation fixed. As shown by (1.2), this can only be a consequence of the growth of the

velocity gradients magnitude. This surprising phenomenon is known as the dissipative

anomaly, and constitutes one of the most relevant empirical foundations of turbulence

theory.

To account for the dissipative anomaly the classical theory of the cascade by Kol-

mogorov [10] and Onsager [13], among others, describes turbulence as a multiscale phys-

ical phenomenon, which takes place between the ‘large’ scales of the forcing mechanism,

and the ‘small’ scales of the velocity gradients. While the large scales of the flow are fixed

by L, the scale of the velocity gradients can become arbitrarily small in order to produce

enough dissipation, regardless of the value of the kinematic viscosity. For a sufficiently

small ν, the spatial scales of the velocity gradients are much smaller than L, and their

dynamics are assumed to be decoupled from those of the integral scales of the flow, and

therefore universal [14].

Under this assumption of universality, the statistics of the velocity gradients depend

only on ν and ǫ, leading to the so called Kolmogorov length- and time-scale, η “ pν3{ǫq1{4

and tη “ pν{ǫq1{2, which describe the temporal and spatial scale of dissipatve mechanisms.

Considering that ǫ „ U3{L, the ratio between the dissipative scales and the integral scales

of the flow are
L

η
„ Re

3{4

L

T

tη
„ Re

1{2

L
(1.3)
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where T “ L{U is the integral time-scale, and ReL “ UL{ν is the Reynolds number based

on the integral scale, which measures the separation between the integral and dissipative

scales of the flow. By increasing this parameter, it is possible to make the gap between

the integral and dissipative scales arbitrarily large.

The energy cascade is the fundamental process that bridges this gap by transporting

the energy from the ‘large’ scales to the ‘small’ scales. The term cascade is not used here

freely, but deliberately illustrates a fundamental property of this process: locality. Just

as water flows down a cascade step by step, the energy transport from the large to the

small scales takes place in a stepwise manner between L and η.

In the limit of high Re, locality implies that the energy cascade occurs across scales

that are too small to be affected by the energy injection mechanisms and too large to

be affected by the dissipation. These scales, known as the inertial scales, are driven only

by inertial forces, i.e the advection and the pressure terms in the NS equations, which

conserve the kinetic energy. Hence, the flux of energy from the large to the small scales

is similar at all scales in the inertial range, and equal to the average rate of energy

dissipation.

The cascade theory assumes that the details of the forcing mechanisms are lost across

multiple ‘steps’ of the cascade, and the statistics of the inertial range depend only on the

scale, ∆, and on the average energy flux, which matches the dissipation. This assumption

led Kolmogorov [10] to propose a self-similar structure of the inertial range: the statistics

of the inertial range depend on the scale through powerlaw expressions of the form ∆γ ,

where γ is a characteristic exponent which is derived from dimensional arguments. In

particular, self-similarity implies that the turbulent kinetic energy spectrum Epkq, a

second-order statistic of the velocity field, has the following form

Epkq „ ǫ2{3k5{3, (1.4)

where Epkq measure of the distribution of kinetic energy across scales, and k „ 1{∆

is the wavelength, the inverse of the scale [1]. This form of the energy spectrum in

fully developed turbulence has been obtained in experiments and numerical simulations

[12, 15, 16], constituting one of the main predictions of the Kolmogorov theory, and

a cornerstone of turbulence research. Further evidences of self-similarity in the inertial
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scales have been reported, for instance, in the temporal fluctuations of the average energy

fluxes [17], or in the clustering of small heavy particles [18].

However, the Kolmogorov theory fails to predict higher-order statistics of the velocity

field, which display anomalous scaling [19]. This is known to be a consequence of the

intermittent structure of turbulent flows. Turbulent quantities, such as the dissipation

or the filtered kinetic energy, are not homogeneously distributed in space, but peak in-

tensely in reduced regions of the flow. This phenomenon locally breaks self-similarity in

the statistical sense [3], and imposes a reinterpretation of the classical theory. Although

alternative models have been proposed to account for the intermittent structure of turbu-

lence [20–22], numerical simulations at high Reynolds number reveal that the structure

of the flow is far more complex than what originally proposed [23–26], and suggest that

the classical theory must be reinterpreted to consider the available tools and data. An-

other important drawback of this theory is its lack of connection to the NS equations,

which are not referred in any of the founding papers by Kolmogorov [9, 10].

Despite all these limitations, the impact of the Kolmogorov theory on turbulence re-

search is undeniable, and the energy cascade constitutes a dominant paradigm in the

field. Criticism to the theory of the cascade exist [4, 7], but it is unclear whether alter-

native theories can offer a better explanation of the empirical evidences. In the sense of

Kuhn [27], the field of turbulence seems rather in a stage of refinement of a dominant

paradigm, than in a pre-paradigmatic stage.

1.1.3 The energy cascade in physical space

The classical theory of the cascade is mathematically formulated in terms of time-

independent statistical objects, such as the energy spectrum or the statistics of the ve-

locity increments, which describe fundamental properties of turbulence in scale space.

These statistical objects contain only a limited information on the structure of the flow,

and do not account for the dynamical processes that govern the energy cascade, which

take place in the spatial and temporal coordinates of turbulent flows.

To account for this limitation, the classical theory provides a complementary phe-

nomenological description of the cascade in physical space. Richardson [8] was the first

to suggest that turbulent flows are composed of ‘whirls’, which feed energy to smaller
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Figure 1.1: Visualisation of bandpass-filtered energy at four different scales in ho-
mogeneous isotropic turbulence, where η is the Kolmogorov scale. Figure extracted from
[28].

‘whirls’, which at the same time feed yet smaller ‘whirls’, and so on until viscosity is able

to dissipate them. This simple and rather naive conceptual image introduces the idea of

scale and self-similarity, and accounts for the fundamental property of locality.

The modern interpretation of this picture states that ‘eddies’ ‘break’ in smaller and

smaller pieces until the dissipative scales. However, the concepts of ‘eddy’ and ‘breaking’

are in general ambiguously defined, and the relation of these concepts with the turbulent

velocity fields and the NS equations is generally not clear. Cardesa et al. [28] identified

potential candidates for ‘eddies’ as isocontours of intense bandpass-filtered energy, which

are shown, at different scales, in figure (1.1). The statistical behaviour of these ‘eddies’

supports, on average, the classical picture of the energy cascade as an ‘approximately’

local process, but does not reflect the nature of the ‘breaking’ mechanism.
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Let us note that the classical picture of Richardson [8] implies that the cascade is a

local process both in physical and scale space, and identifying ‘eddies’ and their ‘breaking’

mechanisms must rely on the study of the dynamics of the cascade in physical space. A

standard approach to this study is to obtain an equation for the filtered energy in an

inertial scale, ∆, by filtering the Navier–Stokes equations with a lowpass filter, leading

to an equation with the following generic form,

DtE∆ “ BiJi ´ D, (1.5)

where Dt is the material derivative, J is an energy flux in physical space, and E∆ is the

kinetic energy density in space above ∆. The field D represents a space-local definition

of interscale energy fluxes across ∆ [17, 29–32]. This field appears as a natural object

to determine the ‘breaking’ mechanisms in physical space, for instance, by identifying

statistically significant correlations between regions of high energy transfer across a scale,

and the local dynamics of the flow at that same scale.

Unfortunately, this approach faces two fundamental limitations: the uncertainty princi-

ple between the representations in scale and physical space, and the changes of the local

energy transfer field for different definitions of the fluxes. The first limitation implies

that an ‘eddy’ cannot be sharply localised in scale and physical space at the same time

[33]. Therefore, only an approximate degree of locality is achievable in both spaces, for

instance, by the use of Gaussian filters or wavelet transforms [34, 35]. The second funda-

mental limitation stems from the freedom to define the fluxes [36]. In (1.5), only DtE∆

is directly measurable, while J and D depends on the choice of what we consider the

relevant interactions among scales, and what is a scale and a scale flux. Infinitely many

possible definitions of J and D are compatible with (1.5). To fix the fluxes, we must

impose additional restrictions, which should be based solely on physical arguments.

Although some physical mechanisms for energy transfer have been proposed [37, 38],

there is not, to this date, a general consensus on what mechanisms underlie the cascade

process. Vortex stretching is perhaps one of the most popular candidates [39–41]. How-

ever, the connection of this mechanism with energy transfer, or with any sort of ‘breaking’,

is not immediate. Moreover, favouring this mechanism over other gradient-producing

mechanisms, such as the self-amplification of the rate-of-strain tensor, is probably unjus-

tified [42].
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1.2 Numerical experiments of the energy cascade

1.2.1 Direct numerical simulations: tampering with the Navier–Stokes

equations

The study of turbulence has traditionally relied on experimental facilities working un-

der controlled and reproducible conditions. These facilities allow to reach high Reynolds

numbers [16, 43], but are difficult to instrumentalise and only a limited amount of infor-

mation is accessible by direct experimental measurements.

Since the advent of the computer era, direct numerical simulations (DNS) of the NS

equations have become a relevant tool in turbulence research [44]. Although the achiev-

able Reynolds numbers are still bellow those of industrial applications, this technique

offers full information on the spatio-temporal structure of the flow and its dynamics. DNS

have fundamentally shaped turbulence research in the last three decades, and its impact

is expected to increase in the future due to the growing availability of computational

resources.

A perhaps underestimated advantage of direct numerical simulations is the possibil-

ity of tampering with the Navier–Stokes equations. A great insight into the dynamics

of turbulent flows is possible by modifying the NS equations in ways not possible in

experimental facilities. This approach consist of adding, removing or modifying terms

in the NS equations [45–47], imposing artificial boundaries [48, 49], or modified initial

conditions [50, 51]. The work presented in this thesis relies both, on modifying some

terms in the Navier–Stokes equations, and on imposing artificial initial conditions.

1.2.2 Homogeneous isotropic turbulence in a periodic box as a tool to

study the energy cascade

One of the fundamental hypothesis of the cascade theory is the local homogeneity and

isotropy of the flow, which implies that the statistics of the velocity field should not

depend on the position, or in the orientation of the measurements. Nonhomogeneity and

anistropy are usually related with the presence of solid walls or mean shears, as in wall-

bounded flows, jets or mixing layers. These flows are forced in a preferential direction or

are affected by linear instabilities, which give rise to persistent structures that violate the
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isotropy hypothesis in the large scales. Since it is not clear how these large structures

propagate their influence down the cascade at the limited Reynolds numbers of the

available in DNSs [52–54], the study the energy cascade hinges on an ideal experimental

setup without large-scale anisotropies.

The fundamental research tool for the turbulence cascade is the so-called ‘box’–turbulence,

i.e the statistically homogeneous and isotropic turbulence (HIT) generated in a triply

periodic box by numerical simulation of the NS equations [55]. This setup is the simplest

possible 3D turbulent flow, and takes advantage of the periodic boundary conditions for

the efficient integration of the NS equations, allowing to achieve high Reynolds numbers

at an affordable computational cost.

1.2.3 GPUs and statistical ensembles

In order to maintain a steady state, and due to the lack of natural forcing mechanisms,

box-turbulence is usually forced at the large scales through an artificial negative viscosity.

By invoking ergodicity [56], the statistics of the flow can be compiled from a single long

simulation, instead of from an ensemble of multiple independent realisations of the same

flow. In statistically steady flows, only the initial transient is necessary, and statistics can

be compiled once the fully turbulent state is reached. This approach is more convenient

from the computational point of view, since obtaining appropriate initial conditions and

restarting the simulations is usually expensive.

However, this work deals with a decaying flow, which does not converge to a steady

state, and the statistical analysis relies on the generation of ensembles of many differ-

ent realisations. This approach is possible thanks to the use of highly efficient graphic

processing units (GPUs), which allow to run small- and medium-size simulations at an

unprecedented speed. As part of this thesis, the author has produced a GPU code to

simulate HIT in a triply periodic box with a dynamic Smagorinsky LES model. This

code has allowed the generation of ensemble of experiments with Op103q different reali-

sations. GPU codes derived from this one have been used by Flores et al. [57] or Ávila

and Vela-Mart́ın [58] to produce ensembles of thousands of experiments, which provide

novel insights into the physics of turbulence. In view of the positive results of these

experiments, and of the work presented in this thesis, this approach is likely to have an

important impact on turbulence research in the next few years.
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1.3 Chaos and strange attractors

1.3.1 A dynamical system approach to turbulence

The dynamical system approach to turbulence considers that solutions of the NS equa-

tions can be represented by a finite number of degrees of freedom, n. Landau and Lifshitz

[59] suggested that n is of the order of the number of degrees of freedom in the inertial

range,

n „
ˆ
L

η

˙3

“ Re
9{4

L
. (1.6)

This estimate is justified on the exponential decay of the energy spectrum in the far

dissipative range [60]. Moreover, Yoshida et al. [50] and Lalescu et al. [51] showed that

the scales below the Kolmogorov scale have no dynamical relevance, since they are con-

strained by the dissipation and enslaved to larger scales. DNS experiments suggest that

this estimate is acceptable, and some investigations indicate that n is probably smaller

than expressed in (1.6) [61].

Consequently, we can transform the NS equations, a set of partial differential equations,

into a set of ordinary differential equations by projecting them into a finite set of base

functions or modes, being the set of truncated Fourier modes an example of practical

relevance for HIT [62]. We can now envision a turbulent flow as described by a point in

an n dimensional phase space, which represents all possible solutions of the NS equations,

and its evolution by a continuous phase-space trajectory. In the limit of infinitely many

different experiments, ensembles translate into ‘dense’ clouds of points in phase-space,

and each state of the system can be described by a ‘continuous’ probability density which

changes in time. The introduction of probabilities is justified on the chaotic nature of

turbulence dynamics.

1.3.2 Chaos and determinism

By definition, the NS equations are deterministic, i.e the same initial condition always

leads to the same flow field after a fixed amount of time, and there is a unique trajec-

tory defined for each phase-space point. However, this is just an idealisation of reality.
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Although deterministic, the NS equations are also chaotic: any initial disturbance is am-

plified in a finite time, leading to the impossibility of exactly reproducing experiments

after a finite time.

As a consequence, turbulent flows are intrinsically unpredictable. Assuming that we can

only obtain a finite amount of information from the initial conditions of an experiment,

the uncertainty on the state of the flow is always amplified in a finite horizon, beyond

which, predictions are fundamentally impossible [63]. The chaotic nature of turbulence

implies that the exact details of each experiment are not reproducible, i.e the microscopic

details of single isolated flow field are irrelevant, and only a statistical treatment of the

phenomena of turbulence is meaningful.

1.3.3 Chaos and order: the turbulent attractor

Although both terms are usually used indistinctly, chaos does not imply randomness.

Turbulent flows are known not to be random, but to display a recurrent complex spatio-

temporal structure. Although each turbulent flow is ‘unique’, the structure that charac-

terises these flows is universal and reproducible. For instance, each cloud in the sky is

unique, but we are intuitively able to identify common patterns in all the clouds. Sim-

ilarly, the visualisation of different snapshots of the same turbulent flows conveys the

idea that they all share a similar common dynamical process. This structure emerges,

in most turbulent flows, independently of the initial conditions, and all initial flow fields

converge to the same set of states with a common structure, the so-called attractor [56].

The existence of an attractor in steady states is, among other things, a consequence of

the dissipative nature of the NS equations, which leads to the contraction of phase-space

volume. Since the total probability is conserved, the probability density evolves towards

a phase-space volume with zero measure. This volume represents only a negligible frac-

tion of all the possible flow fields compatible with the NS equations, including random

structureless fields, supporting the view that turbulence is far from random. The exis-

tence of an attracting set of states is probably not exclusively related to the dissipation,

but to dynamics far from equilibrium in general. For instance the truncated Euler equa-

tions out of equilibrium, which are conservative and volume-preserving, are known to

reproduce the behaviour NS turbulence in the inertial range [64, 65]. In this thesis, we
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will provide further evidence of the connection between the truncated Euler equations

and the NS equations in the inertial range.

The relevant question is what characteristics define the states within this attracting

set of states, i.e what makes these states more probable than other states outside the

attractor. This question is central to the field of statistical mechanics, and connects with

the statistical formalism of classical thermodynamics [66].

1.4 Statistical mechanics

1.4.1 Equilibrium statistical mechanics

The formalism of statistical mechanics, which dates back to the seminal work of Maxwell,

Boltzmann and Gibbs, represents a clear success in the description of complex systems

through simple statistical objects.

Under the assumption of thermodynamic equilibrium, classical statistical mechanics

postulates that systems can be described by a set of thermodynamical variables, re-

ducing the complexity of ‘microscopic’ interactions to a few characteristic measurable

‘macroscopic’ quantities. By thermodynamic equilibrium, we refer to a state where no

net fluxes of matter or energy appear within the system, and measurable quantities do

not fluctuate in time. By microscopic information we refer to the detailed information

of the system and all its constituents.

For instance, the kinetic theory of gases models an ideal gas as the interaction of many

solid spheres, which collide in a conservative fashion and follow the laws of Newtonian

mechanics. In a closed system in equilibrium, the microscopic information about the

position and velocity of each isolated sphere is not fundamental for the description of

the system at a macroscopic or observable level, which depends only on a few statistical

properties of the system. In the simplest case, a confined gas can be described by the

average kinetic energy of its particles, which defines the temperature. Provided that the

number of particles and the confining volume are known, the pressure exerted by the

particles on the walls of the container can be derived.

The success of this statistical approach relies on disregarding the complex dynamics

of the solid spheres, and on assuming that the system will not evolve towards special
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macroscopic states, but will remain in the equilibrium state. For example, a confined

gas in equilibrium will almost always remain homogeneously distributed, and will not

spontaneously concentrate in a corner of the container. This assumption is justified on

the powerful concept of entropy, which is central to the theoretical corpus of statistical

mechanics, and articulates the celebrated ‘second law’ of thermodynamics.

The second law postulates that the uncertainty of the observer with respect to the

microscopic state of a system in equilibrium is maximum. The system can be in any

possible microscopic configuration compatible with the macroscopic observables and the

laws of motion, and all possible configurations of the system are equally probable. In the

case of a confined gas, in the overwhelming majority of these states, the particles are

evenly distributed in the container, and the total kinetic energy is ‘evenly’ distributed

across all particles. Therefore the most probable macroscopic state is that in which

the density and the temperature of the gas are homogeneous in the container. The

uncertainty is quantified by an extensive macroscopic variable, the entropy.

The second law represents an extremal principle for closed systems: the total entropy

of a closed system can never decrease and is maximum at equilibrium. By closed system

we refer to a system that does not exchange matter, energy or information with other

systems. The second law appears as a ‘law of laws’ that selects the most probable macro-

scopic state among all possible states consistent with the physical laws that govern the

system.

Entropy is also used to explain the ‘arrow of time’, justifying the tendency of the

macroscopic universe to evolve in one definite direction, and bridging the paradox of

how reversible microscopic dynamics give rise to an irreversible macroscopic world. If we

confine the gas in a corner of the container, the second law states that, after a sufficiently

long time, we will again find the gas homogeneously distributed in the container. However,

the inverse process will almost never take place.

This is surprising given that Newtonian mechanics, which govern the dynamics of the

gas particles, are completely time-reversible, and do not privilege one process over the

other. The direct process, in which the gas mixes to fill the empty container, is consistent

with the second law as it increases the entropy or uncertainty about the position and

velocity of the gas particles. On the other hand, the inverse process decreases the entropy
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by reducing the uncertainty: there are less possible ways of placing particles in the corner

of the container than in the whole container.

1.4.2 Non-equilibrium statistical mechanics

Unfortunately, the powerful concept of entropy has only been successfully applied to

systems in thermodynamic equilibrium, which are by definition an idealisation of the

real world. Most systems in nature are very far from equilibrium: temporal variations

of macroscopic quantities are observed; there are net flows of matter, energy and other

quantities, and the properties of the system fluctuate in time. The second law of ther-

modynamics postulates that closed systems out of equilibrium will almost surely tend to

equilibrium, and that the final state has maximum entropy, but it does not predict how

the system approaches equilibrium, namely, at what rate and how the system produces

entropy.

Non-equilibrium statistical mechanics tries to explain and predict the behaviour of

non-equilibrium dynamics (NED) by extending the equilibrium approach. The success

of equilibrium statistical mechanics and of the second law has tempted researchers into

proposing that, also the complex evolution non-equilibrium systems can be described by

a set of universal statistical principles.

However, the statistical formalism of NED is still under construction, and its founda-

tions are far from solid. This is mostly a consequence of the features of NED, which

renders the approach of equilibrium thermodynamics useless: the complexity of NED

cannot be fully disregarded.

1.4.3 Non-equilibrium phenomena: space-time fluctuations, structure

and fluxes

Almost all non-equilibrium phenomena share at least three universal characteristics.

First, non-equilibrium phenomena must be described by their time-evolution rather

than by single, isolated states. Temporal fluctuations are the principal difference between

equilibrium states and non-equilibrium evolutions: the former are characterised by time-

independent quantities, while, in the latter, quantities change with time. Non-equilibrium
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phenomena must be described in terms of rates of change rather than in terms of static,

time-independent variables. Although apparently simple, the inclusion of time-evolution

breaks the formulation of classical thermodynamics, leading to inconsistencies in the

definition of entropy and entropy production [67].

Second, systems out of equilibrium are known to display organised and coherent dy-

namics [68]. The organised structure of NED seems to be in contradiction with the

postulates that justify the second law. In the context of classical statistical mechanics,

the description of maximum-entropy states is based on the unlike probability that a mi-

croscopically incoherent equilibrium state is able to spontaneously develop macroscopic

structure. However, the organisation of incoherent states into macroscopically coher-

ent states is consistently observed when complex systems are driven out of equilibrium.

These evidences enforce the construction of a statistical formalism that is able to explain

the organisation of non-equilibrium systems, and the role of coherent structures in the

dynamics of complex systems. In turbulent flows, complexity and organisation appears

in the form of non-Gaussian statistical distributions, intense intermittency of turbulent

quantities, or long-lived coherent structures in the flow. This complexity emerges in the

temporal and spatial coordinates of turbulent flows, and imply that turbulence must be

studied as a spatially-extended system.

Finally, another principal characteristic common to all systems out of equilibrium is the

presence of macroscopic fluxes, which transport either energy, matter or other relevant

quantities for the system. Fluxes are related to dissipation and the emergence of coherent

structures, which are known to enhance transport at macroscopic levels [69]. Fluxes

represent one of the most essential manifestation of NED, and their relation to entropy

production is already suggested in the pioneering work of Onsager [70]. The transport

of energy toward the small scales in the turbulent cascade is a clear indicator of the

out-of-equilibrium nature of turbulence.

1.4.4 Entropy and reproducibility: is there a non-equilibrium ‘second

principle’?

Natural phenomena are reproducible. The same experimental set-up leads to the same

macroscopic results. Although evident for any empirical observer, it is far from obvi-

ous that the evolution of complex systems should always lead to the same macroscopic
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observables.

The set of rules that govern complex systems are usually simple: conservation of mass,

conservation of momentum, conservation of electric charge, etc., and these rules operate

over an arbitrarily large number of degrees of freedom, allowing for an inconceivably

large number of possible states and evolutions consistent with the dynamics.

Despite the lack of dynamical constrains, complex systems out of equilibrium reproduce

the same identifiable, organised macroscopic structure. Any human observer is able to

recognise this structure in many natural phenomena such as clouds, bonfires or, perhaps,

the anatomy of many living beings. These organised evolutions represent probably only

a negligible part of all possible evolutions consistent with the governing laws and the

boundary conditions, and it is natural to ask what characteristics make these evolutions

more probable.

In equilibrium statistical mechanics, the second law is used to rule out all possible states

whose entropy is not maximum. A confined gas in equilibrium is always homogeneously

distributed in its container, although many other macroscopic states are also possible.

The principle of maximum entropy is necessary to justify the recurrent observation of

this state, i.e it is necessary to explain reproducibility.

Reproducibility in NED also suggests that it is necessary to invoke universal statistical

principles to explain the recurrent behaviour of out-of-equilibrium systems [71]. These

statistical principles would rule the selection of a reduced number of out-of-equilibrium

coherent and self-organised states from a much larger set of decorrelated incoherent

states. In the spirit of the second law of thermodynamics, many researchers have pro-

posed equivalent extremal principles for NED based on entropy production, such as the

law of minimum entropy production [72] or its opposite, the law of maximum entropy

production [73]. These principles have been tested in diverse systems out of equilibrium

with contradictory results, which surrounds the subject with significant controversy. We

must consider that these probabilistic principles, if they exist, might not be variational,

i.e. emanate from the maximisation of functional, or, if they were variational, they might

not necessary imply the maximisation or minimisation of a particular definition of en-

tropy production.
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It can be argued that, in a deterministic universe, the laws of physics univocally deter-

mine the future state of any system, and a statistical principle for the selection of future

states is not necessary. However chaos imposes essential restrictions on the knowledge

of the future. It is not that we choose to disregard relevant information about the sys-

tem, but that we are forced to: it is intrinsically impossible to capture all the necessary

information to reconstruct the detailed evolution of chaotic dynamics.

The chaotic nature of complex systems opposes the extended idea of ‘strict’ deter-

minism, by which the deterministic laws of physics are enough to predict the observable

natural phenomena. This idea can be disproved with a simple thought experiments using

reversible dissipative dynamical systems [74], which reproduce the behaviour of dissipa-

tive systems but are invariants under a change in the time axis, t Ñ ´t. As argued by

Loschmidt [75], time reversibility implies that for each direct evolution there exists a

corresponding inverse evolution. However these systems always evolve in a well-defined

direction in time, leading to an apparent paradox. The introduction of entropy, a prob-

abilistic concept, is necessary to justify the selection of direct evolutions over inverse

evolutions Evans and Searles [76], proving that further assumptions, beyond the purely

deterministic laws of motion, are necessary to explain the evolution of complex systems.

1.5 Scope and organisation of this thesis

Energy flows in the turbulence energy cascade, on average, from the large to the small

scales, but hardly ever the opposite way. This behaviour is not directly encoded in the

NS equations but results from the complex and chaotic behaviour of turbulent flows.

The goal of this thesis is to understand the origin of the ‘arrow of time’ in the energy

cascade by analysing the physical mechanisms that determine the prevalence of direct

over inverse cascades.

This thesis is organised as follows. In chapter 2, we explore microscopic reversibil-

ity in the inertial scales of turbulence, and justify statistical irreversibility using two

complementary definitions of entropy. In chapter 3 we present numerical experiments

on reversible turbulence, and characterise the distribution of inverse cascades in phase

space. We explain the preferential direction of the energy cascade by studying the local

structure of the energy fluxes in physical space, which reveal the space locality of the
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energy cascade. In chapter 4, we compare the structure of the direct and inverse energy

cascades using the invariants of the velocity gradient tensor, which allow us to deter-

mine the mechanisms responsible for inverse and direct energy transfer. In view of these

results, we provide arguments to justify the negligible probability of inverse cascades.

Finally, in chapter 5, we study the chaotic structure of the energy cascade, which we

relate with entropy production, and identify the mechanisms leading to the generation

of chaos and entropy in physical space. A summary of the findings of this thesis and a

final discussion are offered in chapter 6.



Chapter 2

Entropy production and

irreversibility in the energy

cascade

The powerful concept of entropy was originally coined by Clasius in the 1850s to refer

to the energy transformed by dissipation and friction, and that could not be used to

generate mechanical work. Since then, entropy has become perhaps one of the most

complex and widely used concepts in science, with applications spanning diverse fields

such as telecommunications, biology, or social sciences. Throughout this work, we will

use the term entropy in the context of non-equilibrium phenomena to justify the ‘arrow

of time’, i.e, the empirical evidence that complex systems tend to evolve in a particular

direction in time, but not in its opposite.

The concept of entropy is extremely relevant because, as exposed in the example of

reversible dissipative systems, the ‘arrow of time’ is not imposed by the fundamental

laws of Newtonian mechanics that govern nature [77]. The naked eye recognises ‘direct’

processes as natural, for instance, the mixing of ink in water, while the same processes

played backwards appear completely unnatural to us. However, both the ‘direct’ and

‘inverse’ processes are fully compatible with the laws that describe these phenomena.

The question is then obvious: why should we expect complex systems always to evolve

in the same direction?

19
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Entropy can be naively defined as a quantity whose evolution distinguishes between the

‘direct’ and ‘inverse’ processes. Thus defined, entropy seems intuitive but useless. Unfor-

tunately, the available definitions of entropy for non-equilibrium systems are not useful

either: they cannot be easily measured, or they are inconsistent with the equilibrium

formalism.

Here we present two complementary definitions of entropy that explain the ‘arrow of

time’ in the turbulence energy cascade. Both definitions are incomplete and do not take

into account the fundamental aspects of turbulence dynamics, but offer a fair explanation

for the prevalence of direct cascades.

2.1 Microscopic reversibility in the turbulent energy cas-

cade

Turbulence is a highly dissipative and essentially irreversible phenomenon. An intrinsic

source of irreversibility appears in the NS equations in the form of viscosity, which

accounts for the molecular diffusion of momentum. However at high Reynolds number

only the smallest scales, where the local Reynolds number is low, are affected by viscosity.

At scales much larger than the Kolmogorov length, viscous effects are negligible and

dynamics are driven by inertial forces, which generate time-reversible dynamics. This is

clear for the truncated Euler equations, which are known to be time-reversible, and to

display features specific to fully developed turbulent flows under certain conditions [64,

65]. Although these equations show invariance under a change in the time axis, statistical

irreversibility appears as a pronounced tendency towards preferential evolutions when

the system is driven out of equilibrium, being the preferential direction of the energy

cascade an important manifestation of this irreversibility. Other evidences of statistical

irreversibility in turbulent flows are found in the Lagrangian evolution of perfect tracers

[78, 79], or in the structure of the velocity gradients in the inertial range [80].

Intrinsic irreversibility is directly imposed in the equations of motion, e.g molecular dif-

fusion of momentum, while statistical irreversibility is a consequence of the dynamical

complexity of highly chaotic systems with many degrees of freedom. In the absence of an

intrinsic irreversible mechanism, a dynamical system can be microscopically reversible
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and statistically irreversible. This idea, which is widely understood in the study of dy-

namical systems, has not been sufficiently investigated in the context of the turbulent

cascade.

The concept of microscopically reversible turbulence has been already treated in the

literature. Gallavotti [81] proposed a reversible formulation of dissipation in an attempt

to apply the theory of hyperbolic dynamical systems to turbulence and study fluctua-

tions out of equilibrium. This idea was later applied by Biferale et al. [82] to construct

a reversible shell-model of the turbulent cascade to study the system under weak de-

partures from equilibrium. Rondoni and Segre [83] and Gallavotti et al. [84] further

extended reversible models to 2D turbulence, proving that reversible dissipative systems

can properly represent some aspects of the dynamics of turbulence. Reversibility is also

present in some common large eddy simulation (LES) models, which reproduce the odd

symmetry of energy fluxes with velocities, yielding fully reversible representations of the

sub-grid stresses [85–87].

Despite the statistical irreversibility of the energy cascade, previous investigations show

that it is possible to reverse turbulence in time. Carati et al. [88] constructed a reversible

turbulent system using a standard dynamic Smagorinsky model for the sub-grid stresses

and removing molecular viscosity. When reversed in time after decayed for a while, this

system recovers all its lost energy and other turbulent quantities. In the time-backwards

evolution, this reversible turbulent system develops a sustained inverse energy cascade

towards the large scales.

We will show empirical evidence that spontaneously observing an inverse cascade in

this system is extremely unlikely, yet this experiment shows that inverse cascades are

possible, exposing the entropic nature of the energy cascade. The direct cascade is not

directly enforced by the dynamics but is simply more probable.

2.2 Entropy production as phase-space mixing

Let us consider a dynamical system of n number of degrees of freedom representing

turbulence. Each state of the system is represented by an n-dimensional state vector,
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χ “ pχ1, χ2, . . . , χnq. The evolution of χ is described by a generic equation of the form

dχ

dt
“ F pχq, (2.1)

where, for simplicity, F is assumed to depend only on χ. All possible states of the system

are represented in a n-dimensional phase space, where each unique state, χ, is described

by a point and, its evolution, by a deterministic trajectory.

Let us consider a definition of entropy related to the theory of dynamical systems.

Assuming that this system satisfies a Liouville conservation equation, i.e. the dynamics

preserve the infinitesimal phase-space volume, we partition the accessible phase space in

γ “ 1, 2, . . . ,m coarse-grained subsets of volume ωγ . Let P pχq be the probability density

of the state χ. The probability of finding a state in a subset γ is

Pγ “
ż

ωγ

P pχq dχ, (2.2)

where the integral is taken over ωγ . We define the information coarse-grained entropy as

H “ ´
ÿ

γ

Pγ log
´
Pγ

Υ

ωγ

¯
, (2.3)

where Υ “ ř
γ ωγ , and the summation is done over all the sub-volumes γ of the parti-

tion. This entropy is maximised at the equilibrium distribution of conservative systems

with mixing chaotic dynamics, for which the coarse-grained probability distribution is

Pγ{ωγ “ const. Although (2.3) changes with the geometrical properties of the partition,

such as the volume of the subsets, and can only be defined up to a constant, it is always

maximised at the equilibrium distribution. Entropy can be connected with the infor-

mation theory, such that the information on the state of an ensemble of realisations is

proportional to minus the entropy [89].

Let us consider the Euler equations projected on a truncated Fourier basis, for which

a conservation Liouville equation holds for the Fourier coefficients in a canonical form

[90, 91], and an initial ensemble of states far from equilibrium, such as all the velocity

fields with a fixed initial Kolmogorov energy spectrum (k´5{3, where k is the wave-

number magnitude) and a fixed total kinetic energy. Initially, H has a low value because

the distribution is localised in special subsets of phase space. As the ensemble evolves,
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the probability density is conserved along each trajectory, P pχptqq “ P pχp0qq, and en-

tropy production appears as a chaotic ‘mixing’ process in which the initial distribution

spreads across the accessible phase space, exploring all possible states consistent with

the dynamics. Since the Euler equations have only one non-negative invariant of motion,

the total kinetic energy, the accessible phase space corresponds to all states with the

same total kinetic energy. After some time, the initial distribution is sufficiently mixed

that the average probability over each element of the partition tends to Pγ{ωγ “ const,

which maximises (2.3). In this mixing process, H increases with time until the absolute

equilibrium is accomplished.

In Fourier space, absolute equilibrium is represented by an uniform distribution of inten-

sities across all modes (white noise or k2 spectrum), which stands as the most probable

macroscopic state, i.e. the macroscopic state that is represented by the largest number

of microscopic realisations. The final equilibrium distribution has more energy in the

small scales than the initial out-of-equilibrium distribution. Since in equilibrium energy

is uniformly distributed among all modes, this is a consequence of the small scales being

represented by a much larger number of deegres of freedom than the large scales. The

energy flux towards the small scales and entropy production appear as equivalent repre-

sentations of the same phenomena, namely the drift of the system towards equilibrium.

An out-of-equilibrium steady states can conceptually imposed by fixing the boundary

conditions of the system in phase space. The energy cascade appears as the attempt

of the system to reach equilibrium, but this final state is never achieved because the

boundary conditions sustain the energy flux and maintain the system out of equilibrium.

The definition of entropy in (2.3) is not useful in this case, as entropy production goes

to zero in the steady state, but the work of [92] suggests a connection between entropy

production, irreversibility and energy fluxes in conservative, boundary-driven systems .

In summary, entropy production and the energy cascade arise in an out-of-equilibrium

ensemble of the truncated Euler equations as the consequence of four aspects of inertial

dynamics. First, the conservation of phase-space probabilities along trajectories due to

Liouville; second, the strong mixing nature of turbulent dynamics in the inertial range;

third, the fact that small scales are represented by a much larger number of degrees

of freedom than the large scales. Finally, we must also consider that inertial dynamics

only conserve one non-negative invariant, the total kinetic energy, which implies that
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the probability distribution is mixed in the constant energy sub-space, leading to the

equipartition of energy. This is not the case in other chaotic dynamical systems satisfying

a Liouville probability-conservation equation, such as the inviscid 2D turbulence [93], or

some projections of the Euler equations [47], which have absolute equilibrium spectra

different from the equipartition of energy. As opposed to the truncated Euler, in these

systems an inverse cascade of energy appears as a process consistent with the evolution

of the system towards equilibrium.

In this context, the inverse cascade appears intuitively unlikely, as it implies the concen-

tration of the probability distribution in a set of reduced states that have most energy in

the large scales. This is equivalent to the spontaneous organisation of independent small

eddies into a large coherent structure. This behaviour is inconsistent with the chaotic

nature of the cascade, which results in the spreading of the phase-space probability dis-

tribution.

2.3 Entropy production as phase-space volume contraction

The previous example describes the energy cascade as the evolution of a conservative

system towards equilibrium. However, the NS equations are not conservative but dissipa-

tive. Dissipation implies that phase space volume is continuously contracted and, in the

steady state, the probability distribution converges to an attractor of dimension lower

than that of phase space.

In this case, the coarse-grained entropy reaches a steady value and dtH “ 0, contradict-

ing the intuitive notion that the production of entropy should be positive for dynamical

systems out of equilibrium. This inconsistency, which stems from the coarse-graining of

phase space, is bypassed by arguing that the internal irreversible entropy production,

dtHi, is balanced with the entropy flux to the environment due to the dissipative field,

dtHf , so that the evolution of the total entropy reads dtH “ dtHi ` dtHf “ 0 [94]. The

second term in the right-hand side is usually related to the phase-space volume contrac-

tion rate, although the exact relation of both terms with the evolution of the phase-space

probability distribution is not straightforward.
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Entropy production has also been related to phase-space volume contraction in the for-

malism of the fluctuation relations (FR), which constitutes, perhaps, the closest approach

to a ‘second law’ for dynamical systems out of equilibrium.

The FR have received special attention since they quantitatively predict macroscopic

irreversibility in microscopically reversible dissipative systems. The original FR by Evans

et al. [95] express the probability of observing negative fluctuations of the time-averaged

dissipation function, such that

P pxΩyt “ Aq
P pxΩyt “ ´Aq “ exppAtq, (2.4)

where x¨yt stands for the temporal average over a phase-space trajectory of duration t,

Ω is the dissipation function, an extensive state variable related to entropy production,

and A is a prescribed valued of xΩyt. The dissipation function in a state χ is defined as

the instantaneous rate of phase-space volume contraction,

Ω “
nÿ

i“1

BFipχq
Bχi

, (2.5)

which is usually interpreted as the entropy exported out of the system [96]. Direct tra-

jectories are those in which phase-space volume is contracted, while inverse trajectories

imply the expansion of phase-space volume. According to the FR, the probability of in-

verse phase-space trajectories decays exponentially with the integration time, and with

the size of the system through the extensivity of Ω. In the case of the turbulent system

of Carati et al. [88], a positive sign of Ω is related to direct energy transfer towards the

unresolved scales, and the FR justifies the overwhelming probability of direct cascades.

Although volume contraction plays an important role in the evolution of the phase-

space probability distribution, we argue that, due to the conservative properties of the

inertial range, which preserves phase-space volume, phase-space mixing is the fundamen-

tal source of irreversibility in the cascade. At high Reynolds number the dynamics of

the inertial range should be independent of the presence of non-conservative forces in

the large and small scales, and locally resemble that of a conservative, volume-preserving

system out of equilibrium. The exact structure of the dissipative field in the small scales,

which is responsible for phase-space volume contraction, should not be relevant for the

inertial dynamics. This idea becomes evident in the study of hyperviscous turbulence by
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Borue and Orszag [45], or in the work of She and Jackson [64] and Cichowlas et al. [65].

Their results show that the structure of the inertial range is universal, regardless of the

nature of the dissipative mechanisms in the small scales.

This universality indicates that the phase-space structure of the probability distribution

of an Euler flow out of equilibrium, and the structure of the turbulent attractor in a

steady state should share similar characteristics in the degrees of freedom representing

the inertial scales. In the case of the truncated Euler equations only phase-space mixing is

present as an entropy source, which suggests that this is the essential entropy-production

mechanism of the cascade. In the present frame, the energy cascade is analysed as a

boundary-driven conservative system, for which entropy production is directly connected

to phase-space mixing.

2.4 From phase space to physical space: what are the entropy-

production mechanisms of the cascade?

In this section, we have presented two approaches to justify the negligible probability

of inverse cascades. Both approaches are statistical in nature, and are formulated in the

frame of probability densities in phase space, disregarding the fundamental dynamics of

the cascade. The original contribution of this work is to connect these approaches with

the spatio-temporal structure of the turbulent cascade, and to explain irreversibility

and entropy production in terms of measurable turbulent quantities and identifiable

mechanisms in physical space.

This approach allows us to provide a description of irreversibility and entropy produc-

tion in the energy cascade, first, by understanding the inertial mechanisms relevant to

the cascade, and, second, by providing a probabilistic description that justifies why these

mechanisms are more probable than the inverse mechanisms.



Chapter 3

Experiments on time-reversible

turbulence

3.1 The reversible sub-grid model

A popular technique to alleviate the huge computational cost of simulating industrial

turbulent flows is large-eddy simulation (LES), which filters out the flow scales below

a prescribed cutoff length, and only retains the dynamics of the larger eddies. We use

it here to generate microscopically reversible turbulence. The equations governing the

large scales are obtained by filtering the incompressible NS equations,

Btui ` ujBjui “ ´Bip` Bjτij,

Biui “ 0,
(3.1)

where the overline p¨q represents filtering at the cutoff length ∆, ui is the i-th component

of the velocity vector u “ puiq, with i “ 1 . . . 3, Bi is the partial derivative with respect

to the i-th direction, p is a modified pressure, and repeated indices imply summation.

We assume that the cutoff length is much larger than the viscous scale, and neglect in

(3.1) the effect of viscosity on the resolved scales. The interaction of the scales below the

cutoff filter with the resolved ones is represented by the sub-grid stress (SGS) tensor,

τij “ uiuj ´ uiuj, which is unknown and must be modelled.

One of the consequences of this interaction is an energy flux towards or from the unre-

solved scales, which derives from triple products of the velocity field and its derivatives,

27
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and is implicitly time-reversible. However, this flux is often modelled as a dissipative

energy sink, destroying time reversibility and the possibility of inverse energy fluxes

(backscatter). In an attempt to to yield a more realistic representation of the dynamics

of the energy cascade, some SGS models try to reproduce backscatter, which also re-

stores the time-reversibility of energy fluxes. This is the case for the family of dynamic

models, which are designed to adapt the effect of the unresolved scales to the state of

the resolved flow, eliminating tuning parameters. A widely used reversible model is the

dynamic Smagorinsky model of Germano et al. [86], based upon the assumption that

the cutoff filter lies within the self-similar inertial range of scales, and that the sub-grid

stresses at the filter scale can be matched locally to those at a coarser test filter. This idea

is applied to the classical Smagorinsky [97] model in which sub-grid stresses are assumed

to be parallel to the rate-of-strain tensor of the resolved scales, Sij “ 1

2
pBiuj`Bjuiq, such

that τTij » 2νsSij, where νs is referred to as the eddy viscosity, and the ‘T ’ superscript

refers to the traceless part of the tensor. Introducing ∆ and |S| as characteristic length

and time scales, respectively, and a dimensionless scalar parameter C, the model is

τTij “ 2C∆
2|S|Sij , (3.2)

where νs “ C∆
2|S|, and |S| “

?
2SlmSlm. Filtering (3.1) with a test filter of width

r∆ “ 2∆, denoted by p̃¨q, we obtain expressions for the sub-grid stresses at both scales,

which are matched to obtain an equation for C,

CMij ` LTij “ 0, (3.3)

where Mij “ r∆2|rS|rSij´∆
2 Č|S|Sij, and Lij “ 1

2
p Ąuiuj´ruirujq. A spatially local least-square

solution, Cℓ, is obtained by contracting (3.3) with Mij ,

Cℓpx, t; ∆q “
LTijMij

MijMij
. (3.4)

This formulation occasionally produces local negative dissipation, Cℓpx, tq ă 0, which

may lead to undesirable numerical instabilities [98, 99]. To avoid this problem, (3.3)

is often spatially averaged after contraction to obtain a mean value for the dynamic

parameter [100],

Cspt; ∆q “
xLTijMijy

xMijMijy
, (3.5)
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Figure 3.1: Evolution of: (a) mean kinetic energy, normalised with the initial energy

E0, and (b) Cs∆
2

as a function of time (arbitrary units). The dashed line in (a,b) is
t “ tinv, and the dotted lines in (a) are t “ tstats, used in §4. (c) Energy spectrum
Epkq. , t “ t0 and t “ 2tinv; , t “ tinv. The diagonal line is Epkq9k´5{3. (d)
Spectrum of the error between the velocity fields at t “ 2tinv and t “ t0, as a function
of wavenumber. Dashed line denotes k4.

where x¨y denotes spatial averaging over the computational box. A positive Cs implies

that energy flows from the resolved to the unresolved scales, and defines a direct cascade.

The sign of Cs depends on the velocity field through Mij , which is odd in the strain

tensor, so that Csp´uq “ ´Cspuq. Given a flow field with Cs ą 0, a change in the sign

of the velocities leads to another one with negative eddy viscosity.

This property allows us to construct a reversible turbulent system using the dynamic

Smagorinsky model and removing molecular viscosity. The equations for the resolved

velocity field, u, are

Btui ` ujBjui “ ´Bip` Cs∆
2Bj |S|Sij,

Biui “ 0,
(3.6)

together with (3.5), where the filtering notation has been dropped for conciseness. The

equations (3.6) are invariant to the transformation t Ñ ´t and u Ñ ´u, and changing

the sign of the velocities is equivalent to inverting the time axis.
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3.2 Experiments on turbulence under time reversal

3.2.1 Numerical setup

A standard Rogallo [55] code is used to perform a series of experiments on decaying

homogeneous turbulence in a p2πq3 triply-periodic box. Equations (3.6) are solved with

the dynamic Smagorinsky model described in the previous section. The three velocity

components are projected on a Fourier basis, and the non-linear terms are calculated

using a fully dealiased pseudo-spectral method with a 2/3 truncation rule [62]. We denote

the wave-number vector by k, and its magnitude by k “ |k|. The number of physical

points in each direction before dealiasing is N “ 128, so that the highest fully resolved

wave number is kmax “ 42. An explicit third-order Runge-Kutta is used for temporal

integration, and the time step is adjusted to constant Courant-Friedrichs-Lewy number

equal to 0.2, to keep numerical errors as low as possible. A Gaussian filter, whose Fourier

expression is

Gpk; ∆q “ expp´∆2k2{24q, (3.7)

where ∆ is the filter width [32], is used to evaluate Cs in (3.5). The equations are explicitly

filtered at the cutoff filter ∆, and at the test filter r∆ “ 2∆ “ ∆g

?
6, where ∆g “ 2π{N

is the grid resolution before dealiasing. Although the explicit cutoff filter is not strictly

necessary, it is used for consistency and numerical stability.

The energy spectrum is defined as

Epk;uq “ 2πk2xpuipu˚
i yk, (3.8)

where puipkq are the Fourier coefficients of the i-th velocity component, the asterisk is

complex conjugation, and x¨yk denotes averaging over shells of thickness k ˘ 0.5. The

kinetic energy per unit mass is E “ 1

2
xuiuiy “ ř

k Epk, tq, where
ř
k denotes summation

over all wave-numbers.

Meaningful units are required to characterise the simulations. The standard reference

for the small scales in Navier–Stokes turbulence are Kolmogorov units, but they are not

applicable here because of the absence of molecular viscosity. Instead we derive pseudo-

Kolmogorov units using the mean eddy viscosity, xνsy “ Cs∆
2x|S|y, and the mean sub-

grid energy transfer at the cutoff scale, xǫsy “ Cs∆
2x|S|3y. The time and length scale
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derived from these quantities are ts “ pxνsy{xǫsyq1{2 and ηs “ pxνy3
s{xǫsyq1{4, respectively.

We find these units to be consistent with the physics of turbulence, such that the peak

of the enstrophy spectrum, k2Epkq, is located at approximately 25ηs. In DNSs, this peak

lies at approximately 20η.

The larger eddies are characterised by the integral length and velocity scales [101],

respectively defined as

L “ π

ř
k Epk, tq{kř
k Epk, tq , (3.9)

and U “
a

2E{3. The Reynolds number based on the integral scale is defined as ReL “
UL{xνsy, and the separation of scales in the simulation is represented by the ratio L{ηs.

In the following we study the energy flux both in Fourier space, averaged over the

computational box, and locally in physical space.

The energy flux across the surface of a sphere in Fourier space with wave-number

magnitude k can be expressed as

Πpkq “
ÿ

qăk

4πq2Rexpu˚
i pqq pBipqqyq, (3.10)

where Bi “ ujBjui ´ Bip, and a negative Π denotes energy flowing to larger scales.

We use two different definitions of the local inter-scale energy flux in physical space,

Σpx, t; ∆q “ τijSij,

Ψpx, t; ∆q “ ´uiBjτij,
(3.11)

where the velocity field, the rate-of-strain tensor, and τij are filtered with (3.7) at scale

∆. Both are standard quantities in the analysis of the turbulence cascade [17, 29, 30, 32],

and are related by Ψ “ Σ ´ Bjpuiτijq. The second term in the right-hand side of this

relation is the divergence of an energy flux in physical space, which has zero mean over

the computational box, so that xΣy “ xΨy. Positive values of Σ and Ψ indicate that the

energy is transferred towards the small scales.

Because the decaying system under study is statistically unsteady, averaging over an

ensemble of many realisations is required to extract time-dependent statistics. This is

generated using the following procedure. All the flow fields in the ensemble share an

initial energy spectrum, derived from a forced statistically-stationary simulation, and an
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N kmax ReL kmaxηs ∆g{ηs tinv{T0 L{ηs L{∆g ǫsL{U3 Ns

t “ t0 128 42 214 0.94 2.2 1.3 63.3 28.3 1.3 2000

t “ tinv 248 0.87 2.3 63.1 26.1 1.0

Table 3.1: Main parameters of the simulation averaged over the complete ensemble
at time t0. See the text for definitions.

initial kinetic energy per unit mass. Each field is prepared by randomising the phases of

pui, respecting continuity, and integrated for a fixed time tstart up to the t0 “ 0, where

a fully turbulent state is deemed to have been reached, the experiment begins, and

statistics start to be compiled. The initial transient, tstart, common to all the elements

in the ensemble, is chosen so that t0 is beyond the time at which dissipation reaches

its maximum, and the turbulent structure of the flow is fully developed. Following this

procedure, we generate an ensemble of Ns “ 2000 realisations, which are evolved on

GPUs using a CUDA code developed during this thesis.

It is found that both the small- and large-scale reference quantities defined above vary

little across an ensemble prepared in this way, with a standard deviation of the order of

5% with respect to their mean.

3.2.2 Turbulence with a reversible model

The basic experiment is conducted as in the paper by Carati et al. [88]. After preparing

a turbulent field at t “ t0 “ 0, the flow is evolved for a fixed time tinv, during which some

of the initial energy is exported by the model to the unresolved scales. The simulation is

then stopped and the sign of the three components of velocity reversed, u Ñ ´u. The

new flow field is used as the initial condition for the second part of the run from tinv

to 2tinv, during which the flow evolves back to its original state, recovering its original

energy and the value of other turbulent quantities.

It is found that ηs only changes by 5% during the decay of the flow, while ts increases

by a factor of 1.5 from t0 to tinv. On the other hand, the large-scale quantities, L and U

vary substantially as the flow decays. The main parameters of the simulations, and the

relation between large- and small-scale quantities, are given in table 3.1.

Figure 3.1(a, b) presents the evolution of the kinetic energy E and of Cs as a function

of time for a representative experiment. We observe a clear symmetry with respect to
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tinv in both quantities, and we have checked that this symmetry also holds for other

turbulent quantities, such as the sub-grid energy fluxes and the skewness of the velocity

derivatives. Quantities that are odd with respect to the velocity display odd symmetry

in time with respect to tinv, and even quantities display even symmetry. In particular

we expect up2tinvq » ´upt0q

Figure 3.1(c) shows the energy spectrum Epkq at times t0, tinv and 2tinv. Although

there are no observable differences between the initial and final spectra, we quantify this

difference in scale using the spectrum of the error between the velocity field at t0 and

minus the velocity field at 2tinv,

ρpkq “ 2Epk;upt0q ` up2tinvqq
Epk;upt0qq ` Epk;up2tinvqq , (3.12)

which is presented in figure 3.1(d). The spectrum of the error is of the order of 0.01 in

the cutoff wavenumber and decreases as k4 with the wavenumber, confirming that the

flow fields in the forward and backward evolution are similar, except for the opposite

sign and minor differences in the small scales. This suggests that the energy cascade is

microscopically reversible in the inertial scales. Sustained reverse cascades are possible

in the system, even if only direct ones are observed in practice, suggesting that the

one-directional turbulence cascade is an entropic (probabilistic) effect, unrelated to the

presence of an energy sink at the small scales.

3.2.3 The reverse cascade without model

The validity of the conclusions in the previous section depends on the ability of the model

system to represent turbulence dynamics. In particular, since the object of our study is

the turbulence cascade rather than the SGS model, it is necessary to asses whether

the reversibility properties of the system, and the presence of a sustained backwards

energy cascade, stem from the SGS model, or whether intrinsic turbulent mechanisms

are involved. In this subsection, we show that the model injects energy at the smallest

resolved scales, but that that the energy travels back to the large scales due to inertial

mechanisms. In the next subsection, we further demonstrate that the inverse cascade

can exist for some time even for irreversible formulations of the dissipation.



34

10
-1

10
0

-1

-0.5

0

0.5

k∆g

Π
pk

q
ǫ 0

(a)

10
1

10
2

0.1

0.2

0.4

0.8

t r
e
v
{T

0

kL0

(b)

Figure 3.2: (a) Energy flux Πpkq as a function of the time after removing the SGS
model t{T0: , 0; , 0.1; , 0.15; , 0.25. Energy flux normalised with
ǫ0 “ U0

3{L0. (b) Reversal time trev{T0 at which Π “ 0 as a function of wave-number
kL0. , Reversible SGS model (N “ 128); , irreversible spectral SGS model

(N “ 512). Solid black line trev{T09kL0
´2{3.

If the SGS model contributed substantially to the presence of a sustained inverse cas-

cade, the removal of the model during the backward leg of the simulation would have

an immediate effect on the system, resulting in the instantaneous breakdown of the re-

verse cascade. This is shown not to be the case by an experiment in which the model

is removed at tinv by letting Cs “ 0. The system then evolves according to the Euler

equations

Btui ` ujBjui “ ´Bip,

Biui “ 0,
(3.13)

which are conservative and include only inertial forces. The resulting evolution of the

inertial energy flux across Fourier scales, Πpk, tq, defined in (3.10), is displayed in figure

3.2(a) as a function of wavenumber and time.

At tinv, energy fluxes are negative at all scales and energy flows towards the large

scales. Shortly after, at t ´ tinv “ 0.1T0, the inverse cascade begins to break down at

the small scales, while it continues to flow backwards across most wavenumbers. This

continues to be true at t “ 0.15T0, where the direct cascade at the smallest scales coexists

with a reverse one at the larger ones. The wavenumber separating the two regimes moves

progressively towards larger scales, and the whole cascade become direct after t » 0.25T0.

Figure 3.2(b) shows the dependence on the wavenumber of the time trevpkq at which

Πpk, trevq “ 0. It is significant that, for wavenumbers that can be considered inertial,

kL0 " 1, it follows trev{T0 „ pkL0q´2{3, which is consistent with the Kolmogorov [9]
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self-similar structure of the cascade. Cardesa et al. [17] found a similar trend in the

propagation of energy-transfer fluctuations across the inertial range.

The simplest conclusion is that the model just acts as a source to provide the small

scales with energy as they are being depleted by the flux towards larger eddies. If this

source is missing, the predominant forward cascade reappears, but the inertial mecha-

nisms are able to maintain the reverse cascade process as long as energy is available.

3.2.4 The effect of irreversible models

We have repeated the same experiment for an irreversible spectral SGS model [102] with

a higher resolution pN “ 512q. Results of trevpkq for this experiment are shown by the

dashed line in figure 3.2(b). The behaviour is similar to the experiment in the previous

section, but the wider separation of scales in this simulation allows the preservation of an

inverse cascade for times of the order of the integral time. This experiment confirms that

the microscopic reversibility of the inertial scales is independent of the type of dissipation,

and holds as long as the information of the direct cascade process is not destroyed by

the LES model. This experiment suggests that microscopic reversibility should also hold

in the inertial range of fully developed NS turbulence.

3.3 Phase- and physical-space characterisation of the en-

ergy cascade

3.3.1 The geometry of phase space

In the first place we confirm, by perturbing the inverse cascade, that in the neighbourhood

of each inverse evolution there exist a dense distribution of phase-space trajectories that

also display inverse dynamics. Each inverse trajectory is ‘unstable’, in the sense that it is

eventually destroyed when perturbed, but inverse dynamics are easily found considerably

far from the original phase-space trajectories, even for distances of the order of the size of

the accessible phase space, suggesting that inverse and direct trajectories lie in separated

regions of phase space, rather than mostly being intertwined in the same neighbourhood.
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Figure 3.3: (a) Evolution of the energy of the perturbed fields Ep and (b) of δE “
1{2xδu2y, normalised with E0, for: , 0.1; , µ “ 0.01; , µ “ 0.001; ,
energy of the unperturbed trajectory, E{E0. (c) Perturbed trajectories for µ “ 0.1 and
µ “ 0.01, represented in the energy-dissipation space. Symbols as in (a). The solid
circle represents the beginning of the inverse trajectory at tinv, the empty circles the
end of the perturbed trajectories at 2tinv, and the solid square the end of the direct
trajectory at time tinv. The dotted lines and the arrows represent the direct (right) and
the inverse (left) trajectories. (d) Evolution of the probability density function of Cs as
a function of time starting from random initial conditions at tstart. From left to right:
pt ´ tstartq{T0=: 0.0; 0.008; 0.017; 0.033; 0.067; 1.0. Cs normalised with the ensemble
average at T0.

In this experiment we generate a backward initial condition by integrating the equations

of motion until tinv, changing the sign of the velocities uι “ ´uptinvq, and introducing

a perturbation, δu. The perturbed flow field, up “ uι ` δu, is evolved and compared

to the unperturbed trajectory, uιptq. We choose the initial perturbation field in Fourier

space as,

δpuipkq “ puιipkq ¨ µ exppiφq, (3.14)

where φ is a random angle with uniform distribution between 0 and 2π and µ is a real

parameter that sets the initial energy of the perturbation. The same φ is used for the

three velocity components, so that incompressibility also holds for up.
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Figures 3.3(a,b) show the evolution of the mean kinetic energy of the perturbed field,

Ep “ 1

2
xpupq2y, and of the perturbation field, δE “ 1

2
xδu2y, for µ “ 0.1, 0.01 and 0.001.

The energy of the perturbed fields increases for a considerable time in the three cases,

demonstrating the presence of inverse energy transfer and negative mean eddy-viscosity,

Cs ă 0. Even under the strongest initial perturbation, µ “ 0.1, the inverse cascade is

sustained for approximately 0.5T0. As shown in figure 3.3(b), by the time the inverse

cascade is destroyed and the energy of the perturbed fields has evolved to a maximum

and Cs “ 0, the energy of the perturbation is comparable to the total energy in all cases,

δE „ E , which indicates that the states that separate inverse and direct dynamics are

considerably far in phase space from the unperturbed trajectories.

If we estimate distances as the square-root of the energy (L2 norm of the velocity field),

the maximum of Ep is located approximately at δE1{2 » 0.4E
1{2

0 from the unperturbed

phase-space trajectory. In figure 3.3(c) we represent the evolution of the perturbed tra-

jectories in the dissipation-energy space. This plot intuitively shows that a typical direct

trajectory is located far apart in phase space from inverse trajectories, and that per-

turbed inverse trajectories must first cross the set of states with zero dissipation, Cs “ 0,

before developing a direct cascade.

In figure 3.3(d) we show the evolution of the probability density function of Cs in

the direct evolution of the ensemble, starting at tstart, when the initial condition is a

random field with prescribed energy spectrum. The initial probability distribution of Cs

is symmetric and has zero mean, because the probabilities of direct and inverse evolutions

are similar. As the system evolves in time towards the turbulent attractor, the probability

of finding a negative value of Cs decreases drastically. At t´ tstart “ 0.008T0, we do not

observe any negative values of Cs in the ensemble. The standard deviation of Cs is small

compared to the mean at t ´ tstart “ T0, which indicates the negligible probability of

observing negative values of Cs after a time of the order of an eddy-turnover time.

Inverse evolutions sustained in time are almost only accessible from forward-evolved

flow fields with changed sign. These trajectories lie in the antiattractor, which is con-

structed by applying the transformation u Ñ ´u to the turbulent attractor. However,

we have shown in this analysis that inverse trajectories exist in a larger set of states out-

side the antiattractor, which can be escaped by perturbing the reversed flow fields. The

destruction of the inverse cascade under perturbations, and the small standard deviation
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of Cs in the turbulent attractor, reflect the negligible probability of inverse evolutions,

and indicate that they can only be accessed temporarily.

The reversible turbulent system under study provides access to trajectories outside the

turbulence attractor, which is characterised almost exclusively by direct cascades. These

trajectories allow us to study the physical mechanisms by which direct energy transfer

prevails over inverse energy transfer.

3.3.2 The structure of local energy fluxes in physical space

Up to now we have only dealt with the mean transfer of energy over the complete

domain. In this section we characterise the energy cascade as a local process in physical

space. We study here two markers of local energy transfer in physical space, Σpx, t; ∆q
and Ψpx, t; ∆q, previously defined in (3.11), calculated at filter scales ∆ “ 5∆g and

∆ “ 10∆g. Figures 3.4(a,b) show the probability distribution of these quantities in

the direct evolution. We observe wide tails in the probability distribution of the two

quantities, and skewness towards positive events, which is more pronounced for Σ than

for Ψ. Energy fluxes change sign under u Ñ ´u, and, as shown in figure 3.4, their odd-

order moments are in general non-zero and have a definite sign in turbulent flows. This

sign denotes statistical irreversibility, i.e, the privileged temporal direction of the system

in an out-of-equilibrium evolution. The spatial average, which marks the direction of the

cascade, is an important example, xΣy “ xΨy ą 0.

To characterise the non-local spatial properties of the local energy fluxes, we define the

correlation coefficient between two scalar fields, ψ and ζ, as

Sψ,ζp∆xq “ xψ1px` ∆xqζ 1pxqya
xψ12yxζ 12y

, (3.15)

where we subtract the spatial average from quantities marked with primes. Due to

isotropy, S only depends on the spatial distance, ∆x “ |∆x|. We also define the auto-

correlation coefficient Sψ,ψp∆xq and the auto-correlation length as

ℓψ “
ż 8

0

Sψ,ψpξq dξ, (3.16)
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‘All’ ‘`’ ‘´’
RΣp5∆g, 10∆gq 0.74 0.73 0.2
RΨp5∆g, 10∆gq 0.70 0.60 0.4

‘All’ ‘`’ ‘´’
RΣp5∆g, 20∆gq 0.33 0.34 ´0.01
RΨp5∆g, 20∆gq 0.24 0.29 ´0.09

Table 3.2: Auto-correlation coefficient among scales of Σ and Ψ, evaluated for: ‘All’,
the complete field; ‘`’, conditioned to positive energy transfer events at 5∆g; ‘´’, con-
ditioned to negative energy transfer events at 5∆g.

which measures the typical length over which ψ decorrelates, and is related to the typical

size of events in ψ. The correlation lengths of Σ and Ψ are proportional to the filter size

∆, ℓΣ „ 0.47∆ and ℓΨ „ 0.51∆ .

We use xΣyV and xΨyV to study the spatial structure of energy fluxes, where x¨yV
represents the volume-averaging operation over a sphere of volume V . The standard

deviation of the probability distribution of the volume-averaged fields,

σV “
b

x
`
xψyV ´ xψy

˘2y, (3.17)

is shown in figure 3.5(a) as a function of the averaging volume, where σ0 “ pxψ2y ´
xψy2q1{2 is the standard deviation of the test field without volume averaging. When

the averaging volume is sufficiently large, V {ℓ3 Á 103, the standard deviation becomes

inversely proportional to the square-root of N “ V {ℓ3 in all cases, where N is a measure

of the number of independent energy transfer events within the averaging volume. These

results suggest statistical independence of the events within the averaging volumes and,

some degree of space locality in the energy cascade.

Despite this locality, the pointwise differences between Σ and Ψ might suggest that local

energy fluxes cannot be uniquely defined, and that only global averages are robust with

respect to the particular definition of fluxes, xΣy “ xΨy. The correlation between Σ and Ψ

for ∆x “ 0 is low, SΣ,Ψ „ 0.05, at both filter scales, 5∆g and 10∆g. However, when these

quantities are averaged, the correlation coefficient increases rapidly with the averaging

volume. In figure 3.5(b), we show the dependence of SxΣyV ,xΨyV
on V . Henceforth we

consider correlations without spatial offset, ∆x “ 0. For averaging volumes V „ p4ℓq3,

the correlation increases to approximately 0.7 for both filter widths, indicating that Σ

and Ψ are similar when averaged over volumes of the order of the their cubed correlation

length.
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Figure 3.4: (a,b) Probability density function of local markers of the energy cascade
without volume averaging: (a) Σ; (b) Ψ. Symbols in correspond to: , Σp5∆gq; ,
Σp10∆gq; , Ψp5∆gq; , Ψp10∆gq. The dashed-dotted lines represent ´xψy{σV

for quantities calculated at 5∆g, and the open symbols represent the probability density
function of xΣp5∆gqyV and xΨp5∆gqyV for V “ p16∆gq3.

3.3.3 The structure of local energy fluxes in scale space

We extend this analysis to scale space by considering the correlation of the energy fluxes

at different scales, defined as

Rψp∆1,∆2q “ xψ1px; ∆1qψ1px; ∆2qya
xpψ1p∆1qq2yxpψ1p∆2qq2y

. (3.18)

We also calculate the same quantity conditioning the averages to positive or negative

energy transfer events at scale ∆1. We denote the conditional correlations by R` when

conditioning to ψp∆1q ą 0, and R´ when conditioning to ψp∆1q ă 0. The values of these

interscale auto-correlation coefficients are presented in table 3.2. We find correlation

values of approximately 0.7 for scale increments of 2 in both quantities. In this analysis

we have also included scale 20∆g to show that energy fluxes decorrelate substantially

when their scales differ by a factor of 4, Rp5∆g, 20∆gq „ 0.3. These values remain similar

when conditioning to positive energy transfer events, but are reduced substantially in all

cases when conditioning to local backscatter.

In figure 3.5(c), we show the dependence of RxΣyV
p5∆g, 10∆gq and RxΨyV

p5∆g, 10∆gq
with the averaging volume V . The interscale auto-correlation increases with the averag-

ing volume when we consider all events and direct energy transfer events (not shown).

On the other hand, the interscale auto-correlation of the averaged fluxes conditioned
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Figure 3.5: (a) σV as a function of V {ℓ3, where the dashed line represents σV „
N ´1{2. Symbols correspond to: , Σp5∆gq; , Σp10∆gq; , Ψp5∆gq; ,
Ψp10∆gq. (b) Correlation coefficient between Σ and Ψ as a function of the averaging
volume: , SxΣyV ,xΨyV

at 5∆g; , SxΣyV ,xΨyV
at 10∆g. (c) Asymmetry function,

P , as a function of xψy2{σ2

V . The dashed line is the exact solution of P for a Gaussian,
which approaches log P “ 1{2xψy2{σ2

V for large xψy2{σ2

V . Error bars are calculated from
the average standard deviation of log P when partitioning the complete data-set in 4
subsets. (d) Interscale auto-correlation coefficient as a function of the averaging volume:

, RxΣyV
p5∆g, 10∆gq; , RxΨyV

p5∆g, 10∆gq; , R´
xΣyV

p5∆g, 10∆gq; ,

R´
xΨyV

p5∆g, 10∆gq. (e,f) Probability density function of local markers of the energy

cascade averaged at scale V 1{3 “ 1.2L0 “ 32∆g: (e) Σ; (f) Ψ. The dashed-dotted lines
represent ´xψy{σV for quantities calculated at 5∆g. Symbols as in (a).
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to backscatter increases until volumes of the order of V 1{3 „ 2ℓ, and then decreases.

Beyond V 1{3 „ 4ℓ, the number of averaged inverse energy transfer events available are

not enough to compute reliable correlations.

3.3.4 Physical-space estimates of the probability of inverse cascades

Figure 3.3(d) indicates that the probability of spontaneously observing an inverse cas-

cade over extended regions of a turbulent flow is negligible, making it impractical to

quantify the probability of such evolutions by direct observation. However, as shown

in the previous section, we frequently observe local inverse energy transfer events over

restricted regions of physical space. We estimate the probability of observing an inverse

cascade using the integral asymmetry function,

P “ P pxψyV ą 0q
P pxψyV ă 0q , (3.19)

which compares the probability of observing a direct to an inverse cascade on a volume

V . This approach follows the methodology of the fluctuation relations [76] and its local

versions [103, 104].

We evaluate the integral asymmetry function of Σ and Ψ for different averaging volumes,

and show P as a function of xψy2{σ2
V in figure 3.5(d). We find that the probability

of average inverse energy transfer decreases considerably with the averaging volume.

Results in §3.3.2 suggest that, when the averaging volume is large enough, the integral

asymmetry function might behave as that of a Gaussian distribution with non-zero mean

and large xψy2{σ2
V , log P » 2xψy2{σ2

V . In this scenario log P „ N “ V {ℓ3 and the

probability of direct over inverse cascades increases exponentially with the number of

independent energy transfer events considered. However we find that log P „ 3xψy2{σ2
V .

This deviation is a consequence of the strong dependence of P on the negative tails of

the statistical distributions of Σ and Ψ. These tails decrease considerably with spatial

averaging. In figure 3.4(a,b), we show that the probability density function of xΣp5∆gqyV
and xΣp5∆gqyV averaged over a volume of V “ p16∆gq3. They do not collapse with the

distributions of Σp10∆gq, and Ψp10∆gq, due to the effect that averaging has on the tails,

which is specially pronounced for the negative values. While the asymmetry function of Σ

without volume averaging is log P „ 2 across the inertial range [17], our results show that

it increases to log P „ 4 when Σ or Ψ are averaged over a volume twice the filter width
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cubed. Moreover, the strong departure from Gaussianity of the tails persists for large

averaging volumes. In figures 3.5(e,f), we display the probability distribution of xΣyV
and xΨyV for a volume of the order of the integral scale of the flow V 1{3 “ 1.2L0 “ 32∆g.

Neither of the two probability distributions are Gaussian. For this averaging volume, we

do not find any average negative energy transfer event in the database.

Although energy transfer events are approximately local in physical and scale space,

inverse and direct energy transfer events do not behave equally. As shown in §3.3.3, direct

energy transfer events are correlated with events at larger scales, while backscatter events

are not. These results corroborate that the direct cascade is a consequence of a multiscale

process, and reveal that energy backscatter is local in scale space. As illustrated by simple

cascade models [21, 105, 106], the interscale interactions responsible for the direct energy

transfer produce intermittent direct energy transfer events, which dominate the statistics

of the volume-averaged energy fluxes, and lead to the persistence of non-Gaussianity

even for large averaging volumes. Although the multiscale nature of turbulence leads to

non-trivial forms of the asymmetry function, our results suggest that the probability of

inverse cascades decreases exponentially with the number of independent energy transfer

events, indicating that the low probability of inverse cascades can be traced to the low

probability of inverse energy transfer events.





Chapter 4

The structure of the inverse and

direct cascades

The velocity gradients constitute a convenient descriptor of the fundamental structure

of turbulent flows and some of their statistics reflect the out-of-equilibrium nature of

turbulence. Although the velocity gradients describe only the structure of the small

scales, the statistical distributions of the filtered velocity gradients are invariant across

scales and reveal the self-similar structure of the inertial range [30, 80, 107, 108]. Some

investigations suggest a connection between the velocity gradients in the inertial scales

and the energy cascade [30, 40, 109], and common SGS models rely on the assumption

that energy transfer towards the unresolved scales can be reproduced using the velocity

gradients of the resolved scales [85, 97, 110]. The structure of the velocity gradients is

compactly represented by the invariants of the velocity gradient tensor. Supported on

the space-locality of the energy cascade reported in §3.3.2, we will relate these invariants,

which are strictly local in space, with local energy fluxes, connecting the energy cascade

in physical space to the local structure of the flow.

45
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4.1 Dynamics of the invariants of the velocity gradient ten-

sor

Let Aij “ Bjui be the velocity gradient tensor of an incompressible flow. The second and

third invariants of Aij are

Q “ ´ 1

2
AijAji “ 1

4
ωiωi ´ 1

2
SijSij, (4.1)

R “ ´ 1

3
AijAjkAki “ ´1

3
SijSjkSki ´ 1

4
ωiSijωj, (4.2)

where ωi is the i-th component of the vorticity vector. ConsideringR and the discriminant

D “ 27{4R2 `Q3, the flow can be classified in four different topological types: positive D

corresponds to rotating topologies and negative D to saddle-node topologies; negative R

accounts for topologies with a stretching principal direction, and positive R for topologies

with a compressing principal direction. These invariants are also related to the vorticity

vector and the rate-of-strain tensor, such that Q indicates the balance between enstrophy

and strain, denoted by |S|2 “ 2SijSij and |ω|2 “ ωiωi, and R represents the balance

between vortex stretching and strain auto-amplification, ωiSijωj and SijSjkSki. These

terms appear in the evolution equations of |S|2 and |ω|2,

1

4
Dt|S|2 “ ´SijSjkSki ´ 1

4
ωiSijωj ´ SijBijp, (4.3)

1

2
Dt|ω|2 “ ωiSijωj, (4.4)

where Dt “ Bt ` ujBj is the substantial derivative along a Lagrangian trajectory and we

have considered the evolution of an inviscid flow for simplicity.

The statistical distribution of Q and R in turbulent flows has a typical teardrop shape,

which is shown in figure 4.1(e). For ease of reference we have divided the Q-R plane in

four quadrants, where q1 corresponds to Q ą 0 and R ą 0, q2 to Q ą 0 and R ă 0, q3

to Q ă 0 and R ă 0, and q4 to Q ă 0 and R ą 0. The teardrop shape is characterised

by a lobe in q2, where the enstrophy is dominant over the strain and vortex stretching

over strain auto-amplification, and a tail in q4, which is known as the Vieillefosse [111]

tail, and represents dominant strain auto-amplification over vortex stretching in strain-

dominated regions. The high absolute values of Q in the Vieillefosse tail and in the upper

semiplane indicate the spatial segregation of |S| and |ω|. Low absolute values of Q do
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Figure 4.1: Ñ , conditional mean trajectories in the Q–R plane for the inverse
(a-d) and direct (e-h) evolutions due to different contributions. (i-l) Modulus of the
probability transport velocities |Φ| in the Q–R plane in the direct evolution due to
the different contributions. (a,e,i) All contributions ΦT , (b,f,j) SGS model ΦM , (c,g,k)
restricted Euler ΦE and (d,h,l) non-local component of the pressure Hessian ΦP . Con-
tours of the probability density function of Q and R contain 0.9 and 0.96 of the total

data. All quantities are normalised using tQ “ xQ2y1{4
.

not in general imply low values of |S| or |ω|, but rather that |S| „ |ω|. We actually find

that |S| „ x|S|y in regions where Q „ 0 and R „ 0. For a detailed interpretation of the

Q-R plane refer to Tsinober [42].

The dynamics of the velocity gradients can be statistically represented by the probabil-

ity transport velocities in theQ–R plane, which are obtained from the average Lagrangian

evolution of Q and R [112]. Taking spatial derivatives in the evolution equations of the

velocity field described by (3.6) and considering (4.1, 4.2), the Lagrangian evolution of

the invariants reads

DtQ “ ´ 3R ` AijHji, (4.5)

DtR “2

3
Q2 ´ AijAjkHki, (4.6)
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where Hij “ HP
ij ` HM

ij comprises the contribution of the non-local component of the

pressure Hessian and the SGS model, HP
ij “ Bijp´ 1

3
pBkkpqδij and HM

ij “ BjMi. Here,

Mi stands as the i-th component of the SGS model in the momentum equation, and δij

is the Kronecker’s delta. The total probability transport velocity is defined as

ΦT “ txDtQyCt3Q, xDtRyCt4Qu, (4.7)

where x¨yC stands as the probability conditioned to Q and R and tQ “ 1{xQ2y1{4 is

the characteristic time extracted from the standard deviation of Q. Let us note that

the probability density flux in the Q-R plane is P pQ,RqΦT , where P pQ,Rq is the joint

probability density of Q and R. The probability transport velocities are integrated to

yield conditional mean trajectories (CMTs) in the Q–R plane [112], which are shown

also in figure 4.1(e).

In order to analyse the dynamics of the invariants, we decompose the CMTs into the

contribution of the different terms in the evolution equation of Q and R,

ΦE “ t´3R, 2{3Q2u, (4.8)

ΦP “ txAijH
P
jiyC , x´AijAjkH

P
kiyCu, (4.9)

ΦM “ txAijH
M
ji yC , x´AijAjkH

M
ki yCu, (4.10)

where ΦT “ ΦE ` ΦP ` ΦM , and the normalisation with tQ has been dropped for

simplicity. First, we have the contribution of the restricted Euler (RE) [113], ΦE , which

depends exclusively on Q and R, and includes advection and the local action of the

pressure Hessian. The non-local action of the pressure Hessian and the SGS model are

included in ΦP and ΦM respectively. This decomposition is not unique, but serves to

separate the strictly local dynamics of the restricted Euler from the non-local action of

the pressure Hessian and the SGS model, allowing us to determine the dynamical origin

of the CMTs and to analyse the differences between the direct and inverse evolutions.

In order to compare the importance of the different terms, we consider the norm of the

probability transport velocities,

|Φ| “
b

pt3QxDtQyCq2 ` pt4QxDtRyCq2. (4.11)

Statistics of Q and R and their CMTs have been compiled for two different times in
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the ensemble of realisations, tstats “ p1 ˘ 0.12qtinv , which correspond to the direct and

inverse evolutions and are marked in figure 3.1(a). If we assume that the decay of the sys-

tem is self-similar, conclusions drawn from this analysis should be independent of tstats.

The total probability transport velocity, ΦT , has been calculated directly from the ex-

pression of the substantial derivative, computing separately the temporal and convective

derivative. Appropriate numerical methods have been used in all the computations [114].

Results show that the number of realisations in our database is sufficient to converge

the statistics.

The different contributions to the CMTs and the norm of the probability transport

velocities in the inverse and direct evolutions are shown in figures 4.1(a-h) and 4.1(i-

l). In the direct evolution, the CMTs develop an average rotating cycle characteristic

of turbulent flows, which exposes causality between the different configurations of the

flow in an average sense. The CMTs rotate clockwise: from vortex stretching to vortex

compression in the upper semiplane, to the Vieillefosse tail in q4, and again to vortex

stretching in enstrophy-dominated regions.

The CMTs move from negative to positive R, and finally to the Vieillefosse tail, due

to the effect of the RE dynamics. This trend would cause the appearance of infinite

gradients in a finite time [111], but the non-local effect of the pressure Hessian and the

SGS model, or viscosity in the case of DNSs, prevent it by bringing the CMTs back

to q3 and restarting the cycle. For closed steady states, CMTs describe a closed cycle

[108], while in our decaying flow they spiral inwards due to the action the SGS model,

which contracts the probability distribution, resembling the action of viscous terms in

DNSs [115]. The CMTs of the non-local component of the pressure Hessian evolves from

positive to negative values ofR, following the same behaviour observed in Chevillard et al.

[116] and Meneveau [115]. The norms of the probability transport velocity reveal that

the RE dynamics are mostly counteracted by the non-local component of the pressure

Hessian in regions where Q and R are large. These observations are in agreement with

Luethi et al. [117], and evidence a secondary role of the model in the dynamics of intense

gradients.

In the inverse evolution we identify substantial changes. As explained in §3.2.1, time-

reversal changes only the sign of quantities which are odd with the velocity: Q remains

unaltered while R changes sign, leading to an inverse teardrop shape. The Vieillefosse
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Figure 4.2: (a) Colour plot of the asymmetry function ̟pQ,Rq. Isocontours contain
0.4 and 0.7 of the total data. Dashed lines represents the contours of the asymmetry
function for the change R Ñ ´R. (b) Asymmetry function averaged along the R axis,

x̟pQqyR, for R in the interval p´2, 2q. Quantities are normalised using tQ “ xQ2y1{4
.

tail lies now in q3, forming an antitail, and a higher probability of vortex compression

appears in enstrophy-dominated regions. This transformation also affects the CMTs,

and is most relevant in the effect of the SGS model, which now expands the probability

distribution and leads to an average outward spiralling. The behaviour of ΦE and ΦP

is similar to the direct evolution in the upper semiplane, but undergoes fundamental

changes in the lower semiplane. In the direct evolution, the non-local component of

the pressure Hessian counteracts the RE dynamics, preventing the formation of intense

gradients in the Vieillefosse tail. Conversely, in the inverse evolution, ΦP favours the

growth of intense gradients in the antitail, which is contracted by the RE dynamics.

This analysis compares the structure of the attractor with that of the antiattractor

and can be simply derived by considering the effect that the transformation u Ñ ´u
has on the dynamics of the velocity gradients. However, in 3.3.1 we have identified

inverse trajectories outside the antiattractor. We will show that, for these trajectories,

this analysis yields non-trivial results.

4.2 Asymmetry in the Q–R space

In this section we quantify the differences in the structure of the flow between the

turbulent attractor and the antiattractor. We use an asymmetry function defined in the

Q-R plane

̟pQ,Rq “ log
P`pQ,Rq
P´pQ,Rq , (4.12)
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Figure 4.3: Conditional mean trajectories in the Q–R plane of the inverse evolution

without model (see §3.2.3) for (a-d) the unfiltered case and (e-h) filtered at q∆ “ 5∆g,

and (i-l) conditional average of Σ at scale q∆ “ 5∆g, at different times: (a,e) t{T0 “ 0;
(b,f) t{T0 “ 0.1; (c,g) t{T0 “ 0.15; (d,h) t{T0 “ 0.25. , contours of the probability
density function of Q and R containing 0.9 and 0.96 of the data. Q and R normalised
with tQ “ xQptinvq2y1{4. Conditional-averaged energy fluxes in (i-l) are normalised with
the absolute value of xΣy at each time.

where P` and P´ denote the probability density of Q and R in the direct and inverse

evolutions respectively. In figure 4.2(a) we show the distribution of ̟pQ,Rq and in 4.2(b)

the absolute values of the asymmetry function averaged along the R axis,

x̟pQqyR “
ş

|̟pQ,Rq| dRş
dR

. (4.13)

Most of the temporal asymmetry of the velocity gradients is related to Q ă 0, suggesting

that the dynamics of enstrophy-dominated regions are statistically less affected by a

time reflection than the dynamics of strain-dominated regions. Vortex stretching is on

average dominant in the direct evolution, but the probability of vortex compression

is not negligible. Both processes are shared by the inverse cascade, in which vortex

compression is dominant but coexists with vortex stretching. On the other hand, the

structure of strain-dominated regions depends strongly on the direction of the system
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in time. Intense velocity gradients in Q ă 0 are either in q3 or q4, depending on the

direction of the cascade, but not simultaneously in both quadrants, which suggests that

the dynamics of strain-dominated regions are more fundamentally related to the direction

of the system in time than the dynamics of enstrophy-dominated regions.

4.3 Energy fluxes in the Q–R space

4.3.1 Inverse evolutions outside the antiattractor

In this section we analyse the relation between the structure of the flow and the energy

cascade by conditioning the statistics of the local energy fluxes to the invariants of the

filtered velocity gradients. First, we study the experiments on the inverse cascade with-

out model, which are presented in §3.2.3. These experiments provide inverse evolutions

outside the turbulent attractor, for which this analysis identifies the relevant mechanisms

that support the inverse energy cascade.

We calculate the invariants of the filtered velocity gradients and their CMTs at scale

q∆ “ 5∆g. We use a Gaussian filter (3.7) and calculate the CMTs using the substantial

derivative of the filtered field, qDt “ Bt` quiBi. We analyse the temporal evolution of these

quantities in the inverse evolutions when the model is removed, and connect them to

the evolution of local energy fluxes in physical space, Σpx, tq, and in scale space, Πpk, tq.
The analysis of Ψ yields qualitatively similar results and is excluded for simplicity.

Figure 4.3 shows the probability distribution of the invariants of the unfiltered (a-d),

and filtered (e-h) velocity gradients and the their CMTs in the inverse evolution without

model. In (i-l) we show the average of Σp5∆gq conditioned to the invariants of the filtered

velocity gradients. Initially, the invariants of the filtered and unfiltered velocity gradients

form an inverse teardrop, and the average Σ conditioned to Q and R is predominantly

negative and most intense in q3 and q1, suggesting a relevant role of the antitail and of

vortex compression in the inverse cascade.

At time 0.1T0 after the inversion, the antitail of the unfiltered gradients contracts, while

the antitail of the filtered gradients remains unaltered. The probability distribution in

Q ą 0 remains similar to the initial state in both cases. According to Πpk, tq in figure
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xΣyqi
{xΣy

tΣuqi
{xΣy

All

q1 q2 q3 q4

0.11 1.05 0.81 1.54

0.01 0.28 0.17 0.54

‘`’

q1 q2 q3 q4

0.37 0.89 0.85 1.3

0.03 0.27 0.16 0.52

‘´’

q1 q2 q3 q4

1.16 0.72 0.91 0.89

0.56 0.11 0.17 0.16

Table 4.1: Conditional averages of energy transfer and contributions to the total
energy fluxes of each quadrant in the Q–R plane during the direct evolution. In the
first table we have considered all data, in the second only direct energy transfer events,
and in the last only backscatter events. Quantities are normalised with the average Σ
in the first case, and with the averages conditioned to positive and negative fluxes in
the other two cases.

3.2(a), the direct cascade has not yet regenerated at the small scales. At the filter scale,

Πpk, tq and xΣy are still negative and similar in magnitude to the initial state.

At 0.15T0, the unfiltered velocity gradients start developing dominant vortex stretch-

ing, represented by a prominent lobe in q2, and a regular Vieillefosse tail. The antitail,

although reduced, is still observable in the filtered gradients and xΣy ă 0. At this stage,

as shown in 3.2(a), an inverse cascade at the filter scale and a direct cascade in the small

scales coexist.

Finally, at 0.25T0, when the filtered velocity gradients develop structures in the Vieille-

fosse tail, the direct cascade recovers at the filter scale and xΣy ą 0.

These results indicate a strong connection between the direction of the cascade and the

orientation of the Vieillefosse tail. First, the conditional averages of Σ in the Q-R plane

show that, at 0.25T0, when the energy cascade starts to regenerate at the filter scale,

direct local energy fluxes are most intense in the q4 quadrant. Second, the differences

in the invariants of the filtered velocity gradients between 0.1T0 and 0.15T0 are only

significant in the Vieillefosse tail, but the inverse energy fluxes are reduced by a half,

xΣp0.15T0qy » 0.5xΣp0.1T0qy.

The temporal symmetry between the statistics of enstrophy dominated regions in the

attractor and antiattractor reported in §4.2 also holds during the transition from inverse

to direct phase-space trajectories. We do not find substantial differences in the evolution

of Q and R, or the CMTs, in the upper semiplane during the reconstruction of the direct

energy cascade at the filter scale.
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Figure 4.4: (a) Conditional average of Σ at scale q∆ “ 5∆g in the Q–R plane of the
filtered velocity gradients for the direct evolution with model. (b) Average Σ over Q and
R conditioned to Σ ą 0. (c) Absolute value of the average Σ over Q and R conditioned
to Σ ă 0. Values of Σ normalised with xΣy at tstats. , contours of the probability
density function of Q and R containing 0.85 and 0.9 of the data. In (c), marks
isocontours of Q and R conditioned to negative Σ for the inverse cascade. The dashed

line corresponds to D “ 0. Q and R normalised with tQ “ xQ2y1{4
.

4.3.2 Direct evolutions in the turbulent attractor

We perform the same analysis for the direct evolutions with SGS model, which reside

within the turbulent attractor. Figure 4.4(a) shows the average Σ conditioned to Q and

R. In order to discriminate between direct and inverse energy transfer, we also condition

the probability distribution of Q and R to the sign of the local energy fluxes and present

the results in figures 4.4(b-c). We quantify the relevance of each quadrant to the energy

cascade by calculating the average of Σ conditioned each quadrant in the Q–R plane,

xΣyqi
“ xΣ|pQ,Rq P qiy, and the total contribution of each quadrant to the energy

fluxes, tΣuqi
“ xΣyqi

Pqi
, where Pqi

is the probability that Q and R belong to qi and

xΣy “ ř
i“1,4tΣuqi

. We have also calculated these quantities conditioning the averages

to the direction of the energy fluxes, being

xΣy`
qi

“ xΣ|Σ ą 0, pQ,Rq P qiy, (4.14)

the average energy transfer conditioned to the quadrant qi and to Σ ą 0. Accordingly

tΣu`
qi

“ xΣy`
qi
P`
qi

is the total contribution of the quadrant qi to the positive energy

fluxes. Here P`
qi

is the probability that Q and R belongs to qi and that Σ ą 0. Statistics

conditioned to negative fluxes are denoted by ¨´. The value of these quantities are

gathered in table 4.1.
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Most intense direct energy transfer events are related to the Vieillefosse tail and to

q4, which has the highest average energy transfer, xΣyq4
„ 1.5xΣy, and contributes with

approximately 50% of the total energy transfer. Also structures in q2 are relevant to

the cascade, with contributions of around 20-30% to the total fluxes. Conversely, the

contribution of q1 to direct energy transfer is negligible. When we condition the statistics

to direct energy fluxes we obtain similar results. The statistics of Q and R conditioned

to positive Σ yield almost a complete teardrop, except for a lower probability of events

in q1.

When conditioning to negative energy transfer events we find that the average backscat-

ter is roughly similar in the four quadrants, but that the q1 quadrant contributes the

most to energy backscatter, with a 56% percent of the total. This is a consequence of

inverse energy transfer events being mostly located in q1. As shown in figure 4.4(c), the

statistics of Q–R conditioned to backscatter resemble an inverse teardrop without an

antitail. In the same figure we also plot Q and R conditioned to backscatter in the in-

verse cascade. By time symmetry, the anti-tail in q3 contributes the most to backscatter

in the inverse cascade, but this tail is absent in the direct evolution.

4.4 An entropic argument for the prevalence of direct en-

ergy fluxes

Topologies in the antitail are strongly connected to intense backscatter, but they have

negligible probability in the direct cascade. Here we provide arguments that account for

the low probability of these topologies, and consequently, of inverse cascades.

We consider the evolution of R in regions where the strain is dominant over the en-

strophy, |S|2 „ x|S|2y " |ω|2, R „ ´1

3
SijSjkSki “ ´α1α2α3, and α1 ă α2 ă α3 are

the eigenvalues of the rate-of-strain tensor. This is a good approximation to the dynam-

ics in the Vieillefosse tail and the antitail, where we find that |S|2 „ 100|ω|2. Due to

compressibility α1 ` α2 ` α3 “ 0 and the sign of R is determined by the sign of the

intermediate eigenvalue of the rate-of-strain tensor, such that α2 ą 0 corresponds to

R ą 0 and topologies in the Vieillefosse tail, and α2 ă 0 to R ă 0 and to the antitail.

We describe the evolution of R in terms of the evolution of α2, whose equation reads

Dtα2 “ ´α2
2 ´ p1

3
Bkkp` υ2q. (4.15)
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Here Bkkp “ ´1

2
|S|2 “ ´α2

1 ´ α2
2 ´ α2

3 is the trace of the pressure Hessian, which is

local, and υ2 is the contribution of HP
ij “ Bijp ´ 1

3
Bkkpδij to the evolution of α2, which

is non-local. We have discarded quadratic terms of the vorticity and the action of the

SGS model, which has been shown to have a negligible contribution to the dynamics of

intense gradients. See Nomura and Post [118] for the complete equations. Let us remove

the action of the non-local component of the pressure Hessian, υ2, which yields

Dtα2 “ 1

3
pα2

1 ` α2
3 ´ 2α2

2q ą 0. (4.16)

By definition α2
1 ą α2

2 and α2
3 ą α2

2, and the evolution of any initial value of α2 results

in the growth of the intermediate eigenvalue, leading to positive values of R. This is

the effect of the RE dynamics, which depletes the antitail in the direct cascade, and

generates intense strain in the Vieillefosse tail. The only inertial mechanism capable of

preventing the rate-of-strain tensor from developing a positive intermediate eigenvalue is

the non-local action of the pressure Hessian through υ2. This analysis is consistent with

the results presented in §4.1, where we observe that the non-local action of the pressure

Hessian sustains the antitail in the inverse cascade.

The non-local component of the pressure Hessian depends on the complete flow field:

in the absence of boundaries it can be expressed as a singular integral, which depends

on all points of the domain [119, 120]. As a consequence, the pressure Hessian is in

general decorrelated from the local dynamics of the velocity gradients [121]. In fig-

ure 4.5, we show the joint probability distribution of the of the two components of

ΦP “ tAijH
P
ji,´AijAjkH

P
kiu in the centre of the the Q–R plane, and in the Vieillefosse

tail during the inverse and direct evolution. In regions where gradients are weak and

enstrophy and strain are not segregated, the contributions of the non-local pressure Hes-

sian to Q and R appear decorrelated, with a large scatter of the data with respect to the

mean. In the Vieillefose tail, the non-local component of the pressure Hessian counter-

acts the RE dynamics, and its contributions to Q and R are correlated against the RE

dynamics. When time is reversed, these correlations are necessary to sustain the anti-tail.

As shown in 4.3.1, the contraction of the antitail is the first identifiable process in the

transition from the inverse to the direct cascade, which indicates that these correlations

are quickly destroyed when the inverse cascade is perturbed.

While the generation of topologies in the Vieillefose tail is a direct consequence of the
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Figure 4.5: (a) Joint probability density function of the components of the
probability transport velocities due to the non-local part of the pressure Hessian,
tAijHP

ji,´AijAjkHP
kiu, conditioned to different areas in the Q-R plane: , |Q| ă 1

and |R| ă 1, dashed region in (b); , Q ă ´1 in the direct evolution, shaded re-
gion in (b); , Q ă ´1 in the inverse evolution, shaded region in (b). Quantities
normalised with tQ.

local autoamplification of the rate-of-strain tensor, the generation of topologies in the

antitail requires a global configuration of the complete flow field that counteracts this

amplification through the nonlocal action of the pressure Hessian. This scenario appears

intuitively unlikely, suggesting that only specially organised flows are able to produce

such action. This is the case of the initial conditions used for the inverse evolutions, which

conserve all the information of the direct cascade process, in particular, the correlations

between the rate-of-strain tensor and non-local component of the pressure Hessian in

the Vieillefosse tail, which prevent the breakdown of the antitail in the inverse cascade.





Chapter 5

The phase-space mixing

mechanisms of the cascade

5.1 Phase-space mixing and Lyapunov exponents

In §2.2, we have argued that phase-space mixing is the fundamental mechanism of entropy

production in the energy cascade. Phase-space mixing takes place due to the chaotic

nature of the system, which can be quantified by the average separation rate of nearby

trajectories. The faster nearby trajectories diverge, the faster new unexplored regions of

phase space can be occupied by the probability distribution, thus increasing entropy as

measured by (2.3).

The rate of separation of nearby trajectories is measured by the Lyapunov exponents

(LEs), which represent an essential tool in the characterization of dynamical systems, and

quantify important properties, such as chaos or predictability. An extensive literature

has been produced on the topic of Lyapunov exponents. We point to Eckmann and

Ruelle [56], and references therein, for a review on the topic.

The LEs are defined as follows. We consider an initial base state in phase space, χpt0q,
which follows a base trajectory, and a perturbed state, χppt0q, which is separated from

the base state by an infinitesimal perturbation, δχpt0q “ χppt0q ´ χpt0q. In the limit

t Ñ 8 and |δχpt0q| Ñ 0, the largest LE is defined as,

λ “ lim
tÑ8

1

t
log

|δχptq|
|δχpt0q| , (5.1)

59
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where, under conditions of ergodicity [122], this limit exists and does not depend on t0,

χpt0q or δχpt0q. Here | ¨ | denotes a prescribed norm in phase space.

Similarly, let us consider the evolution of an infinitesimal spherical volume, δχn, along

χptq, where n is the dimension of the phase space. As the spherical volume evolves, it

is deformed into an ellipsoid, whose principal axes are δχ1, δχ2, ..., δχn. The average

contraction or expansion of these axes defines the set of all Lyapunov exponents, known

as the Lyapunov spectrum. In the limit of δχn Ñ 0 and t Ñ 8,

λi “ lim
tÑ8

1

t
log

|δχiptq|
|δχipt0q| , (5.2)

where λ1 ą λ2 ą ¨ ¨ ¨ ą λn, and λ1 “ λ.

The amount of information produced in a chaotic system is defined, under certain con-

ditions, as the sum of all positive Lyapunov exponents [123], known as the Kolmogorov-

Sinai (KS) entropy

hKS “
ÿ

λią0

λi. (5.3)

Positive KS entropy is characteristic of systems evolving under the action of chaotic

dynamics. Althought the KS entropy quantifies information, it is related to the temporal

derivative of H defined in (2.3). Latora and Baranger [89] identified a regime in the

evolution of time dependent statistical ensembles of conservative systems in which

dtH “ hKS , (5.4)

where hKS is evaluated as the sum of the positive time-local LEs. The results of Latora

and Baranger [89] support the intuitive idea that chaos is related to phase-space mixing,

and evidence that the LEs can be used as quantify entropy production by phase-space

mixing.

However, the calculation of the KS entropy for a highly dimensional system is a complex

task beyond the current numerical techniques, and the available computer resources, even

for moderate Reynolds numbers. This limitation imposes that we restrict our analysis

to the most positive LE, rather than to the whole spectrum of positive exponents. The

largest Lyapunov exponent can be readily computed, and provides an order-of-magnitude

estimation of the KS entropy.
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Following the general spirit of this work, we present a space- and time-local characterisa-

tion of the Lyapunov exponents, which connects the statistical formalism of phase-space

with the complex spatio-temporal structure of turbulence. This approach is based on

the study of the spatial structure of the so-called Lyapunov vectors (LVs). After a suffi-

ciently long integration time, the perturbation fields used to calculate the LE approach a

unique phase-space vector, which depends only the base flow field [124]. The LVs contain

information on the processes that lead to the LEs in time, scale and space, and we use

them to track and identify the mechanisms responsible for the generation of phase-space

mixing in physical space.

This analysis also provides an insight into the Lyapunov characteristics of turbulent

flows. As we will show, time-reversible turbulence offers the possibility to calculate and

compare the largest and lowest Lyapunov exponents of the flow using standard proce-

dures. Although, the negative LEs do not directly produce entropy through the spread-

ing of the probability distribution, they play an essential role in the phase-space mixing

process, which is described as the successive stretching and folding of the phase-space

probability distribution, as depicted by the Baker’s map or the Smale [125]’s horse shoe

map. While stretching is associated with positive exponents, the folding process is related

to the negative exponents.

5.2 The extreme Lyapunov exponents of a reversible tur-

bulent flow

In this section, we calculate the highest Lyapunov exponent (HLE) of reversible LES

turbulence in the direct and inverse evolutions. According to (5.1), the transformation

t Ñ ´t is equivalent to changing the sign of the LE, which entails that the time-

backwards HLE is equal to the time-forward lowest or most contractive Lyapunov expo-

nent (LLE) with changed sign. That is λ`p´tq Ñ ´λ´ptq, where λ` and λ´ denote the

HLE and LLE respectively.
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5.2.1 Algorithm

The extreme LEs are calculated for the reversible turbulent flow described in §3.1, whose

evolution equations are revisited for clarity,

Btui ` ujBjui “ ´Bip` Cs∆
2Bj |S|Sij ,

Biui “ 0.
(3.6 revisited)

The method used to estimate the extreme LEs is adapted from the standard procedure

of Wolf et al. [126], which has already been applied to statistically stationary turbulence

[127–129]. We modify this algorithm to account for the decaying nature of the system,

and the impossibility of performing ergodic averages.

The calculations start with an initial velocity field upt0q, and a small perturbation, δu,

which also fullfils continuity. The perturbed flow field is uP pt0q “ upt0q ` δupt0q. Both

the main and the perturbed flow fields are advanced a time ∆t in parallel simulations,

and a short-time approximation of the LEs is calculated,

λst “ 1

∆t
log

Dpt0 ` ∆tq
Dpt0q , (5.5)

where Dptq “ |δuptq| is the norm of the perturbation field at time t, to be defined later,

and λst depends on t0, δupt0q, and ∆t. We impose that the initial perturbation is small

enough to evolve under the linearised dynamics of (3.6).

In order to approximate the HLE, δu must be linearly evolved for a sufficiently long

time. We prevent non-linearity in the evolution the perturbation due to its exponential

growth by applying an iterative re-scaling procedure. After each time-interval ∆t, the

distance between both trajectories, Dpt0 ` ∆tq, is evaluated and the perturbation field

is re-scaled to its original distance,

δu Ð δu
Dpt0q

Dpt0 ` ∆tq . (5.6)

The process is repeated for m number of iterations, resulting in a set of m short-time ap-

proximations of the LE along a trajectory, λstpi∆tq, where i “ 1, . . . ,m. This procedure

is applied to Ns “ 2000 different trajectories in the direct and inverse evolutions, and the
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short-time approximations of the LE are ensemble-averaged to yield a time-dependent

LE.

We will show that, for i∆t and Ns sufficiently large, the ensemble average of λstpi∆tq
converges to a well-defined value in the direct and inverse evolutions. We also find that

the perturbation vectors along each trajectory evolve towards fields with common and

well-defined characteristics, indicating the convergence of δu to the LVs, which we denote

by δu` for the HLE and δu´ for the LLE. The short-time approximations to the LE

and the ensemble-averaging are necessary due to the decaying nature of the base system.

5.2.2 Implementation

The HLE is approximated along the forward evolutions starting with an initial random

perturbation field, δupt0q. When tinv is reached, and the sign of the flow field is inverted,

uι “ ´u, a new random perturbation is used for the backward trajectory starting at

tinv. Distances in phase space are calculated using the L2 norm in Fourier space, D2 “
ř
δpuiδpu˚

i , where the summation is taken over all Fourier modes. This norm is convenient

given that a conservation Liouville equation holds in a canonical form for the truncated

Euler equations in Fourier space [91]. The initial perturbation is chosen in the form of

(3.14), which we revisit here for clarity

δpuipkq “ puipkq ¨ µ exppiφq, (3.14 revisited)

where φ is a random angle with uniform distribution between 0 and 2π, and µ is a

real parameter that sets the initial energy of the perturbation. The same φ is used for

the three velocity components, so that incompressibility holds also for ûP . This form of

the initial perturbation is chosen for convenience, as it allows to set the energy of the

initial perturbation proportional to the energy of the flow field through the parameter

µ, controlling numerical issues derived from finite precision arithmetic, while keeping δu

small enough to evolve linearly.

In order to check the dependence of the LEs on µ and ∆t, we have calculated the LEs

for values in the range µ “ 10´2 ´ 10´6 and ∆t “ 0.007 ´ 0.1398T0 . In all cases, we have

obtained similar values of the LEs. All values of µ and ∆t in this range are adequate
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Figure 5.1: Evolution of the ensemble-averaged extreme LEs, λ˘ts as a function
of time in the forward evolution of the system. , HLE; LLE. The origin of
the time axis is t0 for the HLE and tinv for the LLE. ts is the pseudo-Kolmogorov time
scale defined in §3.2.

to keep the evolution of the perturbation in the linear regime, while ensuring that the

system has not changed substantially between evaluations of the short-time LE.

Different tests have been conducted to ensure the linear evolution of δu, and to check

that the final value of the LEs is independent of the initial form of the perturbation field.

The evolution of two parallel initial perturbations with different initial norm , |δu1|
and |δu2|, have been compared for the same trajectory. The ratio of the two norms,

|δu1|{|δu2|, holds during the computation of the Lyapunov exponent, proving that the

evolution of the perturbations is linear.

In order to test convergence, short-time estimations of the LE have been calculated for

the same trajectory starting with two different random initial perturbations, δu1 and

δu2, with different initial norms. The LE obtained from the evolution of δu1, δu2, and

δu3 “ δu1 ´ δu2, converge to the same value as i∆t becomes of the order of a few T0.

5.2.3 Results

The ensemble-averaged evolutions of the short-time estimations of the HLE and the LLE

are shown in figure 5.2(a). For ease of comparison, the HLE, which is obtained in the
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inverse evolution, is presented with positive sign. Results show that the ensemble-average

of short-time evaluations of the LE converges to an approximately constant value after an

initial transient for both LEs. We consider this transient as an artefact of the particular

structure of the initial perturbation field, and we discard it for statistical analysis.

The values obtained for the HLE, λ`ts “ 0.125, are in agreement with the HLE nor-

malised with Kolmogorov units calculated in a direct numerical simulation of a turbulent

channel flow by Keefe et al. [129]. In our case, we normalise the LEs with the pseudo-

Kolmogorov time scale at each time. The standard deviation of λ˘ in the ensemble of

realisations is less than 5% of the mean of the ensemble. The weak dependence of the

LEs on the microscopic details of each different realisation in the ensemble indicates that

the they are homogeneous characteristics of the turbulent attractor, and that they can

be estimated by substituting a temporal average by an ensemble-average of short time

evaluations.

The LLE is negative, and its absolute value is considerably higher than the HLE,

|λ´|ts “ 0.58. Further analysis of the structure of the LVs shows that these differences

arise from the different nature of chaotic and dissipative dynamics: while the HLE is

related to inertial dynamics, the LLE is connected to the dissipative mechanisms of the

flow.

5.3 The structure of the Lyapunov vectors in scale space

The differences between the absolute value of λ` and λ´ can be explained by analysing

their Lyapunov vectors. We define the general co-spectra of two vector fields ψ and ζ as

Eφζpkq “ 4πk2Rex pψipζ˚
i yk, (5.7)

where, in particular, the standard energy spectrum is E “ Euu, and the energy spectrum

of the Lyapunov vector is Eδuδupk, tq. The latter represents how the energy of the LV

is distributed across scales, and is useful to determine the typical length scale of the

processes that lead to the LEs.

By considering the evolution equation of δu, we derive an equation for the evolution of

Eδuδupk, tq. This equation is constructed by particularising (3.6) for the main trajectory,
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Figure 5.2: (a) Premultiplied time- and ensemble-average spectrum of the LV,
kηsEδuδu, for: , HLE; LLE. Spectra normalised with D2. Horizontal dashed
line marks the beginning of the model-dominated scales: kηs “ 0.25. (c,d) Absolute
value of the time- and ensemble-averaged production spectra for the different contri-
butions. (c) HLE: , ΓB; , |ΓM |; |ΓB ` ΓM |. (d) LLE: , |ΣB|;

, |ΓM |; |ΓB ` ΓM |. Production spectra normalised with the ensemble- and
time-averaged LE and D2.

uptq, and for the perturbed trajectory, uP ptq, and subtracting both equations. Projecting

this equation on a Fourier basis leads to,

dtδpui “ δ pBi ` δxMi, (5.8)

whereBi “ ´ujBjui´Bip are the non-linear terms of the NS equations,Mi “ Cs∆
2Bj |S|Sij

represents the SGS model, and δ denotes the difference between terms in the main and

the perturbed trajectory to order δu. Contracting (5.8) with δû˚ and taking averages
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over wave-number shells, 4πk2Rex¨yk, we arrive to an equation for the evolution of the

spectra of the LV,
1

2
dtEδuδu “ ΓB ` ΓM , (5.9)

where ΓB “ EδuδB and ΓM “ EδuδM represent the contribution in scale-space to the

amplification of the perturbations due to the non-linear terms and to the SGS model.

Considering that
ř
k Eδuδupkq “ D2 and that log φ “

ş
φ´1dtφdt, we express (5.5) as

the time average of (5.9) over a time interval ∆t,

λpt0 ` ∆tq “ 1

∆t
log

Dpt0 ` ∆tq
Dpt0q “ 1

∆t

ż t0`∆t

t0

ř
kpΓB ` ΓM qř

k Eδuδu
dt, (5.10)

connecting the production terms, ΓB and ΓM , to the sign and absolute value of the LEs.

5.3.1 Results

The ensemble-averaged spectra of the LVs for both LEs are shown in figure 5.2(a). The

spectra of the LVs and production terms have been ensemble- and time-averaged using

data in the time interval in which the LEs reach a plateau, and δu has converged to the

LV. These intervals correspond to ptinv{2, tinvq for the forward evolutions and p3tinv{2,

2tinvq for the backward evolutions. The standard deviation of the spectra in the ensemble

is small compared to the ensemble-averaged spectrum, and does not change considerably

in the analysed time-interval, indicating that also the structure of the LVs is similar across

the turbulent attractor.

The spectra of the LV of the HLE grows with decreasing scale until it reaches a plateau,

while the LV of the LLE yields a steep spectra, with energy concentrated mostly on the

smallest resolved scale. A slight tendency towards a power law, with exponent between

1 and 2, is observed in the large scales of the spectra of δu`, while in the case of δu´,

a clear k3 behaviour is identified for all wave-numbers.

The differences between both LEs and the spectra are also reflected in the production

terms in scale space, which are shown in figure 5.2(c,d). In the HLE, we find that ΓB ą 0

and that ΓM ă 0, indicating that the chaotic behaviour of the system arises only, as

expected, from non-linear interactions. The total amplification is most intense around

kηs „ 0.3, and is lower at higher wavenumbers due to the effect of the SGS model, which
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acts as a damping term, and limits the growth of perturbations in the smallest resolved

scales.

Below kηs „ 0.3, inertial dynamics, which are the only source of chaos, appear con-

strained by the LES model. This phenomenon has been previously documented in the

work of Yoshida et al. [50] and Lalescu et al. [51], who observed that perturbations in-

troduced in scales below kη “ 0.25 are damped by viscosity, indicating that, below this

scale, the dynamics are enslaved to the interaction with larger scales.

A different picture emerges in the analysis of the production terms of the LLE. Due

to negative eddy-viscosity, the model acts in the backward evolution as an amplifying

term, ΓM ą 0 (ΓM ă 0 in the forward evolution), and is more intense in the large wave-

numbers, where gradients are stronger. Most of the amplification of δu´ (contraction in

the forward trajectory) is concentrated close to the resolution limit, where the effect of

sub-grid dissipation is dominant over the non-linear terms. These results are in agreement

with the work of Yamada and Ohkitani [130], who observed that the LV of the lowest LE

in a shell model of turbulence peaks intensely at the smallest resolved scales. Production

due to the non-linear terms also aids the overall amplification, ΓB ą 0, (ΓB ă 0 in the

forward trajectory), but its contribution is marginal compared to that of the model in

the resolution limit. The LV of the LLE represents the perturbation that is damped the

fastest, which agrees well with the reported connection between the dynamics of the LV

and the dissipative mechanisms of the flow.

To summarise, the HLE reflects chaos generated by non-linear interactions at the small-

est inertial scale of the flow, whereas the LLE is strictly related to the sub-grid energy

transfer at the resolution limit. Since the focus of this investigation is the turbulent

cascade, and the SGS model represents only a necessary tool, we will isolate the inertial

scales from dissipative mechanisms, allowing to study the Lyapunov structure of the

inertial range.

5.4 The Lyapunov exponents in the inertial scales

A new procedure is devised to calculate the extreme LEs in scales where the dynamics

are not affected by the SGS model. The new LEs are computed following, with some

modifications, the procedure in §5.2. In order to avoid the effect of the SGS model, the
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Figure 5.3: (a) Absolute value of the ensemble-averaged extreme LEs in the iner-
tial range, λ˘ts, as a function of time in the forward evolution of the system. ,
HILE; , LILE; , HLE. (b) Premultiplied perturbation spectra Euu.
HILE; LILE; , HLE. Spectra normalised with D2. Horizontal line marks the
beginning of the model-dominated scales: kηs “ 0.25. Spectrum of the HLE normalised
so that ΣEuu “ 1. Spectra of HILE and LILE normalised to match the energy HLE
spectrum for kηs ă 0.25 . (c,d) Absolute value of the production spectra of the inertial
LEs for different contributions. (c) HILE. , |ΓB | (—); , |ΓB|; |ΓB `ΓM |.
(d) LILE. , |ΓB | (—); , |ΓM |; |ΓB ` ΓM |. Production of the HILE with
positive sign.

perturbation field, δu, is forced to remain confined in modes with wavenumber smaller

than kηs “ 0.25, and the interactions which yield components outside this set are inhib-

ited. To ensure that this condition is fulfilled during the evolution of δu, an assimilation

process of the main trajectory to the perturbed trajectory is applied [50], and

ûpkq “ ûP pkq if kηs ą 0.25 (5.11)

is imposed at every time step. This operation is equivalent to forcing that δupkq “ 0

if kηs ą 0.25, which is similar to a filtering operation applied on the perturbation field

with a sharp-Fourier filter at scale ∆λ “ 25ηs. The experimental set-up is in all other

aspects similar to §5.2. This procedure is used to calculate the highest and lowest inertial

Lyapunov exponents, HILE and LILE, which are denoted by λ`
ι and λ´

ι respectively.

Their corresponding LVs are denoted by δu`
ι and δu´

ι ,
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The ensemble-averaged time-evolution of the inertial LEs is displayed in figure 5.3(a),

which shows that λ`
ι converges to a value similar to the HLE when the effect of the

dissipative scales is removed. Surprisingly, also the absolute value of λ´
ι reaches a similar

value to λ`
ι and to λ`. The similar values of |λ`

ι | and |λ´
ι | suggests a potential symmetry

of the Lyapunov spectrum in the inertial scales, which is characteristic of conservative

dynamics.

Figure 5.3(b), shows the ensemble-averaged premultiplied spectra of the LVs in the

inertial scales, which are similar and match the spectrum of the highest LV for kηs ă 0.25.

Most of the energy is concentrated towards kηs “ 0.25, where the boundary for the

perturbations is imposed by the assimilation process.

Figures 5.3(c,d) shows the production spectra of the inertial LEs, which are similar

and are both dominated by the amplification due to the non-linear terms. In the case of

the HILE, non-linear terms produce chaos, ΓB ą 0, while, in the case of the LILE, they

produce contraction of the perturbations, ΓB ă 0. In both cases, |ΓM | is only around

15% of |ΓB|, evidencing that the modes below kηs „ 0.25 are mostly driven by inertial

mechanisms.

5.5 A space-local measure of chaos and phase-space mixing

The complex spatio-temporal structure of turbulent flows demands analytical procedures

that are able to capture the distribution of relevant dynamics in the temporal and spatial

coordinates. However, the analytical framework of statistical mechanics has not been yet

fully adapted to consider these ideas.

We address this limitation by extending the definition of the LEs to the spatio-temporal

coordinates of turbulent flows, where the spatial and temporal information is extracted

from the analysis of the LVs. Following the approach used to derive (5.8), we define the

Lyapunov exponent as the temporal average of the short-time LE,

λ “ lim
∆tÑ8

1

∆t

ż t0`∆t

t0

λst dt, (5.12)
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which is equivalent to (5.1). The short-time Lyapunov exponents is defined as the local

amplification rate of the norm of δχ,

λst “ 1

|δχ| dt|δχ|. (5.13)

This approach, which has been previously used by Vastano and Moser [128] or van Veen

et al. [131] among others, serves to characterise the temporal structure of the LEs and

their relation to the temporal dynamics of turbulent flows. The Lyapunov vectors are

complete flow fields with spatial structure, and a similar decomposition of the LE is also

possible in space.

5.5.1 The local amplification rate as a space-local Lyapunov exponent

We consider the LVs, δu˘px, tq, as flows field in physical space, where x has been pur-

posefully introduced to indicate the dependence of δu on the spatial coordinates. We

redefine the LEs as the spatial and temporal average of a scalar,

λ “ lim
∆tÑ8

1

∆t

ż t0`∆t

t0

xλℓpx, tqy dt, (5.14)

where λℓ is a space- and time-local decomposition of λ. Although this decomposition is

not unique, and many forms of λℓ fulfil (5.14), the evolution equations of δu provides a

physically meaningful definition of λℓ.

First, we subtract the evolution equation of uP px, tq from the evolution equation of

upx, tq. Neglecting quadratic terms in δu, we obtain an equation for the evolution of δu

in physical space,

Dtδui “ ´δujBjui ´ Biδp ` BjpνsδSij ` δνsSijq, (5.15)

where δp is the pressure field that enforces incompressibility on δu, δSij is the rate-of-

strain tensor of the perturbation field, and δνs is the difference between the eddy-viscosity

of the main and the perturbed velocity field. The contraction of (5.15) with δu yields

an equation for the evolution of the kinetic energy of δu, denoted by Λpx, tq “ 1

2
δuiδui,

DtΛ “ ´δuiSijδuj ´ δSijpνsδSij ` δνsSijq ´ Bjpδuiδpi ´ δuipνsδSij ` δνsSijqq. (5.16)
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Figure 5.4: Probability density function of (a) δu “
?

2Λ and (b) λℓ of , HILE.
, LILE, , HLE, ‚, Gaussian distribution. λℓ for the LILE with positive sign.

Following a similar procedure as the one used to derive (5.9), and considering that D2 “
2xΛy, we obtain

λpt0,∆tq “ 1

2∆t
log

xΛypt0 ` ∆tq
xΛypt0q “ 1

2∆t

ż t0`∆t

t0

dt logxΛy dt. (5.17)

This equation can be further decomposed by considering that dtxΛy “ xDtΛy,

λpt0,∆tq “ 1

∆t

ż t0`∆t

t0

dtxΛy
2xΛy dt “ 1

∆t

ż t0`∆t

t0

xDtΛy
2xΛy dt, (5.18)

where the local amplification rate is defined as

λℓpx, tq “ 1

2xΛyDtΛpx, tq. (5.19)

This decomposition is supported on the existence of an evolution equation for Λ, which

allows to interpret λℓ as the local amplification rate of the energy of the LV.

We focus on λℓ, and not on Λ, because it contains dynamic information of the active

amplification processes that lead to the LEs. This novel definition is original of this

thesis, and we will use it to characterise the local structure of chaos and phase-space

mixing in the inertial range. Results show that this quantity has potential applications

for the characterisation of chaos in turbulent flows and other spatially extended chaotic

systems.
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5.6 Statistical analysis of the local amplification rate

We calculate λℓ using the LVs of the HLE, the HILE and the LILE. We exclude from the

analysis the LLE, which is mostly connected to the dynamics of the SGS model. In figure

5.4(a,b), we show the probability density function of the magnitude of the perturbation

field, δu “
?

2Λ, and of λℓ for the HLE, and for both inertial LEs, where λℓ for the HILE

is considered with positive value. Results show that δu is not specially intermittent,

whereas λℓ displays wide tails towards intense positive and negative values.

Although the sign of the LEs is well defined, λℓ takes negative values in approximate

25% of the volume, and the average of λℓpxq ą 0 is roughly 1.5xλℓy in the three cases.

From the statistical analysis of λℓ, we find that xλ12
ℓ y1{2 „ 3xλℓy for the inertial LEs

and xλ12
ℓ y1{2 „ 6xλℓy for the HLE, which implies that λℓ reaches positive and negative

values an order or two of magnitude grater than the average. The positive tails of the

probability distribution of λℓ for the HLE approximate a power law with probability

proportional to λ´4

ℓ , whereas for the inertial LEs this trend is not observed.

The weighed probability distribution of λℓ, λℓP pλℓq indicates that the most impor-

tant contributions to the mean come from events with an intensity close to the mean,

λℓ „ xλℓy. We will show that these events are related mostly to rather quiescent and fea-

tureless regions of the flow. The intermittent distribution of λℓ suggests that the intense

amplification events are localised in a small fraction of the volume, where λℓ is several

times larger than in the background. The statistical analysis of λℓ reveals that intense

positive events of λℓ are connected to distinct events of the base flow, while negative

events of λℓ are not.

5.6.1 The spatial structure of the local amplification rate

We characterise the spatial distribution of intense events of Λ and λℓ by studying the

degree of clustering of these fields. We apply a procedure used in the analysis of coherent

eddies in turbulent flows [41, 132, 133]. A test scalar field φ is thresholded at apβ;φq “
xφy ` βxφ12y1{2 and connected structures such that φpxq ą apβ;φq are extracted. This

procedure allows to estimate the typical size of regions where Λ or λℓ are intense.
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Figure 5.5: Probability density function of the fraction of the total volume
V P pV q{Vm contained in structures of size V 1{3{∆λ for (a) Λ and (b) λℓ and for ‚,
HILE; �, LILE, where the mean volume is Vm “

ş
V P pV q dV . Threshold β “: ,

1.5; 2.0; , 3.0.

Figure 5.5(a,b) shows the probability density function of the fraction of the total volume

that is contained in structures of a given size V 1{3 for Λ and λℓ. The three different

thresholds used are β “ 1.5, 2 and 3. Results show that intense events of Λ and λℓ are

contained in structures with a typical size of approximately 2∆λ “ 50ηs. The lowest

threshold β “ 1.5 contains approximately 20% of the energy of δu and 25% of the total

positive λℓ. Similar results where obtained for the LVs of the highest LE of the complete

system (not shown), except that the clustering happens at scales of the order of 10ηs.

5.6.2 The local amplification rate and the velocity gradients

By analysing the different terms that contribute to λℓ in (5.16), we obtain a first evi-

dence of the connection between the dynamics of the LVs and the dynamics of the base

flow. The first term in right-hand side of (5.16) is the amplification associated with the

stretching or compression of the perturbation field by the rate-of-strain tensor of the

flow, ´δuiSijδuj , which is the only term able to produce mean positive amplification

in the forward evolutions. The second term is the dissipation of the perturbation field,

´δSijpνǫδSij ` δνǫSijq, which is related to the gradients of δu and to δνǫ, and can be

neglected for the inertial LEs. The sign of this term depends on the sign of Cs, which

is always negative for the forward trajectories. Finally, the third term, which represents

the divergence of a flux and has zero average, describes the effect of the pressure and the

diffusion of the SGS-model. This term rotates the perturbation vector in phase space,

but its mean contribution to the total amplification is strictly zero. It follows from this
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analysis that only the production due to the non-linear terms, and the dissipation due

to the SGS model are responsible for the growth or decay of the norm of the LVs.

In §5.3, we have shown that the energy spectrum of the LVs of the extreme LEs peaks

at the small scales of the flow, which suggests that the velocity gradients of the base flow

play an important role in the amplification of the perturbations. This relation is directly

extracted from (5.16), which shows the relation between the amplification of δu and the

rate-of-strain tensor.

5.6.3 Conditional statistics of the local amplification rate

Following this analysis, we study the statistical connection of intense events of λℓ for the

inertial LEs with the local structure of the velocity gradients. The constrain imposed

on δu to calculate the inertial LEs limits the smallest scale of the LVs. Consequently,

we study the velocity gradients filtered at scale ∆̌ “ ∆λ “ 25ηs with a Gaussian filter

(3.7). Quantities calculated from the filtered gradients at scale ∆̌ are marked with ˇ̈.

We consider data in the temporal interval ptinv{2, tinvq for the forward evolutions and

p3tinv{2, 2tinvq for the backward evolutions. Statistics are normalised with average values

at each time.

We condition the statistics of λℓ to the invariants of the filtered velocity gradient tensor,

Q̌ and Ř, defined in (4.1) and (4.2), and to vortex stretching and strain production,

ω̌iSijω̌j and Šij ŠjkŠki. Figures 5.6(a,c) show the average of the positive events of λℓ

conditioned to Q̌ and Ř. We observe that strong local amplification of the HILE is mostly

located in the tip of the Vieillefosse tail (Q̌ ă 0 and Ř ą 0), where strain production

is dominant over vortex stretching, and the strain is dominant over the enstrophy. The

rate-of-strain tensor has in this quadrant two positive and one negative eigenvalue. Some

intense amplification is also found in the Q̌ ą 0 and Ř ă 0 quadrant. In the case of the

LILE, amplification (contraction in the forward trajectory) is also more intense in the

Q ă 0 semi-plane but displaced towards Ř „ 0. In this case we do not observe intense

events in the upper semi-plane.

The conditional average of negative events of λℓ are shown in figure 5.6(b,d). We observe

some relation between negative events of λℓ and vorticity-dominated regions of the flow.

For the HILE, these events seem to be related with vortex compression, while for the
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Figure 5.6: Average of positive local amplification rate λℓ conditioned to Q̌ and Ř
for (a) HILE and (c) LILE. λℓ for the HILE is considered with positive average value.
Absolute value of the average of negative local amplification rate λℓ conditioned to Q̌
and Ř for (b) HILE and (d) LILE. Conditional averages normalised with the absolute
value of xλℓy. , contours of the probability density function contain Q̌{xQ̌2y1{2 and
Ř{xQ̌2y3{2 that contain 0.4, 0.6 and 0.8 of the data.

LILE there is a predominant relation of intense λℓ with vortex stretching. However, the

conditional averages of negative λℓ events are closer to the mean than the averages of

positive events, indicating that these events do not depend strongly on the local structure

of the flow. These results evidence that weak and negative events of λℓ are not associated

with particularly intensente events of the base flow, but seem the consequence of weak

background turbulence.

In figure 5.7(a-d), we present the average of positive events of λℓ of the HILE and

LILE conditioned, first, to the square of the rate-of-strain tensor and the square of the

vorticity vector, and second, to vortex stretching and strain auto-amplification. For the

HILE, the average amplification is larger for large values of Šij Šij and large negative

values of Šij ŠjkŠki, which describes regions where the rate-of-strain tensor is strong, and
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Figure 5.7: Average of positive local amplification rate λℓ conditioned to (a,b) the
square of the vorticity vector and the square of the rate-of-strain tensor and to (c,d)
vortex stretching ω̌iŠijω̌j and strain auto-amplification Šij ŠjkŠki for (a,c) HILE and
(b,d) LILE. λℓ for the HILE is considered with positive average value. Conditional
averages normalised with the absolute value of xλℓy. , contours of the probability
density function contain 0.6, 0.8 and 0.9 of the data.

has a negative intermediate eigenvalue. Intense amplification events of the HILE are

related to a strong magnitude of the rate-of-strain tensor, but not to the sign of ω̌iŠijω̌j.

In accordance to the conditional analysis in the Q̌ and Ř space, intense λℓ appears to

be more correlated to the rate-of-strain tensor and the strain auto-amplification, than

to the vorticity vector and vortex stretching.

5.6.4 The local amplification rate and the rate-of-strain tensor

We have presented statistical evidence of a strong connection between intense events of

λℓ and an intense magnitude of the rate-of-strain tensor. We further characterise this

relation by analysing the local configuration of δupx, tq with respect to the principal
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Figure 5.8: Cosine of the angle of alignment of the local perturbation field δu with
the eigenvectors of the rate-of-strain tensor and with the vorticity vector for (a) HILE
and (b) LILE. , v1; , v2; ,v3; ‚, ω.

directions of the rate-of-strain tensor, which determines the sign and intensity of the

production term.

We unfold ´δuiSijδuj in the projection of δupx, tq into each of the three eigenvectors

of the rate-of-strain tensor, denoted by v1, v2 and v3, leading to

´ δuiSijδuj “ ´2Λpα1 cos2pθ1q ` α2 cos2pθ2q ` α3 cos2pθ3qq, (5.20)

where α1 ą α2 ą α3 are the eigenvalues of the respective eigenvectors and θ1, θ2 and

θ3 are the angles of δupx, tq with v1,v2 and v3. This analysis is similar to the analysis

of the alignment between the vorticity vector and the eigenvalues of the rate-of-strain

tensor [134].

Figure 5.8(a,b) shows the probability density functions of θ1, θ2 and θ3 for the inertial

LEs. We observe a clear alignment of δu`px, tq with the most contracting direction, v3.

Results also show that δu`px, tq and δu´px, tq are predominantly configured perpendic-

ular to v1 and to v3 respectively. There is no significant alignment of the perturbation

field with the intermediate eigenvector, v2, or with the vorticity vector. The alignment of

δu˘ with the filtered vorticity vector at different scales has been computed to discard po-

tential interscale alignment, such as that present between vorticity and the rate-of-strain

tensor at different scales [41, 108].

From incompressibility follows that α1 ` α2 ` α3 “ 0, and the relative magnitude

between α1 and α3 is given by the sign of the intermediate eigenvalue α2. Positive α2
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Figure 5.9: Joint probability density of the local energy transfer Σ “ τijSij at scale
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, LILE. Contours at 0.9, 0.5, 0.1, 0.05 and 0.01 of the maximum of the probability
distribution.

implies that |α3| ą |α1|, while when α2 ă 0 leads to |α1| ą |α3|. We expect strong

positive events of λℓ for the HILE to take place near configurations of the rate-of-strain

tensor with α2 ą 0. This is the case as shown in figure (5.6), where intense λℓ is located

in the Vieillefosse tail. Furthermore, we find that the average of λℓ conditioned to α2 ą 0

is three times larger than in regions where α2 ă 0. Conversely, events of the λℓ for the

LILE should be stronger when α2 ă 0, but the average of λℓ is approximately similar

whether conditioned to sign of α2 or not.

5.6.5 The local amplification rate and the energy fluxes

The conditional probability of λℓ in the Q–R plane resembles the one found for the local

energy fluxes in physical space, shown by figure 4.4(a). Most of the intense events of Σ

and λℓ are located in the Vieillefosse tail, where strain and strain auto-amplification is

dominant over enstrophy and vortex stretching. The connection between energy fluxes

and phase-space mixing, as described in §2, suggest that there might be some local

correlation between λℓ or Λ, and Σ. In figure 5.9(a,b), we display the joint probability

density function of Σ with λℓ, and of Σ and Λ, which shows that these fields are not

strongly correlated. The correlation coefficient, defined in (3.18), between λℓ, or Λ, and

Σ are low, SΣ,λℓ
“ 0.25 and SΣ,Λ “ 0.163. This is probably a consequence of considering
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Figure 5.10: Visualisation of the field of intense λℓ. Isosurfaces of: (blue) in-
tense vortical regions, Q̌{xQ̌2y1{2 “ 2Ř{xQ̌2y3{2 ` 2; (red) intense strain, Q̌{xQ̌2y1{2 “
2Ř{xQ̌2y3{2 ´ 2; (green) intense amplification of the HILE, λℓpxq ą 8xλℓy.

only the extreme LEs, which are not able to cover all the chaotic events in the spatial

coordinates. We expect this analysis to yield more complete results when more LEs are

available.

5.6.6 Conditional 3D statistics of intense local amplification events

Visualisation of structures of strong velocity gradients and of high positive λℓ suggest that

intense amplification events take place in regions where structures of intense strain and

intense enstrophy interact closely. An example of this type of configuration is displayed

in figure 5.10, where an intense amplification event develops close to a knot of intense

gradients formed by structures from the Vieillefosse tail and from the Q ą 0 and R ă 0

quadrant. In this section we will show that, although intense λℓ is not locally related

to the dynamics of the vorticity vector, it is non-locally connected to the dynamics of

stretched vortices.

We characterise the structures that originate strong amplification events of λℓ by con-

sidering 3D averages of relevant turbulent quantities conditioned to the intense maxima
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Figure 5.11: Conditional 3D average of enstrophy, strain and energy transfer around
maxima of λℓ, where λℓ ą 4xλy, for the (a,b) HILE and (c,d) LILE. Views of plane (a,c)
x1

1
“ 0 and of plane (b, d) x1

2
´x13 “ 0. Color field corresponds to xλℓym normalised with

xλℓy. Isocontours correspond to: x|ω̌|ym “ 1.5x|ω̌|y; x|ω̌|ym “ 1.2x|ω̌|y;
xΣym “ 2.4xΣy; xΣym “ 1.7xΣy; x|Š|ym “ 1.4x|Š|y; x|Š|ym “ 1.2x|Š|y.

of the λℓ field. This approach has been previously used to characterise the dynamics of

turbulent flows [133, 135, 136].

The procedure used to obtain 3D averages is as follows. First, we find all the local

maxima of λℓ in different flow fields of the ensemble, and select those local maxima

at which λℓ ą βxλy, where β is a threshold. The spatial coordinates of the maxima is

denoted by xm. The maxima are defined as points where λℓ is larger than in any of the

surrounding points in the mesh. We have checked that λℓ is sufficiently smooth for this

approach to yield appropriate results. Second, we calculate relevant turbulent quantities

around each maximum, and extract these fields to perform a 3D average considering the

local maxima as the origin of spatial coordinates, such that the spatial coordinates for

the average are x1 “ x ´ xm. The conditional 3D average of a turbulent quantity, φ,
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around the set of maxima is denoted by xφympx1q.

Due to the statistical isotropy of the flow field, the resulting average field is also isotropic.

In order to orient the extracted fields prior to averaging, we use the three eigenvalues of

the rate-of-strain tensor, vi, at xm. This election of the reference frame is supported on

the strong connections between λℓ and the rate-of-strain tensor. Since we are analysing λℓ

in the inertial scales, we consider the filtered rate-of-strain tensor at scale ∆̌ “ ∆λ “ 25ηs.

We orient the extracted fields before averaging by rotating them around the origin, such

that x1
1 corresponds to the direction of the most stretching eigenvector, v1, and x1

3 to

the direction of the most compressing eigenvector, v3. This configuration automatically

satisfies that x1
2 corresponds to the direction of the intermediate eigenvector. This ar-

rangement, however, is still symmetric with respect to the three planes perpendicular to

the principal directions. In order to remove this symmetry, the extracted fields are re-

flected in each direction so that the maxima of the enstrophy of each field is located in the

x1
1 ă 0, x1

2 ă 0 and x1
3 ă 0 octant of the average field. To avoid considering maxima which

are far away from the origin, which are unrelated to the dynamics of the local maxima

of λℓ, we weigh the enstrophy field with a Gaussian function, Gpx1q “ expp´|x1|2{ϕ∆̌2q,
where ϕ is a parameter that sets the width of the Gaussian. We only apply this weight

to find the maxima of the enstrophy, but not for averaging. We have checked that the

results obtained using this procedure do not depend strongly on ϕ for values of ϕ of

order unity, and choose ϕ “ 2.

The conditional statistics have been constructed from 100 fields, each extracted from

a different realisation of the ensemble at a fixed time, t´ t0 “ 0.9T0 for the HILE, and

t ´ tinv “ 0.9T0 for the LILE. From these fields we have extracted approximately 3000

different maxima of λℓ for each LE, which fulfil that λℓ ą 4xλℓy. The qualitative picture

is similar for higher threshold of λℓ. Results show that this number of individual maxima

is enough to converge the conditional statistics.

We have calculated the conditional 3D average of the intensity of the vorticity vector,

x|ω|ympx1q, of the intensity of the rate-of-strain tensor, x|Š|ympx1q, and of the energy

transfer in physical space, xΣympx1q. The 3D structure of these conditional-averaged

quantities for the HILE and LILE are shown in figure 5.11(a-d). In figure 5.11(a,d) we

show a cut normal to v1, at x1
1 “ 0, and in figure 5.11(b,c) a cut in the plane x1

3 “ x1
2.

For both LEs, we observe that the maxima of the conditional-averaged strain and energy
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transfer are located in the centre of the volume, where, by construction, we also find the

maxima of xλℓym.

Around the origin, we identify the presence of average vortical structures characterised

by a value of x|ω̌|ym larger than the average. We observe a large vortex with three smaller,

weaker vortices located in the surroundings of intense conditional-averaged strain. These

vortical structures are located 45˝ from v2 and v3. While the strongest vortex is imposed

by the reflection operation applied to remove symmetries, the appearance of the weaker

vortices is not trivial and suggest that intense events of λℓ are a product of the close

interaction of a strong vortex with, at least, a weaker vortex.

The average quantities around the maxima of λℓ are higher for the HILE than for the

LILE. The maxima of the conditional averages are x|ω̌|ymaxm “ 1.8x|ω̌|y, xŠymaxm “ 1.5xŠy
and xΣymaxm “ 2.7xΣy for the HILE, and x|ω̌|ymaxm “ 1.6x|ω̌|y, xŠymaxm “ 1.4xŠy and

xΣymaxm “ 2.0xΣy for the LILE. The low values of xSym and of x|ω̌|ym suggests that

intense events λℓ often take place in regions where either the strain or the enstrophy

are not substantially larger than the average, but where both quantities are segregated.

This picture is consistent with the conditional averages of λℓ in the Q-R space, and

indicates that, not only the magnitude of the strain, but also the orientation of δu

with respect to the rate-of-strain tensor determines the space-local amplification of the

LV. The similarities in the conditional averages obtained for both LEs suggest that the

fundamental difference between the local amplification of the HILE and LILE resides in

the local orientation of the perturbation field with respect to the rate-of-strain tensor,

as shown in §5.5.





Chapter 6

Discussion and conclusions

In this chapter, we summarise and discuss the original results presented in this work,

and their future implications for the characterisation of the energy cascade.

This thesis hinges on a reversible turbulence system constructed using a reversible LES

model for the sub-grid stresses. In this system, the transformation u Ñ ´u is equivalent

to t Ñ ´t, and changing the sign of the velocity field leads to inverse turbulent evolutions

which display a sustained inverse energy cascade towards the large scales.

6.1 The conservative nature of the energy cascade

Throughout this thesis, we have presented strong evidences of the nature of the en-

ergy cascade as a conservative, volume-preserving process in phase space, in which the

breaking of the temporal symmetry, i.e the ‘arrow of time’, is not a consequence of the

dissipation.

In §3.2, we have conducted different experiments on reversible LES turbulence. In

particular, we have shown that the sustained inverse cascade in the inverse evolutions is

a consequence of inertial mechanisms only, while the SGS model acts as a necessary source

of energy. By reversing the energy cascade of a system with an irreversible SGS model, we

have proven that microscopic reversibility is a fundamental property of inertial dynamics,

regardless of the particular nature of the dissipative mechanisms. This experiment proves

that our conclusions are applicable to the inertial range of fully developed turbulence,
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and offers further evidence of the similarities between the behaviour of the NS equations

in the inertial range and the Euler equations.

In §5.4, we have analysed the Lyapunov structure of the inertial range by restricting the

calculation of the LEs to modes where inertial forces are dominant. Results show that

when inertial mechanisms are isolated, the most positive and most negative LEs have

similar absolute value. These results suggest a potential symmetry of the Lyapunov spec-

trum in the inertial scales, which is characteristic of Hamiltonian systems. The inverse

and direct cascades are effectively driven by microscopically time-reversible dynamics,

and the inertial range behaves as a conservative out-of-equilibrium Hamiltonian system,

which preserves phase-space volume.

A similar procedure as the one used to calculate the inertial Lyapunov exponents

might be used to obtain partial Lyapunov spectra in fully developed turbulence. By

conveniently choosing and varying the number and distribution of the targeted degrees

of freedom, it could be possible to obtain novel information to characterise chaos and

predictability in the energy cascade. We suggest that these partial spectra could be

used to, at least approximately, reconstruct the complete Lyapunov spectrum of fully

developed turbulence, allowing to further test the Hamiltonian structure of the inertial

range.

6.2 The attractor vs the antiattractor

Reversible turbulence provides access by a change in the sign of the velocities to the

antiattractor, which is composed of the set of turbulent states in the attractor with

inverse sign. The analysis of phase-space trajectories in the attractor and antiattractor

serves to characterise and explain the origin of the time-symmetry breaking and the

prevalence of direct energy cascades.

6.2.1 Time-symmetry breaking in phase space

In §3.3.1, we have characterised the distribution of inverse trajectories in phase space.

By perturbing inverse phase-space trajectories within the antiattractor, we have shown

that inverse evolutions exist in a wide region of phase-space, and that they lie separated
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from the direct evolutions. The perturbed inverse phase-space trajectories diverge from

the original trajectories due to the chaotic nature of the system, and eventually evolve

towards the turbulent attractor, which is composed almost exclusively by trajectories

with a direct energy cascade.

These experiments prove that the antiattractor is ‘unstable’ and that inverse cascades

can only be observed for a finite time. Moreover, the fluctuations of the spatially-averaged

sub-grid dissipation in the turbulent attractor are much smaller than the phase-space av-

erage, indicating that there is a extremely low probability that the system spontaneously

escapes the attractor and develops an average inverse cascade.

In §5.2 we have shown that the absolute value of the most negative LE is larger that

the value of the most positive LE, |λ´| ą |λ`|, which reflects the contraction of phase-

space volume due to the dissipative nature of the system. The direct trajectories are

less repelling than the inverse trajectories, and, therefore, we might expect the system

to spend longer times close to a direct than to an inverse trajectory. In the formalism of

the fluctuation relations, Evans and Searles [76] used a similar argument to justify the

low probability of inverse trajectories in reversible dissipative systems.

6.2.2 Time-symmetry breaking in physical space

In the spirit of the local formulation of the fluctuation relations [104], we have traced

the low probability of inverse phase-space trajectories to the low probability of intense

backscatter events. We have estimated the probability of inverse cascades by using the

statistics of volume-averaged space-local energy transfer events. We quantify the prob-

ability of direct over inverse cascades using the asymmetry function P to quantify the

probability of observing a direct cascade in a volume V , over the probability of observing

an inverse cascade over the same volume.

In the range of large volume sizes, V „ L3, in which volume-averaged inverse fluxes are

observable, we find that log P „ N , where N is a measure of the number of independent

energy transfer events consider in the volume average. Although we have proved that the

statistical distribution of the addition of decorrelated energy transfer events approaches

a normal distribution around the mean, log P is dominated by the negative tails of the

probability distribution of the locally-averaged energy fluxes, which remain non-Gaussian



Conclusions

even for large averaging volumes. This strong non-Gaussianity is a consequence of the

multiscale nature of the cascade process, as illustrated by simple cascade models [21, 106],

and precludes the direct application of local versions of the fluctuation relations to predict

energy backscatter. Neither are the global fluctuation relations of any use: turbulence is

too far from equilibrium.

Supported on the physical-space locality of the cascade reported in §3.3, we have ex-

plained the low probability of inverse cascades by, first, identifying the mechanisms re-

sponsible for ineverse energy transfer, and, by, second, justifying their negligible prob-

ability. In §4.3.1, we have shown that, in the antiattractor and in the transition from

the antiattractor to the attractor, intense inverse energy transfer events occur in regions

where the strain is dominant over the enstrophy, and where the rate-of-strain tensor

has a jet topology, i.e one positive, and two negative eigenvalues. This configuration

corresponds to topologies in the antitail of the Q–R space, which have negligible prob-

ability within the attractor. The conditional mean trajectories in the Q–R space show

that the low probability of topologies in the antitail is a consequence of the inability

of the non-local component of the pressure Hessian to counteract the restricted Euler

dynamics.

In view of these results, we propose that the low probability of inverse cascades is

a consequence of the negligible probability of topologies in the antitail, and suggest an

entropic argument to explain this fact. The generation of topologies along the Vieillefosse

tail is encoded in the point-wise interaction of the velocity gradients and is strictly

local. Any possible organisation of the vorticity vector and the rate-of-strain tensor

will generate topologies in the Vieillefosse tail under the action of the RE dynamics.

On the other hand, the formation and sustenance of the antitail requires the global

action of the non-local component of the pressure Hessian to generate intense strain

with a negative intermediate eigenvalue. Due to non-locality, the dynamics of the pressure

Hessian depend on a large number of degrees of freedom. While the dynamics of any

flow field, even random fields, lead to the generation of a Vieillefosse tail due to RE

dynamics, only very special flow fields are sufficiently organised so as to counteract the

RE dynamics and form an antitail. This argument would explain, not only why the

direct energy cascade in the attractor is more probable than the inverse energy cascade

in the antiattractor, but why, in general, direct cascades are more probable than inverse

cascades.
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6.3 The energy cascade in physical space

6.3.1 Locality of the energy cascade in physical space

In order to connect the statistical formalism of phase space with the dynamics of the

energy cascade, we have started by studying the spatial structure of the local energy

fluxes in physical space in §3.3.

We have shown that the local energy fluxes have a finite correlation length, which scales

with the filter width. The statistical behaviour of the volume average of the energy

transfer field indicates that the cascade is an approximately local process in physical

space, which complies well with the classical picture proposed by Richardson [8], and

the recent work of Cardesa et al. [28].

In this analysis, we have also dealt with the arbitrariness of the energy fluxes, proving

that the direct energy cascade is, on an a locally average sense, robust to two different

definition of the fluxes. We have studied Σ and Ψ, which differ by the divergence of a

flux in physical space and have equal spatial average, xΣy “ xΨy. Although locally very

different, both quantities are strongly correlated when volume-averaged over volumes

of their correlation length cubed. These results suggest that the differences between

both definitions are highly local, and that both markers are reasonable quantifiers of the

intensity of the cascade in a local average sense.

We have only tested two different definitions of the energy fluxes, and further research

is necessary to determine whether better definitions are possible, and whether these

definitions provide different insights into the dynamics of the cascade. In view of these

results, we hypothesise that, although differences might be arbitrarily large on a strictly

local sense, they should not be on a locally average sense.

This analysis is of special relevance for some LES tools, which model the sub-grid

stresses to reproduce the energy fluxes across the cutoff scale. Although the correlation

between the modelled sub-grid stresses and the a priori stresses is known to be quite

low, at least for the classical Smagorinsky model [30, 137], these models predict well the

energy spectrum and the dissipation rate in decaying homogeneous turbulence [98, 138].

This is probably a consequence of the indeterminacy of fluxes: it is possible to find
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infinitely many different representations of the sub-grid stresses which yield a similar

local sub-grid dissipation.

6.3.2 Is backscatter dynamically relevant for the cascade?

A relevant difference between Σ and Ψ is the frequency and intensity of backscatter

events, which are stronger and more probable for Ψ than for Σ. When we apply a volume-

average operation, the differences between both markers in the probability and intensity

of backscatter events are greatly diminished. This seems to be a consequence of the

significant reduction of backscatter events after the volume-averaging operation.

The correlation between the local energy fluxes at scales separated by a factor of 2 is

significant and decreases when scales are separated by a factor of 4, corroborating the

reported scale locality of the cascade [28, 139–141]. When conditioning these correlations

to the local direction of the cascade, we find that they are equally strong for direct energy

fluxes. However, we find that for backscatter this correlations are weak even between

scales separated by a factor of 2.

Backscatter is highly local in scale, and strongly depends on the definition of the fluxes.

This phenomenon seems not a consequence of interscale interactions, as the direct cas-

cade, but rather of strictly scale-local dynamics.

This picture suggest that the dynamical significance of backscatter to the energy cas-

cade is limited. Evidences are again provided by the good agreement between LESs

and DNSs, despite the inability of available sub-grid model to reproduce backscatter.

Although the present work strongly emphasises the bidirectionality of the cascade, our

results indicate that turbulent flows are sufficiently far from equilibrium as to preclude

the observation of local inverse cascades.

This might not be the case under different conditions, such as in wall-bounded flows,

where the energy containing-scales are larger than the energy-producing scales, and

backscatter must exist to feed the former [142]. Our results suggests that this average

inverse cascade could be related to the presence of strong anisotropies in these flows.
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6.4 The structure of the inertial range and the energy cas-

cade

6.4.1 The rate-of-strain tensor as a marker of statistical irreversibility

We have compared the structure of the direct and inverse cascades through the study of

the invariants of the filtered velocity gradient tensor, Q and R, and its conditional mean

trajectories (CMTs). We find that the statistics of Q and R differ substantially from

direct evolutions in the attractor, to inverse evolutions in the antiattractor. At variance

with the classical teardrop shape, Q and R form an inverse teardrop in the inverse

evolutions, with dominant vortex compression in Q ą 0 and an ‘antitail’ in Q ă 0.

We have quantified these differences using an asymmetry function in the Q–R plane,

which reveals that most of the asymmetry between the structure of the attractor and the

structure of the antiattractor is reflected in the Q ă 0 semiplane. These results suggest an

important connection between the structure of the rate-of-strain tensor, and the direction

of the system in time. In the attractor, the rate-of-strain tensor has predominantly one

negative and two positive eigenvalues (layer topology), while in the antiattractor, it has

two negative and one positive eigenvalues (jet topology). Intense events of the rate-of-

strain tensor with these topologies are not shared between the two cascades. On the

other hand, it is more challenging to distinguish the inverse from the direct cascade by

fixing on the statistics of regions where enstrophy is dominant over the strain: vortex

stretching and compression in enstrophy dominated regions are common in both the

attractor and antiattractor.

These results emphasise the importance of the rate-of-strain tensor in the dynamics of

the energy cascade. We have shown that a change in the sign of the velocity field is much

more relevant to the dynamics of the system in regions where the strain is dominant than

in regions where vorticity is dominant. A change in the sign of vorticity only changes the

sense of rotation of a vortex but not its fundamental dynamics, as illustrated for instance

in the Burgers [143]’s model. On the other hand, a change in the sign of the rate-of-strain

tensor has fundamental implications, as it reverses the evolution of both the enstrophy

and the strain in the inviscid case. The different nature of the rate-of-strain tensor and

the vorticity vector is evident in the evolution equations of the strain and the enstrophy,

(4.3, 4.4), which are odd with the former and even with the latter.
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However, we must consider that the two quantities are not independent, and that chang-

ing the sign of the vorticity changes the sign of the strain, and vice versa. Both quantities

are strongly coupled through kinematic relations [144], and must be consider simultane-

ously, but it is the rate-of-strain tensor that reflects most of the statistical irreversibility

of turbulent flows. If we were a local observer in the inertial scales of turbulence, and we

were to establish the space-local direction of the energy fluxes, we should focus on the

dynamics of regions where the filtered rate-of-strain tensor is dominant, rather than on

the dynamics of regions where the filtered vorticity vector is dominant.

6.4.2 The direct and inverse cascades and the geometry of the rate-of-

strain tensor

On §4.3 we have studied the statistical correlation between the local energy fluxes and

the local topology of the flow by using conditional statistics in the Q–R space. This

analysis shows that the direction and intensity of the local energy fluxes are strongly

related to the dynamics of the filtered rate-of-strain tensor.

First, we have analysed inverse phase-space trajectories which evolve from the antiat-

tractor to the attractor. The transition from an average inverse to an average direct

cascade is marked by the disappearance of the anti-tail, and the appearance of a regular

Vieillefosse tail. The statistics of enstrophy-dominated regions seem to remain unaltered

in this transition. While an average inverse energy cascade holds, the antitail is respon-

sible for most inverse energy transfer, both in the antiattractor, and in the transition to

the attractor.

The strong connection between the structure of the flow in strain-dominated regions

and the energy cascade is also supported by the same analysis in the attractor. Condi-

tional statistics show that the most intense energy transfer events are participated by

structures in the Vieillefosse tail, and these structures contribute the most to the total

energy fluxes.

In the turbulent attractor, the intensity of backscatter does not depend strongly on the

underlying structure of the filtered velocity gradients, but most energy backscatter takes

place in regions where vorticity and vortex compression are dominant. These events are
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much weaker than inverse energy transfer events in the antiattractor, which are related

to the structures in the antitail.

6.4.3 The rate-of-strain tensor as a source of entropy and chaos

In §5.5, we have used the Lyapunov vectors (LV), which are complete flow fields, to

derive a local measure of chaos and entropy production in physical space. We have

decomposed the Lyapunov exponents into the spatial and temporal average of a scalar

field, the local amplification rate λℓ, and used the evolution equation of the energy of

the perturbations in physical space to obtain a meaningful expression for this quantity.

This field, when correlated with the features of the main flow, provides information on

the events that lead to the amplification of the LV, and ultimately to the production of

chaos and phase-space mixing. We have applied this analysis to the LEs calculated in

the inertial scales.

The analysis of the spatial structure of λℓ, for the highest inertial Lyapunov exponent

(HILE) and the lowest inertial Lyapunov exponent (LILE), reveals that it is highly in-

termittent, and that it is consentrated in particular regions of the flow. This is a strong

evidence that chaos is not homogeneously distributed in the spatial coordinates, but that

some turbulent events are more chaotic than others. This is also true for the least chaotic

or more ‘contractive’ events.

In order to identify these events, we have studied the statistics of λℓ in the inertial

scales conditioned to, first, Q and R of the filtered velocity gradients, and, second, to

strain auto-amplification and vortex stretching of the filtered gradients. Intense values of

λℓ for the HILE and LILE are mostly located in the Vieillefosse tail, where the strain is

dominant over the vorticity, and correlate strongly with intense strain. These results indi-

cate that the rate-of-strain tensor is not only a maker, but also a generator of statistical

irreversibility. While the local amplification rate of the HILE is related to the production

of strain through strain auto-amplification, the LILE is not related to a particular sign of

the strain auto-amplification. Although we also observe some contribution of vorticity-

dominated regions to the total amplification rate in both exponents, this contribution is

weaker than that of the strain-dominated regions.
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The most chaotic events take place in regions where the rate-of-strain is intense and has

a positive intermediate eigenvalue. There is a predominant alignment of the perturbation

field in physical space with the most compressing eigenvector of the rate-of-strain tensor,

indicating that the generation of chaos and phase-space mixing seems to be related with

the formation layers by the most compressive eigenvector of the rate-of-strain tensor.

The least chaotic or most contractive events are also related to the presence of strong

strain, but are a consequence of the stretching of the perturbation field by the stretching

eigenvectors of the rate-of-strain tensor. No preferred configuration of the rate-of-strain

tensor is observed in these events.

The rate-of-strain tensor appears as a fundamental generator of intense chaos in the in-

ertial scales. Surprisingly, it is also responsible for phase-space contraction. These results

are in agreement with studies that emphasise the role of the rate-of-strain in turbulence

dynamics [42, 144], and suggest that the role of vorticity in the dynamics of the energy

cascade is probably overestimated. In view of these results, it seems adventurous to claim

that vortex stretching has a central role in the turbulence cascade, without regarding

the strain auto-amplification.

6.4.4 The essential role of coherent vortices

The strong kinematic coupling between the rate-of-strain tensor and the vorticity vector

advise us against considering the former as the only source of irreversibility, chaos and

energy cascades. We have complemented our analysis by considering the 3D statistics

of the enstrophy, the strain and the energy transfer conditioned to intense events of λℓ

for the HILE and LILE. This analysis reveals an essential but nonlocal role of coherent

vortices in the generation of chaos.

Results indicate that strong events of λℓ for the HILE and LILE take place in the

vicinity of strong vortices, which interact with weaker vortices. The organisation of the

conditional average enstrophy around λℓ is consistent with a stretched strong vortex

interacting with one weaker co-rotating vortex and two weaker counter-rotating vortices.

The conditional 3D structure of intense strain and direct energy transfer overlap the

structure of intense amplification rate. These results indicate that the nonlocal interac-

tion between the filtered rate-of-strain and the filtered vorticity plays an important role

in the dynamics of the energy cascade.
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6.5 New perspectives on the turbulent energy cascade

6.5.1 Implications of the entropy-driven turbulent cascade

The implications of the experiments on reversible turbulence that are presented in this

thesis are manifold. The most immediate one, but not obvious, is that, so far, our knowl-

edge of the Navier–Stokes equations alone do not seem enough to explain the macroscopic

evolutions of turbulent flows.

The set of laws that govern turbulent flows operate in general over an arbitrarily large

number of degrees of freedom, allowing for an overwhelmingly large number of possible

trajectories and states. These laws impose only a few constrains on the system, being

the conservation of mass and momentum the most immediate ones. Despite the lack of

constrains, turbulent flows seem to recurrently reproduce the same organised structure

common to the states within the turbulent attractor.

Turbulence research relies on the study of flows which are inside the attractor, mostly

because the convergence to the attractor seems an unavoidable consequence of the dy-

namics. The novel approach of this work is to study backwards-evolved turbulent flows,

which represent phase-space trajectories outside the turbulent attractor. Although these

phase-space trajectories are not accessible from almost any initial conditions, the process

to obtain such trajectories is quite simple: the equations of motion are run forward in

time and then reversed. Access to these inverse evolutions has proved useful to determine

the causes for the prevalence of direct energy transfer over inverse energy transfer, and

for identifying mechanisms responsible for entropy production in the energy cascade.

The most intriguing question is whether there are ‘turbulent’ trajectories outside the

attractor other than the backward-evolved flow fields. The study of these inverse evo-

lutions provide information on why direct cascades in the attractor are more probable

that inverse cascades in the antiattractor. However our analysis does not elucidate why

cascades within the turbulent attractor are more probable than the rest of possible direct

cascades.
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6.5.2 Searching for strange cascades outside the turbulent attractor

We hypothesise that it might be possible to access these ‘alternative’ cascades by means

of computationally intensive methods. These ‘strange’ cascades would provide, by direct

comparison with the energy cascade in the turbulent attractor, arguments to explain the

origin of the characteristic properties of turbulent flows, and data to test the existence

of probabilistic principles in the selection of turbulent states. These data would serve

to elucidate whether these principles are related to any variational principle, or to any

particular definition of entropy.

Finding strange trajectories outside the turbulent attractor seems in principle an over-

whelming task. This search opposes the robust chaotic nature of turbulence, and is

complicated by the large number of degrees of freedom necessary to represent turbulent

flows. We propose procedures for finding strange trajectories similar to the variational

methods used for finding extremal states [145], or optimal non-linear perturbations [146],

which allow the search of states and trajectories that maximise a prescribed macroscopic

observable. We also propose the use of non-linear solvers, such as the Newton-Krylov

methods, to find trajectories with a prescribed value of an average macroscopic quan-

tity. We expect that, by guiding the search of trajectories imposing a given value of a

macroscopic quantity, or searching for maxima and minima of this quantity, we will be

able to locate trajectories that escape the turbulent attractor, where these macroscopic

averages have a characteristic mean value, and fluctuations are much smaller than the

mean value.

Although these methods are computationally intensive even for marginally turbulent

flows, enough computational resources are now available in highly efficient GPUs devices,

which have already been used in dynamical-system problems with outstanding results

[147]. The exceptional performance of these devices pave the way for new procedures to

directly test non-equilibrium hypothesis by probing the phase space of complex systems,

thus extending the field of computational statistical mechanics [148] to realistic, highly-

dimensional systems.
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6.5.3 Towards a time- and space-local definition of chaos and coherence

Coherent structures represent an essential feature of many dynamical systems out of

equilibrium, including turbulence. Since the early observations by Brown and Roshko

[149], these structures have been recognised as important objects in turbulence dynamics,

and their study has generated an extensive literature within turbulence research. These

structures represent perhaps our best chance to understand and control the dynamics of

turbulence, as they embody order generated from chaos, and emerge as manageable and

solid objects in the apparently disorganised and intractable set of turbulent motions.

These structures are related to efficient transport of turbulent quantities, such as energy

or momentum, and their organised motion suggest that the effective number of degrees of

freedom needed to represent the dynamics of turbulence is much smaller than usually re-

quired in DNSs. Dimensional reducibility makes efforts towards reduced representations

of turbulence flows, such as LES techniques, conceivable.

Despite the dynamical relevance of coherent structures, their definition and, conse-

quently, their identification, is ambiguous, and relies on approaches with little dynamical

content. A typical procedure is to identify coherent structures as joint regions of space

where a particular turbulent quantity is intense [150]. It is assumed without further

scrutiny that intense structures are necessarily coherent structures, but dynamical infor-

mation on the evolution of the flow is strictly necessary to tag a structure as coherent.

In this work, we have used the local amplification rate, λℓ, to identify the mechanisms

responsible for phase-space mixing. This quantity is also a local measure of chaos, which

intuitively represents the opposite of order and coherence. We propose that a similar

methodology can be used to quantify the degree of coherence and chaos of different re-

gions of turbulent flows. Negative or low local values of λℓ, or a similar quantity, should

indicate a high probability that that particular region of the flow field remains unper-

turbed, i.e coherent, over time. On the other hand, high positive values of λℓ are represen-

tative of chaos-generating regions, which are expected to change over times of the order

of 1{|λℓ|. A different approach is to modify the algorithm used to calculate λℓ to track

desired regions of the flow field where quantities of interest are intense. This procedure

would allow, for instance, to quantify the coherence of intense vortices.
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dimensions. Science, page eaan7933, 2017.

[29] C. Meneveau and T. S. Lund. On the lagrangian nature of the turbulence energy

cascade. Phys. Fluids, 6:2820–2825, 1994.

[30] V. Borue and S. A. Orszag. Local energy flux and subgrid-scale statistics in three-

dimensional turbulence. J. Fluid Mech., 366:1–31, 1998.

[31] S. Cerutti and C. Meneveau. Intermittency and relative scaling of subgrid-scale

energy dissipation in isotropic turbulence. Phys. Fluids, 10:928–937, 1998.

[32] T. Aoyama, T. Ishihara, Y. Kaneda, M. Yokokawa, K. Itakura, and A. Uno. Statis-

tics of energy transfer in high–resolution direct numerical simulation of turbulence

in a periodic box. J. Phys. Soc. Jpn., 74:3202–3212, 2005.

[33] G. B. Folland and A. Sitaram. The uncertainty principle: a mathematical survey.

J. Fourier Anal. Appl., 3:207–238, 1997.

[34] C. Meneveau. Analysis of turbulence in the orthonormal wavelet representation.

J. Fluid Mech., 232:469–520, 1991.

[35] M. Farge. Wavelet transforms and their applications to turbulence. Annu. Rev.

Fluid Mech., 24:395–458, 1992.

[36] J. Jimenez. Optimal fluxes. J. Fluid Mech., 641:497–507, 2017.

[37] T. S. Lundgren. Strained spiral vortex model for turbulent fine structure. Phys.

Fluids, 25:2193–2203, 1982.

[38] M. P. Brenner, S. Hormoz, and A. Pumir. Potential singularity mechanism for the

Euler equations. Phys. Rev. Fluids, 1:084503, 2016.

[39] H. Tennekes and J. L. Lumley. A first course in turbulence. MIT press, 1972.

[40] S. Goto. A physical mechanism of the energy cascade in homogeneous isotropic

turbulence. J. Fluid Mech., 605:355–366, 2008.



Bibliography

[41] T. Leung, N. Swaminathan, and P. A. Davidson. Geometry and interaction of

structures in homogeneous isotropic turbulence. J. Fluid Mech., 710:453–481, 2012.

[42] A. Tsinober. Vortex stretching versus production of strain/dissipation. Turbulence

Structure and Vortex Dynamics, pages 164–191, 2000.

[43] A. Talamelli, F. Persiani, J. Fransson, P. H. Alfredsson, A. V. Johansson, H. M.
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[49] Y. Mizuno and J. Jiménez. Wall turbulence without walls. J. Fluid Mech., 723:

429–455, 2013.

[50] K. Yoshida, J. Yamaguchi, and Y. Kaneda. Regeneration of small eddies by data

assimilation in turbulence. Phys. Rev. Lett., 94:014501, 2005.

[51] C. C. Lalescu, C. Meneveau, and G. L. Eyink. Synchronization of chaos in fully

developed turbulence. Phys. Rev. Lett., 110:084102, 2013.

[52] A. Pumir and B. I. Shraiman. Persistent small scale anisotropy in homogeneous

shear flows. Phys. Rev. Lett., 75:3114, 1995.

[53] X. Shen and Z. Warhaft. The anisotropy of the small scale structure in high

Reynolds number (Reλ „ 1000) turbulent shear flow. Phys. Fluids, 12:2976–2989,

2000.



Bibliography

[54] L. Biferale and M. Vergassola. Isotropy vs anisotropy in small-scale turbulence.

Phys. Fluids, 13:2139–2141, 2001.

[55] R. S. Rogallo. Numerical experiments in homogeneous turbulence. 1981.

[56] J. P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors. Rev.

Mod. Phys., 57:617, 1985.

[57] O. Flores, R. Pastor, and A. Vela-Mart́ın. Wall-bounded turbulence control using

Monte-Carlo approach. In APS Meeting Abstracts, 2019.
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