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Dipoles and streams in two-dimensional
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Following the suggestion from the Monte–Carlo experiments in Jiménez (J. Turbul., 2020,
doi:10.1080/14685248.2020.1742918) that dipoles are as important to the dynamics of
decaying two-dimensional turbulence as individual vortex cores, it is found that the kinetic
energy of this flow is carried by elongated streams formed by the concatenation of dipoles.
Vortices separate into a family of small fast-moving cores, and another family of larger
slowly moving ones, which can be described as ‘frozen’ into a slowly evolving ‘crystal.’
The kinematics of both families are very different, and only the former is self-similar. The
latter is responsible for most of the kinetic energy of the flow, and its vortices form the
dipoles and the streams. Mechanisms are discussed for the growth of this slow component.
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1. Introduction

The subject of this paper originates from the Monte-Carlo simulations in Jiménez
(2018b, 2020a,b), whose purpose was to identify causally significant structures in
two-dimensional decaying turbulence by inspecting the effect, after some predetermined
time, of randomly perturbed initial conditions. These experiments will not be repeated
here, and the reader is directed to the original publications for details. One of the most
interesting results was that, besides the expected identification of individual vortices
as significant (McWilliams 1984, 1990a), the experiments found that tight dipoles of
counter-rotating vortices are as causally important as isolated vortices, or even more so.
Modifying a strong vortex in the initial conditions leads to a large perturbation of the
flow after five to ten eddy turnovers, but modifying a dipole leads to an even stronger
perturbation. Co-rotating vortex pairs were not found to be significant in the same way.

The experiments mentioned above were intended to validate the Monte Carlo procedure,
as well as to answer the fundamental question of whether some localised flow regions
are more important than others for the evolution of the flow. They did not pay too much
attention to the properties of the flow itself, being restricted, among other things, to a
single relatively low Reynolds number. The present paper deals with the fluid mechanics.
In particular, it examines whether our understanding of the evolution of two-dimensional
turbulence can be improved by the consideration of collective structures, such as the
dipoles mentioned above.

† Email address for correspondence: jimenez@torroja.dmt.upm.es
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904 A39-2 J. Jiménez

Several questions need to be addressed. The first one has to do with the Reynolds
number, because one of the results in Jiménez (2020b) was that the preferred scale for
significant vortices and dipoles is about the same, even if the vortices are associated with
the enstrophy and the dipoles are structures of the kinetic energy. Spectral analysis shows
that the typical scales associated with these two variables are different, but the Reynolds
number in Jiménez (2020b) was not high enough to separate them clearly. To clarify this
question, we analyse flow simulations at several Reynolds numbers, allowing, at least, for
some range of scales.

The second question has to do with the role played in the flow by the two ‘templates’
(vortices and dipoles), and perhaps by other structures, because the original analysis
was not concerned with the best representation of the flow, nor with flow mechanisms.
Its only purpose was to identify which structures are most important from the point of
view of dynamics, but not to clarify the dynamics itself. This problem is also connected
with the Reynolds number, because flows at low Reynolds numbers essentially contain
a single scale, which represents everything. More general flows are multiscale, and it is
usually true that structures that represent well some aspect of the flow are not the ones
that control the dynamics of others. For example, although vortices and vortex stretching
(Vincent & Meneguzzi 1991) are considered good models for the turbulence energy
cascade (Richardson 1920; Betchov 1956), at least from the point of view of enhancing
dissipation, it was shown by Jiménez et al. (1993) that removing them from the flow had
very little lasting effect, and there is clear evidence of intermediate scales of the kinetic
energy that are involved in the cascade process without being directly related to vorticity
(Cardesa, Vela-Martín & Jiménez 2017).

Much of the interest in two-dimensional turbulence originates from the remark by
Onsager (1949) that the inviscid evolution of a high-energy system of point vortices results
in negative temperature states, and that this would naturally lead to the formation of
organised coherent structures, rather than to a disordered flow.

There are at least two ways of approximating high-Reynolds-number two-dimensional
turbulence by a conservative Hamiltonian system. The first one is the aforementioned
system of point vortices (Batchelor 1967), and the second is the approximation of the
inviscid Euler equations in terms of Fourier components of the velocity, truncated to a
finite range of wavenumber magnitude (Basdevant & Sadourny 1975; Lesieur 2008).

Kraichnan (1967) followed the suggestion of Onsager (1949) to propose that forced
two-dimensional turbulence should include a reverse energy cascade towards larger scales,
as well as a direct enstrophy cascade towards smaller ones. There is a fair agreement on the
mechanism of the enstrophy cascade by means of vortex amalgamation and filamentation
(McWilliams 1990a; Carnevale et al. 1991; Benzi et al. 1992; Dritschel et al. 2008).
The inverse cascade is less well understood, although it is generally believed that its
mechanics is different from that of the enstrophy cascade and, in particular, that it is not
predominantly mediated by vortex merging (Paret & Tabeling 1998; Boffetta, Celani &
Vergassola 2000; Eyink 2006; Xiao et al. 2009).

Kraichnan (1967) derived the form of the spectrum of the truncated equilibrium Euler
system, and observed that, in the absence of a low-wavenumber dissipation mechanism,
energy would tend to accumulate at the largest system scale, in a process similar to
the Bose–Einstein condensation of quantum systems. Both the reverse cascade and the
condensate (Smith & Yakhot 1993, 1994) have been numerically and experimentally
observed. A fair amount of work has gone into finding equilibrium solutions of the Euler
equations that could account for this long-term flow behaviour, from vortex crystals (Aref
et al. 2002) to maximum entropy statistics (Joyce & Montgomery 1973; Montgomery
& Joyce 1974), and there is numerical evidence that forced viscous two-dimensional
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Dipoles and streams in two-dimensional turbulence 904 A39-3

flow locally relaxes to these inviscid equilibrium solutions (Montgomery et al. 1992;
Montgomery, Shan & Matthaeus 1993). For example, forced numerical turbulence in a
square box evolves to a large-scale dipole filling the box diagonally (Smith & Yakhot
1993). Recent reviews of the existing work on the reverse energy cascade and on
condensate states can be found in Tabeling (2002) and Boffetta & Ecke (2012).

Most of the work on the two-dimensional energy cascade has used forced experiments
in which the system eventually settles to a statistically steady state. This has the advantage
of allowing the use of ergodicity to compile statistics, but complicates the interpretation
of the results because of the constant interference from the forcing. Decaying turbulence
also has an inverse energy flux to large scales (although not necessarily an inverse cascade,
as we will see later in the paper). The total energy remains approximately constant while
its length scale grows until it collides with the domain size. From the point of view of
causality characterisation, decaying turbulence has obvious advantages, because things
happen only once, and the arrow of time is well defined. On the negative side, compiling
reliable statistics requires ensembles of simulations, and the analysis of the resulting large
data sets. The final stage of Bose condensation is also of little interest in this case, because
the flow decays before it can be completed, but we will see in § 4 that a related process is
important in the creation of large-scale structures.

In this paper, we study the dynamics of two-dimensional decaying turbulence, with
emphasis on the mechanics of the inverse energy flux, using ensembles of simulations
at low to moderate Reynolds numbers, guided by the results of the causality analysis
mentioned at the beginning of this introduction. The simulations are described in § 2,
followed in § 3 by the structural analysis of the flow in terms of the vortices, dipoles and
streams suggested by the causal analysis. Section 4 describes the collective organisation
of the vortices, including their classification into types and how each type is related to the
large scales of the kinetic energy. Section 4.2 discusses mechanisms for this organisation,
and § 5 concludes.

2. Simulations and basic flow properties

Simulations of decaying nominally isotropic two-dimensional turbulence are performed
at various scale disparities in a doubly periodic square box of side L, using a standard
spectral Fourier code dealiased by the 2/3 rule. Time advance is third-order Runge–Kutta.
The flow field is defined by its velocity u = (u, v) in the plane x = (x, y), and by
the one-component vorticity ω = ∇ × u. It is initialised with random Fourier phases
and a fixed isotropic enstrophy spectrum, which is relatively flat for small wavenumber
magnitude k, Eωω ∼ k3/2, and much steeper, Eωω ∼ k−25/2, for large ones. The peak of this
initial spectrum, located at kinit ≈ 2π/Linit, controls the initial energy-containing spectral
range. The simulations solve the Navier–Stokes equations in vorticity–stream function
formulation, using regular second-order viscosity, ν∇2ω.

Natural time and velocity scales can be defined from the root-mean-square (r.m.s.)
vorticity magnitude ω′ = 〈ω2〉1/2, where 〈·〉 is the time-dependent ensemble average taken
over the full computational box, and from q′ = (u′2 + v′2)1/2. The flow is allowed to evolve
for q′tinit/L = 0.32 (ω′tinit ≈ 6–12), after which the structures have established themselves.
This moment is defined as the start of the simulations, t = 0, for the rest of the paper, and
is denoted by a ‘0’ subindex in the corresponding quantities. After some experimentation,
the evolution of most quantities of interest for our argument was found to collapse best
when plotted against ω′

0t, which will be used in the following. However, this collapse is
not universal, and we could not find any normalisation for the time that would collapse well
the evolution of all the flow properties, including some basic ones like the decay of the
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904 A39-4 J. Jiménez

Case N Linit/L q′
0L/ν λτ0/L λω0/L λ50/L Reλ0 ω′

0tF ω′
F/ω′

0 q′
F/q′

0 Symbol

T256 256 0.1 2300 0.044 0.184 0.058 100 3.3 0.73 0.95 ◦
T512 512 0.05 4400 0.030 0.145 0.036 132 18.4 0.69 0.95 	
T768 768 0.025 7800 0.025 0.116 0.024 197 33.7 0.69 0.96 �

T1024 1024 0.033 11000 0.022 0.105 0.019 250 44.9 0.69 0.96 �

TABLE 1. Parameters of the simulations. The size of the doubly periodic computational box
is L × L. The r.m.s. vorticity ω′

0, and the velocity magnitude q′
0, are measured after the initial

discarded transient, decaying from an initial enstrophy spectrum whose peak is at wavelength
Linit. The Taylor microscale λτ0 = q′

0/ω
′
0 is used to compute the Reynolds number Reλ =

q′
0λτ0/ν, and λω0 and λ50 are the enstrophy and palinstrophy scales, respectively, defined in

figure 1. The number of collocation points used before dealiasing is N × N. The subscript ‘F’
refers to the end of each simulation, so that the decay time after the initial transient is tF . Case
T256 was used in Jiménez (2020b) to identify the causally significant structures used as starting
points for the discussion in the text. Each case is an ensemble of 768 independent experiments.

kinetic energy and of the enstrophy. As the simulation proceeds, the enstrophy decays by
approximately 50 %, while the kinetic energy decreases at most by 5–10 %. A Taylor length
scale can be defined as λτ = q′/ω′, and used to define a microscale Reynolds number,
Reλ = q′λτ /ν, where ν is the kinematic viscosity. Both grow by factors of 1.5–2.5 during
each simulation, depending on the simulation time. Finally, each experiment is repeated at
least 768 times to compile statistics, and a few cases were repeated twice as many times,
to test convergence. These parameters are summarised in table 1.

The evolution of the energy and enstrophy spectra is displayed in figure 1. For
each simulation, time-dependent length scales for the vorticity and for the velocity can
respectively be defined by the location of the maximum of the premultiplied enstrophy
and energy spectra, as illustrated in figure 1(a). The enstrophy wavelength, λω = 2π/kω,
increases only slowly with time, as shown in figure 1(b), but the energy scale, λq,
increases faster as the energy flows towards larger sizes. This is also clear from the
snapshots in figure 2, which include scale bars for both wavelengths. Eventually, λq ≈ L,
at which moment the reverse energy flux saturates, and λq stops growing (Smith & Yakhot
1993). Although all our simulations were originally run for ω′

0t ≈ 60, only times for
which λq/L < 0.6 are included in figure 1(b) and in table 1. The flow is considered
to enter afterwards into a different energy-condensation phase of its evolution, which
is not discussed in this paper. Figure 1(c) displays the logarithmic slope of the energy
spectrum. A plateau in this figure represents a power-law range, and the figure shows that
no such range develops in our simulations at the level of k−3, corresponding to the classical
enstrophy cascade (Kraichnan 1967; Batchelor 1969). Inspection of the temporal evolution
of the spectrum (not shown) suggests that a weak inflection point may be developing at this
level, but, since the spectra in figure 1(c) are plotted towards the end of each simulation,
it is unlikely that a k−3 range would ever develop in them. A slope (k/Eqq)dEqq/dk = −3
corresponds (algebraically) to the maximum of kEωω = k3Eqq, which was used above to
define λω. An extended k−3 range would correspond to a flat top of the premultiplied
enstrophy spectrum in figure 1(a). This does not happen, and the premultiplied enstrophy
spectrum stays relatively sharp, as in figure 1(a). In the same way, a wavelength λ5 can
be defined by the maximum of the premultiplied spectrum of the vorticity gradient,
kE∇ω∇ω = k5Eqq (figure 1a). The magnitude of this gradient is sometimes called the
‘palinstrophy,’ and controls the viscous dissipation of the enstrophy (Lesieur 2008).
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Dipoles and streams in two-dimensional turbulence 904 A39-5
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FIGURE 1. (a) Definition of the enstrophy, palinstrophy and energy peak wavelengths. ,
Premultiplied enstrophy spectrum; , energy spectrum; , palinstrophy. Case T768 at
ω′

0t = 6.3. (b) Evolution of the enstrophy and energy peak wavelengths; normalized with the
enstrophy wavelength at t = 0. Symbols as in table 1. Open symbols are enstrophy, and closed
black ones are energy. The two polynomial fits are used as reference in later figures. The red
closed symbols are the Taylor scale, stretched for clarity to 10λτ /λω0, and the green ones are
the stretched palinstropy wavelength, 10λ5/λω0. (c) Logarithmic slope of the energy spectrum
at the end of each simulation. From left to right, T1024 to T256. The two horizontal lines mark
slopes −1 and −3, which respectively correspond to the energy and enstrophy peak wavelengths
in (a). (d) Correlation function of the vorticity, as a function of the separation, Δr, scaled with
λω. Symbols as in table 1. Colours label time along each simulation for a fixed Δr, from t = 0 in
blue to tF in red. (e) As in (d), scaled with λq. ( f ) Fourth-order flatness factor for the transverse
velocity increments, Δ⊥u = u(x, y + Δr) − u(x, y). Symbols and colours as in (d).

We will therefore call λ5 the palinstrophy wavelength. It is 3–5 times smaller than λω,
and its initial value is given in table 1. It is the true viscous dissipative length for the flow,
and the shortest of all the length scales defined here.

If we take λ5 to be a measure of the smallest vorticity structures, the numerical resolution
of the simulations in table 1 is Δx/λ5 = 0.1–0.2, in terms of complex Fourier modes, and
improves as the simulations proceed.

A logarithmic slope of −1 coincides with the energy wavelength, and, because all the
spectra in figure 1(c) are drawn just before the growth of λq saturates in their respective
simulations, λq/L ≈ 0.5 in all cases.

It is interesting that the spectra in figure 1(c) develop a short but clear k−5 power
law around the dissipative wavelength λ5, especially for the higher Reynolds numbers.
Spectra steeper than k−3 are well known in two-dimensional turbulence, and are believed
to originate from a variety of reasons that depend on the initial conditions. Saffman (1971)
argued that, since vorticity is conserved in the inviscid two-dimensional limit, the mutual
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904 A39-6 J. Jiménez

(a) (b) (c)

FIGURE 2. Vorticity and velocity field of a typical flow from T1024. From (a) to (c)
ω′

0t = 12.8, 25.6, 64.2. The shorter bar on top of each figure is λω. The longer one is λq.

distortion of the vortices eventually leads to the formation of vorticity discontinuities
whose spectrum is Eωω ∼ k−2, or Eqq ∼ k−4. Brachet et al. (1988), starting from a relatively
smooth vorticity field, report that a k−4 energy spectrum appears initially, but evolves into
k−3 after individual vortices appear. This initial time (ω′

0t ≈ 10) is of the same order as the
transient period discarded in our simulations.

On the other hand, McWilliams (1984) and Benzi, Patarnello & Santangelo (1987),
whose initial conditions already include a k−3 spectral range, develop a steeper slope in the
later part of the decay (ω′

0t � 100 in our notation), when most of the vorticity is organised
into individual cores that approximately behave as a conservative Hamiltonian system
(Batchelor 1967). They relate this steeper spectral slope to the vorticity distribution in the
cores. This seems to be the case in our simulations, where the k−5 plateau only develops
towards the energy-condensed end of each simulation. We will mostly be interested in the
earlier part of the evolution, where both the vortex cores and the ‘incoherent’ background
vorticity are relevant. It should be noted that most of the simulations by the authors
mentioned above use high-order hyperviscosity, which favours the formation of isolated
vortices, instead of the regular viscosity in this paper.

Figures 1(d) and 1(e) display the autocorrelation function for the vorticity,

Rωω = 〈ω(x, y)ω(x + Δr, y)〉/ω′2. (2.1)

It has an inner core that scales with λω in figure 1(d), and an outer region that scales with
λq in figure 1(e). The scaling in figure 1(d) suggest that the diameter of the vortices that
contribute to the correlation is O(0.3λω). This will be confirmed when we study individual
cores in § 3.2. At the moderate Reynolds numbers and regular viscosity of our simulations,
the flow velocity is only slightly intermittent. The fourth-order flatness of the transversal
velocity increments across a distance Δr, is shown in figure 1( f ). It also has two distance
ranges. In an intermittent inner core of the order of the vortex diameter, Δr/λω ≈ 0.3,
the flatness reaches F4 ≈ 4. This part of the distribution does not collapse well in the
figure, which is drawn to emphasise the return to Gaussianity at larger distances. The outer
part of the distribution scales with λq. The flatness decays to the slightly sub-Gaussian
value F4 ≈ 2.8 at Δr/λq ≈ 0.4, and relaxes to the Gaussian F4 ≈ 3 beyond Δr ≈ λq. The
velocity itself is always close to Gaussian. Since the velocity gradient is known to be very
intermittent near individual vortex cores, where it is dominated by the 1/r behaviour of
the velocity (Jiménez 1996), the return to Gaussianity marks the distance at which the
flow is dominated by the interaction among several cores, instead of by individual ones.
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Dipoles and streams in two-dimensional turbulence 904 A39-7

Figure 1( f ) thus suggests that this typical distance among strong cores is O(λq). This
agrees with the outer scaling of figure 1(e), and will also be confirmed in § 3.2.

The Taylor microscale and the viscous length λ5 are included in figure 1(b), on a
stretched vertical scale for clarity. Note that, although λq and λτ collapse among the
different simulations when normalised with λω0, the viscous length λ5 does not. The reason
is uncertain, but relatively unimportant for the present paper, which is concerned with the
large scales of the flow rather than with small-scale features. Viscous enstrophy dissipation
is often described as being preceded by filamentation of the vortex cores under mutual
stretching (Dritschel et al. 2008), and λ5 probably measures the width of these filaments
and of the vortex fragments into which they decay.

It should also be noted that, although the Taylor scale is probably little more than an
arbitrary length scale in three-dimensional turbulence, it has a deeper significance in
two dimensions. We mentioned in the introduction the coexistence of two cascades in
two-dimensional turbulence, and that they are connected in a general way with the form of
the equilibrium spectrum of the truncated Fourier representation of the Euler equations.
The only parameter in this spectrum is the ratio between the total kinetic energy and
the enstrophy, which is the squared Taylor scale, and it can be shown that the limiting
wavelength between the two cascades is proportional to λτ (Basdevant & Sadourny 1975;
Lesieur 2008). Whether an inverse cascade exists depends on whether this limit falls
within the truncated set of Fourier wavenumbers, or, equivalently, on the ratio λτ /L. It
is difficult to make this criterion quantitative in viscous flows, whose spectrum is very far
from equilibrium, but the growth of this ratio with time in figure 1(b) signals a shift of the
kinetic energy towards larger scales.

3. Structural models

We saw in the introduction that the most interesting structural result in Jiménez (2020b)
is that the causally significant flow neighbourhoods in two-dimensional turbulence look
either like isolated vortices, or like counter-rotating vortex dipoles. The former was
expected, because the classical model for this flow is a vortex ‘gas’ (McWilliams 1984,
1990a; Carnevale et al. 1991; Benzi et al. 1992), but the latter was a mild surprise. The
two models were summarised in Jiménez (2020b) by the archetypal ‘templates’ shown in
figure 3. They were obtained by conditionally averaging the flow patches found to be most
causally significant in the experiments described in the introduction. The patch size was
found to be important, and, after some experimentation, it was adjusted to maximise the
difference between significant and non-significant neighbourhoods. The optimum choice
at the Reynolds number of Jiménez (2020b) are square patches of side Lp/L = 0.1, and the
templates are constructed of side LT = 3Lp to include some surrounding flow. But there
is no reason to assume that this ‘most causal’ scale is also the one at which templates
optimally represent the flow, or that the same dimensions work at different Reynolds
numbers. Jiménez (2020b) showed that the first question could be answered by a posteriori
optimisation of the approximation error between scaled templates and test flow fields. The
application of this procedure to the present flows, and the answer to the second question,
are tested below. Note that, when templates are used as archetypal flow structures, they
lose their original connection with causal significance. They are treated as flow features
that have been found to be of interest ‘for some reason,’ and the issue becomes to find what
they are, and whether they can be used as indicators of some aspect of the flow dynamics.
Why they were causally significant in the first place can be addressed a posteriori, if
desired. For more details on the process of template extraction, verification and validation,
the reader is directed to Jiménez (2018b) and Jiménez (2020b).
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904 A39-8 J. Jiménez

(a) (b)

FIGURE 3. Vorticity and velocity field for the templates identified in Jiménez (2020b) as
the most causally relevant flow features. (a) Vortex template, mostly relevant for experiments
manipulating vorticity. (b) Dipole template, relevant for velocity manipulations. Because the
position, scale and intensity of the templates are adjusted when matching the flow, their
orientation, size and intensity are arbitrary.

To test how well a template approximates a particular flow neighbourhood, it is first
scaled to size LT × LT , optimally oriented (using four orthogonal rotations and one
reflection), and its intensity is adjusted to match the overall r.m.s. intensity of the flow
in question, so that 〈ξ 2

T 〉T = ξ ′2. The ‘T’ subindex here represents template properties, as
well as averaging over the template domain, and ξ is either the vector velocity or the
scalar vorticity. Centring the rescaled template at some point, x, the representation error
is measured as the relative L2 norm of the difference between the flow and the template,

Φξ(x, LT) = ‖ξ(x + x̃) − ξT(x̃)‖x̃∈T

‖ξ‖T
, (3.1)

which is a function of LT and of x. Statistics are compiled over all the positions in an
Nt × Nt ‘test’ grid, and over all the flow realisations, and scanned over LT .

Typical probability density functions (p.d.f.s) of the approximation error are given
in figure 4(a,b) as functions of the template size. The peak of the histogram generally
moves to smaller errors as LT decreases, and becomes very skewed, especially for
dipoles, suggesting the necessity of using several figures of merit to quantify the overall
performance of a template. An obvious choice is to minimise the mean error, 〈Φξ 〉(LT),
where the average is taken over all the template positions. It provides an overall goodness
of fit, but the shape of the histograms in figure 4(a,b) suggests that it may mix some
very good local fits with some very bad ones. Coherent structures can be relevant to the
flow dynamics even when they fill a relatively small area fraction (Jiménez 2018a), and
a representation of the flow in terms of them should be able to stress the good fits even
at the expense of de-emphasizing some of the bad ones. A measure with this property is
the fraction of the p.d.f. above a given error threshold. We use Pξ = prob.(Φξ > 1). The
behaviour of both measures with template size is shown in figure 4(c,d), and depends on
the particular case and on the simulation time considered. Most cases are displayed as
light grey lines, without identification, to show general trends, but the final time of each
simulation, defined by λq/L ≈ 0.6, is highlighted and labelled with the symbols in table 1.

At short simulation times (grey lines), figure 4(c) shows that the average error, 〈Φq〉,
is minimum for template sizes of the order of λω, but that the optimum size increases
with time and with the Reynolds number. The optimum template size for some of the
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FIGURE 4. (a,b) Probability density function of the template approximation error. Energy error
norm. Case T512, ω′

0t = 9.2. Template size, increasing from red to blue: LT/L = 0.045, 0.08,
0.11, 0.22, 0.34, 0.45, 0.56. (a) Template is a vortex. (b) Template is a dipole. The arrow is in
the direction of increasing template size, LT . (c,d) Approximation error as a function of case
and of LT . Cases are plotted for different times as grey lines without labels, except for the final
time of each simulation, which is highlighted and labelled as in table 1. , Template is a
vortex; , template is a dipole. The dashed vertical line is a representative value of λω/L,
from table 1. (c) Error is averaged over all template positions. (d) Error measured as the fraction,
Pq, of relative local errors larger than unity. (e) Template size for optimum Pq. Lines are the
polynomial fits to λω and λq in figure 1(b). Closed symbols are dipole templates; open symbols
are vortex templates. ( f ) As in (e), showing the optimum Pq.
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904 A39-10 J. Jiménez

longest simulations is the largest one allowed by the computational box, LT/L ≈ 0.45.
Larger templates are considered in this paper to be contaminated by the box size, and are
not included in the analysis. This behaviour holds for vortices (solid lines), and for dipoles
(dashed lines).

Figures 4(d) and 4(e) show that the fraction, Pq, of large kinetic-energy error tends to
be minimised by small templates of the order of the diameter of the intense vortices seen
in figure 2. This fits the intent of this measure, which is to identify local structures. It is
interesting that this preference for small features is clearest for the dipole template, while
the optimum size for the vortex template tends to be larger. Both optimum sizes increase
with the evolution time and with the Reynolds number. Figure 4 uses the kinetic-energy
norm. The results for the enstrophy norm are similar, with a preference for slightly larger
templates.

Figure 4( f ) shows that the approximation error attained at the respective optimum
size changes little among simulations and among simulation times, even if we have
seen that the optimum size varies widely. The optimum mean error is approximately
〈Φq〉 = 1.04, 〈Φω〉 = 1.22 for vortices and 〈Φq〉 = 0.98, 〈Φω〉 = 1.12 for dipoles. The
minimum error fraction is Pq = 0.51, Pω = 0.81 for vortices and Pq = 0.37, Pω = 0.62
for dipoles. Interestingly, dipoles are always more successful templates than isolated
vortices, and the kinetic-energy error is always lower than the enstrophy one. We will
almost exclusively discuss dipole templates and the kinetic-energy norm for the rest of
this section.

3.1. Large-scale streams
Figures 5(a) and 5(b) are heat maps for the fit of the vortex and dipole templates to a typical
flow snapshot. The intensity in a heat map is proportional to the goodness of fit of the
template centred at that point. The darker regions in figure 5 represent better fits, measured
by Φq. Figure 5(a) is drawn for vortex templates, and figure 5(b) is drawn for dipoles. In
both cases, the size of the template is chosen to be optimum, which in this particular case is
different for the two templates (see the cyan boxes in the figure). Inspection of the figures
shows that the features extracted by the two templates have much in common, although
they differ in detail. This is not surprising because a dipole is formed by two vortices, and
it was to be expected that at least some of the vortices identified by a vortex template are
part of a dipole.

However, the main use of heat maps is not to identify individual features, but to
highlight the organisation of the features themselves. Thus, although we have mentioned
that figures 5(a) and 5(b) differ in detail, it is visually clear that they cluster around a
common large-scale structure, present in both figures. Its nature is clearer in figure 5(c)
which shows that it is a meandering stream that spans the full box. This is interesting
for two reasons. The first one is that it suggests that the feature detected by the dipole
template is not the pair of vortices, but the jet between them. The second one is that those
jet segments are part of a larger stream, too large and too irregular to be represented by
any local template, but which can be recovered by the concatenation of several of them.

Figure 6 shows how this large-scale flow organisation can be defined by thresholding
the heat map below a given error level. The resulting points are collected into individual
objects, defined by contiguity along the four directions of the coordinate axes. Figure 6(a)
is the percolation diagram (Moisy & Jiménez 2004). The solid lines represent the fraction
of the total thresholded area contained in the largest contiguous thresholded object. It is
unity for very high thresholds, where a single object fills the whole field, and also for a
lowest limit in which a single point represents both the whole thresholded region and its
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(a) (b) (c)1.4

1.2
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FIGURE 5. (a,b) Heat maps for the fit error of a typical flow field. Case T768 at ω′
0t = 22.

Colour represents the approximation error, Φq, for a template centred at each point. Line contours
are the vorticity magnitude. The cyan box is the size of the template, chosen in each case to
optimise Pq. (a) Vortex template. (b) Dipole template. (c) Velocity field for the flow in (a,b).
The scale bars above the figure are as in figure 2. The background colour is the velocity
magnitude, lighter for faster velocities.

largest object. Neither limit gives information about the structure of the flow, and both are
left outside figure 6(a), which centres on the intermediate range in which several individual
low-error objects first appear and then merge into larger ones as the threshold is raised.
The dashed lines are the number of individual objects, normalised to unit maximum. The
percolation diagram is averaged over all the times of each simulation, and varies little
among simulations. After some experimentation, the reference threshold is chosen to be
Φq,th = 0.85, which is used in figure 6(b) to threshold the map in figure 5(b). There is a
dark largest connected object, and several smaller ones in a lighter colour, which are also
below the error threshold but which are not connected to the largest one. They will not be
used when compiling the statistics of the large flow scales. The percolation transition is
narrow, and changing the threshold by any large amount moves the result into either an
empty or a completely full map, but thresholds in the range 0.8–0.9 yield approximately
the same results as those presented below.

It should be understood that heat maps and their thresholded versions are at most
‘skeletons’ of flow properties. Each point of the map is an element of the Nt × Nt ‘test’
grid used to test the template approximation properties. It marks the centre of a template
box, but the optimum template size is generally wider than the spacing of the test grid, as
shown in figures 5 and 6. Any geometric property of the skeletons should be interpreted
with this in mind. For example, the solid lines in figure 7(a) show the inner ‘width,’ ρ1, of
the largest thresholded object in each frame, defined as the side of the largest square that
completely fits within the object (Catrakis & Dimotakis 1996; Moisy & Jiménez 2004).
The figure is compiled over a test grid with Nt = 20, so that the minimum possible value
is ρ1/L = 0.05. This is smaller than the widths in figure 7(a), which are of the order of
λω0 ≈ 0.15 (table 1), but close enough to it to recommend testing whether ρ1 is influenced
by the test grid. Limited testing with Nt = 30 shows that the results in figure 7(a,b) could
change by approximately 15–20 % on a much finer test grid.

The symbols without lines in figure 7(a) are the integral length,

Lint =
∫ ∞

0
CΦΦ(r) dr, (3.2)

derived from the radial autocorrelation function of the approximation error, Φq, which
typically measures the narrowest dimension of the structures of that variable. It is
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(a) (b)1.0
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0.8 1.0 1.2

Φq,th

FIGURE 6. Definition of the largest thresholded structure in each snapshot. (a) Percolation
diagram for Φq ≤ Φq,th, as a function of the threshold. Dipole templates optimised for Pq.
Solid lines are the area of the largest thresholded object divided by the total thresholded area.
Dashed lines are the number of objects, normalised to unit maximum. Individual lines are for
each simulation, with symbols as in table 1. The vertical dashed line is the standard threshold
used below. (b) Thresholded heat map from figure 5(b). The darker object is the largest connected
structure, used in the following to represent the large-scale flow organisation, and the purple box
is the template size.
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FIGURE 7. Properties of the largest thresholded structure of low Pq in each snapshot.
(a) Temporal evolution of the geometry of the largest structure. , Inner scale normalised
with the initial enstrophy scale, ρ1/λω0; , area of the largest structure normalised with its
initial value, S/S0; symbols without lines are the integral length Lint/λω0 for the correlations of
Φq, defined in (3.2). Symbols as in table 1. Open symbols are vortex templates; closed symbols
are dipoles. (b) Flow properties within the largest structures. , Kinetic-energy density;

, enstrophy density. (c) As in (a), but unnormalised, versus the kinetic-energy wavelength.

interesting that, even if we have seen that the approximation error is a marker for the
largest, energy-containing scales in the flow, the integral length is narrower than the
enstrophy peak in figure 1. In fact, its typical value, 0.3λω0 ≈ 0.05L, is of the order of
the spacing, L/Nt, of the test grid over which it is computed, and could actually be shorter
in a finer grid. If we take Lint to represent the average thickness of the structures of Φq, it
would imply that the snapshot in figure 6(b), where the thickness of the structures is of the
order of the test cell, is indeed typical.

Note that, since the length of the structures can be estimated by S/ρ1, the fact that
S and ρ1 grow at a similar rate in figure 7(a) implies that the length of the structures
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Dipoles and streams in two-dimensional turbulence 904 A39-13

changes little as the flow evolves (S/ρ1L = 1.3 → 1.5), but that their aspect ratio grows
‘fatter’ (S/ρ2

1 = 11 → 8). We will see below that the longitudinal scale of the structures
is typically of the order of the box size, and, therefore, presumably limited by it.

Figure 7(b) shows kinetic energy and enstrophy averaged over dipole templates centred
on points within the largest thresholded object in each snapshot. As suggested by
figure 5(c), and by the definition of the dipole template in figure 3(b), dipoles contain
locally high kinetic energy, but also moderately high enstrophy. Interestingly, enstrophy
is less concentrated than the energy. It could be expected that, since the edge of a jet is
necessarily the seat of high vorticity, the ‘fringe’ of grid points surrounding the large-scale
thresholded streams would be regions of especially high enstrophy, but this is not true.
When energy and enstrophy are conditioned to that fringe, the kinetic-energy density
is lower than the average, and the enstrophy density is indistinguishable from the mean
(not shown). A similar result holds for other flow regions outside the streams. The only
high-energy regions are apparently those detected by the dipole template, including the
lighter-grey regions in figure 6(b), and the only moderately high enstrophy regions are
also, on average, associated with the streams.

Perhaps the strongest indication of the connection of the streams with the structure of the
kinetic energy is figure 7(c). The quantities in figure 7(a) are normalised with their initial
value because they do not otherwise collapse. The initial conditions, which are chosen
to provide a variety of scale combinations, are too different to allow it. For example, the
average value of the area of the largest stream at t = 0 varies by 60 % among the different
simulations. On the other hand, figure 7(c) shows the unnormalised area and thickness of
the large streams versus the energy wavelength, λq. They collapse well, strongly suggesting
that the streams are the support of the kinetic energy of the flow, and that the process of
stream formation is tantamount to the flux of the energy to larger scales.

Figure 8 tests whether the structures detected by the concatenation of dipoles are
elongated and aligned with the flow velocity, as suggested by figure 5(c). Consider the
sketch in figure 8(a). For a given flow snapshot and template size, each cell in the Nt × Nt
test grid has an associated flow velocity, u, and an approximation error, Φ, defined by
averaging over the domain of the optimal template centred on it. Choosing a displacement
vector r with respect to this point, figure 8(b,c) shows the average of the approximation
error corresponding to the cell whose centre is closest to the end of r. The figure shows the
mean error conditioned to the magnitude of r and to its angle, ∠ur, with respect to u. When
this conditional mean is averaged over all the points of the test grid, the result is essentially
independent of the angle, and similar to the unconditional mean of the error. But, when
the conditional centre is chosen within the largest low-error structure in each flow field,
figure 8(b) shows that points aligned with the velocity, ∠ur = 0 or ∠ur = π, preferentially
contain low approximation errors, while those perpendicular to it have high ones. This
effect weakens with the length of r, but figure 8(c) shows that it persists for a distance
of the order of 0.25L, which is four or five times longer than the width ρ1 in figure 7(a).
It is interesting that the distance at which the minimum error in figure 8(c) reverts to its
unconditional value is approximately the same for the four cases included in the figure.
In fact, it changes little among all the cases tested, showing that the longitudinal scale of
the high-velocity streams is always of the order of the box size. The growth of the energy
wavelength, λq, in figure 1(b) and of the area of the high-energy region in figure 7(a) is
presumably due to more convoluted streams, rather than to longer-range ones.

An intriguing feature of figure 8(b) is the asymmetry between the conditional error at
∠ur = 0 and ∠ur = π. Since each point in the low-error structures is both the origin and
the end of some conditioning vector, both directions could be expected to be equivalent.
But they are not, and the error is lower in front of the conditioning point than behind it.
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FIGURE 8. Mean approximation error conditioned to the orientation with respect to the velocity.
(a) Definition sketch. (b) Mean error as a function of the orientation angle. T1024 at ω′

0t = 39.
From bottom to top, distance to the reference point: r/L = 0.1 (0.05) 0.25. (c) Streamwise and
transverse conditional errors as functions of the distance to the reference point. Symbols as in
table 1, with each case at its final simulation time. Closed symbols are measured aligned with
the velocity, and open ones are measured at right angles to it. The dashed horizontal lines in (b,c)
are unconditional errors.

The effect is small but statistically significant; the estimated standard deviation of the lines
in figure 8(b) is only slightly larger than the width of the lines. It is also consistently found
in all the cases examined, not only in the one chosen for the figure. This result is difficult
to interpret, but the implication is that the direction of the velocity is a better predictor of
the downstream location of the low-error structures than of their upstream location. We
will come back to this point in § 4.2.

3.2. Vortices
Even if this paper is mostly concerned with the large energy-containing structures of
the flow, there is no doubt that two-dimensional turbulence can also be described as a
collection of coherent vortices (McWilliams 1984, 1990a; Benzi et al. 1992). The question
that interests us here is whether the large-scale structure discussed above for the kinetic
energy can be described in terms of the organisation of these vortices. In this section we
first address the properties and evolution of the vortices themselves.

Figure 9(a) shows a segmentation of a typical flow field into individual vortices,
defined as connected regions in which |ω| ≥ Hω′. As in the case of figure 7, the
vorticity of the flow separates into a few large connected objects for H � 1, and breaks
into more numerous smaller objects as H increases. Beyond a certain threshold, the
number of vortices decreases again, and eventually vanishes when no vorticity satisfies
the thresholding condition. The value H = 0.9 used in figure 9 is chosen to maximise
the number of individual vortices (Moisy & Jiménez 2004). To gain some sense of the
importance of vortex interactions, the vortices in figure 9(a) are grouped into co- and
counter-rotating pairs. Two vortices are considered a potential pair if their area, s, differs
by less than a factor of m2, which is an adjustable parameter. The underlying rationale
for this restriction is that very dissimilar vortices are unlikely to form long-lived pairs,
because the larger one would tear the smaller one apart (Meunier, Le Dizès & Leweke
2005). The figure uses m = 2, but statistics compiled with m = 1.5 and m = 3 show no
substantial differences (see Jiménez 2020b). Vortices are paired to the closest unpaired
neighbour within their area class, and no vortex can have more than one partner. Some
vortices find no suitable partner, and are left unpaired.
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FIGURE 9. Properties of the thresholded vorticity structures. (a) Typical segmented image.
Case T1024, ω′

0t = 39. In all the panels in this figure, unless otherwise noted, red are dipoles,
blue are co-rotating pairs and green are isolated vortices. Other symbols as in table 1. (b) The
open symbols are the mean diameter of the vortices, and the closed coloured ones are the
distance between vortices in a pair. Lengths are normalised with the vorticity wavelength at
t = 0, and the trend lines are the polynomial fits from figure 1(b) to: , 0.3λω; , 0.22λq.
(c) Area fraction covered by all the vortices of a given class. Open symbols include all the classes.
(d) Number fraction of vortices in different associations. (e) Probability density function of the
distances between vortices in a pair. Colours as in (a), but the chain-dotted black line is the
distribution for a Poisson point set. ( f ) Mean vorticity of the vortex cores. Symbols in ( f –i)
are as in (c). (g) Average circulation of the vortex cores. (h) Enstrophy fraction contained in the
different vortex associations. (i) As in (h), for the kinetic energy.

Figure 9(b) displays mean values of the diameter, s1/2, and of the distance d between
the centres of gravity of the component vortices of the pairs, compiled at several evolution
times for each set of simulations. The diameter of the vortices depends very little on how
they are paired, and, in agreement with the estimations from the vorticity and velocity
statistics in figure 1, is described well by a fraction of the vorticity wavelength, 0.3λω.
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904 A39-16 J. Jiménez

The distance between the vortices of a pair is initially somewhat larger, of the order
of 0.5λω, but it grows with λq, faster than λω. The approximate similarity between the
inter-vortex distance and their diameter implies that vortex pairs remain tightly packed at
this stage of their evolution, although the faster growth of the average distance means that
the area fraction covered by the vortices slowly decays (figure 9c). It should be noted at
this point that the absolute value of the intra-pair distance in figure 9(b) offers a possible
explanation of the observation in § 3.1 that the edges of the high-speed streams are not
a concentration of high enstrophy. It follows from comparing figures 7(a) and 9(b) that
d is 2–3 times narrower than the width ρ1 of the jets, so that, if these jets are defined
as in figure 7, the dipoles are contained within them, rather than at their border. This is
consistent with the visual inspection of the snapshot in figure 5(b).

Figure 9(d) shows the number of vortices involved in different kinds of pairings, giving
a rough measure of the importance of the different interactions. Most vortices are in the
form of pairs. Of the approximately 2 × 106 vortices represented in figure 9, 43 % form
dipoles, 29 % are in co-rotating pairs and 28 % are isolated, with a tendency of the number
of dipoles and co-rotating pairs to converge as the Reynolds number increases. Similar
values were found by Jiménez (2020b) at the lowest of the four Reynolds numbers used in
the present paper. The difference between the number of co-rotating and counter-rotating
pairs is also encountered in the covering fraction in figure 9(c), and is a property of the
flow that disappears if the vortex position is randomised. On the other hand, the scarcity
of unpaired vortices is a geometric property that persists when the pairing algorithm is
applied to a set of Poisson-distributed points.

In fact, a random distribution of the vortex position is a reasonable lowest-order model
for their local organisation. Even if the vortex diameter and the intra-pair distance grow
by a factor of approximately two during the simulation time, the form of their p.d.f. stays
remarkably constant. For example, figure 9(e) shows the p.d.f. of the distance among the
components of vortex pairs, normalised by their mean for each individual experiment.
The figure also includes the p.d.f of a set of Poisson-distributed points with the same
mean. The distribution of dipoles and co-rotating pairs are very similar, with a weak
tendency of dipoles to be farther apart. The Poisson distribution is wider, but most of the
discrepancy can be explained by the exclusion of pairs whose separation is smaller than
the vortex diameter (see appendix A). This explanation is confirmed by the distribution
of the distance d between all possible couples of vortices (not shown). This distribution
should be proportional to d for any homogeneous flow, but this is only true for d � 2〈s1/2〉.
Shorter distances are essentially missing.

In the same way, there is relatively little difference between the properties of vortices in
dipoles and those in co-rotating pairs. We saw in figure 9(b) that their diameters are similar,
and figure 9( f ) shows that so are their vorticities, which decay at the same rate as the r.m.s.
vorticity of the flow. On the other hand, some explanation is needed for figure 9(c,d), which
shows that both the number of dipoles and the total area covered by them is larger than
those of co-rotating pairs. A similar difference appears in figure 9(g), which shows that
the average vortex circulation magnitude grows linearly for all classes. The circulation of
a vortex core can only grow by merging with other cores or by entraining background
vorticity, since there is no vorticity source in two dimensions, but the average over a class
is also influenced by the transfer among classes. Figure 9(g) shows that the circulation
of dipoles is typical of the overall average (they are the largest contributors to it), but
that co-rotating pairs grow more slowly, while unpaired vortices grow slightly faster than
the average. The simplest explanation is that co-rotating pairs tend to merge into single
(initially unpaired) cores (Meunier et al. 2005), thus depleting their number, while dipoles
are longer lasting (Flierl et al. 1980; McWilliams 1980).
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Dipoles and streams in two-dimensional turbulence 904 A39-17

Figure 9(h) shows the fraction of overall enstrophy contained in the thresholded
vortices. Over 85 % of the total enstrophy is contained in them, and this fraction is
remarkably constant among Reynolds numbers and time, no doubt, in part, because the
vorticity threshold used to identify them is a constant fraction of the r.m.s. vorticity. The
contribution to the enstrophy of the different vortex classes is in line with the area fraction
in figure 9(c), as could be expected from the similarity of vortex properties discussed
above.

The fraction of the kinetic energy due to the vortices is harder to define. The simplest
definition is the fraction of q′2 retained by a flow reconstructed from the vorticity
contained within a given class of thresholded vortices. Figure 9(i) shows that keeping
all the thresholded vortices retains 65–70 % of q′2, while keeping only the dipoles or the
co-rotating pairs retains 25–30 % of the energy, and keeping only the unpaired vortices
retains 30–40 %. The change in the relative contribution of dipoles to the enstrophy in
figure 9(h) and to the energy in figure 9(i) is interesting. While dipoles predominate in
number, area and enstrophy, their contribution to the energy is of the same order as the
co-rotating pairs, and substantially less than the unpaired vortices. In fact, even if dipoles
contain a local jet of high velocity, their overall kinetic energy is lower than for co-rotating
pairs, because the total circulation of a dipole is zero, and its induced velocity falls
with distance much faster than for a co-rotating pair (Batchelor 1967). Even if decaying
turbulence is very far from an equilibrium system, Benzi et al. (1992) and Dritschel et al.
(2008) have shown that an approximately Hamiltonian system of point vortices, punctuated
by the occasional merger of like-signed vortices, is a good approximation to the late stages
of two-dimensional enstrophy decay. The difference in the interaction energy of dipoles
and co-rotating pairs is probably also part of the reason for their different behaviour, and
for the slower decay of the former through amalgamation.

In summary, the vortex evolution discussed in this section is consistent with the
description of decaying two-dimensional turbulence as a system of discrete vorticity
structures (McWilliams 1984; Benzi et al. 1987; Brachet et al. 1988), although, at the
relatively early stage of the decay studied here, the structures cannot be described as either
equilibrium or isolated. Their self-similar growth through amalgamation accounts for the
gradual increase in the vorticity scale, λω, but the sizes involved are always much smaller
than the energy scale, λq (see the scale bars in figure 2).

It is interesting that the Reynolds number of the individual vortex cores stays relatively
low during the simulations, Reγ = 〈γ 〉/4πν ≈ 1.5 → 7. Since the maximum vorticity
of a viscously decaying circular vortex satisfies ωt = Reγ (Batchelor 1967), where the
left-hand side is time measured in turnovers, it follows that the size of the vortices in the
simulations, even as they grow by accretion, is typically controlled by viscosity.

4. Collective structures

4.1. Vortex organisation
In fact, the question of how vortices organise themselves to create the streams discussed
in § 3.1 remains open. One possibility, already mentioned, is that the streams are
concatenations of dipoles that are responsible for short segments of the stream. We saw in
the discussion of figure 9 that this model is compatible with the observed vortex distances
and dimensions, but the open question is how the individual dipoles align themselves into
longer units. Another model is that the streams are contact interfaces between large-scale
vortices. We saw in figure 9(b) that the mean vortex diameter increases only weakly during
even the longest flow evolution, and that it is always much smaller than the kinetic-energy
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FIGURE 10. Properties of the vortex pairs. (a) Joint p.d.f. of the velocity of the centre of gravity
of a vortex pair versus the averaged velocity magnitude of its two component vortices. In all
the panels in this figure: , T256; , T512; , T768; , T1024. Red lines are
dipoles, and black ones are co-rotating pairs. The two probability contours in each case enclose
50 % and 95 % of the probability mass. (b) Mean circulation magnitude of the vortex components
of the pair, versus the inter-component distance. (c) Vortex circulation versus vortex mobility.

wavelength, but it is possible that the small cores organise themselves into large-scale
vortex ‘bags’ that fill the space between the streams, acting as coherent structures from
the point of view of the kinetic energy (Paret & Tabeling 1998; Tabeling 2002). However,
we saw in § 3.1 that the only concentration of vorticity is within the coherent jets, not
between them.

The crucial uncertainty is the intensity of the interaction among vortex cores, and
whether, for example, the advection velocity of the cores is mainly due to their closest
neighbour, or to a background of ‘field’ vortices. The former would support the first of the
two models above, while the latter would support the second. Consider vortex pairs. The
result of the mutual induction among two vortices of the same sign and similar circulation
is a rotation around each other. If the vortices are denoted by A and B, and we estimate the
(vector) ‘mobility’ of a vortex by averaging the flow velocity over its core,

uvor = s−1
vor

∫
vor

u ds, (4.1)

the induced mobilities of the components of a co-rotating pair would be uA = −uB, and
the velocity of the centre of the pair would vanish, ucg = (uA + uB)/2 = 0. On the other
hand, dipoles self-induce a common translation velocity, and uA = uB = ucg. If we define
qvor = ‖uvor‖, a self-inducing co-rotating pair would be characterised by qcg � qpair ≡
(qA + qB)/2, while a dipole would satisfy qcg ≈ qpair. This is tested in figure 10(a), and it
is only satisfied by slow-moving vortices. The behaviour of fast pairs for which q � q′ is
independent of whether they are co- or counter-rotating, and they can therefore be assumed
to be mostly advected by a background velocity field.

Figure 10(b) shows that vortex pairs can be classified into two groups. The ‘nose’
extending to the lower right in the figure represents a family of strong cores with large
circulations, whose intra-pair distance is relatively small. This family exists for co-rotating
pairs and for dipoles, although it is most marked for the latter. The vertical band to the left
of the figure contains relatively weak vortices with no clear preference for a particular
coupling distance. Most vortex pairs are in this latter family, but they are relatively
unimportant for the flow. Approximately 66 % of the cores have |γ | < 〈|γ |〉, but they only
contain 15–25 % of the total circulation magnitude. A similar distinction can be based on
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FIGURE 11. (a) Probability density function of the vortex circulation magnitude. In all cases,
time increases from blue to red. The dashed line is proportional to |γ |−0.75. (b) As in (a). The
dashed line is proportional to exp(−0.666|γ |/〈|γ |〉). (c) Kinetic energy contained in different
vortex classes versus mean vortex mobility. Open symbols are all the thresholded vortices; red
symbols are large vortices, svor ≥ 〈svor〉; blue symbols are svor < 〈svor〉. The red arrow is the
direction of time advance for the red symbols.

vortex area (not shown), since the mean vorticity is relatively uniform among the vortices.
The classification into vortex types can be based on either property.

One could hypothesise that the large, tightly coupled vortices in the ‘nose’ family
would be the ones with the fastest mobilities, which they would induce on each other, but
figure 10(c) shows that the opposite is true. The vortices with the largest circulations move
relatively slowly, and the high mobilities tend to be associated with the weak circulations to
the left of the figure. This somewhat surprising observation leads to a model in which a set
of organising large vortices in an ‘approximate equilibrium’ configuration are responsible
for organising the flow into streams where weaker vortices are advected at relatively high
speed.

In fact, the large and small vortices have very different properties. Figure 11(a,b)
shows the one-dimensional p.d.f. of the core circulation, which collapses reasonably well
for all the simulations and evolution times. Figure 11(a) shows that the weak vortices,
|γ | < 〈|γ |〉, follow a power-law distribution P(|γ |) ∼ |γ |−3/4, while figure 11(b) shows
that the vortices above that limit follow an exponential one. The separation of decaying
two-dimensional turbulence into coherent vortices evolving under mutual induction, and
a ‘chaotic’ background has been discussed often (Benzi et al. 1987; Benzi, Patarnello &
Santangelo 1988; McWilliams 1990b), but the background is usually not characterised
in term of vortices, and we are not aware of any previous characterisation of the larger
vortices as slowly moving. For example, Benzi et al. (1987) discuss the large vortices
as the only coherent structures in the flow and report that their areas follow a power-law
distribution, although with a different exponent than the one above, |γ |−3/2. The reason for
this difference is not clear, but we mentioned in § 2 that Benzi et al. (1987) study a later
stage of the decay, and that they use a higher-order viscous dissipation, which presumably
creates different vortex cores (McWilliams 1990b; Jiménez 1994). It is also unclear why
the exponential range of the distribution in figure 11(b) is not discussed by Benzi et al.
(1987), although this may be partly due to their different sample size. The analysis in
their paper is based on 17 vortices, while each of the distributions in figure 11 represents
104–105 objects.

Figure 11(c) shows that the kinematics of the weak and strong cores is very different.
The vertical axis in this figure is the fraction of the kinetic energy carried by the
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thresholded vortices, defined as in figure 9(i). The open symbols are the contribution
from all the vortices, as in that figure, and the red symbols are the contribution from
vortices whose area is larger than the average. They contain most of the kinetic energy.
The blue symbols in the lower-right corner are the contribution from vortices smaller than
the average, which is much smaller. The horizontal axis is the average vortex mobility
defined as the modulus of (4.1). The large and small vortices lie in very different parts of
the plot, as already suggested by figure 10(c). Large vortices are responsible for most of
the kinetic energy of the flow, but are themselves relatively immobile, while small ones
move fast, but are only responsible for a small fraction of the kinetic energy.

The power-law and exponential probability distributions suggest that the cores grow
by two different aggregation mechanisms of smaller units. While a power law implies
self-similar scale-free growth, in which cores merge with other cores of similar size (Benzi
et al. 1992), an exponential has a definite scale, which is proportional to the mean of the
distribution, and to the size of the elements being accreted (Jiménez & Kawahara 2013).
In figure 11 the lower limit of the exponential is indeed of the order of 〈|γ |〉, and it is
interesting to speculate about an aggregation model in which cores merge self-similarly
with each other until they grow to be large enough to ‘freeze’ in a quasi-equilibrium slowly
evolving pattern. The motion of these large vortices is not chaotic, at least over short times,
and these cores stop merging among themselves. But they keep absorbing the remaining
fast-moving vortices of the background, and the largest of these field vortices determine
the scale of the exponential distribution.

Over a much longer time scale, it is to be expected that even the ‘frozen’ vortices would
merge among themselves, in an amalgamation process similar to the one described by
Carnevale et al. (1991, 1992), but the appearance of a collective equilibrium signals that
the energy scale has become of the order of the box size. As mentioned in § 2, this is the
limit of our simulations, and of the analysis in this paper.

Vortex arrangements that remain stationary in some frame of reference have been
studied for over a century (see the review in Aref et al. 2002). Some of them are stable,
and form spontaneously in experiments. In particular, forced two-dimensional turbulence
is known to settle to stationary vortex ‘crystals’ which are partly determined by the forcing
method and by the boundary conditions (Fine et al. 1995; Jin & Dubin 2000; Jiménez &
Guegan 2007), and beautiful examples of equilibrium vortex polygons have been observed
in the polar regions of planetary atmospheres (Tabataba-Vakilia et al. 2020). Most known
equilibrium systems are regular arrangements of vortices of a single sign in a background
of opposite-sign vorticity, but mixed-sign stable systems are also known. The von Kármán
vortex street is probably the best known example of the latter, and it is known that
two-dimensional turbulence in a square box converges to a quasi-equilibrium single dipole,
arranged diagonally in the box, which only decays slowly by viscosity (Smith & Yakhot
1993).

The circulation of the slow-moving vortices discussed here is essentially in balance
(with a residue of 1 %–3 % of ω′), but they are still far from equilibrium, and may perhaps
be considered an intermediate stage to a final steady state. Attempts to extract a regular
arrangement for them failed, beyond the four-way symmetry induced by the computational
box, but the drop in mobility can be considered diagnostic of incipient ‘crystallisation.’

4.2. The up-scale energy flux
The discussion in the previous section raises the question of how the dipoles get organised
into long streams. Three examples are given in figure 12. These examples were chosen
for didactic purposes to demonstrate the aggregation process, and are not truly random.
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Dipoles and streams in two-dimensional turbulence 904 A39-21

(a)

(b)

(c)

FIGURE 12. Three examples of the organisation of vortices into streams. Time runs in each row
from left to right, ω′

0t = 0, 2, 4.6, 6.5. Case T256. The three rows are independent realisations,
and only vortices with s > 〈s〉 are included in the figure. Line contours are positive (red)
and negative (blue) vorticity, the arrows are velocity, and the grey background is the velocity
magnitude.

But they are fairly representative. Of the several thousand simulations available,
approximately 30 % were found visually to display an initial evolution similar to those
in the figure. Three of those were chosen at random from about 50 ‘good’ cases. Each row
in the figure is a simulation, displayed at four approximately equidistant times, which are
the same for the three cases. Vortices are represented in colour, according to their sign,
and the arrows are the velocities. The intensity of the grey background is the velocity
magnitude. To best display the evolution, only the largest vortices (s > 〈s〉) are included
in each plot, and the Reynolds number is purposely chosen low.

Each simulation starts with a relatively disorganised arrangement of vortices but, at the
end of each sequence, positive (red) vortices have sorted themselves to one side of the
flow, and negative (blue) ones to the other, supporting a jet between them. Some merging
of like-signed vortices takes place in all cases.

The question is how this happens, because, while continuity probably implies that the
velocity of any elongated velocity structure should be aligned with its axis, the opposite
is not true. Compact jet-like vortex dipoles with aspect ratios of order one (modons) are
well-known stable solutions of the Euler and Navier–Stokes equations (Flierl et al. 1980;
McWilliams 1980).

Simulations of point vortex systems (not shown) spontaneously form tight dipoles and
co-rotating pairs, but the dipoles do not organise into trains or jets, as is the case in
figure 12(a,b). Neither do they form stronger dipoles of vortex ‘clouds,’ as in figure 12(c).
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(a) (b)

FIGURE 13. (a) Velocity field of a dipole of equal point vortices of circulation ±γ0 at distance
2H. The dipole is moving to the right, but is shown in the frame of reference linked to the
vortices. The blue lines are streamlines, as well as the trajectories of an advected point vortex.
The black lines are the dividing streamline in this frame of reference. (b) As in (a), but the blue
lines are the trajectories of the centre of gravity of a vortex patch of positive circulation γ and
area s, such that γ0s2/γ H4 = 2. A patch with negative circulation would be entrained to the
negative vortex in the dipole. Only trajectories coming from large positive x are included. See
text and appendix B for details.

When a point dipole collides with a solitary point vortex or with a co-rotating pair, it
often loses one of its vortices, possibly breaking the colliding couple and forming a new
association. Very seldom the resulting arrangement involves more than two vortices.

Of course, sets of point vortices are Hamiltonian systems whose interactions conserve
energy (Batchelor 1967). Both the merging of like-signed vortices and the breaking of
an existing dipole involve energy exchanges, which are much simpler if viscosity or
filamentation can be used as an energy dump. This would statistically favour the formation
of the lower-energy dipoles, but any such selection criterion requires a local mechanism to
implement it. In particular, it is unclear why a positive vortex being overtaken by a dipole
would tend to reinforce the positive component of the dipole, strengthening it, rather than
merging with the negative one, weakening it.

A possible mechanism is explained in figure 13. Consider the point vortex dipole in
figure 13(a). In the comoving frame of reference, it forms a recirculation bubble separated
from infinity by an approximately elliptical dividing streamline (see appendix B). Any
sufficiently weak point vortex being overtaken by the dipole follows the streamlines around
the bubble, independently of its sign, and it is eventually left behind. There is no preference
for which side of the dipole its path takes, and it is therefore unlikely to statistically
strengthen or weaken it.

The situation is different for the entrainment of an extended vortex, as detailed in
appendix B for the case of a uniform vortex patch. Such patches drift with respect to
the advecting streamlines, as shown by the trajectories in figure 13(b). Positive patches
drift towards the positive component of the dipole, and negative ones towards the negative
component. The result is an average strengthening of the dipole, and the formation of
organised jets.

Note that this accretion model could explain the asymmetry observed in figure 8, where
it was shown that the direction of the velocity of a stream is a better predictor of the
direction taken by the stream ahead than behind the position at which it is measured.
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Dipoles and streams in two-dimensional turbulence 904 A39-23

In the model presented here dipoles propagate forward, and take some time to incorporate
new vorticity. The jet of a growing dipole is strongest at its trailing edge, and, therefore,
predicts better the position of the leading dipole ahead of it. Examples of this asymmetry
between the front and back of dipoles can be seen in figures 12(a) and 12(c), where a
growing head dipole is followed by a trailing jet of elongated filaments that have been
created during their interaction with the dipole.

On the other hand, although accretion explains why existing dipoles become stronger,
and thus how they segregate into classes, it does not explain how they organise into longer
streams. Several examples of both processes can be seen in figure 12. For example, the flow
in figure 12(c) organises into a single strong dipole but not into a long stream. Figure 12(b)
forms a horizontal leftwards jet in the middle of the frame, but none of its dipoles is
especially strong, and the same is true of the oblique jet forming in the lower-right corner
of figure 12(a). The growth of the longitudinal scale in a set of two-dimensional vortices
first came under consideration when modelling the spreading of free shear layers in Brown
& Roshko (1974). Two mechanisms were proposed at the time. In ‘vortex pairing’ two
vortices of the same sign merge into a larger one (Winant & Browand 1974), while in
‘vortex tearing’ a weaker vortex between two stronger ones is strained into a filament
that is eventually entrained or dissipated (Moore & Saffman 1975). The accretion model
developed above can be considered a case of pairing, and a clear tearing can be seen
between the second and third frames of figure 12(b). Both processes are relevant in
experimental shear layers (Hernán & Jiménez 1982), but that flow involves vorticity of
a single sign, and the scale growth mostly takes place along a single axis. Repeating
a similar analysis in the present mixed-sign isotropic situation would involve a more
thorough processing than is possible here, both theoretically and observationally.

The interaction of fast-moving dipoles with smaller vortices, akin to tearing, has been
invoked by Dritschel et al. (2008) as an important step of the forward enstrophy cascade.
It takes place when a third vortex is shredded by a dipole, but, to our knowledge, such
interactions have not been connected with the up-scale cascade. In a related observation,
random forcing of two-dimensional turbulence induces a self-similar enstrophy cascade,
but the cascade disappears (to form vortex crystals) when the forcing is partially
deterministic, and the character of the flow again changes when the forcing is fully
deterministic, in which case the flow becomes a ‘dilute gas of dipoles’ that cleans most of
the background low-level vorticity (Jiménez & Guegan 2007).

5. Discussion and conclusions

We have used simulation ensembles of decaying two-dimensional turbulence to study
the early stages of the evolution of the flow from a disorganised state towards a set of
vortex cores and large-scale structures of the kinetic energy. In this period, the dominant
scale of the kinetic energy is still small compared to the size of the computational box, and
grows monotonically. We have shown that, at least at the moderate Reynolds numbers of
our simulations, this growth is due to the appearance of elongated ‘streams’ formed by a
concatenation of vortex dipoles. The growth of the energy scale is not due to the elongation
of the streams, whose aspect ratio stays in the range of 8–10, but to their proliferation, and
to the increase of the area fraction that they cover.

We have shown that the formation of the streams includes a process of aggregation of
the vortex cores. The cores segregate into two separate classes. Most of them are small and
mobile, and merge among themselves in a self-similar cascade that results in a power-law
probability distribution of vortex sizes (Benzi et al. 1992). A few of the cores grow
larger, and eventually ‘freeze’ into a low-mobility vortex system. These larger vortices are
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responsible for most of the kinetic energy of the flow, but they themselves move slowly, in
what can be described as a quasi-equilibrium vortex ‘crystal.’ The probability distribution
of their areas and circulations is exponential, rather than a power law, suggesting that they
do not grow by interacting among themselves, at least in the time scales considered here,
but by absorbing smaller vortices from the self-similar background. They are responsible
for the formation of the streams. We have proposed a formation mechanism by noting that,
although a vortex dipole shows no preference about how to entrain a point vortex of either
sign, the drift velocity of vortex patches biases positive patches to merge with the positive
component of the dipole, and negative ones to merge with the negative component. As a
consequence, the dipoles are strengthened and the streams are formed.

This growth mechanism of the energy scale is probably not the classical inverse energy
cascade, which is typically observed in forced, rather than in decaying flows. There are
two main properties that have to be explained for this cascade (Tabeling 2002; Boffetta
& Ecke 2012). The first one is its k−5/3 power spectrum, and the second one is its
low intermittency. The latter is consistent with the processes discussed here, because
growth by aggregation of small units of fixed size is an additive process, which is not
intermittent. But the observed exponential probability distribution of the vortex size, and
the approximately crystallisation, argue against the self-similarity implied by a power
spectrum. Note that there is no k−5/3 plateau in the spectral slopes in figure 1(c). It is
possible that the aggregation of dipoles into streams is hierarchical and self-similar in
much larger simulations, but it is difficult to see how such a self-similar amalgamation
could avoid producing intermittency (Frisch, Sulem & Nelkin 1978). Moreover, the facility
with which streams are formed in figure 12, suggests that it would be hard to prevent
the large-scale vortex organisation from falling into local equilibrium. A more appealing
possibility is that the reason why a self-similar inverse cascade is only observed in forced
flows is that the effect of the forcing is to locally ‘melt’ the vortex crystal, much as
a liquid develops short-range order and long-range disorder. Although analysing such
a model is beyond the scope of the present paper, a process of repeated short-range
crystallisation and longer-range melting caused by random excitations, is probably not
particularly intermittent. We mentioned above that partially deterministic forcing can
inhibit the forward enstrophy cascade (Jiménez & Guegan 2007), but, to our knowledge,
no systematic study of the effect of forcing on the inverse cascade is available.

It is difficult not to be reminded by the discussion above of other examples of
spontaneous stream formation in more complicated flows. The best known are probably
the streaks in wall-bounded turbulence and other shear flows (Tsukahara, Kawamura &
Shingai 2006; Dong et al. 2017; Jiménez 2018a), and the azimuthal jets of planetary
atmospheres and rotating flows (Maltrud & Vallis 1991; Dritschel & McIntyre 2008;
Grossmann, Lohse & Sun 2016; Sacco, Verzicco & Ostilla-Mónico 2019). In many of
these cases, the streams are a streamwise concatenation of smaller units (Lozano-Durán,
Flores & Jiménez 2012), and the question arises of how these units organise longitudinally.
This is not the place to review the many models proposed for this organisation, but most
of them depend on the generation of new vorticity, which is readily available from the
shear or from the planetary rotation. There is no vorticity generation in a two-dimensional
flow, and the mechanism discussed here, which depends on the reorganisation of vorticity
rather than on its creation, suggests that some of these streams may, at least in part, share
a common mechanism which is more related to symmetry breaking and pattern formation
(Cross & Greenside 2009) than to the dynamics of the energy-generation process.

It is finally interesting to remark that, although the analysis in this paper is a fairly
classical example of hypotheses-driven research, it was made possible by following
the ‘blind suggestion’, from the Monte–Carlo experiments in Jiménez (2020b), that
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dipoles are at least as relevant to two-dimensional turbulence as individual vortex cores.
Hypothesis-driven science is, of course, the standard scientific method, and it can be
argued to be the only way in which the scientific corpus derives new ‘theories’ from
the empirical accumulation of facts (Poincaré 1920). A different question is how the
hypotheses to be tested are chosen, and, preferably but not necessarily, whether the
resulting ‘theory’ can be related back to this choice. In the present case, the original
intriguing observation was that dipoles of relatively small size had global effects (Jiménez
2020b), and it can easily be explained from the results of the subsequent analysis: killing
a dipole amounts to blocking a stream, and has effects over the length of the stream.
The mismatch between the size of the cause and of the effect is the elongation of the
object being modified. In a sense, the initial Monte-Carlo search is being used here as a
‘hypothesis generator’, while the rest of the paper is the ‘hypothesis test’, and it is tempting
to speculate that this could be a reasonable division of labour between computer and
researcher. Further discussion of these ‘epistemological’ issues can be found in Jiménez
(2020a,b).
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Appendix A. Poisson distribution of the closest point

If the expected number of Poisson-distributed points in a set parametrised with r is λ(r),
the probability of finding no points within the set is

P0(r) = exp(−λ), (A 1)

and the probability density that the first point is precisely at r is

Pc(r) = −(dP0/dr) = (dλ/dr) exp(−λ). (A 2)

For a set of points distributed in a plane with uniform average density ρ, the expected
number of points within a distance r of a reference position is λ = πρr2, and

Pc(r) = 2πρr exp(−ρπr2). (A 3)

This distribution can be integrated to show that the average distance to the closest point is
〈r〉0 = 1/

√
4ρ, so that (A 3) can be written as

Pc(ξ) = (πξ/2) exp(−πξ 2/4), (A 4)

where ξ = r/〈r〉0.
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904 A39-26 J. Jiménez

If we add the restriction that no point can be closer than a distance a (e.g. the vortex
diameter), the expected number of points within a distance r ≥ a is λ = πρ(r2 − a2),

Pc(r) = 2πρr exp[−ρπ(r2 − a2)], (A 5)

and the average distance to the closest point becomes

〈r〉ε =
∫ ∞

a
rPc(r) dr = a + (1/2

√
ρ )erfc(ε) exp(ε2), (A 6)

where ε = a/
√

ρπ = √
4/πa/〈r〉0. It can be shown that 〈r〉ε ≈ a for ε � 1, but that

〈r〉ε ≈ 〈r〉0 for ε � 0.5. Figure 9(e) suggests that â = a/〈r〉0 ≈ 0.2–0.3, so that

Pc(ξ) ≈ (πξ/2) exp[−π(ξ 2 − â2)/4], ξ > â. (A 7)

The effect is to crop the part of the distribution near the origin, while raising its peak to
compensate for the missing mass (as in figure 1e).

Appendix B. Drift of a vortex patch

While point vortices are advected by the flow velocity, vortices with a wider support
drift with respect to it. In the particular case of small patches of uniform vorticity, the
drift velocity can be computed as a series expansion of the vortex radius. The following
equations of motion are drawn from Jiménez (1988).

Define a complex variable z = (x + iy)/H, where H is a characteristic length scale, and
consider a uniform vortex patch of circulation γΓ and area s. Using Γ and H to define the
time and length scales, the expansion parameter is ε2 = s/πH2, which is assumed to be
small. The irrotational complex flow velocity in the absence of the patch is described by
an analytic function w∞(z) = (u − iv)H/Γ , with a similar non-analytic expression within
the patch. To lowest order, the contour of the patch is an ellipse,

z − zc = εη(1 + b2ε
2/η2), (B 1)

where zc is the centre of gravity of the patch, and η = exp(iφ) is the unit circle. Matching
at this contour the expansions of the velocity inside and outside the patch provides an
evolution equation for the ellipticity,

2πε2 db2/dτ = iγ b2 + c∗
2, (B 2)

where τ = Γ t/H2 is a rescaled time, the asterisk stand for complex conjugation, and

ck = 2π

(k − 1)!
dk−1w∞
dzk−1

(zc). (B 3)

The drift velocity, defined as dz∗
c/dτ = w∞(zc) + wd, can be expressed as

wd = (ε4/2π)b2c3, (B 4)

and, if we further assume that (B 2) has reached equilibrium, so that b2 = ic∗
2/γ ,

wd = πiε4

γ

dw∗
∞

dz∗
d2w∞
dz2

. (B 5)

Consider now the effect on the patch from a dipole formed by two point vortices of
circulation Γ γ0 separated by a distance 2H. In figure 13(a) in the body of the paper, the
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positive vortex is on top, and the dipole would move to the right, but it is made stationary
by a uniform negative velocity at infinity. Consider a third vortex being overtaken by the
dipole, but neglect its effect on the dipole itself. In the units defined above, the velocity
induced by the dipole is

w∞ = γ0

π

(
1

1 + z2
− 1

4

)
. (B 6)

Its effect on a point vortex is given by the streamlines in figure 13(a). The vortex is
deflected around the recirculation bubble of the dipole, and eventually left behind. There
is no difference between a positive and a negative vortex, but the situation is different for
an extended patch, because the drift velocity,

wd = −4iγ 2
0 ε4

γπ

z∗

1 + z∗2

3z2 − 1
(1 + z2)3

, (B 7)

depends on the sign of the circulation of the patch being overtaken. As shown in
figure 13(b), positive vortices tend to be entrained into the upper part of the stream, and
to merge with the positive vortex of the dipole. Negative patches are entrained towards the
lower negative vortex. The result is that the dipole is reinforced on average.
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